US20080297758A1 - Lithographic support structure - Google Patents

Lithographic support structure Download PDF

Info

Publication number
US20080297758A1
US20080297758A1 US12/213,930 US21393008A US2008297758A1 US 20080297758 A1 US20080297758 A1 US 20080297758A1 US 21393008 A US21393008 A US 21393008A US 2008297758 A1 US2008297758 A1 US 2008297758A1
Authority
US
United States
Prior art keywords
substrate
clamping
clamp
johnson
effect type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/213,930
Inventor
Patricius Aloysius Jacobus Tinnemans
Edwin Johan Buis
Sjoerd Nicolaas Lambertus Donders
Jan Van Elp
Jan Frederik Hoogkamp
Aschwin Lodewijk Hendricus Van Meer
Patrick Johannes Cornelus Smulders
Franciscus Andreas Cornelis Spanjers
Johannes Petrus Martinus Ber Vermeulen
Raimond Visser
Henricus Gerardus Tegenbosch
Johannes Charles Adrianus Van Den Berg
Henricus Johannes Adrianus Van De Sande
Thijs Vervoort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Priority to US12/213,930 priority Critical patent/US20080297758A1/en
Assigned to ASML NETHERLANDS B.V. reassignment ASML NETHERLANDS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUIS, EDWIN JOHAN, DONDERS, SJOERD NICOLAAS LAMBERTUS, HOOGKAMP, JAN FREDERICK, SMULDERS, PATRICK JOHANNES CORNELIS HENDRIK, SPANJERS, FRANCISCUS ANDREAS CORNELIS JOHANNES, TEGENBOSCH, HENRICUS GERARDUS, VAN DE SANDE, HENRICUS JOHANNES ADRIANUS, VAN DEN BERG, JOHANNES CHARLES ANDRIANUS, VAN MEER, ASCHWIN LODEWIJK HENDRICUS JOHANNES, VERVOORT, THIJS, VAN ELP, JAN, TINNEMANS, PATRICIUS ALOYSIUS JACOBSON, VERMEULEN, JOHANNES PETRUS MARTINUS BERNARDUS, VISSER, RAIMOND
Publication of US20080297758A1 publication Critical patent/US20080297758A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D3/00Burners using capillary action
    • F23D3/02Wick burners
    • F23D3/18Details of wick burners
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/561Tubes; Conduits

Definitions

  • the present invention relates to a lithographic apparatus and, in particular, to a lithographic support structure for supporting and moving an object.
  • Lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
  • a patterning device may be used to generate a desired circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist).
  • a target portion e.g. comprising one or more dies
  • substrate silicon wafer
  • resist radiation-sensitive material
  • patterning device as here employed should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” can also be used in this context.
  • the pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning device include:
  • a mask the concept of a mask is well known in lithography, and it includes mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. Placement of such a mask in the radiation beam causes selective transmission (in the case of a transmission mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask.
  • the support structure will generally be a mask table, which ensures that the mask can be held at a desired position in the incoming radiation beam, and that it can be moved relative to the beam if so desired;
  • a programmable mirror array one example of such a device is a matrix-addressable surface having a visco-elastic control layer and a reflective surface.
  • the basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as non-diffracted light.
  • the non-diffracted light can be filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface.
  • An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field, or by employing piezoelectric actuation mechanism.
  • the mirrors are matrix-addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors; in this manner, the reflected beam is patterned according to the addressing pattern of the matrix-addressable mirrors.
  • the required matrix addressing can be performed using suitable electronic means.
  • the patterning device can comprise one or more programmable mirror arrays.
  • the support structure may be embodied as a frame or table, for example, which may be fixed or movable as required;
  • a programmable LCD array an example of such a construction is given in United States patent U.S. Pat. No. 5,229,872, which is incorporated herein by reference.
  • the support structure in this case may be embodied as a frame or table, for example, which may be fixed or movable as required.
  • a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist).
  • the substrate Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features.
  • PEB post-exposure bake
  • This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC. Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemical-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc.
  • a technique such as dicing or sawing
  • the projection system may hereinafter be referred to as the “lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example.
  • the radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a “lens”.
  • the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such “multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in U.S. Pat. No. 5,969,441 and WO 98/40791, both incorporated herein by reference.
  • one or more actuators with grippers or clamping units like robots, pre-aligners or substrate table pins will be used to hold and move objects from one location to another location.
  • Those objects may be substrates, like wafers, but may also be other items.
  • substrates are typically introduced into a lithographic apparatus and finally placed on a substrate table.
  • the substrate may be handed over from a robot to a stationary position (or, optionally, to another robot).
  • a global tilt for instance, 3 mrad
  • Rx and Ry a predetermined x-axis or y-axis, defined as Rx and Ry, respectively.
  • This global tilt between these two items involved in a take-over should be minimized to ensure the proper working of a clamping device used by the robot to clamp, e.g., the substrate.
  • Correct functioning of the clamping device is necessary to ensure positive handling, i.e., at every point in time, it should be clear where the substrate is in the lithographic apparatus. This implies that the substrate should be actively clamped at all times.
  • the principles of the present invention provide for a lithographic support system having improved compensation of tilt and/or displacement between an object and a supporting structure, such as a robot arm.
  • the lithographic support system comprises a supporting structure configured to hold and move an object, the supporting structure comprising a clamping structure, and a compliant part configured to compensate for at least one of a tilt and displacement between the object and the clamping structure.
  • the invention also relates to a supporting structure where the supporting structure is a robot arm. Moreover, the invention relates to a robot for use in a lithographic projection apparatus, comprising such a robot arm.
  • FIG. 1 depicts a lithographic projection apparatus according to an embodiment of the invention
  • FIG. 2 schematically depicts a part of a lithographic apparatus in which the present invention can be used according to an embodiment of the invention.
  • FIG. 3 a schematically shows a robot arm supporting a substrate
  • FIG. 3 b shows a side view of the arrangement according to FIG. 3 a;
  • FIG. 4 a shows a side view of a support frame of a robot arm with a clamp to hold a substrate according to an embodiment of the invention
  • FIG. 4 b shows a side view of a support frame of a robot arm with a clamp to hold a substrate according to an embodiment of the invention, wherein the substrate is warped;
  • FIG. 4 c shows a cross section of a supporting structure in the form of a moveable rod with a compliant part according to an embodiment of the invention
  • FIG. 4 d shows a cross section of the rod of FIG. 4 c
  • FIGS. 4 e and 4 f show a further embodiment of a flexible supporting structure
  • FIG. 5 shows a side view of a support frame of a robot arm with a clamp to hold a substrate, the clamp being provided with an oxidized upper surface according to an embodiment of the invention
  • FIG. 6 a shows a side view of a support frame with a clamp to hold a substrate, the clamp being a Johnson-Raybeck type clamp according to an embodiment of the invention
  • FIG. 6 b shows an enlarged portion of the clamp of FIG. 6 a
  • FIG. 7 shows a de-clamping voltage provided to a Johnson-Raybeck type clamp in accordance with an embodiment of the invention
  • FIG. 8 shows a substrate table with an actuator to lift and lower a substrate from and towards the substrate table according to an embodiment of the invention.
  • FIG. 1 schematically depicts a lithographic apparatus according to a particular embodiment of the invention.
  • the apparatus comprises:
  • a radiation system Ex, IL for supplying a projection beam PB of radiation (e.g. UV radiation).
  • the radiation system also comprises a radiation source LA;
  • a first object table (mask table) MT provided with a mask holder for holding a mask MA (e.g. a reticle), and connected to first positioning mechanism PM for accurately positioning the mask with respect to item PL;
  • a mask table e.g. a reticle
  • a second object table (substrate table) WT provided with a substrate holder for holding a substrate W (e.g. a resist-coated silicon wafer), and connected to second positioning mechanism PW for accurately positioning the substrate with respect to item PL; and
  • a substrate W e.g. a resist-coated silicon wafer
  • a projection system (“lens”) PL for imaging an irradiated portion of the mask MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.
  • the apparatus is of a reflective type (i.e. has a reflective mask). However, in general, it may also be of a transmissive type, for example (with a transmissive mask). Alternatively, the apparatus may employ another kind of patterning device, such as a programmable mirror array of a type as referred to above.
  • the source LA e.g. a mercury lamp or an excimer laser
  • the source LA produces a beam of radiation.
  • This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning mechanism, such as a beam expander Ex, for example.
  • the illuminator IL may comprise adjusting mechanism AM for setting the outer and/or inner radial extent (commonly referred to as ⁇ -outer and ⁇ -inner, respectively) of the intensity distribution in the beam.
  • ⁇ -outer and ⁇ -inner commonly referred to as ⁇ -outer and ⁇ -inner, respectively
  • it will generally comprise various other components, such as an integrator IN and a condenser CO.
  • the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
  • the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser.
  • the current invention and Claims encompass both of these scenarios.
  • the beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having traversed the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan.
  • the object tables MT, WT will be realized with the aid of a long-stroke module (course positioning) and a short-stroke module (fine positioning), which are not explicitly depicted in FIG. 1 .
  • the mask table MT may just be connected to a short stroke actuator, or may be fixed.
  • the depicted apparatus can be used in a variety of different modes:
  • step mode the mask table MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the projection beam is projected onto a target portion C in one go (i.e. a single static exposure).
  • the substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed.
  • the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure;
  • the mask table MT and the substrate table WT are scanned synchronously while a pattern imparted to the projection beam is projected onto a target portion C (i.e. a single dynamic exposure).
  • the velocity and direction of the substrate table WT relative to the mask table MT is determined by the (de-)magnification and image reversal characteristics of the projection system PL.
  • the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion;
  • the mask table MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern imparted to the projection beam is projected onto a target portion C.
  • a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan.
  • This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.
  • FIG. 2 schematically depicts several parts of the lithographic apparatus through which, in operation, substrates (and possibly other objects) may be moved.
  • FIG. 2 shows a load lock LL, a handling chamber HC and a projection chamber PC.
  • the load lock LL comprises two doors 2 , 4 .
  • the first door 2 faces the inside of the lithographic projection apparatus 1 , comprising the handling chamber HC and the projection chamber PC, in which, in an embodiment, vacuum conditions, having a pressure P vac , are maintained.
  • the second door 4 faces, e.g., atmospheric conditions, having a pressure that is, for instance, equal to atmospheric pressure P atm .
  • the invention can also advantageously be applied for other pressure values.
  • the load lock LL comprises a wall that forms an inner space.
  • the load lock LL is further provided with supporting means (not shown) for supporting one or more objects, such as a substrate (wafer) W, as will be known to a person skilled in the art.
  • the load lock LL is also provided with a gas inlet 3 and a gas outlet 5 .
  • the gas outlet 5 can be provided with a pump 6 to pump down the load lock LL to vacuum conditions of, for instance, 10 ⁇ 3 -10 ⁇ 5 Pa, a pressure substantially equal to or lower than P vac .
  • the movement of, for instance, a substrate W from the atmospheric environment to the vacuum via the load lock LL usually comprises the following steps:
  • the gas inlet 3 can be used to vent the load lock in order to raise the pressure in the load lock from P vac to P atm .
  • Movement of a substrate W from the vacuum to the atmospheric environment via the load lock LL usually comprises the following steps:
  • FIG. 2 shows a gas supply 7 comprising N 2 gas.
  • Gas supply 7 may be a high pressure tank.
  • a supporting structure driven by an actuator to move the substrate W in either one, two or three dimensions, such as a robot 8 with an arm provided with a suitable gripper or clamp.
  • a supporting structure is a combination of pins to displace, lift or lower a substrate in a direction, which are, optionally, provided with a clamp to hold the substrate.
  • FIG. 3 a shows a robot arm 10 of robot 8 in more detail.
  • the robot arm 10 comprises a rod 12 connected to a support frame 18 by means of a compliant part 14 and an intermediate part 16 .
  • the support frame 18 is provided with a clamping structure, indicated by three clamps 20 , 22 , and 24 .
  • the support frame 18 supports a substrate W.
  • the substrate W can be held on the support frame 18 by means of the clamps 20 , 22 and 24 .
  • the support frame 18 defines a plane in which the substrate W lies when it is clamped by the clamps 20 , 22 , and 24 . That plane is defined by an x-axis and an y-axis.
  • the x-axis is in the longitudinal direction of the rod 12
  • the y-axis is perpendicular to the x-axis.
  • a z-axis is defined perpendicular to both the x-axis and the y-axis.
  • the z-axis is not shown in FIG. 3 a but is shown in FIG. 3 b .
  • the x-, y- and z-axes have an origin 19 that is defined to be the location where the center of the substrate W is to be substantially located during movement of the substrate W through the apparatus shown in FIG. 2 .
  • FIG. 3 b shows a side view of the arrangement shown in FIG. 3 a .
  • FIG. 3 b additionally, shows the substrate table WT (which is not shown in FIG. 3 a ).
  • FIG. 3 b shows that support frame 18 may be provided with a compliant portion (or flexible portion) 26 .
  • the compliant portion 26 may be located behind the “fingers” of support frame 18 but may also be located within one or both of the “fingers”.
  • the compliant portion 14 may comprise two or more compliant rods 14 , rotatable at their ends.
  • the intermediate part 16 is able to rotate slightly about both the x-axis and the y-axis. Moreover, it can be lifted slightly in the z-direction.
  • the compliant portion 14 can be made of any other structure or of any material, having a flexible or compliant feature.
  • the compliant portion 26 of the support frame 18 is produced by providing the support frame 18 with a notch, such that the front side of the support frame designed to hold the substrate W is allowed to rotate about both the x-axis and the y-axis, and to lift slightly in the z-direction, without any movement of the rod 12 .
  • the compliant portion 14 is designed such that it has rotation poles in a predetermined center coinciding with the center of the coordinate system, as defined by the x-, y- and z-axes. This point of origin is also the location where the center of the substrate W is to be located during gripping/clamping by the robot arm.
  • any rotation errors in a positive and negative direction of the substrate W about the x- and/or y-axis can be adapted best.
  • a tilt and/or a displacement in z between the substrate W and another part in the lithographic apparatus can be compensated. This is, for instance, significant during substrate hand-over from a substrate handler robot to the substrate table WT and from a pre-aligner to a substrate handler robot. However, this also holds for other hand-overs in the apparatus. It is especially important for the hand-over to a device provided with clamps to hold, e.g., the substrate W. If the tilt and/or a displacement in z between the substrate W and the part to receive the substrate W is too large, the hand-over cannot take place because the clamps may not function.
  • the compliant parts 14 or 26 small tolerances are introduced enabling, in this case, the substrate W to adapt its tilt and/or a z-displacement to the other receiving part under a small force.
  • European Patent Application 03075929.4 of the present applicant discloses that a compliant mechanism is also provided between the gripper and the armset (as described in EP 03075929.4), to decouple the movements of the gripper with respect to the armset.
  • a compliant mechanism is also provided between the gripper and the armset (as described in EP 03075929.4), to decouple the movements of the gripper with respect to the armset.
  • the mechanical link the accuracy of the position of the gripper, and thus the substrate, with respect to the receiver is increased.
  • vibrations, and in particular the relative vibrations of the gripper and the receiver are reduced and the mutual accuracy of the substrate and the receiver can be increased.
  • the mechanical docking solution can also be used for the reverse procedure, i.e. picking up objects, as for instance a substrate, from the receiver.
  • FIGS. 4 a and 4 b show that the provision of compliant parts within a clamp may also help correcting for tilt and displacements when clamping a substrate W (or any other object) to a clamp on a support frame 18 of a robot arm.
  • FIG. 4 a shows the support frame 18 provided with the clamp 20 , approaching a substrate W to be clamped.
  • the substrate W has a diameter D 1 that may be 200 mm.
  • the clamp 20 has a diameter D 2 that may be 40 mm.
  • the tilt angle a requirements can be so low that the distance indicated by D 3 in FIG. 4 a needs to be below 8 micrometers.
  • the clamping device may be a vacuum pad or an electrostatic clamp, like a Johnson-Raybeck effect clamp. As is known to persons skilled in the art, tilt requirements are more stringent for the electrostatic clamps.
  • FIG. 4 b shows that the substrate W may not be perfectly flat in a plane but may, e.g., be undulated when viewed in cross-section.
  • the undulation amplitude D 4 may be as large as 500 micrometer. This undulation may be the result of all kinds of process steps during the lithography process, as is known to persons skilled in the art. Due to the undulated cross-section of the substrate W, the stringent tilt requirements may not be met at all locations of the substrate W.
  • the clamp 20 may be provided with a compliant portion 28 as shown in FIG. 4 b .
  • This compliant portion 28 may be made of a metal flexure or any other flexible material or structure suitable for a lithographic projection apparatus.
  • the compliant portion 28 provides the clamp with Rx, Ry, and z compliance. Either the weight of the substrate W or a small positive force in the z-direction used during hand-over of the substrate W may, then, ensure that the surface of the clamp will align with the rear surface of the substrate W. When aligned, the clamp 20 will hold the rear surface of the substrate W. The clamp force will then be sufficient to keep the substrate W clamped during movement through the apparatus.
  • the clamp compliance can be made such that the substrate's x, y and Rz position are not changed. This maintains positional accuracy of the substrate, as is required for other processes in the lithographic projection apparatus.
  • the weight of the substrate W is sufficient to align the clamp since the clamp should also work after losing clamp force due to, e.g., cut off of electrical power, after an emergency stop of the apparatus, etc.
  • the compliant portion 28 can also correct for any curvature of the support frame 18 .
  • FIGS. 4 c and 4 d show the provision of compliant portions with supporting structures that are allowed to move in one direction only.
  • the supporting structure shown comprises a rod like a substrate table pin 38 having a clamp 20 mounted on an end.
  • the pin 38 comprises compliant portion 28 .
  • the compliant portion 28 is made by providing the pin with two notches 29 that provide the pin 38 with a flexibility in a first direction perpendicular to its direction of movement.
  • FIG. 4 d shows a cross section of the pin of FIG. 4 c in the direction of IVd-IVd, as shown in FIG. 4 c to better show the notches 29 and optional notches 31 .
  • the rod 38 may a cross section different from the circular one shown.
  • FIGS. 4 e and 4 f A further embodiment of a flexible supporting structure to be used with, e.g., an electrostatic clamp for clamping, e.g., a wafer or a reticle, is shown in FIGS. 4 e and 4 f.
  • the supporting structure shown comprises an outer ring 46 , an interface ring 48 and a central part 50 .
  • the outer ring 46 will be fixed in a gripper (not shown) or a stage (not shown).
  • an electrostatic clamp (not shown) will be attached, e.g., by gluing.
  • the central part 50 on its turn is fixed to the interface ring 48 by two leaf springs 54 a , 54 b and two rods 56 a , 56 b .
  • the leaf springs 54 a , 54 b are oriented to block the Rx d.o.f.
  • the arrangement is such that the interface ring with respect to the central part 50 releases only one rotation, i.e., Ry.
  • Two remaining translations are fixed with the flexible supporting structure of FIGS. 4 e and 4 f , i.e., x and z d.o.f.'s.
  • FIG. 5 shows a further embodiment of the invention, in which the clamp 20 on the support frame 18 is a Johnson-Raybeck effect type clamp.
  • a Johnson-Raybeck effect type clamp is provided with a dielectric material made from a very low conductive material. Due to the very low conductivity (of electrical resistance) of the dielectric material, electrical clamping charges migrate through the dielectric material towards the clamping surface. In use, contact with substrate W is only made at some tiny spots. Between those tiny spots there are “open” spaces defining a distance between the clamping surface and the rear side of substrate W. Charges opposite the “open” spaces in both the clamping surface and the substrate W create a clamp with a very small distance between the charges, only the remaining gap, and hence create very large clamping forces.
  • a solution to that problem according to an embodiment of the invention is to provide the upper surface of the clamp 20 a high electrical resistance coating (for example a thin dielectric layer of several (1-20) microns) such as an oxidized layer 30 (for example SiO 2 ), as shown in FIG. 5 .
  • This oxidized layer 30 may be provided to the clamp 20 in any way known to persons skilled in the art.
  • FIG. 6 a shows the support frame 18 provided with the clamp 20 , the clamp 20 being a Johnson-Raybeck effect clamp.
  • the clamp 20 holds the substrate W.
  • the clamping effect is generated by a controller, shown as a series connection of a DC voltage source and an AC voltage source.
  • the controller may be based on any suitable electronic circuit or may be implemented by a computer.
  • FIG. 6 b shows a portion of FIG. 6 a on an enlarged scale.
  • FIG. 6 b shows that the Johnson-Raybeck effect type clamp 20 is provided with a conductive part 34 and a electrically leaky insulator 32 . Due to the leaky insulator 32 , an electrical current will flow between the conductor part 34 and the substrate W resulting in trapped charges in the leaky insulator 32 .
  • FIG. 7 shows that the clamping voltage V clamp has a predetermined value V 0 at the time of clamping.
  • the substrate W is to be de-clamped from the clamp 20 .
  • the DC source is switched off and the AC source is switched on such that an AC voltage with decaying amplitude is provided to the clamp 20 until the amplitude of the AC voltage is substantially zero at time t 2 .
  • the frequency of the AC source is a radio frequency.
  • the clamping force of the clamp 20 is so small that the substrate W can be safely removed from the clamp 20 .
  • FIG. 8 shows the substrate table WT with a substrate W.
  • the lithographic apparatus is provided with an actuator 42 provided with pins 38 .
  • the actuator 42 is arranged to displace the substrate W from and towards the substrate table WT.
  • the substrate table WT is provided with a substrate support 36 (such as pimples) for supporting the substrate W.
  • the substrate table WT is provided with a clamp 40 , e.g., an electrostatic clamp or vacuum clamp.
  • a clamp 40 e.g., an electrostatic clamp or vacuum clamp.
  • other types of clamps may be used as well, as is known to persons skilled in the art.
  • a processor 44 is provided that is connected to both the clamp 40 and the actuator 42 , in order to provide them with suitable control signals.
  • the robot 8 with its robot arm 10 is shown again, together with its connection to the processor 44 , such that the processor 44 can also control the operation of the robot 8 .
  • substrate cycling is part of a substrate table cleaning procedure. After a chemical and/or mechanical cleaning part of this procedure, typically about 8 substrates are cycled successively onto the substrate table to remove remaining contaminants from the substrate support 36 and to reach a substrate rear side contamination specification again.
  • the processor 44 is arranged to control the clamp 40 , the actuator 42 and the robot 8 in the following way:
  • the actuator 42 is arranged to displace the substrate W from the substrate support 36 after de-clamping, to have the robot 8 rotate or shift the substrate W, to displace the substrate W to the substrate support 36 to clamp the substrate W by the clamp 40 again, etc. This may be repeated, e.g., 8 times.
  • the cleaning procedure may be much faster than in the past. Moreover, only one substrate is necessary for such a cleaning procedure. Thus, several portions of the rear surface of the substrate W are used to remove contamination on the substrate support 36 ; thus, saving the number of substrates necessary to perform the cleaning procedure.

Abstract

The invention relates to a transfer apparatus for transferring an object (W). the transfer apparatus comprises a gripper (15) for at least one of gripping the object (W) at a first position and then releasing the object (W) at a second position proximate to a receiver (20) and releasing the object (W) at a first position after gripping the object at a second position proximate to the receiver (20). The transfer apparatus is further provided with a measurement device (22) arranged to measure the relative position of the gripper (15) with respect to the receiver (20) in at least one dimension. Further, a relative position error is defined with respect to a desired relative position based on the relative position measured. The relative position of the gripper (15) and the receiver (20) are adjusted for minimizing the relative position error in the second position.

Description

  • This application is a divisional of co-pending U.S. patent application Ser. No. 10/813,687, filed Mar. 31, 2004, which claims priority from European Patent Application No. 03075929.4, filed Mar. 31, 2003, and European Patent Application No. 03077320.4, filed Jul. 23, 2003, each of the foregoing applications herein incorporated in its entirety by reference.
  • FIELD
  • The present invention relates to a lithographic apparatus and, in particular, to a lithographic support structure for supporting and moving an object.
  • BACKGROUND
  • Lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, a patterning device may be used to generate a desired circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist).
  • The term “patterning device” as here employed should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” can also be used in this context. Generally, the pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning device include:
  • a mask: the concept of a mask is well known in lithography, and it includes mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. Placement of such a mask in the radiation beam causes selective transmission (in the case of a transmission mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask. In the case of a mask, the support structure will generally be a mask table, which ensures that the mask can be held at a desired position in the incoming radiation beam, and that it can be moved relative to the beam if so desired;
  • a programmable mirror array: one example of such a device is a matrix-addressable surface having a visco-elastic control layer and a reflective surface. The basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as non-diffracted light. Using an appropriate filter, the non-diffracted light can be filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface. An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field, or by employing piezoelectric actuation mechanism. Once again, the mirrors are matrix-addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors; in this manner, the reflected beam is patterned according to the addressing pattern of the matrix-addressable mirrors. The required matrix addressing can be performed using suitable electronic means. In both of the situations described here above, the patterning device can comprise one or more programmable mirror arrays. More information on mirror arrays as here referred to can be gleaned, for example, from United States patents U.S. Pat. No. 5,296,891 and U.S. Pat. No. 5,523,193, and PCT patent applications WO 98/38597 and WO 98/33096, which are incorporated herein by reference. In the case of a programmable mirror array, the support structure may be embodied as a frame or table, for example, which may be fixed or movable as required; and
  • a programmable LCD array: an example of such a construction is given in United States patent U.S. Pat. No. 5,229,872, which is incorporated herein by reference. As above, the support structure in this case may be embodied as a frame or table, for example, which may be fixed or movable as required.
  • For purposes of simplicity, the rest of this text may, at certain locations, specifically direct itself to examples involving a mask and mask table; however, the general principles discussed in such instances should be seen in the broader context of the patterning device as set forth here above.
  • In a manufacturing process using a lithographic projection apparatus, a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist). Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features.
  • This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC. Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemical-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book “Microchip Fabrication: A Practical Guide to Semiconductor Processing”, Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4, incorporated herein by reference.
  • For the sake of simplicity, the projection system may hereinafter be referred to as the “lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a “lens”.
  • Further, the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such “multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in U.S. Pat. No. 5,969,441 and WO 98/40791, both incorporated herein by reference.
  • In a lithographic apparatus, one or more actuators with grippers or clamping units, like robots, pre-aligners or substrate table pins will be used to hold and move objects from one location to another location. Those objects may be substrates, like wafers, but may also be other items.
  • For instance, substrates are typically introduced into a lithographic apparatus and finally placed on a substrate table. During this movement, the substrate may be handed over from a robot to a stationary position (or, optionally, to another robot). During hand-over, there may be a global tilt (for instance, 3 mrad) relative to a predetermined x-axis or y-axis, defined as Rx and Ry, respectively. This global tilt between these two items involved in a take-over should be minimized to ensure the proper working of a clamping device used by the robot to clamp, e.g., the substrate. Correct functioning of the clamping device is necessary to ensure positive handling, i.e., at every point in time, it should be clear where the substrate is in the lithographic apparatus. This implies that the substrate should be actively clamped at all times.
  • SUMMARY
  • For these and other reasons, the principles of the present invention, as embodied and broadly described herein, provide for a lithographic support system having improved compensation of tilt and/or displacement between an object and a supporting structure, such as a robot arm. In one embodiment, the lithographic support system comprises a supporting structure configured to hold and move an object, the supporting structure comprising a clamping structure, and a compliant part configured to compensate for at least one of a tilt and displacement between the object and the clamping structure.
  • By the above-referred supporting structure, very accurate take-over is possible while no rotation or displacement of, e.g., a substrate is necessary. Forces created by a collision between, e.g., a substrate and a receiving supporting structure are absorbed by the compliant part. There will be less risk of displacement and of losing substrates in the lithographic apparatus.
  • The invention also relates to a supporting structure where the supporting structure is a robot arm. Moreover, the invention relates to a robot for use in a lithographic projection apparatus, comprising such a robot arm.
  • Although specific reference may be made in this text to the use of the apparatus according to the invention in the manufacture of ICs, it should be explicitly understood that such an apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “reticle”, “wafer” or “die” in this text should be considered as being replaced by the more general terms “mask”, “substrate” and “target portion”, respectively.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
  • FIG. 1 depicts a lithographic projection apparatus according to an embodiment of the invention;
  • FIG. 2 schematically depicts a part of a lithographic apparatus in which the present invention can be used according to an embodiment of the invention; and
  • FIG. 3 a schematically shows a robot arm supporting a substrate;
  • FIG. 3 b shows a side view of the arrangement according to FIG. 3 a;
  • FIG. 4 a shows a side view of a support frame of a robot arm with a clamp to hold a substrate according to an embodiment of the invention;
  • FIG. 4 b shows a side view of a support frame of a robot arm with a clamp to hold a substrate according to an embodiment of the invention, wherein the substrate is warped;
  • FIG. 4 c shows a cross section of a supporting structure in the form of a moveable rod with a compliant part according to an embodiment of the invention;
  • FIG. 4 d shows a cross section of the rod of FIG. 4 c;
  • FIGS. 4 e and 4 f show a further embodiment of a flexible supporting structure;
  • FIG. 5 shows a side view of a support frame of a robot arm with a clamp to hold a substrate, the clamp being provided with an oxidized upper surface according to an embodiment of the invention;
  • FIG. 6 a shows a side view of a support frame with a clamp to hold a substrate, the clamp being a Johnson-Raybeck type clamp according to an embodiment of the invention;
  • FIG. 6 b shows an enlarged portion of the clamp of FIG. 6 a;
  • FIG. 7 shows a de-clamping voltage provided to a Johnson-Raybeck type clamp in accordance with an embodiment of the invention;
  • FIG. 8 shows a substrate table with an actuator to lift and lower a substrate from and towards the substrate table according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 schematically depicts a lithographic apparatus according to a particular embodiment of the invention. The apparatus comprises:
  • a radiation system Ex, IL: for supplying a projection beam PB of radiation (e.g. UV radiation). In this particular case, the radiation system also comprises a radiation source LA;
  • a first object table (mask table) MT: provided with a mask holder for holding a mask MA (e.g. a reticle), and connected to first positioning mechanism PM for accurately positioning the mask with respect to item PL;
  • a second object table (substrate table) WT: provided with a substrate holder for holding a substrate W (e.g. a resist-coated silicon wafer), and connected to second positioning mechanism PW for accurately positioning the substrate with respect to item PL; and
  • a projection system (“lens”) PL: for imaging an irradiated portion of the mask MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.
  • As here depicted, the apparatus is of a reflective type (i.e. has a reflective mask). However, in general, it may also be of a transmissive type, for example (with a transmissive mask). Alternatively, the apparatus may employ another kind of patterning device, such as a programmable mirror array of a type as referred to above.
  • The source LA (e.g. a mercury lamp or an excimer laser) produces a beam of radiation. This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning mechanism, such as a beam expander Ex, for example. The illuminator IL may comprise adjusting mechanism AM for setting the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in the beam. In addition, it will generally comprise various other components, such as an integrator IN and a condenser CO. In this way, the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
  • It should be noted with regard to FIG. 1 that the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser. The current invention and Claims encompass both of these scenarios.
  • The beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having traversed the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan. In general, movement of the object tables MT, WT will be realized with the aid of a long-stroke module (course positioning) and a short-stroke module (fine positioning), which are not explicitly depicted in FIG. 1. However, in the case of a wafer stepper (as opposed to a step-and-scan apparatus) the mask table MT may just be connected to a short stroke actuator, or may be fixed.
  • The depicted apparatus can be used in a variety of different modes:
  • step mode: the mask table MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the projection beam is projected onto a target portion C in one go (i.e. a single static exposure). The substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure;
  • scan mode: the mask table MT and the substrate table WT are scanned synchronously while a pattern imparted to the projection beam is projected onto a target portion C (i.e. a single dynamic exposure). The velocity and direction of the substrate table WT relative to the mask table MT is determined by the (de-)magnification and image reversal characteristics of the projection system PL. In scan mode, the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion; and
  • other mode: the mask table MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern imparted to the projection beam is projected onto a target portion C. In this mode, generally a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.
  • Combinations and/or variations on the above described modes of use or entirely different modes of use may also be employed.
  • FIG. 2 schematically depicts several parts of the lithographic apparatus through which, in operation, substrates (and possibly other objects) may be moved. FIG. 2 shows a load lock LL, a handling chamber HC and a projection chamber PC. The load lock LL comprises two doors 2, 4. The first door 2 faces the inside of the lithographic projection apparatus 1, comprising the handling chamber HC and the projection chamber PC, in which, in an embodiment, vacuum conditions, having a pressure Pvac, are maintained. The second door 4 faces, e.g., atmospheric conditions, having a pressure that is, for instance, equal to atmospheric pressure Patm. However, the invention can also advantageously be applied for other pressure values.
  • The load lock LL comprises a wall that forms an inner space. The load lock LL is further provided with supporting means (not shown) for supporting one or more objects, such as a substrate (wafer) W, as will be known to a person skilled in the art.
  • As can be seen in FIG. 2, the load lock LL is also provided with a gas inlet 3 and a gas outlet 5. The gas outlet 5 can be provided with a pump 6 to pump down the load lock LL to vacuum conditions of, for instance, 10−3-10−5 Pa, a pressure substantially equal to or lower than Pvac. The movement of, for instance, a substrate W from the atmospheric environment to the vacuum via the load lock LL, usually comprises the following steps:
  • opening the second door 4 facing the atmospheric conditions Patm,
  • transferring the substrate W from atmospheric conditions Patm into the load lock LL,
  • closing the second door 4,
  • depressurizing the load lock LL to a pressure substantially equal to or less than vacuum conditions Pvac through gas outlet 5 using, for example, pump 6,
  • opening the first door 4 facing the vacuum conditions Pvac, and
  • transferring the substrate W to the vacuum conditions Pvac from the load lock LL.
  • The gas inlet 3 can be used to vent the load lock in order to raise the pressure in the load lock from Pvac to Patm. Movement of a substrate W from the vacuum to the atmospheric environment via the load lock LL, usually comprises the following steps:
  • depressurizing the load lock LL to a pressure substantially equal to or less than the vacuum conditions Pvac,
  • opening the first door 2 facing the vacuum conditions Pvac,
  • transferring the substrate W from the vacuum conditions Pvac into the load lock LL,
  • closing the first door 2,
  • venting the load lock LL to a pressure substantially equal to or more than atmospheric conditions Patm via the gas inlet 3,
  • opening the second door 4 facing the atmospheric conditions Patm, and
  • delivering the substrate W to the atmospheric conditions Patm.
  • These actions as listed above refer to atmospheric conditions outside the first door 2. However, as is known to persons skilled in the art there may be other pressure conditions outside the load lock. The example given above is by no means intended to restrict the use of the load lock LL. Hazardous particles and contaminating molecules, such as oxygen, hydrocarbons and/or H2O that may interfere with processes in the lithographic projection apparatus, are limited from entering the load lock LL by filling the load lock LL with a specially chosen gas that doesn't comprise these particles or molecules. Gasses, such as N2 gas, Ar gas or synthetic air, but of course also other suitable gasses, can be used, as will be understood by a person skilled in the art.
  • When the load lock LL is brought back from Pvac to Patm by supplying gas through gas inlet 3 to the load lock LL a special gas is typically used instead of normal environmental air. FIG. 2 shows a gas supply 7 comprising N2 gas. Gas supply 7 may be a high pressure tank.
  • It will be appreciated by persons skilled in the art that for supporting and moving a substrate W, and possibly other objects in, towards, and from the lithographic apparatus 1 (like in a track, the load lock, a pre-aligner and the projection chamber), use is made of a supporting structure driven by an actuator to move the substrate W in either one, two or three dimensions, such as a robot 8 with an arm provided with a suitable gripper or clamp. Another example of a supporting structure is a combination of pins to displace, lift or lower a substrate in a direction, which are, optionally, provided with a clamp to hold the substrate. In the embodiments described below, reference will be made to substrates, but the invention is equally applicable to other objects.
  • EMBODIMENT 1
  • FIG. 3 a shows a robot arm 10 of robot 8 in more detail. The robot arm 10 comprises a rod 12 connected to a support frame 18 by means of a compliant part 14 and an intermediate part 16.
  • As shown, the support frame 18 is provided with a clamping structure, indicated by three clamps 20, 22, and 24. The support frame 18 supports a substrate W. The substrate W can be held on the support frame 18 by means of the clamps 20, 22 and 24.
  • The support frame 18 defines a plane in which the substrate W lies when it is clamped by the clamps 20, 22, and 24. That plane is defined by an x-axis and an y-axis. The x-axis is in the longitudinal direction of the rod 12, whereas the y-axis is perpendicular to the x-axis. A z-axis is defined perpendicular to both the x-axis and the y-axis. The z-axis is not shown in FIG. 3 a but is shown in FIG. 3 b. The x-, y- and z-axes have an origin 19 that is defined to be the location where the center of the substrate W is to be substantially located during movement of the substrate W through the apparatus shown in FIG. 2.
  • FIG. 3 b shows a side view of the arrangement shown in FIG. 3 a. FIG. 3 b, additionally, shows the substrate table WT (which is not shown in FIG. 3 a). Moreover, FIG. 3 b shows that support frame 18 may be provided with a compliant portion (or flexible portion) 26. The compliant portion 26 may be located behind the “fingers” of support frame 18 but may also be located within one or both of the “fingers”.
  • As shown in FIG. 3 b, the compliant portion 14 may comprise two or more compliant rods 14, rotatable at their ends. Thus, the intermediate part 16 is able to rotate slightly about both the x-axis and the y-axis. Moreover, it can be lifted slightly in the z-direction. Of course, the compliant portion 14 can be made of any other structure or of any material, having a flexible or compliant feature.
  • As shown in FIG. 3 b, the compliant portion 26 of the support frame 18 is produced by providing the support frame 18 with a notch, such that the front side of the support frame designed to hold the substrate W is allowed to rotate about both the x-axis and the y-axis, and to lift slightly in the z-direction, without any movement of the rod 12.
  • Preferably, the compliant portion 14 is designed such that it has rotation poles in a predetermined center coinciding with the center of the coordinate system, as defined by the x-, y- and z-axes. This point of origin is also the location where the center of the substrate W is to be located during gripping/clamping by the robot arm. Thus, any rotation errors in a positive and negative direction of the substrate W about the x- and/or y-axis (generally a tilt) can be adapted best.
  • By providing the robot arm 10 with at least one of the compliant parts 14, 26, a tilt and/or a displacement in z between the substrate W and another part in the lithographic apparatus can be compensated. This is, for instance, significant during substrate hand-over from a substrate handler robot to the substrate table WT and from a pre-aligner to a substrate handler robot. However, this also holds for other hand-overs in the apparatus. It is especially important for the hand-over to a device provided with clamps to hold, e.g., the substrate W. If the tilt and/or a displacement in z between the substrate W and the part to receive the substrate W is too large, the hand-over cannot take place because the clamps may not function. By providing the compliant parts 14 or 26, small tolerances are introduced enabling, in this case, the substrate W to adapt its tilt and/or a z-displacement to the other receiving part under a small force.
  • European Patent Application 03075929.4 of the present applicant, from which the priority is claimed and which is incorporated herein in its entirety, discloses that a compliant mechanism is also provided between the gripper and the armset (as described in EP 03075929.4), to decouple the movements of the gripper with respect to the armset. As a result of the mechanical link, the accuracy of the position of the gripper, and thus the substrate, with respect to the receiver is increased. Also, vibrations, and in particular the relative vibrations of the gripper and the receiver are reduced and the mutual accuracy of the substrate and the receiver can be increased. Of course, the mechanical docking solution can also be used for the reverse procedure, i.e. picking up objects, as for instance a substrate, from the receiver.
  • FIGS. 4 a and 4 b show that the provision of compliant parts within a clamp may also help correcting for tilt and displacements when clamping a substrate W (or any other object) to a clamp on a support frame 18 of a robot arm.
  • FIG. 4 a shows the support frame 18 provided with the clamp 20, approaching a substrate W to be clamped. There is a tilt angle a between the top of the clamp 20 and the substrate W. The substrate W has a diameter D1 that may be 200 mm. The clamp 20 has a diameter D2 that may be 40 mm. In an example, for a proper clamp functioning, the tilt angle a requirements can be so low that the distance indicated by D3 in FIG. 4 a needs to be below 8 micrometers. The clamping device may be a vacuum pad or an electrostatic clamp, like a Johnson-Raybeck effect clamp. As is known to persons skilled in the art, tilt requirements are more stringent for the electrostatic clamps.
  • FIG. 4 b shows that the substrate W may not be perfectly flat in a plane but may, e.g., be undulated when viewed in cross-section. The undulation amplitude D4 may be as large as 500 micrometer. This undulation may be the result of all kinds of process steps during the lithography process, as is known to persons skilled in the art. Due to the undulated cross-section of the substrate W, the stringent tilt requirements may not be met at all locations of the substrate W.
  • To compensate then for a tilt and/or displacement between the substrate and the clamp, the clamp 20 may be provided with a compliant portion 28 as shown in FIG. 4 b. This compliant portion 28 may be made of a metal flexure or any other flexible material or structure suitable for a lithographic projection apparatus. The compliant portion 28 provides the clamp with Rx, Ry, and z compliance. Either the weight of the substrate W or a small positive force in the z-direction used during hand-over of the substrate W may, then, ensure that the surface of the clamp will align with the rear surface of the substrate W. When aligned, the clamp 20 will hold the rear surface of the substrate W. The clamp force will then be sufficient to keep the substrate W clamped during movement through the apparatus. The clamp compliance can be made such that the substrate's x, y and Rz position are not changed. This maintains positional accuracy of the substrate, as is required for other processes in the lithographic projection apparatus.
  • Preferably, the weight of the substrate W is sufficient to align the clamp since the clamp should also work after losing clamp force due to, e.g., cut off of electrical power, after an emergency stop of the apparatus, etc. As may be evident to a person skilled in the art, the compliant portion 28 can also correct for any curvature of the support frame 18.
  • FIGS. 4 c and 4 d show the provision of compliant portions with supporting structures that are allowed to move in one direction only. The supporting structure shown comprises a rod like a substrate table pin 38 having a clamp 20 mounted on an end. The pin 38 comprises compliant portion 28. The compliant portion 28 is made by providing the pin with two notches 29 that provide the pin 38 with a flexibility in a first direction perpendicular to its direction of movement. There may be provided two other notches 31, as indicated with dashed lines, in the pin 38 perpendicular to the notches 29 to provide the pin 38 with a flexibility in a second direction perpendicular to the first direction.
  • FIG. 4 d shows a cross section of the pin of FIG. 4 c in the direction of IVd-IVd, as shown in FIG. 4 c to better show the notches 29 and optional notches 31.
  • Of course, other compliant parts than the one shown in FIGS. 4 c and 4 d can be used. The rod 38 may a cross section different from the circular one shown.
  • A further embodiment of a flexible supporting structure to be used with, e.g., an electrostatic clamp for clamping, e.g., a wafer or a reticle, is shown in FIGS. 4 e and 4 f.
  • The supporting structure shown comprises an outer ring 46, an interface ring 48 and a central part 50. The outer ring 46 will be fixed in a gripper (not shown) or a stage (not shown). On top of the central part 50, an electrostatic clamp (not shown) will be attached, e.g., by gluing. In the outer ring 46, the interface ring 48 is fixed with two leaf springs 52 a and 52 b releasing the y, Rx and Rz d.o.f.'s (=degrees of freedom). The central part 50 on its turn is fixed to the interface ring 48 by two leaf springs 54 a, 54 b and two rods 56 a, 56 b. The leaf springs 54 a, 54 b are oriented to block the Rx d.o.f. Thus, together with the rods 56 a, 56 b the arrangement is such that the interface ring with respect to the central part 50 releases only one rotation, i.e., Ry. Two remaining translations are fixed with the flexible supporting structure of FIGS. 4 e and 4 f, i.e., x and z d.o.f.'s.
  • EMBODIMENT 2
  • FIG. 5 shows a further embodiment of the invention, in which the clamp 20 on the support frame 18 is a Johnson-Raybeck effect type clamp. As known to persons skilled in the art, a Johnson-Raybeck effect type clamp is provided with a dielectric material made from a very low conductive material. Due to the very low conductivity (of electrical resistance) of the dielectric material, electrical clamping charges migrate through the dielectric material towards the clamping surface. In use, contact with substrate W is only made at some tiny spots. Between those tiny spots there are “open” spaces defining a distance between the clamping surface and the rear side of substrate W. Charges opposite the “open” spaces in both the clamping surface and the substrate W create a clamp with a very small distance between the charges, only the remaining gap, and hence create very large clamping forces.
  • In a Johnson-Raybeck clamp a small electrical current is flowing through the dielectric layer (furthermore in this example a small current flows in between the wafer and the dielectric material), which leads to a relatively small heat load of the combined clamp substrate system. For most applications this is not a problem because of the absence of lithography requirements like overlay and critical dimensions. For a clamp to be used in a lithography tool this can be a problem.
  • A solution to that problem according to an embodiment of the invention is to provide the upper surface of the clamp 20 a high electrical resistance coating (for example a thin dielectric layer of several (1-20) microns) such as an oxidized layer 30 (for example SiO2), as shown in FIG. 5. This oxidized layer 30 may be provided to the clamp 20 in any way known to persons skilled in the art. By providing the clamp 20 with the oxidized layer 30, only a very small electrical current will flow in the contact area between the clamp and the substrate and into the substrate W itself, thus having a negligible impact on the temperature of the substrate W.
  • EMBODIMENT 3
  • FIG. 6 a shows the support frame 18 provided with the clamp 20, the clamp 20 being a Johnson-Raybeck effect clamp. The clamp 20 holds the substrate W. The clamping effect is generated by a controller, shown as a series connection of a DC voltage source and an AC voltage source. As will be appreciated by a person skilled in the art, the controller may be based on any suitable electronic circuit or may be implemented by a computer.
  • FIG. 6 b shows a portion of FIG. 6 a on an enlarged scale. FIG. 6 b shows that the Johnson-Raybeck effect type clamp 20 is provided with a conductive part 34 and a electrically leaky insulator 32. Due to the leaky insulator 32, an electrical current will flow between the conductor part 34 and the substrate W resulting in trapped charges in the leaky insulator 32.
  • For clamping the substrate W to the clamp 20, only the DC source is switched on and the AC source is switched off. To de-clamp the substrate W from the clamp 20, one can simply switch off the DC source. However, due to the trapped charges in the leaky insulator 32, it will take a while before the attracting force between the clamp 20 and the substrate W is small enough to remove the substrate W. This is due to the trapped charges in the leaky insulator 32 only leaking away from the leaky insulator 32 very slowly.
  • It is known to solve this problem by applying one or more reverse-polarity voltage steps, opposite of the clamping potential provided by the DC source.
  • However, an alternative solution is for the AC source to be is arranged to provide a decaying AC voltage from the time that de-clamping starts. This is further explained in FIG. 7. FIG. 7 shows that the clamping voltage Vclamp has a predetermined value V0 at the time of clamping. At time t1, the substrate W is to be de-clamped from the clamp 20. Then, at time t1, the DC source is switched off and the AC source is switched on such that an AC voltage with decaying amplitude is provided to the clamp 20 until the amplitude of the AC voltage is substantially zero at time t2. Preferably, the frequency of the AC source is a radio frequency. At time t2, the clamping force of the clamp 20 is so small that the substrate W can be safely removed from the clamp 20.
  • EMBODIMENT 4
  • FIG. 8 shows the substrate table WT with a substrate W. The lithographic apparatus is provided with an actuator 42 provided with pins 38. In use, the actuator 42 is arranged to displace the substrate W from and towards the substrate table WT. The substrate table WT is provided with a substrate support 36 (such as pimples) for supporting the substrate W. By providing the substrate table WT with the substrate support 36, the actual surface of contact between the substrate table WT and the substrate W is reduced while still providing a proper support.
  • The substrate table WT is provided with a clamp 40, e.g., an electrostatic clamp or vacuum clamp. However, other types of clamps may be used as well, as is known to persons skilled in the art.
  • A processor 44 is provided that is connected to both the clamp 40 and the actuator 42, in order to provide them with suitable control signals.
  • The robot 8 with its robot arm 10 is shown again, together with its connection to the processor 44, such that the processor 44 can also control the operation of the robot 8.
  • Sometimes, substrate cycling is part of a substrate table cleaning procedure. After a chemical and/or mechanical cleaning part of this procedure, typically about 8 substrates are cycled successively onto the substrate table to remove remaining contaminants from the substrate support 36 and to reach a substrate rear side contamination specification again.
  • However, there are at least two problems related to this current cleaning procedure:
  • 1. availability and cost of the required number (8) of clean substrates at customer locations for substrate cycling;
  • 2. downtime of the apparatus because of cycling cleaning substrates.
  • In accordance with an embodiment of the invention, the number of substrates needed for substrate cycling is drastically reduced to one single substrate. To that end, the processor 44 is arranged to control the clamp 40, the actuator 42 and the robot 8 in the following way:
  • introducing the substrate W in the lithographic projection apparatus by means of the robot 8;
  • clamping the substrate W to the substrate table WT by means of the clamp 40, such that the substrate W contacts the substrate table WT at a first location;
  • de-clamping the substrate W from the substrate table WT by providing a de-clamping voltage to the clamp 40;
  • repeating the clamping and de-clamping a predetermined number of times, such that the substrate contacts the substrate table WT repeatedly, either at a first location or at other locations than the first location.
  • In order to be sure that successive other locations of contacts with the substrate are arranged by which contamination will be removed from the substrate support 36, preferably, the actuator 42 is arranged to displace the substrate W from the substrate support 36 after de-clamping, to have the robot 8 rotate or shift the substrate W, to displace the substrate W to the substrate support 36 to clamp the substrate W by the clamp 40 again, etc. This may be repeated, e.g., 8 times.
  • By programming the processor 44 for this proposed method, the cleaning procedure may be much faster than in the past. Moreover, only one substrate is necessary for such a cleaning procedure. Thus, several portions of the rear surface of the substrate W are used to remove contamination on the substrate support 36; thus, saving the number of substrates necessary to perform the cleaning procedure.
  • While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. For instance, it will be understood that the number of robots may be more than the single robot 8 shown in the figures. Moreover, there may be more load locks than the single load lock shown. Moreover, although a single processor 44 is shown (FIG. 8), there may be more than one processor to control different components of the apparatus. These processors may be connected to one another and arranged to co-operate, e.g., in a master slave arrangement.
  • Thus, the description is not intended to limit the invention and the configuration, operation, and behavior of the present invention has been described with the understanding that modifications and variations of the embodiments are possible, given the level of detail present herein. Accordingly, the preceding detailed description is not meant or intended to, in any way, limit the invention—rather the scope of the invention is defined by the appended claims.

Claims (22)

1.-10. (canceled)
11. A lithographic clamping structure, comprising:
a Johnson-Raybeck effect type clamp having an upper surface to clamp an object; and
an oxidized layer, provided on the upper surface of the Johnson-Raybeck effect type clamp, to minimize heating effects transferred to the object.
12. The lithographic clamping structure of claim 13, wherein the decaying AC-profile is an RF AC profile.
13. A lithographic support structure to hold and move an object, comprising:
a Johnson-Raybeck effect type clamp; and
a controller coupled to the Johnson-Raybeck effect type clamp and configured to provide a clamping and de-clamping voltage to the Johnson-Raybeck effect type clamp, wherein the controller is arranged to generate the de-clamping voltage with a decaying AC-profile.
14. Method of cleaning a substrate holder in a lithographic apparatus including a clamp for clamping a substrate, the method comprising:
introducing a substrate in the lithographic apparatus;
clamping the substrate to the substrate holder such that the substrate contacts the substrate holder at a first location;
de-clamping the substrate from the substrate holder;
repeating the clamping and de-clamping a number of times such that the substrate contacts the substrate table repeatedly at the first location, or at a location other than the first location, or both at the first location and the location other than the first location.
15.-18. (canceled)
19. A lithographic apparatus, comprising:
a support structure configured to support a patterning device, the patterning device configured to impart a desired pattern onto a beam of radiation;
a substrate holder configured to hold a substrate;
a projection system configured to project the patterned beam onto a target portion of the substrate; and
a Johnson Raybeck effect type clamp configured to clamp the substrate, or the patterning device, or both the substrate and the patterning device, the clamp having an upper surface and an oxidized layer, provided on the upper surface, to minimize heating effects transferred to the substrate and/or the patterning device.
20. A lithographic apparatus, comprising:
a support structure configured to support a patterning device, the patterning device configured to impart a desired pattern onto a beam of radiation;
a substrate holder configured to hold a substrate;
a projection system configured to project the patterned beam onto a target portion of the substrate;
a clamp configured to clamp the substrate to the substrate holder such that the substrate contacts the substrate holder at a first location; and
a processor configured to instruct repeated clamping and de-clamping of the substrate by the clamp, such that the substrate contacts the substrate holder repeatedly at the first location, or at a location other than the first location, or both at the first location and the location other than the first location.
21. (canceled)
22. A device manufacturing method, comprising:
providing a substrate via a clamping structure, the clamping structure comprising a Johnson-Raybeck effect type clamp having an upper surface and an oxidized layer on the upper surface;
providing a beam of radiation;
imparting a desired pattern onto the beam of radiation using a patterning device; and
projecting the patterned beam of radiation onto a target portion of the substrate.
23. The lithographic clamping structure of claim 11, further comprising a controller coupled to the Johnson-Raybeck effect type clamp and configured to provide a clamping and de-clamping voltage to the Johnson-Raybeck effect type clamp, wherein the controller is arranged to generate the de-clamping voltage with a decaying AC-profile.
24. The lithographic clamping structure of claim 23, wherein the decaying AC-profile is a RF AC profile.
25. The lithographic clamping structure of claim 11, wherein the Johnson-Raybeck effect type clamp is part of a moveable robot arm configured to support and move the object, and wherein the object comprises a substrate onto which a beam of radiation is to be projected.
26. The lithographic support structure of claim 13, wherein the Johnson-Raybeck effect type clamp is part of a moveable robot arm configured to support and move the object, and wherein the object comprises a substrate onto which a beam of radiation is to be projected.
27. The method of claim 14, further comprising, after a de-clamping of the substrate, rotating or shifting the substrate before a further clamping of the rotated or shifted substrate.
28. The lithographic apparatus of claim 19, further comprising a controller coupled to the Johnson-Raybeck effect type clamp and configured to provide a clamping and de-clamping voltage to the Johnson-Raybeck effect type clamp, wherein the controller is arranged to generate the de-clamping voltage with a decaying AC-profile.
29. The lithographic apparatus of claim 28, wherein the decaying AC-profile is a RF AC profile.
30. The lithographic apparatus of claim 19, further comprising a moveable robot arm configured to support and move the substrate, or the patterning device, or both the substrate and the patterning device, the moveable robot arm comprising the Johnson-Raybeck effect type clamp.
31. The lithographic apparatus of claim 20, further comprising a robot configured to, after a de-clamping of the substrate, rotate or shift the substrate before a further clamping of the rotated or shifted substrate.
32. The method of claim 22, further comprising providing a clamping and de-clamping voltage to the Johnson-Raybeck effect type clamp, wherein the de-clamping voltage has a decaying AC-profile.
33. The method of claim 32, wherein the decaying AC-profile is a RF AC profile.
34. The method of claim 22, wherein the Johnson-Raybeck effect type clamp is part of a moveable robot arm supporting and moving the substrate.
US12/213,930 2003-03-31 2008-06-26 Lithographic support structure Abandoned US20080297758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/213,930 US20080297758A1 (en) 2003-03-31 2008-06-26 Lithographic support structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP03075929 2003-03-31
EP03075929.4 2003-03-31
EP03077320 2003-07-23
EP03077320.4 2003-07-23
US10/813,687 US7486384B2 (en) 2003-03-31 2004-03-31 Lithographic support structure
US12/213,930 US20080297758A1 (en) 2003-03-31 2008-06-26 Lithographic support structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/813,687 Division US7486384B2 (en) 2003-03-31 2004-03-31 Lithographic support structure

Publications (1)

Publication Number Publication Date
US20080297758A1 true US20080297758A1 (en) 2008-12-04

Family

ID=33492146

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/813,687 Active 2024-07-28 US7486384B2 (en) 2003-03-31 2004-03-31 Lithographic support structure
US12/213,930 Abandoned US20080297758A1 (en) 2003-03-31 2008-06-26 Lithographic support structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/813,687 Active 2024-07-28 US7486384B2 (en) 2003-03-31 2004-03-31 Lithographic support structure

Country Status (6)

Country Link
US (2) US7486384B2 (en)
JP (2) JP2004343076A (en)
KR (1) KR100592577B1 (en)
CN (1) CN100492174C (en)
SG (1) SG125948A1 (en)
TW (1) TWI262841B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG125948A1 (en) * 2003-03-31 2006-10-30 Asml Netherlands Bv Supporting structure for use in a lithographic apparatus
US20070221335A1 (en) * 2006-03-23 2007-09-27 Recif Technologies Device for contact by adhesion to a glass or semiconductor plate (wafer) surface or the like and system for gripping such a plate comprising such a device
NL1036164A1 (en) * 2007-11-15 2009-05-18 Asml Netherlands Bv Substrate processing apparatus and device manufacturing method.
JP5553480B2 (en) * 2008-02-26 2014-07-16 株式会社日本マイクロニクス Electrical connection device
WO2010111784A1 (en) * 2009-03-31 2010-10-07 Ats Automation Tooling Systems Inc. Vacuum gripper assembly stabilized by springs
JP5667620B2 (en) * 2009-04-06 2015-02-12 エーエスエムエル ホールディング エヌ.ブイ. Method for loading a patterning device, fast exchange device, and system for manufacturing a semiconductor device
NL2008007A (en) 2011-01-20 2012-07-23 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2009332A (en) * 2011-09-23 2013-03-26 Asml Netherlands Bv Lithographic apparatus and substrate handling method.
US10002781B2 (en) 2014-11-10 2018-06-19 Brooks Automation, Inc. Tool auto-teach method and apparatus
CN104865257B (en) * 2015-04-30 2017-07-14 中国科学院长春光学精密机械与物理研究所 EUV multilayer films carbon pollutes experimental provision
EP3916482A1 (en) 2020-05-27 2021-12-01 ASML Netherlands B.V. Conditioning device and corresponding object handler, stage apparatus and lithographic apparatus
US11699602B2 (en) * 2020-07-07 2023-07-11 Applied Materials, Inc. Substrate support assemblies and components

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620738A (en) * 1985-08-19 1986-11-04 Varian Associates, Inc. Vacuum pick for semiconductor wafers
US4692836A (en) * 1983-10-31 1987-09-08 Toshiba Kikai Kabushiki Kaisha Electrostatic chucks
US4788577A (en) * 1987-01-12 1988-11-29 Hitachi, Ltd. Substrate surface deflecting device
US5133635A (en) * 1990-03-05 1992-07-28 Tet Techno Investment Trust Settlement Method and apparatus for holding and conveying platelike substrates
US5229872A (en) * 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
US5296891A (en) * 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5537311A (en) * 1993-01-28 1996-07-16 Applied Materials, Inc. Apparatus for aligning substrates for loading and unloading using a robot mechanism
US5685588A (en) * 1996-01-29 1997-11-11 Taiwan Semiconductor Manufacturing Company Ltd. Wafer handler having a flexible pad
US5790338A (en) * 1993-10-06 1998-08-04 Hitachi, Ltd. Library apparatus that corrects relative position displacement between a carry robot and a storing rack
US5880925A (en) * 1997-06-27 1999-03-09 Avx Corporation Surface mount multilayer capacitor
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US5969441A (en) * 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6041938A (en) * 1996-08-29 2000-03-28 Scp Global Technologies Compliant process cassette
US6068668A (en) * 1997-03-31 2000-05-30 Motorola, Inc. Process for forming a semiconductor device
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US6155773A (en) * 1997-09-22 2000-12-05 Applied Materials, Inc. Substrate clamping apparatus
US6184972B1 (en) * 1998-09-18 2001-02-06 Nikon Corporation Substrate transport apparatus, substrate holding apparatus and substrate processing apparatus
US6236555B1 (en) * 1999-04-19 2001-05-22 Applied Materials, Inc. Method for rapidly dechucking a semiconductor wafer from an electrostatic chuck utilizing a hysteretic discharge cycle
US6242879B1 (en) * 2000-03-13 2001-06-05 Berkeley Process Control, Inc. Touch calibration system for wafer transfer robot
US6257564B1 (en) * 1998-05-15 2001-07-10 Applied Materials, Inc Vacuum chuck having vacuum-nipples wafer support
US20010011637A1 (en) * 1999-04-16 2001-08-09 Joseph Wytman Compliant wafer chuck
US20010020199A1 (en) * 1995-07-10 2001-09-06 Paul Bacchi Self-teaching robot arm position method to compensate for support structure component alignment offset
US6326755B1 (en) * 2000-04-12 2001-12-04 Asyst Technologies, Inc. System for parallel processing of workpieces
US6404483B1 (en) * 1999-04-21 2002-06-11 Asml Netherlands B.V. Substrate handler for use in lithographic projection apparatus
US20020109954A1 (en) * 2000-12-11 2002-08-15 Ngk Insulators, Ltd. Electrostatic chucks and process for producing the same
US20030005948A1 (en) * 2001-05-31 2003-01-09 M-Fsi Ltd. Substrate Cleaning apparatus
US6559928B1 (en) * 1998-02-09 2003-05-06 Nikon Corporation Substrate supporting apparatus, substrate transfer apparatus and the transfer method, method of holding the substrate, exposure apparatus and the method of manufacturing the apparatus
US6577382B2 (en) * 1997-12-03 2003-06-10 Nikon Corporation Substrate transport apparatus and method
US6591160B2 (en) * 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
US6631062B1 (en) * 1999-04-13 2003-10-07 Nihon Ceratec Co., Ltd. Electrically conductive ceramic material, a process of producing same, and an electrostatic chuck
US6828772B1 (en) * 2000-06-14 2004-12-07 Micron Technology, Inc. Rotating gripper wafer flipper
US6829038B2 (en) * 2000-11-17 2004-12-07 Canon Kabushiki Kaisha Exposure apparatus and exposure method
US6856863B1 (en) * 2000-07-27 2005-02-15 Applied Materials, Inc. Method and apparatus for automatic calibration of robots
US6864957B2 (en) * 2002-05-01 2005-03-08 Asml Netherlands B.V. Chuck, lithographic projection apparatus, method of manufacturing a chuck and device manufacturing method
US7397539B2 (en) * 2003-03-31 2008-07-08 Asml Netherlands, B.V. Transfer apparatus for transferring an object, lithographic apparatus employing such a transfer apparatus, and method of use thereof
US7486384B2 (en) * 2003-03-31 2009-02-03 Asml Netherlands B.V. Lithographic support structure

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4612081Y1 (en) * 1968-03-19 1971-04-27
JPS5415146U (en) * 1977-07-02 1979-01-31
JPS55103727A (en) 1979-02-05 1980-08-08 Nec Corp Semiconductor wafer holding jig
JPS61124725U (en) * 1985-01-25 1986-08-06
JP2526925B2 (en) 1987-09-19 1996-08-21 ミノルタ株式会社 Toner collection method
JP2919837B2 (en) * 1988-03-08 1999-07-19 富士通株式会社 Wafer carrier
JPH01282834A (en) * 1988-05-09 1989-11-14 Toshiba Corp Suction band for shifting wafer
JPH0615144Y2 (en) * 1988-08-29 1994-04-20 トヨタ自動車株式会社 Cylindrical spring
DE3900326A1 (en) * 1989-01-07 1990-07-12 Bosch Gmbh Robert CONNECTION FOR TWO COMPONENTS
JPH07117110B2 (en) * 1989-04-03 1995-12-18 鍋屋工業株式会社 spring
JP2691299B2 (en) * 1989-06-12 1997-12-17 株式会社ニコン Board holder
JP2862632B2 (en) * 1990-04-26 1999-03-03 キヤノン株式会社 Vertical transfer device for substrates
JPH0473928A (en) 1990-07-13 1992-03-09 Fujitsu Ltd Vertical exposure transfer apparatus
JP3068908B2 (en) 1990-09-28 2000-07-24 株式会社東芝 Sample transfer device
JPH056931A (en) 1991-02-27 1993-01-14 Hitachi Ltd Wafer suction apparatus
JP2546832Y2 (en) * 1992-01-20 1997-09-03 アミテック株式会社 Forming roll support device for grinding equipment
JPH05337866A (en) * 1992-06-04 1993-12-21 Nec Yamaguchi Ltd Ic handling device
JP2598768Y2 (en) * 1993-03-31 1999-08-16 芝浦メカトロニクス株式会社 Transfer device
US5521790A (en) 1994-05-12 1996-05-28 International Business Machines Corporation Electrostatic chuck having relatively thick and thin areas and means for uniformly cooling said thick and thin areas during chuck anodization
JP3782523B2 (en) * 1996-09-12 2006-06-07 オリンパス株式会社 Substrate adsorption member and apparatus
WO1998022909A1 (en) 1996-11-21 1998-05-28 Morphometrix Technologies Inc. Pipeline processor for medical and biological image analysis
JPH10156779A (en) * 1996-11-29 1998-06-16 Nec Corp Robot hand
KR100459813B1 (en) 1997-01-29 2004-12-04 마이크로닉 레이저 시스템즈 에이비 Method and apparatus for the production of a structure by focused laser radiation on a photosensitively coated substrate
SE509062C2 (en) 1997-02-28 1998-11-30 Micronic Laser Systems Ab Data conversion method for a multi-beam laser printer for very complex microcolytographic designs
DE69829614T2 (en) 1997-03-10 2006-03-09 Asml Netherlands B.V. LITHOGRAPHY DEVICE WITH A POSITIONING DEVICE WITH TWO OBJECTS
US6080040A (en) 1997-11-05 2000-06-27 Aplex Group Wafer carrier head with inflatable bladder and attack angle control for polishing
JP2000114343A (en) * 1998-10-08 2000-04-21 Hitachi Ltd Substrate treating method and substrate carrying equipment
EP1052546B1 (en) 1999-04-21 2004-09-15 ASML Netherlands B.V. Substrate handler for use in lithographic projection apparatus
JP2001024045A (en) 1999-07-08 2001-01-26 Nikon Corp Transfer apparatus and exposing apparatus using the same
US6379780B1 (en) * 1999-12-27 2002-04-30 Eastman Kodak Company Permeable surface imaging support
JP4467720B2 (en) * 2000-06-15 2010-05-26 株式会社アルバック Substrate transfer device
JP4524722B2 (en) * 2000-09-28 2010-08-18 豊和工業株式会社 Positioning stopper

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692836A (en) * 1983-10-31 1987-09-08 Toshiba Kikai Kabushiki Kaisha Electrostatic chucks
US4620738A (en) * 1985-08-19 1986-11-04 Varian Associates, Inc. Vacuum pick for semiconductor wafers
US4788577A (en) * 1987-01-12 1988-11-29 Hitachi, Ltd. Substrate surface deflecting device
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5133635A (en) * 1990-03-05 1992-07-28 Tet Techno Investment Trust Settlement Method and apparatus for holding and conveying platelike substrates
US5296891A (en) * 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5229872A (en) * 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
US5537311A (en) * 1993-01-28 1996-07-16 Applied Materials, Inc. Apparatus for aligning substrates for loading and unloading using a robot mechanism
US5790338A (en) * 1993-10-06 1998-08-04 Hitachi, Ltd. Library apparatus that corrects relative position displacement between a carry robot and a storing rack
US6366830B2 (en) * 1995-07-10 2002-04-02 Newport Corporation Self-teaching robot arm position method to compensate for support structure component alignment offset
US20010020199A1 (en) * 1995-07-10 2001-09-06 Paul Bacchi Self-teaching robot arm position method to compensate for support structure component alignment offset
US5685588A (en) * 1996-01-29 1997-11-11 Taiwan Semiconductor Manufacturing Company Ltd. Wafer handler having a flexible pad
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US6041938A (en) * 1996-08-29 2000-03-28 Scp Global Technologies Compliant process cassette
US5969441A (en) * 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6068668A (en) * 1997-03-31 2000-05-30 Motorola, Inc. Process for forming a semiconductor device
US5880925A (en) * 1997-06-27 1999-03-09 Avx Corporation Surface mount multilayer capacitor
US6155773A (en) * 1997-09-22 2000-12-05 Applied Materials, Inc. Substrate clamping apparatus
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US6577382B2 (en) * 1997-12-03 2003-06-10 Nikon Corporation Substrate transport apparatus and method
US6559928B1 (en) * 1998-02-09 2003-05-06 Nikon Corporation Substrate supporting apparatus, substrate transfer apparatus and the transfer method, method of holding the substrate, exposure apparatus and the method of manufacturing the apparatus
US6257564B1 (en) * 1998-05-15 2001-07-10 Applied Materials, Inc Vacuum chuck having vacuum-nipples wafer support
US6184972B1 (en) * 1998-09-18 2001-02-06 Nikon Corporation Substrate transport apparatus, substrate holding apparatus and substrate processing apparatus
US6631062B1 (en) * 1999-04-13 2003-10-07 Nihon Ceratec Co., Ltd. Electrically conductive ceramic material, a process of producing same, and an electrostatic chuck
US20010011637A1 (en) * 1999-04-16 2001-08-09 Joseph Wytman Compliant wafer chuck
US6236555B1 (en) * 1999-04-19 2001-05-22 Applied Materials, Inc. Method for rapidly dechucking a semiconductor wafer from an electrostatic chuck utilizing a hysteretic discharge cycle
US6404483B1 (en) * 1999-04-21 2002-06-11 Asml Netherlands B.V. Substrate handler for use in lithographic projection apparatus
US6242879B1 (en) * 2000-03-13 2001-06-05 Berkeley Process Control, Inc. Touch calibration system for wafer transfer robot
US6326755B1 (en) * 2000-04-12 2001-12-04 Asyst Technologies, Inc. System for parallel processing of workpieces
US6828772B1 (en) * 2000-06-14 2004-12-07 Micron Technology, Inc. Rotating gripper wafer flipper
US6856863B1 (en) * 2000-07-27 2005-02-15 Applied Materials, Inc. Method and apparatus for automatic calibration of robots
US6829038B2 (en) * 2000-11-17 2004-12-07 Canon Kabushiki Kaisha Exposure apparatus and exposure method
US6591160B2 (en) * 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
US20020109954A1 (en) * 2000-12-11 2002-08-15 Ngk Insulators, Ltd. Electrostatic chucks and process for producing the same
US20030005948A1 (en) * 2001-05-31 2003-01-09 M-Fsi Ltd. Substrate Cleaning apparatus
US6864957B2 (en) * 2002-05-01 2005-03-08 Asml Netherlands B.V. Chuck, lithographic projection apparatus, method of manufacturing a chuck and device manufacturing method
US7397539B2 (en) * 2003-03-31 2008-07-08 Asml Netherlands, B.V. Transfer apparatus for transferring an object, lithographic apparatus employing such a transfer apparatus, and method of use thereof
US7486384B2 (en) * 2003-03-31 2009-02-03 Asml Netherlands B.V. Lithographic support structure

Also Published As

Publication number Publication date
US7486384B2 (en) 2009-02-03
KR20040086768A (en) 2004-10-12
US20040246459A1 (en) 2004-12-09
JP2007329506A (en) 2007-12-20
CN100492174C (en) 2009-05-27
KR100592577B1 (en) 2006-06-26
CN1534386A (en) 2004-10-06
TWI262841B (en) 2006-10-01
TW200505643A (en) 2005-02-16
JP4625059B2 (en) 2011-02-02
SG125948A1 (en) 2006-10-30
JP2004343076A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US20080297758A1 (en) Lithographic support structure
JP4468980B2 (en) Lithographic projection apparatus and device manufacturing method
KR100597035B1 (en) Mask handling method, and mask and device or apparatus comprising a gripper therefor, device manufacturing method and device manufactured thereby
US7397539B2 (en) Transfer apparatus for transferring an object, lithographic apparatus employing such a transfer apparatus, and method of use thereof
US6956222B2 (en) Lithographic apparatus and method of manufacturing a device
US7423733B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby with docking system for positioning a patterning device
US7405810B2 (en) Method and apparatus for positioning a substrate on a substrate table
US20060092399A1 (en) Lithographic apparatus, a control system for controlling a lithographic apparatus, and a device manufacturing method
US7408615B2 (en) Lithographic apparatus and device manufacturing method
EP1465012A2 (en) Supporting structure for use in a lithographic apparatus
US7084961B2 (en) Safety mechanism for a lithographic patterning device
CN108700827B (en) Substrate processing system and lithographic apparatus
EP1465011A1 (en) Transfer apparatus for transferring an object and method of use thereof and lithographic projection apparatus comprising such a transfer apparatus
US7384228B2 (en) Insertion device, lithographic apparatus with said insertion device and device manufacturing method
JP2004140271A (en) Aligner and method of manufacturing device
WO2016041731A1 (en) Object table, lithographic apparatus and device manufacturing method
EP1434100A2 (en) Lithographic apparatus
US20050019709A1 (en) Method and apparatus for maintaining a machine part

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASML NETHERLANDS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TINNEMANS, PATRICIUS ALOYSIUS JACOBSON;BUIS, EDWIN JOHAN;DONDERS, SJOERD NICOLAAS LAMBERTUS;AND OTHERS;REEL/FRAME:021231/0432;SIGNING DATES FROM 20040629 TO 20040726

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION