US20080314057A1 - Refrigerant System With Variable Speed Scroll Compressor and Economizer Circuit - Google Patents

Refrigerant System With Variable Speed Scroll Compressor and Economizer Circuit Download PDF

Info

Publication number
US20080314057A1
US20080314057A1 US11/909,006 US90900605A US2008314057A1 US 20080314057 A1 US20080314057 A1 US 20080314057A1 US 90900605 A US90900605 A US 90900605A US 2008314057 A1 US2008314057 A1 US 2008314057A1
Authority
US
United States
Prior art keywords
scroll compressor
set forth
refrigerant system
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/909,006
Inventor
Alexander Lifson
Michael F. Taras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIFSON, ALEXANDER, TARAS, MICHAEL F.
Publication of US20080314057A1 publication Critical patent/US20080314057A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • This invention relates to a variable speed scroll compressor that is operable in a refrigerant system with an economizer function and other means of capacity modulation.
  • Refrigerant systems are utilized in many applications to condition an environment.
  • air conditioners and heat pumps are employed to cool and/or heat a secondary fluid such as air entering an environment.
  • the cooling or heating load of the environment may vary with ambient conditions, occupancy level, other changes in sensible and latent load demands, and as the temperature and/or humidity set points are adjusted by an occupant of the building.
  • refrigerant systems can be provided with sophisticated controls, and a number of optional components and features to adjust cooling and/or heating capacity.
  • Known options include the ability to bypass refrigerant which has been at least partially compressed by a compressor back to a suction line. This function is also known as an unloader function. This additional step of operation is taken to reduce system cooling capacity.
  • economizer cycle a refrigerant heading to an evaporator is subcooled in an economizer heat exchanger.
  • the refrigerant is subcooled by a tapped refrigerant that is expanded and then passed through the economizer heat exchanger to subcool a main refrigerant.
  • This tapped refrigerant is then returned to an intermediate point in the compression cycle.
  • the economizer cycle provides a step in operation to vary system capacity by switching between economized and other modes or steps of operation.
  • controls can be programmed to optionally actuate any one of these various functions.
  • the capacity provided by these functions is increased or decreased in steps. It would be desirable to provide the ability to vary the capacity while the system is operating during any of the above described steps (modes) of operation in a continuous fashion in order to exactly match external load demands.
  • Variable speed drives are known for driving compressors at a variable speed in a refrigerant system. By driving the compressor at a higher or lower speed, the amount of refrigerant that is compressed and circulated throughout the system changes, and thus the system capacity can be changed accordingly.
  • a scroll compressor In a scroll compressor, a pair of scroll members orbits relative to each other to compress an entrapped refrigerant.
  • One design configuration of a scroll compressor utilizes both economizer and unloader functions. Further, this scroll compressor may employ a single port to provide both functions alternatively or simultaneously.
  • This scroll compressor is disclosed in U.S. Pat. No. 5,996,364. However, this type of scroll compressor has not been utilized in combination with a variable speed drive for its motor.
  • a scroll compressor is provided in a refrigerant system with an economizer circuit.
  • the scroll compressor has a motor that is driven by a variable speed drive.
  • the controller can increase or decrease the capacity of the refrigerant system. Further, by varying the speed of the motor, capacities in each mode of operation can be additionally adjusted to provide essentially continuous stepless control.
  • a controller identifies a desired capacity level, and then achieves this desired capacity level by first actuating the economizer cycle if increased capacity is desired, or not actuating the economizer cycle if extra capacity is not required, (or providing additional means of unloading to reduce the capacity even further) and then determining a desired motor speed for achieving the exact capacity level. Since the refrigerant compressor provides efficient and reliable operation only within a certain speed range, additional steps of capacity reduction, such as the unloader function, with or without the economizer circuit engaged, may be desired and similarly utilized with the corresponding compressor motor speed adjustment to precisely control the capacity level or achieve more efficient unit operation.
  • variable speed is adjusted incrementally within a particular mode of operation (conventional, economized, unloaded, etc.), and the capacity provided is monitored. When the desired capacity is reached, then the system operates at that new speed. If the capacity still needs to be adjusted, then the speed is adjusted in another incremental step. Similarly, if capacity needs to be reduced, the optional unloaded mode of operation can be engaged either in conjunction with closed or open economizer line. Additionally, the controller may monitor the system efficiency level and select the most desirable mode of operation and motor speed. In this case, both capacity and efficiency considerations can be taken into account to establish the optimum unit operation. One more mode of unloaded operation can be added to the system operation, where both the economizer circuit and unloader are engaged simultaneously.
  • variable speed drive in combination with the capacity adjustment options mentioned above, the present invention allows an end user to exactly tailor the system capacity and/or efficiency or combination of these two parameters to a desired level.
  • the method of operation described above would be especially suitable for a transportation refrigeration applications, such as for example container refrigeration units, tractor-trailer units or buses, where a wide operating range of capacity is desired, while at the same time a precise capacity level control is also needed to maintain the cargo or the cooled environment within a narrow temperature range.
  • an additional throttling device often called suction modulation valve (SMV) is provided to further reduce the capacity to the level below the level that would be normally achievable through unloading mechanisms and reduction in motor speed.
  • SMV suction modulation valve
  • the scroll compressor is preferably provided with a single entry port into the compressor for injecting the refrigerant into the intermediate compression port, and wherein this single port is also utilized to route refrigerant to the suction line when the unloader function is actuated.
  • the scroll compressor is a two-stage compressor, with the intermediate port located between the two stages.
  • FIG. 1A shows a first embodiment refrigerant cycle.
  • FIG. 1B shows a detail of the scroll compressor of FIG. 1A .
  • FIG. 2 shows another embodiment refrigerant cycle.
  • FIG. 3A shows a graph of the capacity provided by the prior art.
  • FIG. 3B shows a graph of the capacity provided by the prior art.
  • FIG. 4A shows the capacity provided by the present invention.
  • FIG. 4B shows the capacity provided by the present invention.
  • FIG. 5 shows a more precise view of the actual capacity provided by the typical existing variable speed controls.
  • a refrigerant system 20 is illustrated in FIG. 1A having a single stage compressor 22 , a controller 42 , a variable speed drive 44 and other components as illustrated in this Figure.
  • a motor 24 for the compressor 22 can be driven at a variety of speeds such that the amount of refrigerant compressed by the compressor 22 can be varied.
  • the compressor 22 is a scroll compressor having an orbiting scroll member 26 and a non-orbiting scroll member 28 .
  • a number of compression chambers are defined between the two scroll members to compress an entrapped refrigerant when the orbiting scroll member 26 is driven to orbit by the electric motor 24 .
  • a suction tube 30 leads refrigerant into a suction chamber 31 surrounding the motor and leading into the compression chambers.
  • the refrigerant is compressed, it is driven into a discharge chamber 33 communicating with a discharge port 32 .
  • the structure of a scroll compressor is known.
  • an injection line 34 to be disclosed below, communicates with a port 51 that is positioned at an intermediate compression point.
  • the port 51 may actually be a plurality of ports such as is disclosed in U.S. Pat. No. 5,996,364.
  • Refrigerant compressed by the compressor 22 is discharged from the discharge port 32 , and then to an outdoor heat exchanger 46 , which would be the condenser in a cooling mode.
  • Fan 47 moves air over the heat exchanger 46 .
  • Downstream of the condenser 46 is an economizer heat exchanger 48 .
  • the economizer heat exchanger receives a tapped refrigerant line 45 passing through an economizer expansion device 49 , and a main refrigerant line 41 .
  • the tapped refrigerant in the tap line 45 subcools the refrigerant in the main line 41 , such that after passing through an expansion device 52 , it will have a higher cooling potential prior to entering an evaporator 54 .
  • Fan 55 moves air over the evaporator 54 .
  • the refrigerant returns to a suction line 30 leading back to the compressor 22 .
  • Variable or constant speed drives 110 are shown associated with fans 55 and 47 , and can be utilized to vary the speed of these fans to achieve system control, as known.
  • An optional suction modulation valve 61 can be positioned in the suction line 30 between the compressor 22 and evaporator 54 .
  • the tapped refrigerant from the tapped line 45 passes through the return injection line 34 to enter the intermediate compression point or injection port (or plurality of ports) 51 in the compressor 22 .
  • a bypass line 19 may selectively bypass refrigerant from the compressor 22 back to the suction line 30 when a bypass valve 40 is opened.
  • the economizer expansion device 49 also preferably incorporates a shutoff feature, or a separate shutoff device 36 is provided. When the bypass valve 40 is opened, the shutoff device 36 is preferably closed, and when the shutoff device 36 is opened, the bypass valve 40 is typically closed; however, it is also possible to operate with both shutoff valve 36 and bypass valve 40 open.
  • the same port of the injection line 34 can be used to deliver the refrigerant from the economizer heat exchanger as well as to bypass the refrigerant back to the suction line.
  • the bypass and refrigerant injection functions can utilize different ports, instead of common point 51 .
  • the bypass valve 40 is opened when less than the full capacity of the compressor 22 is desirable. Thus, partially compressed refrigerant is returned to the suction line 30 , and the cooling capacity of the refrigerant system is reduced. If a capacity increase is desired, then the bypass valve 40 is closed. If even further capacity augmentation is desired, then the bypass valve 40 is closed and the economizer expansion device 49 and/or shut-off device 36 are opened to provide the economizer function. An enhanced capacity is then provided.
  • the outline 15 is illustrated in FIG. 1A to make clear that the refrigerant system 20 may be incorporated into various items such as a refrigeration container, a refrigerated tractor-trailer unit, a bus air-conditioner, etc.
  • a refrigerant system 60 has two stages of compression 62 and 64 .
  • a variable speed drive 66 can vary the speed of the motors for either or both of the compressors 62 or 64 .
  • a third compressor stage 161 is illustrated and could also be controlled by a variable speed drive 66 , as could a fourth, etc.
  • a downstream discharge line 68 leads to a condenser 70 , and to an economizer heat exchanger 72 .
  • a tap line 74 passes through an economizer expansion device 76 , and back to a return intermediate pressure line 78 .
  • the return line 78 is shown entering at an intermediate point 80 between the two compression stages 62 and 64 .
  • bypass line 82 passes through a bypass valve 84 back to a suction line 86 .
  • main refrigerant flow passes through a main expansion device 88 , and an evaporator 90 before passing back to the suction line 86 .
  • the compressor stages 62 and 64 are both provided by scroll compressors.
  • An additional, or alternate bypass valve 100 may communicate the discharge line 68 back to the intermediate line 78 . This would allow further control of unloaded or bypass operation. Further, while two stages of compression 62 and 64 are possible, it would be within the scope of this invention to provide additional stages.
  • a suction modulation valve 61 is placed downstream of the evaporator 55 to provide additional throttle into the suction flow in this embodiment as well.
  • a control for either refrigerant cycle 20 and 60 is able to identify a desired cooling capacity, and operate the bypass function and/or the economizer function as necessary.
  • the prior art system provides varying stages A, B, C, D of capacity. Stage A corresponds to operation in economized mode, stage B corresponds to operation in economized and bypass modes engaged at the same time, stage C corresponds to non-economized mode, and stage D corresponds to bypass mode of operation. If there is an additional SMV, then, as shown in FIG. 3B , by throttling the SMV between the modes of operation mentioned above the capacity can be adjusted between these modes. However, the SMV operation is inefficient, and in general should be avoided if possible.
  • FIG. 4A When the systems of FIG. 1A and FIG. 2 include a variable speed drive for their compressor motors then there can be a stepless capacity control between the base values A, B, C, D, with or without the use of SMV.
  • E 1 which would normally correspond to economized circuit engaged and the compressor running at maximum speed
  • the capacity can be reduced to point E 2 .
  • the compressor speed is adjusted and the switch is made to economized mode with bypass engaged.
  • the system capacity can be adjusted by varying the compressor speed along the line connecting points EB 1 and EB 2 .
  • the speed can be adjusted once again and the system will move to the next mode of operation, which would be a non-economized mode.
  • the system capacity can be adjusted by varying the compressor speed along the line connecting points N 1 and N 2 .
  • the speed can be changed once again and the system will move to the next operating mode, which would be a bypass mode.
  • the system capacity can be adjusted by varying the compressor speed along the line connecting points B 1 and B 2 .
  • System operation shown in FIG. 4B is similar to operation in FIG. 4A , except that abrupt changes in speed are avoided by engaging SMV shortly before the change in mode of operation. Also, even though four major modes of operation are shown in FIGS.
  • the actual number of modes can be reduced.
  • the system can be operated only in a single economized mode, and the capacity in this mode can be varied by engaging a variable speed drive.
  • An extension of operational modes can be achieved by selectively opening and closing the optional valve 100 that can be positioned between the discharge and intermediate compression lines in FIG. 1A and FIG. 2 arrangements. It should be pointed out that additional modes of operation are possible for controlling capacity of the two-stage compressor arrangement where each or both of these compressor stages can be driven by a variable speed drive. It also should be noted that what is shown in the FIGS.
  • FIG. 5 shows how the ramps would typically be achieved. As shown in FIG. 5 , once a particular mode of operation is selected, the speed can be varied within that mode and within the speed limits mentioned above. This iterative change is how variable speed drives work in the prior art. If change beyond the speed limits is needed, then the system switches to a different mode of operation.

Abstract

A scroll compressor system having a variable speed drive is utilized. By providing the economizer and/or bypass functions along with the variable speed drive, precise capacity adjustment between the discrete steps is achieved to exactly match load demands at a wide spectrum of operating conditions.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to a variable speed scroll compressor that is operable in a refrigerant system with an economizer function and other means of capacity modulation.
  • Refrigerant systems are utilized in many applications to condition an environment. In particular, air conditioners and heat pumps are employed to cool and/or heat a secondary fluid such as air entering an environment. The cooling or heating load of the environment may vary with ambient conditions, occupancy level, other changes in sensible and latent load demands, and as the temperature and/or humidity set points are adjusted by an occupant of the building.
  • Thus, refrigerant systems can be provided with sophisticated controls, and a number of optional components and features to adjust cooling and/or heating capacity. Known options include the ability to bypass refrigerant which has been at least partially compressed by a compressor back to a suction line. This function is also known as an unloader function. This additional step of operation is taken to reduce system cooling capacity.
  • Other options include a so-called economizer cycle. In an economizer cycle, a refrigerant heading to an evaporator is subcooled in an economizer heat exchanger. The refrigerant is subcooled by a tapped refrigerant that is expanded and then passed through the economizer heat exchanger to subcool a main refrigerant. This tapped refrigerant is then returned to an intermediate point in the compression cycle. Thus, the economizer cycle provides a step in operation to vary system capacity by switching between economized and other modes or steps of operation.
  • In the prior art, controls can be programmed to optionally actuate any one of these various functions. However, the capacity provided by these functions is increased or decreased in steps. It would be desirable to provide the ability to vary the capacity while the system is operating during any of the above described steps (modes) of operation in a continuous fashion in order to exactly match external load demands.
  • Variable speed drives are known for driving compressors at a variable speed in a refrigerant system. By driving the compressor at a higher or lower speed, the amount of refrigerant that is compressed and circulated throughout the system changes, and thus the system capacity can be changed accordingly.
  • One increasingly popular type of compressors is a scroll compressor. In a scroll compressor, a pair of scroll members orbits relative to each other to compress an entrapped refrigerant. One design configuration of a scroll compressor utilizes both economizer and unloader functions. Further, this scroll compressor may employ a single port to provide both functions alternatively or simultaneously. This scroll compressor is disclosed in U.S. Pat. No. 5,996,364. However, this type of scroll compressor has not been utilized in combination with a variable speed drive for its motor.
  • SUMMARY OF THE INVENTION
  • In a disclosed embodiment of this invention, a scroll compressor is provided in a refrigerant system with an economizer circuit. The scroll compressor has a motor that is driven by a variable speed drive. By selectively utilizing the economizer circuit, and/or the optional unloader function the controller can increase or decrease the capacity of the refrigerant system. Further, by varying the speed of the motor, capacities in each mode of operation can be additionally adjusted to provide essentially continuous stepless control.
  • A controller identifies a desired capacity level, and then achieves this desired capacity level by first actuating the economizer cycle if increased capacity is desired, or not actuating the economizer cycle if extra capacity is not required, (or providing additional means of unloading to reduce the capacity even further) and then determining a desired motor speed for achieving the exact capacity level. Since the refrigerant compressor provides efficient and reliable operation only within a certain speed range, additional steps of capacity reduction, such as the unloader function, with or without the economizer circuit engaged, may be desired and similarly utilized with the corresponding compressor motor speed adjustment to precisely control the capacity level or achieve more efficient unit operation. In one simplified method, the variable speed is adjusted incrementally within a particular mode of operation (conventional, economized, unloaded, etc.), and the capacity provided is monitored. When the desired capacity is reached, then the system operates at that new speed. If the capacity still needs to be adjusted, then the speed is adjusted in another incremental step. Similarly, if capacity needs to be reduced, the optional unloaded mode of operation can be engaged either in conjunction with closed or open economizer line. Additionally, the controller may monitor the system efficiency level and select the most desirable mode of operation and motor speed. In this case, both capacity and efficiency considerations can be taken into account to establish the optimum unit operation. One more mode of unloaded operation can be added to the system operation, where both the economizer circuit and unloader are engaged simultaneously.
  • By providing the variable speed drive in combination with the capacity adjustment options mentioned above, the present invention allows an end user to exactly tailor the system capacity and/or efficiency or combination of these two parameters to a desired level. The method of operation described above would be especially suitable for a transportation refrigeration applications, such as for example container refrigeration units, tractor-trailer units or buses, where a wide operating range of capacity is desired, while at the same time a precise capacity level control is also needed to maintain the cargo or the cooled environment within a narrow temperature range. As also common in these refrigeration applications, an additional throttling device, often called suction modulation valve (SMV) is provided to further reduce the capacity to the level below the level that would be normally achievable through unloading mechanisms and reduction in motor speed. The application of the variable speed drive can diminish or even in certain instances eliminate the need for an additional SMV.
  • In other features, the scroll compressor is preferably provided with a single entry port into the compressor for injecting the refrigerant into the intermediate compression port, and wherein this single port is also utilized to route refrigerant to the suction line when the unloader function is actuated.
  • In a second embodiment, the scroll compressor is a two-stage compressor, with the intermediate port located between the two stages.
  • These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows a first embodiment refrigerant cycle.
  • FIG. 1B shows a detail of the scroll compressor of FIG. 1A.
  • FIG. 2 shows another embodiment refrigerant cycle.
  • FIG. 3A shows a graph of the capacity provided by the prior art.
  • FIG. 3B shows a graph of the capacity provided by the prior art.
  • FIG. 4A shows the capacity provided by the present invention.
  • FIG. 4B shows the capacity provided by the present invention.
  • FIG. 5 shows a more precise view of the actual capacity provided by the typical existing variable speed controls.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A refrigerant system 20 is illustrated in FIG. 1A having a single stage compressor 22, a controller 42, a variable speed drive 44 and other components as illustrated in this Figure. As is known, a motor 24 for the compressor 22 can be driven at a variety of speeds such that the amount of refrigerant compressed by the compressor 22 can be varied. The compressor 22 is a scroll compressor having an orbiting scroll member 26 and a non-orbiting scroll member 28. As is known, a number of compression chambers are defined between the two scroll members to compress an entrapped refrigerant when the orbiting scroll member 26 is driven to orbit by the electric motor 24. As can be seen, a suction tube 30 leads refrigerant into a suction chamber 31 surrounding the motor and leading into the compression chambers. Once the refrigerant is compressed, it is driven into a discharge chamber 33 communicating with a discharge port 32. The structure of a scroll compressor is known. As also shown, an injection line 34, to be disclosed below, communicates with a port 51 that is positioned at an intermediate compression point. As shown in FIG. 1B, the port 51 may actually be a plurality of ports such as is disclosed in U.S. Pat. No. 5,996,364.
  • Refrigerant compressed by the compressor 22 is discharged from the discharge port 32, and then to an outdoor heat exchanger 46, which would be the condenser in a cooling mode. Fan 47 moves air over the heat exchanger 46. Downstream of the condenser 46 is an economizer heat exchanger 48. As is known, the economizer heat exchanger receives a tapped refrigerant line 45 passing through an economizer expansion device 49, and a main refrigerant line 41. Although the two flows are shown flowing in the same direction in FIG. 1A, this is merely to simplify the illustration. In practice, it is generally preferred to have the two flows flowing in counter-flow arrangement.
  • The tapped refrigerant in the tap line 45 subcools the refrigerant in the main line 41, such that after passing through an expansion device 52, it will have a higher cooling potential prior to entering an evaporator 54. Fan 55 moves air over the evaporator 54. From the evaporator 54, the refrigerant returns to a suction line 30 leading back to the compressor 22. Variable or constant speed drives 110 are shown associated with fans 55 and 47, and can be utilized to vary the speed of these fans to achieve system control, as known. An optional suction modulation valve 61 can be positioned in the suction line 30 between the compressor 22 and evaporator 54. The tapped refrigerant from the tapped line 45 passes through the return injection line 34 to enter the intermediate compression point or injection port (or plurality of ports) 51 in the compressor 22. A bypass line 19 may selectively bypass refrigerant from the compressor 22 back to the suction line 30 when a bypass valve 40 is opened. It should be understood that the economizer expansion device 49 also preferably incorporates a shutoff feature, or a separate shutoff device 36 is provided. When the bypass valve 40 is opened, the shutoff device 36 is preferably closed, and when the shutoff device 36 is opened, the bypass valve 40 is typically closed; however, it is also possible to operate with both shutoff valve 36 and bypass valve 40 open. As shown, the same port of the injection line 34 can be used to deliver the refrigerant from the economizer heat exchanger as well as to bypass the refrigerant back to the suction line. Of course, if so desired the bypass and refrigerant injection functions can utilize different ports, instead of common point 51.
  • As is known, the bypass valve 40 is opened when less than the full capacity of the compressor 22 is desirable. Thus, partially compressed refrigerant is returned to the suction line 30, and the cooling capacity of the refrigerant system is reduced. If a capacity increase is desired, then the bypass valve 40 is closed. If even further capacity augmentation is desired, then the bypass valve 40 is closed and the economizer expansion device 49 and/or shut-off device 36 are opened to provide the economizer function. An enhanced capacity is then provided.
  • The outline 15 is illustrated in FIG. 1A to make clear that the refrigerant system 20 may be incorporated into various items such as a refrigeration container, a refrigerated tractor-trailer unit, a bus air-conditioner, etc.
  • As shown in FIG. 2, a refrigerant system 60 has two stages of compression 62 and 64. A variable speed drive 66 can vary the speed of the motors for either or both of the compressors 62 or 64. A third compressor stage 161 is illustrated and could also be controlled by a variable speed drive 66, as could a fourth, etc. A downstream discharge line 68 leads to a condenser 70, and to an economizer heat exchanger 72. A tap line 74 passes through an economizer expansion device 76, and back to a return intermediate pressure line 78. The return line 78 is shown entering at an intermediate point 80 between the two compression stages 62 and 64. If the expansion valve 76 is not electronically controlled, then an additional flow device (normally a solenoid valve) needs to be installed to selectively engage and disengage the economizer circuit. The bypass line 82 passes through a bypass valve 84 back to a suction line 86. Downstream of the economizer heat exchanger 72, the main refrigerant flow passes through a main expansion device 88, and an evaporator 90 before passing back to the suction line 86. The compressor stages 62 and 64 are both provided by scroll compressors.
  • An additional, or alternate bypass valve 100 may communicate the discharge line 68 back to the intermediate line 78. This would allow further control of unloaded or bypass operation. Further, while two stages of compression 62 and 64 are possible, it would be within the scope of this invention to provide additional stages.
  • Again, a suction modulation valve 61 is placed downstream of the evaporator 55 to provide additional throttle into the suction flow in this embodiment as well.
  • A control for either refrigerant cycle 20 and 60 is able to identify a desired cooling capacity, and operate the bypass function and/or the economizer function as necessary. Thus, as shown in FIG. 3A, the prior art system provides varying stages A, B, C, D of capacity. Stage A corresponds to operation in economized mode, stage B corresponds to operation in economized and bypass modes engaged at the same time, stage C corresponds to non-economized mode, and stage D corresponds to bypass mode of operation. If there is an additional SMV, then, as shown in FIG. 3B, by throttling the SMV between the modes of operation mentioned above the capacity can be adjusted between these modes. However, the SMV operation is inefficient, and in general should be avoided if possible.
  • When the systems of FIG. 1A and FIG. 2 include a variable speed drive for their compressor motors then there can be a stepless capacity control between the base values A, B, C, D, with or without the use of SMV. Thus, as shown in FIG. 4A, if the system was operating at maximum capacity at point E1 (which would normally correspond to economized circuit engaged and the compressor running at maximum speed) by reducing the speed of the compressor the capacity can be reduced to point E2. If further reduction is desired the compressor speed is adjusted and the switch is made to economized mode with bypass engaged. Further, the system capacity can be adjusted by varying the compressor speed along the line connecting points EB1 and EB2. If further capacity reduction is desired, the speed can be adjusted once again and the system will move to the next mode of operation, which would be a non-economized mode. Now, the system capacity can be adjusted by varying the compressor speed along the line connecting points N1 and N2. If even further reduction in capacity is desired, the speed can be changed once again and the system will move to the next operating mode, which would be a bypass mode. Now, the system capacity can be adjusted by varying the compressor speed along the line connecting points B1 and B2. System operation shown in FIG. 4B is similar to operation in FIG. 4A, except that abrupt changes in speed are avoided by engaging SMV shortly before the change in mode of operation. Also, even though four major modes of operation are shown in FIGS. 3A, 3B, 4A, and 4B, the actual number of modes can be reduced. For example, the system can be operated only in a single economized mode, and the capacity in this mode can be varied by engaging a variable speed drive. As another example, it would be possible not to implement an economized/bypass mode of operation. An extension of operational modes can be achieved by selectively opening and closing the optional valve 100 that can be positioned between the discharge and intermediate compression lines in FIG. 1A and FIG. 2 arrangements. It should be pointed out that additional modes of operation are possible for controlling capacity of the two-stage compressor arrangement where each or both of these compressor stages can be driven by a variable speed drive. It also should be noted that what is shown in the FIGS. 4A and 4B is only an illustration on how the switch between the modes is made, the decision on when to make the switch, how to adjust the speed and how to engage the SMV would depend on a specific operating condition, load characteristics, efficiency and power considerations. As an additional improvement to the system operation, either the condenser fan or the evaporator fan (or both) can be provided with a variable speed drive.
  • While varying the speed of the compressors provides desirable benefit, there are upper and lower limits imposed on the actual operating compressor speed range that would be available to the end user. Typically, a lower limit is defined by reliability requirements to maintain adequate lubrication of compressor components such as bearings and compression elements. On the other hand, an upper limit is determined by undesirably high power consumption or excessive noise and resultant inefficient operation as well as safety considerations. These limits can be utilized at the system design stage to define times when it would be desirable to switch between modes of operation. The upper and lower speed limits may vary from one application to the other and be condition dependant during the system operation.
  • FIG. 5 shows how the ramps would typically be achieved. As shown in FIG. 5, once a particular mode of operation is selected, the speed can be varied within that mode and within the speed limits mentioned above. This iterative change is how variable speed drives work in the prior art. If change beyond the speed limits is needed, then the system switches to a different mode of operation.
  • In further aspects, it is known to make the economizer and unloader functions continuously adjustable. Still, providing a variable speed drive for the compressor will allow even more flexible, reliable and efficient operation to be achieved.
  • Although preferred embodiments of this invention have been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims (28)

1. A refrigerant system comprising:
at least one scroll compressor having a variable speed drive for varying a speed of said scroll compressor, and said scroll compressor being provided with a suction port, an intermediate pressure port and discharge port;
a condenser downstream of said scroll compressor and an evaporator downstream of said condenser, with an economizer heat exchanger intermediate to said condenser and said evaporator, said economizer heat exchanger selectively returning a tapped refrigerant to said scroll compressor;
at least one condenser fan for moving air across said condenser and at least one evaporator fan for moving air across said evaporator and
a control for selectively operating said economizer heat exchanger to deliver a tapped refrigerant through said economizer heat exchanger, and back to said compressor, and said control also being operable to vary said speed of said scroll compressor to achieve levels of capacity between a level of capacity with said economizer heat exchanger being operational, and a level of capacity without said economizer heat exchanger being operational.
2. The refrigerant system as set forth in claim 1, wherein a bypass port is also provided to selectively bypass refrigerant from said scroll compressor back to a suction line for said scroll compressor, and said control being operable to vary a speed of said scroll compressor to provide levels of capacity between a level of capacity provided when said bypass operation is actuated, and without said bypass operation being actuated.
3. The refrigerant system as set forth in claim 2, wherein said bypass port and said intermediate pressure port are provided by the same port.
4. The refrigerant system as set forth in claim 2, wherein the delivery of said bypass refrigerant is controlled by a flow control device.
5. The refrigerant system as set forth in claim 2, wherein said scroll compressor is a single stage compressor, and said intermediate pressure port within said scroll compressor also communicates with said bypass port.
6. The refrigerant system as set forth in claim 2, wherein said scroll compressor has at least two scroll compressor stages, and said intermediate pressure port is between two of said stages.
7. The refrigerant system as set forth in claim 2, wherein said control changing said speed of said scroll compressor in incremental steps.
8. The refrigerant system as set forth in claim 2, wherein said bypass port selectively communicates an intermediate pressure line receiving said tapped refrigerant back to a suction line leading to said compressor.
9. The refrigerant system as set forth in claim 2, wherein said bypass is between a discharge line for compressed refrigerant, and back to the suction line.
10. The refrigerant system as set forth in claim 1, wherein said tapped refrigerant is returned to said intermediate compression port
11. The refrigerant system as set forth in claim 1, wherein the delivery of said tapped refrigerant is controlled by a flow control device.
12. The refrigerant system as set forth in claim 1, wherein said system is part of a refrigeration transportation unit.
13. The refrigerant system as set forth in claim 12, wherein said refrigeration transportation unit is a refrigeration container unit.
14. The refrigerant system as set forth in claim 12, wherein said refrigeration transportation unit is a tractor/trailer unit.
15. The refrigerant system as set forth in claim 1, wherein at least one said evaporator fans having a variable speed drive for varying a speed of said fan
16. The refrigerant system as set forth in claim 1, wherein at least one said condenser fans having a variable speed drive for varying a speed of said fan
17. The refrigerant system as set forth in claim 1, wherein there is a suction modulation valve located downstream of said evaporator.
18. The refrigerant system as set forth in claim 1, wherein said scroll compressor is a single stage compressor.
19. The refrigerant system as set forth in claim 1, wherein said scroll compressor has at least two stages.
20. The refrigerant system as set forth in claim 1, wherein said control changing said speed of said scroll compressor in incremental steps.
21. The refrigerant system as set forth in claim 1, wherein said scroll compressor has at least two scroll compressor stages, and said intermediate pressure port is between said two stages.
22. The refrigerant system as set forth in claim 21, wherein there are more than two scroll compressor stages, with said intermediate pressure port being between two of said stages.
23. The refrigerant system as set forth in claim 21, wherein a variable speed drive controls both of said two scroll compressor stages.
24. The refrigerant system as set forth in claim 21, wherein at least one of said two scroll compressor stages does not have a variable speed drive.
25. A method of operating a refrigerant system having a scroll compressor, and an economizer cycle, along with a variable speed drive for said compressor;
determining a desired load on said refrigerant system, and determining whether said economizer cycle should be engaged to meet said desired load; and
varying a speed of said scroll compressor to meet said desired load.
26. The method as set forth in claim 25, wherein said scroll compressor is further provided with an unloader function, and both said unloader and said economizer providing modes being used to meet said desired load.
27. The method as set forth in claim 25, wherein said speed of said scroll compressor is varied in incremental steps.
28. The method as set forth in claim 25, wherein a suction modulation valve is also provided, and is actuated to vary the operational function of the refrigerant system to meet said desired load.
US11/909,006 2005-05-04 2005-05-04 Refrigerant System With Variable Speed Scroll Compressor and Economizer Circuit Abandoned US20080314057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2005/015481 WO2006118573A1 (en) 2005-05-04 2005-05-04 Refrigerant system with variable speed scroll compressor and economizer circuit
US11/302,909 US7721562B2 (en) 2005-05-04 2005-12-14 Refrigerant system with multi-speed scroll compressor and economizer circuit

Publications (1)

Publication Number Publication Date
US20080314057A1 true US20080314057A1 (en) 2008-12-25

Family

ID=39386379

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/909,006 Abandoned US20080314057A1 (en) 2005-05-04 2005-05-04 Refrigerant System With Variable Speed Scroll Compressor and Economizer Circuit
US11/302,909 Expired - Fee Related US7721562B2 (en) 2005-05-04 2005-12-14 Refrigerant system with multi-speed scroll compressor and economizer circuit
US12/560,479 Expired - Fee Related US8079228B2 (en) 2005-05-04 2009-09-16 Refrigerant system with multi-speed scroll compressor and economizer circuit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/302,909 Expired - Fee Related US7721562B2 (en) 2005-05-04 2005-12-14 Refrigerant system with multi-speed scroll compressor and economizer circuit
US12/560,479 Expired - Fee Related US8079228B2 (en) 2005-05-04 2009-09-16 Refrigerant system with multi-speed scroll compressor and economizer circuit

Country Status (5)

Country Link
US (3) US20080314057A1 (en)
EP (1) EP1877709B1 (en)
CN (1) CN101171464B (en)
CA (1) CA2604465A1 (en)
WO (1) WO2006118573A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183915A1 (en) * 2005-07-29 2007-08-09 Huaming Guo Compressor with fluid injection system
US20080286118A1 (en) * 2007-05-18 2008-11-20 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor system and method
US20100008807A1 (en) * 2008-07-08 2010-01-14 Tecumseh Products Company Scroll compressor utilizing liquid or vapor injection
US20110048042A1 (en) * 2008-05-14 2011-03-03 Carrier Corporation Transport refrigeration system and method of operation
US20110138848A1 (en) * 2008-08-22 2011-06-16 Sang-Myung Byun Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
US20120073318A1 (en) * 2009-06-12 2012-03-29 Carrier Corporation Refrigerant System With Multiple Load Modes
EP2716999A4 (en) * 2011-05-26 2015-12-09 Panasonic Ip Man Co Ltd Refrigeration cycle device
US10107536B2 (en) 2009-12-18 2018-10-23 Carrier Corporation Transport refrigeration system and methods for same to address dynamic conditions
US20180356139A1 (en) * 2017-06-12 2018-12-13 Trane International Inc. Compressor control for increased efficiency
US11209000B2 (en) 2019-07-11 2021-12-28 Emerson Climate Technologies, Inc. Compressor having capacity modulation

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672846B2 (en) 2001-04-25 2004-01-06 Copeland Corporation Capacity modulation for plural compressors
EP1877709B1 (en) 2005-05-04 2013-10-16 Carrier Corporation Refrigerant system with variable speed scroll compressor and economizer circuit
DE102006035784B4 (en) * 2006-08-01 2020-12-17 Gea Refrigeration Germany Gmbh Refrigeration system for transcritical operation with economiser and low pressure collector
WO2008082396A1 (en) * 2006-12-29 2008-07-10 Carrier Corporation Standby variable frequency compressor drive
US8316657B2 (en) * 2007-02-28 2012-11-27 Carrier Corporation Refrigerant system and control method
EP1983275A1 (en) * 2007-04-17 2008-10-22 Scroll Technologies Refrigerant system with multi-speed scroll compressor and economizer circuit
EP2203693B1 (en) * 2007-09-24 2019-10-30 Carrier Corporation Refrigerant system with bypass line and dedicated economized flow compression chamber
US9958186B2 (en) 2008-01-17 2018-05-01 Carrier Corporation Pressure relief in high pressure refrigeration system
WO2009135297A1 (en) * 2008-05-08 2009-11-12 Unified Corporation Multiple mode refrigeration
US20100050673A1 (en) * 2008-09-03 2010-03-04 Hahn Gregory W Oil return algorithm for capacity modulated compressor
EP2356389B1 (en) * 2008-12-09 2020-04-15 Shell International Research Maatschappij B.V. Method of operating a compressor and an apparatus therefor
CN102272541B (en) * 2008-12-29 2013-11-06 开利公司 Truck trailer refrigeration system
US7988433B2 (en) 2009-04-07 2011-08-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US8590324B2 (en) * 2009-05-15 2013-11-26 Emerson Climate Technologies, Inc. Compressor and oil-cooling system
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
CN101922823A (en) * 2010-09-02 2010-12-22 广州德能热源设备有限公司 Secondary air injection high-efficiency ultralow temperature heat pump unit
KR101359088B1 (en) 2011-10-27 2014-02-05 엘지전자 주식회사 Air conditioner
US9651043B2 (en) 2012-11-15 2017-05-16 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US10047987B2 (en) * 2013-02-05 2018-08-14 Emerson Climate Technologies, Inc. Compressor cooling system
US9353980B2 (en) * 2013-05-02 2016-05-31 Emerson Climate Technologies, Inc. Climate-control system having multiple compressors
JP5962601B2 (en) * 2013-07-02 2016-08-03 株式会社デンソー Air conditioner for vehicles
US10317112B2 (en) * 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
CN103954064B (en) 2014-04-15 2016-04-13 珠海格力电器股份有限公司 Refrigerating plant
US9739277B2 (en) 2014-05-15 2017-08-22 Emerson Climate Technologies, Inc. Capacity-modulated scroll compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US9850903B2 (en) 2014-12-09 2017-12-26 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
CN207377799U (en) 2015-10-29 2018-05-18 艾默生环境优化技术有限公司 Compressor
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
DE102017115623A1 (en) 2016-07-13 2018-01-18 Trane International Inc. Variable economizer injection position
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
CN108662799A (en) 2017-03-31 2018-10-16 开利公司 Multistage refrigerating plant and its control method
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
CN112236629B (en) 2018-05-15 2022-03-01 艾默生环境优化技术有限公司 Climate control system and method with ground loop
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
JP2019219121A (en) * 2018-06-21 2019-12-26 株式会社デンソー Refrigeration cycle device
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11656003B2 (en) 2019-03-11 2023-05-23 Emerson Climate Technologies, Inc. Climate-control system having valve assembly
CA3081986A1 (en) 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
ES2944473T3 (en) * 2020-05-06 2023-06-21 Daikin Applied Europe S P A Apparatus for damping vibrations in a refrigeration system
US11131491B1 (en) * 2020-08-07 2021-09-28 Emerson Climate Technologies, Inc. Systems and methods for multi-stage operation of a compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386198A (en) * 1944-02-08 1945-10-09 Gen Electric Multistage refrigerating system
US3410105A (en) * 1967-02-15 1968-11-12 Philco Ford Corp Air conditioner
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
US5054294A (en) * 1990-09-21 1991-10-08 Carrier Corporation Compressor discharge temperature control for a variable speed compressor
US5086626A (en) * 1988-01-13 1992-02-11 Kabushiki Kaisha Toshiba Air conditioner with function for temperature control of radiant heat exchanger
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
US5255529A (en) * 1990-09-14 1993-10-26 Nartron Corporation Environmental control system
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
US5568732A (en) * 1994-04-12 1996-10-29 Kabushiki Kaisha Toshiba Air conditioning apparatus and method of controlling same
US5613369A (en) * 1994-09-28 1997-03-25 Kabushiki Kaisha Toshiba Air conditioner and control method for an air conditioner
US5657638A (en) * 1995-10-02 1997-08-19 General Electric Company Two speed control circuit for a refrigerator fan
US5694783A (en) * 1994-10-26 1997-12-09 Bartlett; Matthew T. Vapor compression refrigeration system
US5782101A (en) * 1997-02-27 1998-07-21 Carrier Corporation Heat pump operating in the heating mode refrigerant pressure control
US5797276A (en) * 1993-07-28 1998-08-25 Howenstine; Mervin W. Methods and devices for energy conservation in refrigerated chambers
US5927088A (en) * 1996-02-27 1999-07-27 Shaw; David N. Boosted air source heat pump
US5996364A (en) * 1998-07-13 1999-12-07 Carrier Corporation Scroll compressor with unloader valve between economizer and suction
US6073457A (en) * 1997-03-28 2000-06-13 Behr Gmbh & Co. Method for operating an air conditioner in a motor vehicle, and an air conditioner having a refrigerant circuit
US6138467A (en) * 1998-08-20 2000-10-31 Carrier Corporation Steady state operation of a refrigeration system to achieve optimum capacity
US6397610B1 (en) * 2001-05-01 2002-06-04 Cohand Technology Co., Ltd. Method for controlling air conditioner/heater by coil temperature
US6415617B1 (en) * 2001-01-10 2002-07-09 Johnson Controls Technology Company Model based economizer control of an air handling unit
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
US20030000237A1 (en) * 1999-11-09 2003-01-02 Maersk Container Industri A/S Cooling unit
US6560980B2 (en) * 2000-04-10 2003-05-13 Thermo King Corporation Method and apparatus for controlling evaporator and condenser fans in a refrigeration system
US6619062B1 (en) * 1999-12-06 2003-09-16 Daikin Industries, Ltd. Scroll compressor and air conditioner
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
US20040184932A1 (en) * 2003-03-17 2004-09-23 Alexander Lifson Economizer/by-pass port inserts to control port size
US20050086957A1 (en) * 2003-10-28 2005-04-28 Alexander Lifson Refrigerant cycle with operating range extension
US20050235689A1 (en) * 2004-04-22 2005-10-27 Alexander Lifson Control scheme for multiple operating parameters in economized refrigerant system
US6968708B2 (en) * 2003-06-23 2005-11-29 Carrier Corporation Refrigeration system having variable speed fan
US7096681B2 (en) * 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
US7353659B2 (en) * 2004-05-28 2008-04-08 York International Corporation System and method for controlling an economizer circuit
US7721562B2 (en) * 2005-05-04 2010-05-25 Scroll Technologies Refrigerant system with multi-speed scroll compressor and economizer circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058729A (en) * 1998-07-02 2000-05-09 Carrier Corporation Method of optimizing cooling capacity, energy efficiency and reliability of a refrigeration system during temperature pull down
JP3975664B2 (en) * 2000-09-29 2007-09-12 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
US6412293B1 (en) * 2000-10-11 2002-07-02 Copeland Corporation Scroll machine with continuous capacity modulation
DE60127725D1 (en) 2001-05-09 2007-05-16 Maersk Container Ind As COOLING UNIT AND CONTAINER WITH THIS UNIT
EP1893923A4 (en) 2005-06-07 2012-05-30 Carrier Corp Variable speed compressor motor control for low speed operation

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386198A (en) * 1944-02-08 1945-10-09 Gen Electric Multistage refrigerating system
US3410105A (en) * 1967-02-15 1968-11-12 Philco Ford Corp Air conditioner
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
US5086626A (en) * 1988-01-13 1992-02-11 Kabushiki Kaisha Toshiba Air conditioner with function for temperature control of radiant heat exchanger
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
US5255529A (en) * 1990-09-14 1993-10-26 Nartron Corporation Environmental control system
US5054294A (en) * 1990-09-21 1991-10-08 Carrier Corporation Compressor discharge temperature control for a variable speed compressor
US5797276A (en) * 1993-07-28 1998-08-25 Howenstine; Mervin W. Methods and devices for energy conservation in refrigerated chambers
US5568732A (en) * 1994-04-12 1996-10-29 Kabushiki Kaisha Toshiba Air conditioning apparatus and method of controlling same
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
US5613369A (en) * 1994-09-28 1997-03-25 Kabushiki Kaisha Toshiba Air conditioner and control method for an air conditioner
US5694783A (en) * 1994-10-26 1997-12-09 Bartlett; Matthew T. Vapor compression refrigeration system
US5657638A (en) * 1995-10-02 1997-08-19 General Electric Company Two speed control circuit for a refrigerator fan
US5927088A (en) * 1996-02-27 1999-07-27 Shaw; David N. Boosted air source heat pump
US5782101A (en) * 1997-02-27 1998-07-21 Carrier Corporation Heat pump operating in the heating mode refrigerant pressure control
US6073457A (en) * 1997-03-28 2000-06-13 Behr Gmbh & Co. Method for operating an air conditioner in a motor vehicle, and an air conditioner having a refrigerant circuit
US5996364A (en) * 1998-07-13 1999-12-07 Carrier Corporation Scroll compressor with unloader valve between economizer and suction
US6138467A (en) * 1998-08-20 2000-10-31 Carrier Corporation Steady state operation of a refrigeration system to achieve optimum capacity
US20030000237A1 (en) * 1999-11-09 2003-01-02 Maersk Container Industri A/S Cooling unit
US6530238B2 (en) * 1999-11-09 2003-03-11 Maersk Container Industri A/S Cooling unit
US6619062B1 (en) * 1999-12-06 2003-09-16 Daikin Industries, Ltd. Scroll compressor and air conditioner
US6560980B2 (en) * 2000-04-10 2003-05-13 Thermo King Corporation Method and apparatus for controlling evaporator and condenser fans in a refrigeration system
US6415617B1 (en) * 2001-01-10 2002-07-09 Johnson Controls Technology Company Model based economizer control of an air handling unit
US6397610B1 (en) * 2001-05-01 2002-06-04 Cohand Technology Co., Ltd. Method for controlling air conditioner/heater by coil temperature
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
US20040184932A1 (en) * 2003-03-17 2004-09-23 Alexander Lifson Economizer/by-pass port inserts to control port size
US6968708B2 (en) * 2003-06-23 2005-11-29 Carrier Corporation Refrigeration system having variable speed fan
US20050086957A1 (en) * 2003-10-28 2005-04-28 Alexander Lifson Refrigerant cycle with operating range extension
US7096681B2 (en) * 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
US20050235689A1 (en) * 2004-04-22 2005-10-27 Alexander Lifson Control scheme for multiple operating parameters in economized refrigerant system
US7353659B2 (en) * 2004-05-28 2008-04-08 York International Corporation System and method for controlling an economizer circuit
US20080184721A1 (en) * 2004-05-28 2008-08-07 Johnson Controls Technology Company System and method for controlling an economizer circuit
US7721562B2 (en) * 2005-05-04 2010-05-25 Scroll Technologies Refrigerant system with multi-speed scroll compressor and economizer circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183915A1 (en) * 2005-07-29 2007-08-09 Huaming Guo Compressor with fluid injection system
US7815423B2 (en) 2005-07-29 2010-10-19 Emerson Climate Technologies, Inc. Compressor with fluid injection system
US20080286118A1 (en) * 2007-05-18 2008-11-20 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor system and method
US8485789B2 (en) * 2007-05-18 2013-07-16 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor system and method
US20110048042A1 (en) * 2008-05-14 2011-03-03 Carrier Corporation Transport refrigeration system and method of operation
US8303278B2 (en) 2008-07-08 2012-11-06 Tecumseh Products Company Scroll compressor utilizing liquid or vapor injection
US20100008807A1 (en) * 2008-07-08 2010-01-14 Tecumseh Products Company Scroll compressor utilizing liquid or vapor injection
US20110138848A1 (en) * 2008-08-22 2011-06-16 Sang-Myung Byun Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
US9017048B2 (en) * 2008-08-22 2015-04-28 Lg Electronics Inc. Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
US20120073318A1 (en) * 2009-06-12 2012-03-29 Carrier Corporation Refrigerant System With Multiple Load Modes
US9677788B2 (en) * 2009-06-12 2017-06-13 Carrier Corporation Refrigerant system with multiple load modes
US10107536B2 (en) 2009-12-18 2018-10-23 Carrier Corporation Transport refrigeration system and methods for same to address dynamic conditions
EP2716999A4 (en) * 2011-05-26 2015-12-09 Panasonic Ip Man Co Ltd Refrigeration cycle device
US20180356139A1 (en) * 2017-06-12 2018-12-13 Trane International Inc. Compressor control for increased efficiency
US10746176B2 (en) * 2017-06-12 2020-08-18 Trane International Inc. Compressor control for increased efficiency
US11209000B2 (en) 2019-07-11 2021-12-28 Emerson Climate Technologies, Inc. Compressor having capacity modulation

Also Published As

Publication number Publication date
US20100003151A1 (en) 2010-01-07
EP1877709B1 (en) 2013-10-16
US7721562B2 (en) 2010-05-25
US20070130973A1 (en) 2007-06-14
CA2604465A1 (en) 2006-11-09
CN101171464A (en) 2008-04-30
CN101171464B (en) 2011-11-23
EP1877709A1 (en) 2008-01-16
WO2006118573A1 (en) 2006-11-09
EP1877709A4 (en) 2010-10-06
US8079228B2 (en) 2011-12-20

Similar Documents

Publication Publication Date Title
EP1877709B1 (en) Refrigerant system with variable speed scroll compressor and economizer circuit
EP1941219B1 (en) Refrigerant system with pulse width modulated components and variable speed compressor
US20060225445A1 (en) Refrigerant system with variable speed compressor in tandem compressor application
US7854137B2 (en) Variable speed compressor motor control for low speed operation
US10006681B2 (en) Pulse width modulation with discharge to suction bypass
US8276395B2 (en) Pulse width modulation with reduced suction pressure to improve efficiency
US7836713B2 (en) Speed control of multiple components in refrigerant systems
EP1983275A1 (en) Refrigerant system with multi-speed scroll compressor and economizer circuit
WO2009041942A1 (en) Refrigerant vapor compression system operating at or near zero load
US7854136B2 (en) Automated drive for fan and refrigerant system
US20090308086A1 (en) Refrigerant system with multi-speed pulse width modulated compressor
US20100064722A1 (en) Refrigerant system with pulse width modulation for reheat circuit
EP1996875A1 (en) Heat pump with pulse width modulation control
CA2606310A1 (en) Refrigerant system with vapor injection and liquid injection through separate passages
WO2007064320A1 (en) Multi-circuit refrigerant system utilizing pulse width modulation techniques
JP2008267707A (en) Refrigerant system having multi-speed scroll compressor and economizer circuit
US6122924A (en) Hot gas compressor bypass using oil separator circuit
US20080190126A1 (en) Capacity Control For Refrigerant System With Multiple Compressors
KR20080093759A (en) Refrigerant system with multi-speed scroll compressor and economizer circuit
JPH06193990A (en) Air conditioner

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIFSON, ALEXANDER;TARAS, MICHAEL F.;REEL/FRAME:019841/0092

Effective date: 20050421

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION