US20090072303A9 - Nrom memory cell, memory array, related devices and methods - Google Patents

Nrom memory cell, memory array, related devices and methods Download PDF

Info

Publication number
US20090072303A9
US20090072303A9 US11/346,049 US34604906A US2009072303A9 US 20090072303 A9 US20090072303 A9 US 20090072303A9 US 34604906 A US34604906 A US 34604906A US 2009072303 A9 US2009072303 A9 US 2009072303A9
Authority
US
United States
Prior art keywords
array
structures
edge surfaces
substantially vertical
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/346,049
Other versions
US7535048B2 (en
US20060124998A1 (en
Inventor
Kirk Prall
Leonard Forbes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/177,211 external-priority patent/US20030235076A1/en
Priority claimed from US10/232,411 external-priority patent/US20040041214A1/en
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US11/346,049 priority Critical patent/US7535048B2/en
Publication of US20060124998A1 publication Critical patent/US20060124998A1/en
Publication of US20090072303A9 publication Critical patent/US20090072303A9/en
Application granted granted Critical
Publication of US7535048B2 publication Critical patent/US7535048B2/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC. reassignment MICRON SEMICONDUCTOR PRODUCTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5692Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • G11C16/0475Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7889Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7923Programmable transistors with more than two possible different levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Definitions

  • This invention relates to a NROM memory cells, arrays of such memory cells, electronic devices employing such memory cells and arrays, and methods related to such memory cells.
  • DRAM dynamic random access memory
  • Volatile data storage means that the memory must be continuously powered in order to retain data, and the stored data are lost when the power is interrupted.
  • Nonvolatile memories are capable of retaining data without requiring electrical power.
  • CD-ROM devices CD-WORM devices
  • magnetic data storage devices hard discs, floppy discs, tapes and so forth
  • magneto-optical devices magneto-optical devices
  • Static RAM or SRAM is an example of such memory devices.
  • ROM read-only memories
  • EEPROM electrically erasable read-only memory
  • DRAM dynamic random access memory
  • some types of data may be repeatedly fetched from memory.
  • some SRAM or other high speed memory is typically provided as “cache” memory in conjunction with the processor and may be included on the processor integrated circuit or chip and/or very near it.
  • DRAMs have been developed to very high capacities in part because the memory cells can be manufactured to have a very small area, and the power draw per cell can also be made quite small. In turn, this allows memory integrated circuits to be made that incorporate millions of memory cells in each chip. Typical one-transistor, one-capacitor DRAM memory cells can be produced to have extremely small area 1 requirements.
  • DRAMs are volatile memory devices, they require “refresh” operations.
  • a refresh operation data are read out of each memory cell, amplified and written back into the DRAM.
  • the DRAM circuit is usually not available for other kinds of memory operations during the refresh operation.
  • refresh operations are carried out periodically, resulting in times during which data cannot be readily extracted from or written to DRAMs.
  • some amount of electrical power is always needed to store data in DRAM devices.
  • boot operations for computers such as personal computers involve a period during which the computer cannot be used following power ON initiation.
  • operating system instructions and associated data, and application instructions and associated data are read from relatively slow, non-volatile memory, such as a conventional disc drive, are decoded by the processing unit and the resultant instructions and associated data are loaded into modules incorporating relatively rapidly-accessible, but volatile, memory such as DRAM.
  • non-volatile memory such as a conventional disc drive
  • the present invention includes a method for making an array of memory cells configured to store at least one bit per one F 2 .
  • the method includes doping a first region of a semiconductor substrate and incising the substrate to provide an array of substantially vertical edge surfaces. Pairs of the edge surfaces face one another and are spaced apart a distance equal to one half of a pitch of the array of edges.
  • the method also includes doping second regions between the pairs of edge surfaces and disposing respective structures each providing an electronic memory function on at least some respective ones of the edge surfaces.
  • the method also includes establishing electrical contacts to the first and second regions.
  • the present invention includes an array of memory cells configured to store at least one bit per one F 2 formed using vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array.
  • the structures providing the electronic memory function are configured to store more than one bit per gate.
  • the array also includes electrical contacts to the memory cells including the vertical structures.
  • FIG. 2 is a simplified side view, in section, of the substrate portion of FIG. 1 at a later stage in processing, in accordance with an embodiment of the present invention.
  • FIG. 5 is a simplified side view, in section, illustrating a relationship between the structures of FIGS. 1-3 and the plan view of FIG. 4 , in accordance with an embodiment of the present invention.
  • FIG. 9A is a block diagram of a metal oxide semiconductor field effect transistor (MOSFET) in a substrate according to the teachings of the prior art.
  • MOSFET metal oxide semiconductor field effect transistor
  • FIG. 9C is a graph showing the square root of the current signal (Ids) taken at the drain region of the conventional MOSFET versus the voltage potential (VGS) established between the gate and the source region.
  • FIG. 10B is a diagram suitable for explaining the method by which the MOSFET of the multistate cell of the present invention can be programmed to achieve the embodiments of the present invention.
  • FIG. 11 illustrates a portion of a memory array in accordance with an embodiment of the present invention.
  • FIG. 12 illustrates an electrical equivalent circuit for the portion of the memory array shown in FIG. 11 .
  • FIG. 13 is another electrical equivalent circuit useful in illustrating a read operation on the novel multistate cell in accordance with an embodiment of the present invention.
  • FIG. 15A illustrates one embodiment of the gate insulator for the present invention having a number of layers, e.g., an ONO stack, where the layer closest to the channel includes an oxide layer, and a nitride layer is formed thereon.
  • a number of layers e.g., an ONO stack
  • the layer closest to the channel includes an oxide layer, and a nitride layer is formed thereon.
  • FIG. 15B aids to further illustrate the conduction behavior of the novel multistate cell of the present invention.
  • FIG. 16A illustrates the operation and programming the novel multistate cell in the reverse direction.
  • FIG. 17 illustrates a memory device in accordance with an embodiment of the present invention.
  • FIG. 18 is a block diagram of an electrical system, or processor-based system, utilizing a multistate cell constructed in accordance with the present invention.
  • wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention.
  • substrate is understood to include semiconductor wafers.
  • substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art.
  • conductor is understood to include semiconductors
  • insulator is defined to include any material that is less electrically conductive than the materials referred to as conductors.
  • FIG. 1 is a simplified side view, in section, of a semiconductor substrate portion 20 at one stage in processing, in accordance with an embodiment of the present invention.
  • the portion 20 includes etched or incised recesses 22 , doped regions 24 and 26 and caps 28 .
  • the etched recesses 22 form trenches extending along an axis into and out of the page of FIG. 1 .
  • the doped regions 24 are implanted n+ regions. In one embodiment, the doped regions 24 are formed by a blanket implant. In one embodiment, the caps 28 are dielectric caps and may be formed using conventional silicon nitride and conventional patterning techniques. In one embodiment, the etched recesses 22 are then etched using conventional plasma etching techniques. In one embodiment, the doped regions 26 are then doped by implantation to form n+ regions. The etched or incised recesses 22 may be formed by plasma etching, laser-assisted techniques or any other method presently known or that may be developed. In one embodiment, the recesses 22 are formed to have substantially vertical sidewalls relative to a top surface of the substrate portion 20 . In one embodiment, substantially vertical means at 90 degrees to the substrate surface, plus or minus ten degrees.
  • FIG. 2 provides a simplified side view, in section, of the substrate portion 20 of FIG. 1 at a later stage in processing, in accordance with an embodiment of the present invention.
  • the portion 20 of FIG. 2 includes thick oxide regions 32 , ONO regions 34 formed on sidewalls 36 of the recesses 22 , gate material 38 and a conductive layer 40 .
  • the gate material 38 comprises conductively-doped polycrystalline silicon.
  • conventional techniques are employed to oxidize the doped regions 24 and 26 preferentially with respect to sidewalls 36 .
  • the thick oxide regions 32 are formed at the same time as a thinner oxide 42 on the sidewalls 36 .
  • These oxides also serve to isolate the doped regions 24 and 26 from what will become transistor channels along the sidewalls 36 .
  • Other techniques for isolation may be employed.
  • high density plasma grown oxides may be employed.
  • spacers may be employed.
  • the thin oxide 42 , nitride layer 44 and oxide layer 46 combine to form the ONO layer 34 , such as is employed in SONOS devices, while the polysilicon 38 forms a control gate.
  • application of suitable electrical biases to the doped regions 24 , 26 and the control gate 38 cause hot majority charge carriers to be injected into the nitride layer 44 and become trapped, providing a threshold voltage shift and thus providing multiple, alternative, measurable electrical states representing stored data.
  • Hot charge carriers are not in thermal equilibrium with their environment. In other words, hot charge carriers represent a situation where a population of high kinetic energy charge carriers exist. Hot charge carriers may be electrons or holes.
  • FIG. 3 is a simplified side view, in section, of the substrate portion 20 of FIG. 1 at an alternative stage in processing, in accordance with an embodiment of the present invention.
  • the embodiment shown in FIG. 3 includes the oxide regions 32 and 42 , but a floating gate 48 is formed on the thin oxide region 42 .
  • a conventional oxide or nitride insulator 49 is formed on the floating gate 48 , followed by deposition of gate material 38 .
  • Floating gate devices are known and operate by injecting hot charge carriers, which may comprise electrons or holes, into the floating gate 48 .
  • FIG. 5 is a simplified side view, in section, illustrating a relationship between the structures of FIGS. 1-3 and the plan view of FIG. 4 , in accordance with an embodiment of the present invention.
  • the trenches 22 correspond to bitlines 56 and 58 , as is explained below in more detail with reference to FIGS. 6-8 .
  • patterned conductive layers 64 extend from top to bottom of FIG. 6 and electrically couple to nodes 78 , 78 ′′ and thus to doped region 26 .
  • a drain to source voltage potential (Vds) is set up between the drain region 104 and the source region 102 .
  • a voltage potential is then applied to the gate 108 via a wordline 116 .
  • Vt characteristic voltage threshold
  • a channel 106 forms in the substrate 100 between the drain region 104 and the source region 102 . Formation of the channel 106 permits conduction between the drain region 104 and the source region 102 , and a current signal (Ids) can be detected at the drain region 104 .
  • FIG. 9C illustrates this point.
  • FIG. 9C is a graph showing the square root of the current signal (Ids) taken at the drain region versus the voltage potential (VGS) established between the gate 108 and the source region 102 .
  • the change in the slope of the plot of ⁇ square root over (Ids) ⁇ versus VGS represents the change in the charge carrier mobility in the channel 106 .
  • One component includes a threshold voltage shift due to the trapped electrons and a second component includes mobility degradation due to additional scattering of carrier electrons caused by this trapped charge and additional surface states.
  • a conventional MOSFET degrades, or is “stressed,” over operation in the forward direction, electrons do gradually get injected and become trapped in the gate oxide near the drain. In this portion of the conventional MOSFET there is virtually no channel underneath the gate oxide. Thus the trapped charge modulates the threshold voltage and charge mobility only slightly.
  • FIGS. 10A-10C are useful in illustrating the present invention in which a much larger change in device characteristics is obtained by programming the device in the reverse direction and subsequently reading the device by operating it in the forward direction.
  • multistate cell 201 is comprised of a programmed MOSFET.
  • This programmed MOSFET has a charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 such that the channel region 206 has a first voltage threshold region (Vt 1 ) and a second voltage threshold region (Vt 2 ) in the channel 206 .
  • the charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 includes a trapped electron charge 217 .
  • applying a second voltage potential V 2 to the source region 202 includes applying a high positive voltage potential (VDD) to the source region 202 of the MOSFET, as shown in FIG. 10B .
  • a gate potential VGS is applied to a gate 208 of the MOSFET.
  • the gate potential VGS includes a voltage potential which is less than the second voltage potential V 2 , but which is sufficient to establish conduction in the channel 206 of the MOSFET between the drain region 204 and the source region 202 . As shown in FIG.
  • applying the first, second and gate potentials (V 1 , V 2 , and VGS respectively) to the MOSFET creates a hot electron injection into a gate oxide 210 of the MOSFET adjacent to the source region 202 .
  • applying the first, second and gate potentials (V 1 , V 2 , and VGS respectively) provides enough energy to the charge carriers, e.g. electrons, being conducted across the channel 206 that, once the charge carriers are near the source region 202 , a number of the charge carriers get excited into the gate oxide 210 adjacent to the source region 202 .
  • the charge carriers become trapped.
  • the method is continued by subsequently operating the MOSFET in the forward direction in its programmed state during a read operation.
  • the read operation includes grounding the source region 202 and precharging the drain region a fractional voltage of VDD. If the device is addressed by a wordline coupled to the gate, then its conductivity will be determined by the presence or absence of stored charge in the gate insulator. That is, a gate potential can be applied to the gate 208 by a wordline 216 in an effort to form a conduction channel between the source and the drain regions as done with addressing and reading conventional DRAM cells.
  • the conduction channel 206 of the MOSFET will have a first voltage threshold region (Vt 1 ) adjacent to the drain region 204 and a second voltage threshold region (Vt 2 ) adjacent to the source region 202 , as explained and described in detail in connection with FIG. 10A .
  • the Vt 2 has a greater voltage threshold than the Vt 1 due to the hot electron injection 217 into a gate oxide 210 of the MOSFET adjacent to the source region 202 .
  • FIG. 10C is a graph plotting a current signal (Ids) detected at the second source/drain region 204 versus a voltage potential, or drain voltage, (VDS) set up between the second source/drain region 204 and the first source/drain region 202 (Ids vs. VDS).
  • VDS represents the voltage potential set up between the drain region 204 and the source region 202 .
  • the curve plotted as D 1 represents the conduction behavior of a conventional MOSFET which is not programmed according to the teachings of the present invention.
  • the curve D 2 represents the conduction behavior of the programmed MOSFET, described above in connection with FIG. 10A , according to the teachings of the present invention. As shown in FIG.
  • the current signal (IDS 2 ) detected at the second source/drain region 204 for the programmed MOSFET (curve D 2 ) is significantly lower than the current signal (IDS 1 ) detected at the second source/drain region 204 for the conventional MOSFET which is not programmed according to the teachings of the present invention.
  • the channel 206 in the programmed MOSFET of the present invention has two voltage threshold regions and that the voltage threshold, Vt 2 , near the first source/drain region 202 has a higher voltage threshold than Vt 1 near the second source/drain region due to the charge 217 trapped in the gate oxide 217 adjacent to the first source/drain region 202 .
  • Charge trapping in silicon nitride gate insulators was the basic mechanism used in MNOS memory devices (see generally, S. Sze, Physics of Semiconductor Devices, Wiley, N.Y., 1981, pp. 504-506), charge trapping in aluminum oxide gates was the mechanism used in MIOS memory devices (see generally, S. Sze, Physics of Semiconductor Devices, Wiley, N.Y., 1981, pp. 504-506), and Applicant has previously disclosed charge trapping at isolated point defects in gate insulators (see generally, L. Forbes and J. Geusic, “Memory using insulator traps,” U.S. Pat. No. 6,140,181, issued Oct. 31, 2000).
  • the present invention discloses programming a MOSFET in a reverse direction to trap one of a number of charge levels near the source region and reading the device in a forward direction to form a multistate memory cell based on a modification of DRAM technology.
  • the write data/precharge circuit 624 is adapted to couple either a ground to the bitline 608 - 1 during a write operation in the reverse direction, or alternatively to precharge the bitline 608 - 1 to fractional voltage of VDD during a read operation in the forward direction.
  • the sourceline 604 can be biased to a voltage higher than VDD during a write operation in the reverse direction, or alternatively grounded during a read operation in the forward direction.
  • the array structure 600 including multistate cells 601 - 1 and 601 - 2 , has no capacitors.
  • the first source/drain region or source region, 602 - 1 and 602 - 2 are coupled directly to the sourceline 604 .
  • the sourceline 604 is biased to voltage higher than VDD and the devices stressed in the reverse direction by grounding the data or bit line, 608 - 1 or 608 - 2 .
  • a gate insulator of the multistate cell includes gate insulators selected from the group of thicker layers of SiO 2 formed by wet oxidation, SON silicon oxynitride, SRO silicon rich oxide, Al 2 O 3 aluminum oxide, composite layers and implanted oxides with traps (L. Forbes and J. Geusic, “Memory using insulator traps,” U.S. Pat. No. 6,140,181, issued Oct. 31, 2000).
  • Conventional transistors for address decode and sense amplifiers can be fabricated after this step with normal thin gate insulators of silicon oxide.
  • the programmed multistate cell, or modified MOSFET is a programmed MOSFET having a charge trapped in the gate insulator adjacent to a first source/drain region, or source region, such that the channel region has a first voltage threshold region (Vt 1 ) and a second voltage threshold region (Vt 2 ), where Vt 2 is greater than Vt 1 , and Vt 2 is adjacent the source region such that the programmed MOSFET operates at reduced drain source current.
  • Vt 1 first voltage threshold region
  • Vt 2 second voltage threshold region
  • FIG. 15B aids to further illustrate the conduction behavior of the novel multistate cell of the present invention.
  • the electrical equivalent circuit shown in FIG. 15B illustrates a multistate cell 701 having an equivalent oxide thickness of 200 ⁇ .
  • FIGS. 16A and 16B illustrate the operation and programming the novel multistate cell as described above.
  • FIGS. 16A and 16B also help illustrate an alternative array configuration where adjacent devices are compared and one of the devices on the opposite side of a shared trench is used as a dummy cell transistor or reference device. Again, the reference devices can all be programmed to have the same initial conductivity state.
  • FIG. 16A illustrates the operation and programming the novel multistate cell in the reverse direction. As shown in FIG. 16A , a transistor 801 - 1 on one side of the trench (as described in connection with FIG. 11 ) is stressed by grounding its respective drain line, e.g. 811 - 1 . As shown in FIG.
  • the bus 1020 may be a series of buses and bridges commonly used in a processor-based system, but for convenience purposes only, the bus 1020 has been illustrated as a single bus.
  • a second I/O device 1010 is illustrated, but is not necessary to practice the invention.
  • the processor-based system 1000 can also includes read-only memory (ROM) 1014 and may include peripheral devices such as a floppy disk drive 1004 and a compact disk (CD) ROM drive 1006 that also communicates with the CPU 1002 over the bus 1020 as is well known in the art.
  • ROM read-only memory
  • CD compact disk

Abstract

An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures. The cells can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed cell operates at reduced drain source current.

Description

    RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 10/738,408 filed Dec. 16, 2003 which is commonly assigned and incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • This invention relates to a NROM memory cells, arrays of such memory cells, electronic devices employing such memory cells and arrays, and methods related to such memory cells.
  • BACKGROUND OF THE INVENTION
  • Various types of memory devices are used in electronic systems. Some types of memory device, such as DRAM (dynamic random access memory) provide large amounts of readable and writable data storage with modest power budget and in favorably small form factor, but are not as fast as other types of memory devices and provide volatile data storage capability. Volatile data storage means that the memory must be continuously powered in order to retain data, and the stored data are lost when the power is interrupted. Nonvolatile memories are capable of retaining data without requiring electrical power.
  • Other types of memory can provide read-only or read-write capabilities and non-volatile data storage, but are much slower in operation. These include CD-ROM devices, CD-WORM devices, magnetic data storage devices (hard discs, floppy discs, tapes and so forth), magneto-optical devices and the like.
  • Still other types of memory provide very high speed operation but also demand high power budgets. Static RAM or SRAM is an example of such memory devices.
  • In most computer systems, different memory types are blended to selectively gain the benefits that each technology can offer. For example, read-only memories or ROM, EEPROM and the like are typically used to store limited amounts of relatively infrequently-accessed data such as a basic input-output system. These memories are employed to store data that, in response to a power ON situation, configure a processor to be able to load larger amounts of software such as an operating system from a high capacity non-volatile memory device such as a hard drive. The operating system and application software are typically read from the high capacity memory and corresponding images are stored in DRAM.
  • As the processor executes instructions, some types of data may be repeatedly fetched from memory. As a result, some SRAM or other high speed memory is typically provided as “cache” memory in conjunction with the processor and may be included on the processor integrated circuit or chip and/or very near it.
  • Several different kinds of memory device are involved in most modern computing devices, and in many types of appliances that include automated and/or programmable features (home entertainment devices, telecommunications devices, automotive control systems etc.). As system and software complexity increase, need for additional memory increases. Desire for portability, computation power and/or practicality result in increased pressure to reduce both power consumption and circuit area per bit.
  • DRAMs have been developed to very high capacities in part because the memory cells can be manufactured to have a very small area, and the power draw per cell can also be made quite small. In turn, this allows memory integrated circuits to be made that incorporate millions of memory cells in each chip. Typical one-transistor, one-capacitor DRAM memory cells can be produced to have extremely small area1 requirements.
  • Such areas are often equal to about 3 F×2 F, or less, where “F” is defined as equal to one-half of minimum pitch (see FIG. 4, infra). Minimum pitch (i.e., “P”) is defined as equal to the smallest distance of a line width (i.e., “W”) plus width of a space immediately adjacent the line on one side of the line between the line and a next adjacent line in a repeated pattern within the array (i.e., “S”). Thus, in many implementations, the consumed area of a given DRAM cell is no greater than about 8 F2.
  • However, because DRAMs are volatile memory devices, they require “refresh” operations. In a refresh operation, data are read out of each memory cell, amplified and written back into the DRAM. As a first result, the DRAM circuit is usually not available for other kinds of memory operations during the refresh operation. Additionally, refresh operations are carried out periodically, resulting in times during which data cannot be readily extracted from or written to DRAMs. As a second result, some amount of electrical power is always needed to store data in DRAM devices.
  • As a third result, boot operations for computers such as personal computers involve a period during which the computer cannot be used following power ON initiation. During this period, operating system instructions and associated data, and application instructions and associated data, are read from relatively slow, non-volatile memory, such as a conventional disc drive, are decoded by the processing unit and the resultant instructions and associated data are loaded into modules incorporating relatively rapidly-accessible, but volatile, memory such as DRAM. Other consequences flow from the properties of the memory systems included in various electronic devices and the increasingly complex software employed with them, however, these examples serve to illustrate ongoing needs.
  • Needed are methods and apparatus relating to non-volatile memory providing high areal data storage capacity, reprogrammability, low power consumption and relatively high data access speed.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the present invention includes a method for making an array of memory cells configured to store at least one bit per one F2. The method includes doping a first region of a semiconductor substrate and incising the substrate to provide an array of substantially vertical edge surfaces. Pairs of the edge surfaces face one another and are spaced apart a distance equal to one half of a pitch of the array of edges. The method also includes doping second regions between the pairs of edge surfaces and disposing respective structures each providing an electronic memory function on at least some respective ones of the edge surfaces. The method also includes establishing electrical contacts to the first and second regions.
  • In another aspect, the present invention includes a method for making an array of memory cells configured to store at least one bit per one F2. The method includes disposing substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array and establishing electrical contacts to memory cells including the vertical structures.
  • In a further aspect, the present invention includes an array of memory cells configured to store at least one bit per one F2 formed using vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the vertical structures.
  • In a still further aspect, the present invention includes a vertical metal oxide semiconductor field effect transistor (MOSFET) extending outwardly from a substrate, the MOSFET having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, and a gate separated from the channel region by a gate insulator. A sourceline is formed in a trench adjacent to the vertical MOSFET, wherein the first source/drain region is coupled to the sourceline. A transmission line is coupled to the second source/drain region. The can be programmed MOSFET to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed MOSFET operates at reduced drain source current.
  • These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are described below with reference to the following accompanying drawings.
  • FIG. 1 is a simplified side view, in section, of a semiconductor substrate portion at one stage in processing, in accordance with an embodiment of the present invention.
  • FIG. 2 is a simplified side view, in section, of the substrate portion of FIG. 1 at a later stage in processing, in accordance with an embodiment of the present invention.
  • FIG. 3 is a simplified side view, in section, of the substrate portion of FIG. 2 at a later stage in processing, in accordance with an embodiment of the present invention.
  • FIG. 4 is a simplified plan view of a substrate portion showing a portion of a memory cell array, in accordance with an embodiment of the present invention.
  • FIG. 5 is a simplified side view, in section, illustrating a relationship between the structures of FIGS. 1-3 and the plan view of FIG. 4, in accordance with an embodiment of the present invention.
  • FIG. 6 is a simplified plan view of a memory cell array illustrating an interconnection arrangement for the memory cell array of FIG. 4, in accordance with an embodiment of the present invention.
  • FIG. 7 is a simplified side view, in section, taken along section lines 7-7 of FIG. 6, illustrating part of an interconnection arrangement in accordance with an embodiment of the present invention.
  • FIG. 8 is a simplified side view, in section, taken along section lines 8-8 of FIG. 6, illustrating part of an interconnection arrangement in accordance with an embodiment of the present invention.
  • FIG. 9A is a block diagram of a metal oxide semiconductor field effect transistor (MOSFET) in a substrate according to the teachings of the prior art.
  • FIG. 9B illustrates the MOSFET of FIG. 9A operated in the forward direction showing some degree of device degradation due to electrons being trapped in the gate oxide near the drain region over gradual use.
  • FIG. 9C is a graph showing the square root of the current signal (Ids) taken at the drain region of the conventional MOSFET versus the voltage potential (VGS) established between the gate and the source region.
  • FIG. 10A is a diagram of a programmed MOSFET which can be used as a multistate cell in accordance with an embodiment of the present invention.
  • FIG. 10B is a diagram suitable for explaining the method by which the MOSFET of the multistate cell of the present invention can be programmed to achieve the embodiments of the present invention.
  • FIG. 10C is a graph plotting the current signal (Ids) detected at the drain region versus a voltage potential, or drain voltage, (VDS) set up between the drain region and the source region (Ids vs. VDS) in accordance with an embodiment of the present invention.
  • FIG. 11 illustrates a portion of a memory array in accordance with an embodiment of the present invention.
  • FIG. 12 illustrates an electrical equivalent circuit for the portion of the memory array shown in FIG. 11.
  • FIG. 13 is another electrical equivalent circuit useful in illustrating a read operation on the novel multistate cell in accordance with an embodiment of the present invention.
  • FIG. 14 illustrates a portion of a memory array in accordance with an embodiment of the present invention.
  • FIG. 15A, illustrates one embodiment of the gate insulator for the present invention having a number of layers, e.g., an ONO stack, where the layer closest to the channel includes an oxide layer, and a nitride layer is formed thereon.
  • FIG. 15B aids to further illustrate the conduction behavior of the novel multistate cell of the present invention.
  • FIG. 16A illustrates the operation and programming the novel multistate cell in the reverse direction.
  • FIG. 16B illustrates the now programmed multistate cell's operation in the forward direction and differential read occurring in this differential cell embodiment, e.g., 2 transistors in each cell.
  • FIG. 17 illustrates a memory device in accordance with an embodiment of the present invention.
  • FIG. 18 is a block diagram of an electrical system, or processor-based system, utilizing a multistate cell constructed in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
  • The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator is defined to include any material that is less electrically conductive than the materials referred to as conductors. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • FIG. 1 is a simplified side view, in section, of a semiconductor substrate portion 20 at one stage in processing, in accordance with an embodiment of the present invention. The portion 20 includes etched or incised recesses 22, doped regions 24 and 26 and caps 28. The etched recesses 22 form trenches extending along an axis into and out of the page of FIG. 1.
  • In one embodiment, the doped regions 24 are implanted n+ regions. In one embodiment, the doped regions 24 are formed by a blanket implant. In one embodiment, the caps 28 are dielectric caps and may be formed using conventional silicon nitride and conventional patterning techniques. In one embodiment, the etched recesses 22 are then etched using conventional plasma etching techniques. In one embodiment, the doped regions 26 are then doped by implantation to form n+ regions. The etched or incised recesses 22 may be formed by plasma etching, laser-assisted techniques or any other method presently known or that may be developed. In one embodiment, the recesses 22 are formed to have substantially vertical sidewalls relative to a top surface of the substrate portion 20. In one embodiment, substantially vertical means at 90 degrees to the substrate surface, plus or minus ten degrees.
  • FIG. 2 provides a simplified side view, in section, of the substrate portion 20 of FIG. 1 at a later stage in processing, in accordance with an embodiment of the present invention. The portion 20 of FIG. 2 includes thick oxide regions 32, ONO regions 34 formed on sidewalls 36 of the recesses 22, gate material 38 and a conductive layer 40. In one embodiment, the gate material 38 comprises conductively-doped polycrystalline silicon.
  • In one embodiment, conventional techniques are employed to oxidize the doped regions 24 and 26 preferentially with respect to sidewalls 36. As a result, the thick oxide regions 32 are formed at the same time as a thinner oxide 42 on the sidewalls 36. These oxides also serve to isolate the doped regions 24 and 26 from what will become transistor channels along the sidewalls 36. Other techniques for isolation may be employed. For example, in one embodiment, high density plasma grown oxides may be employed. In one embodiment, spacers may be employed.
  • In one embodiment, conventional techniques are then employed to provide a nitride layer 44 and an oxide layer 46, as is described, for example, in “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell”, by Boaz Eitan et al., IEEE Electron Device Letters, Vol. 21, No. 11, November 2000, pp. 543-545, IEEE Catalogue No. 0741-3106/00, or in “A True Single-Transistor Oxide-Nitride-Oxide EEPROM Device” by T. Y. Chan et al., IEEE Electron Device Letters, Vol. EDL-8, No. 3, March, 1987, pp. 93-95, IEEE Catalogue No. 0741-3106/87/0300-0093.
  • In one embodiment, the thin oxide 42, nitride layer 44 and oxide layer 46 combine to form the ONO layer 34, such as is employed in SONOS devices, while the polysilicon 38 forms a control gate. In operation, application of suitable electrical biases to the doped regions 24, 26 and the control gate 38 cause hot majority charge carriers to be injected into the nitride layer 44 and become trapped, providing a threshold voltage shift and thus providing multiple, alternative, measurable electrical states representing stored data. “Hot” charge carriers are not in thermal equilibrium with their environment. In other words, hot charge carriers represent a situation where a population of high kinetic energy charge carriers exist. Hot charge carriers may be electrons or holes.
  • SONOS devices are capable of storing more than one bit per gate 38. Typically, the hot carriers are injected into one side 47 or 47′ of the ONO layer 34, adjacent a contact, such as the region 24 or the region 26, that provides a high electrical field.
  • By reversing the polarity of the potentials applied to the regions 24 and 26, charge may be injected into the other side 47′ or 47 of the ONO layer 34. Thus, four electronically-discriminable and distinct states can be easily provided with a single gate 38. As a result, the structure shown in FIG. 2 is capable of storing at least four bits per gate 38.
  • FIG. 3 is a simplified side view, in section, of the substrate portion 20 of FIG. 1 at an alternative stage in processing, in accordance with an embodiment of the present invention. The embodiment shown in FIG. 3 includes the oxide regions 32 and 42, but a floating gate 48 is formed on the thin oxide region 42. A conventional oxide or nitride insulator 49 is formed on the floating gate 48, followed by deposition of gate material 38. Floating gate devices are known and operate by injecting hot charge carriers, which may comprise electrons or holes, into the floating gate 48.
  • Floating gate devices can be programmed to different charge levels that can be electrically distinct and distinguishable. As a result, it is possible to program more data than one bit into each floating gate device, and each externally addressable gate 38 thus corresponds to more than one stored bit. Typically, charge levels of 0, Q, 2 Q and 3 Q might be employed, where Q represents some amount of charge corresponding to a reliably-distinguishable output signal.
  • FIG. 4 is a simplified plan view of a substrate portion showing a portion of a memory cell array 50, in accordance with an embodiment of the present invention. FIG. 4 also provides examples of pitch P, width W, space S and minimum feature size F, as described in the Background. An exemplary memory cell area 52, the physical area of a single transistor, can be seen to be about one F2. Wordlines 54 are formed from the conductive layer 40, and bitlines 56 and 58 are formed.
  • FIG. 5 is a simplified side view, in section, illustrating a relationship between the structures of FIGS. 1-3 and the plan view of FIG. 4, in accordance with an embodiment of the present invention. The trenches 22 correspond to bitlines 56 and 58, as is explained below in more detail with reference to FIGS. 6-8.
  • The density of memory arrays such as that described with reference to FIGS. 1-5 can require interconnection arrangements that differ from prior art memory arrays. One embodiment of a new type of interconnection arrangement useful with such memory systems is described below with reference to FIGS. 6-8.
  • FIG. 6 is a simplified plan view illustrating an interconnection arrangement 60 for the memory cell array 50 of FIG. 4, in accordance with an embodiment of the present invention. The interconnection arrangement 60 includes multiple patterned conductive layers 62 and 64, separated by conventional interlevel dielectric material 65 (FIGS. 7 and 8). The views in FIG. 6-8 have been simplified to show correspondence with the other Figures and to avoid undue complexity. Shallow trench isolation regions 67 isolate selected portions from one another.
  • FIG. 7 is a simplified side view, in section, taken along section lines 7-7 of FIG. 6, illustrating part of an interconnection arrangement in accordance with an embodiment of the present invention.
  • FIG. 8 is a simplified side view, in section, taken along section lines 8-8 of FIG. 6, illustrating part of an interconnection arrangement in accordance with an embodiment of the present invention.
  • With reference to FIGS. 6-8, the patterned conductive layer 62 extends upward to nodes 70, 70′, 70″ and establishes electrical communication between the conductive layers 62 and selected portions of the doped region 24. The patterned conductive layer 62 stops at the line denoted 72, 72′.
  • Similarly, other portions of the patterned conductive layer 62 extend from the line denoted 74, 74′ and extend upward, providing electrical communication from nodes 76, 76′, 76″ to other circuit elements. The nodes 76, 76′, 76″ provide contact to selected portions of the doped region 24.
  • In contrast, patterned conductive layers 64 extend from top to bottom of FIG. 6 and electrically couple to nodes 78, 78″ and thus to doped region 26.
  • Such is but on example of a simplified interconnection arrangement suitable for use with the memory devices of FIGS. 1-5. Other arrangements are possible.
  • FIG. 9A is useful in illustrating the conventional operation of a MOSFET such as can be used in a DRAM array. FIG. 9A illustrates the normal hot electron injection and degradation of devices operated in the forward direction. As is explained below, since the electrons are trapped near the drain they are not very effective in changing the device characteristics.
  • FIG. 9A is a block diagram of a metal oxide semiconductor field effect transistor (MOSFET) 101 in a substrate 100. The MOSFET 101 includes a source region 102, a drain region 104, a channel region 106 in the substrate 100 between the source region 102 and the drain region 104. A gate 108 is separated from the channel region 108 by a gate oxide 110. A sourceline 112 is coupled to the source region 102. A bitline 114 is coupled to the drain region 104. A wordline 116 is coupled to the gate 108.
  • In conventional operation, a drain to source voltage potential (Vds) is set up between the drain region 104 and the source region 102. A voltage potential is then applied to the gate 108 via a wordline 116. Once the voltage potential applied to the gate 108 surpasses the characteristic voltage threshold (Vt) of the MOSFET a channel 106 forms in the substrate 100 between the drain region 104 and the source region 102. Formation of the channel 106 permits conduction between the drain region 104 and the source region 102, and a current signal (Ids) can be detected at the drain region 104.
  • In operation of the conventional MOSFET of FIG. 9A, some degree of device degradation does gradually occur for MOSFETs operated in the forward direction by electrons 117 becoming trapped in the gate oxide 110 near the drain region 104. This effect is illustrated in FIG. 9B. However, since the electrons 117 are trapped near the drain region 104 they are not very effective in changing the MOSFET characteristics.
  • FIG. 9C illustrates this point. FIG. 9C is a graph showing the square root of the current signal (Ids) taken at the drain region versus the voltage potential (VGS) established between the gate 108 and the source region 102. The change in the slope of the plot of √{square root over (Ids)} versus VGS represents the change in the charge carrier mobility in the channel 106.
  • In FIG. 9C, ΔVT represents the minimal change in the MOSFET's threshold voltage resulting from electrons gradually being trapped in the gate oxide 110 near the drain region 104, under normal operation, due to device degradation. This results in a fixed trapped charge in the gate oxide 110 near the drain region 104. Slope 1 represents the charge carrier mobility in the channel 106 for FIG. 9A having no electrons trapped in the gate oxide 110. Slope 2 represents the charge mobility in the channel 106 for the conventional MOSFET of FIG. 9B having electrons 117 trapped in the gate oxide 110 near the drain region 104. As shown by a comparison of slope 1 and slope 2 in FIG. 9C, the electrons 117 trapped in the gate oxide 110 near the drain region 104 of the conventional MOSFET do not significantly change the charge mobility in the channel 106.
  • There are two components to the effects of stress and hot electron injection. One component includes a threshold voltage shift due to the trapped electrons and a second component includes mobility degradation due to additional scattering of carrier electrons caused by this trapped charge and additional surface states. When a conventional MOSFET degrades, or is “stressed,” over operation in the forward direction, electrons do gradually get injected and become trapped in the gate oxide near the drain. In this portion of the conventional MOSFET there is virtually no channel underneath the gate oxide. Thus the trapped charge modulates the threshold voltage and charge mobility only slightly.
  • Applicant has previously described programmable memory devices and functions based on the reverse stressing of MOSFET's in a conventional CMOS process and technology in order to form programmable address decode and correction. (See generally, L. Forbes, W. P. Noble and E. H. Cloud, “MOSFET technology for programmable address decode and correction,” U.S. patent application Ser. No. 09/383,804). That disclosure, however, did not describe multistate memory cell solutions, but rather address decode and correction issues.
  • According to the teachings of the present invention, normal MOSFETs can be programmed by operation in the reverse direction and utilizing avalanche hot electron injection to trap electrons in the gate oxide of the MOSFET. When the programmed MOSFET is subsequently operated in the forward direction the electrons trapped in the oxide are near the source and cause the channel to have two different threshold voltage regions. The novel programmed MOSFETs of the present invention conduct significantly less current than conventional MOSFETs, particularly at low drain voltages. These electrons will remain trapped in the gate oxide unless negative gate voltages are applied. The electrons will not be removed from the gate oxide when positive or zero gate voltages are applied. Erasure can be accomplished by applying negative gate voltages and/or increasing the temperature with negative gate bias applied to cause the trapped electrons to be re-emitted back into the silicon channel of the MOSFET. (See generally, L. Forbes, E. Sun, R. Alders and J. Moll, “Field induced re-emission of electrons trapped in SiO2,” IEEE Trans. Electron Device, vol. ED-26, no. 11, pp. 1816-1818 (November 1979); S. S. B. Or, N. Hwang, and L. Forbes, “Tunneling and Thermal emission from a distribution of deep traps in SiO2,” IEEE Trans. on Electron Devices, vol. 40, no. 6, pp. 1100-1103 (June 1993); S. A. Abbas and R. C. Dockerty, “N-channel IGFET design limitations due to hot electron trapping,” IEEE Int. Electron Devices Mtg., Washington D.C., December 1975, pp. 35-38).
  • FIGS. 10A-10C are useful in illustrating the present invention in which a much larger change in device characteristics is obtained by programming the device in the reverse direction and subsequently reading the device by operating it in the forward direction.
  • FIG. 10A is a diagram of a programmed MOSFET which can be used as a multistate cell according to the teachings of the present invention. As shown in FIG. 10A the multistate cell 201 includes a MOSFET in a substrate 200 which has a first source/drain region 202, a second source/drain region 204, and a channel region 206 between the first and second source/drain regions, 202 and 204. In one embodiment, the first source/drain region 202 includes a source region 202 for the MOSFET and the second source/drain region 204 includes a drain region 204 for the MOSFET. FIG. 10A further illustrates a gate 208 separated from the channel region 206 by a gate oxide 210. A first transmission line 212 is coupled to the first source/drain region 202 and a second transmission line 214 is coupled to the second source/drain region 204. In one embodiment, the first transmission line includes a sourceline 212 and the second transmission line includes a bit line 214.
  • As stated above, multistate cell 201 is comprised of a programmed MOSFET. This programmed MOSFET has a charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 such that the channel region 206 has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) in the channel 206. In one embodiment, the charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 includes a trapped electron charge 217. According to the teachings of the present invention and as described in more detail below, the multistate cell can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region 202 such that the channel region 206 will have a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed multistate cell operates at reduced drain source current.
  • FIG. 10A illustrates the Vt2 in the channel 206 is adjacent the first source/drain region 202 and that the Vt1 in the channel 206 is adjacent the second source/drain region 204. According to the teachings of the present invention, Vt2 has a higher voltage threshold than Vt1 due to the charge 217 trapped in the gate oxide 217 adjacent to the first source/drain region 202. Multiple bits can be stored on the multistate cell 201.
  • FIG. 10B is a diagram suitable for explaining the method by which the MOSFET of the multistate cell 201 of the present invention can be programmed to achieve the embodiments of the present invention. As shown in FIG. 10B the method includes programming the MOSFET in a reverse direction. Programming the MOSFET in the reverse direction includes applying a first voltage potential V1 to a drain region 204 of the MOSFET. In one embodiment, applying a first voltage potential V1 to the drain region 204 of the MOSFET includes grounding the drain region 204 of the MOSFET as shown in FIG. 10B. A second voltage potential V2 is applied to a source region 202 of the MOSFET. In one embodiment, applying a second voltage potential V2 to the source region 202 includes applying a high positive voltage potential (VDD) to the source region 202 of the MOSFET, as shown in FIG. 10B. A gate potential VGS is applied to a gate 208 of the MOSFET. In one embodiment, the gate potential VGS includes a voltage potential which is less than the second voltage potential V2, but which is sufficient to establish conduction in the channel 206 of the MOSFET between the drain region 204 and the source region 202. As shown in FIG. 10B, applying the first, second and gate potentials (V1, V2, and VGS respectively) to the MOSFET creates a hot electron injection into a gate oxide 210 of the MOSFET adjacent to the source region 202. In other words, applying the first, second and gate potentials (V1, V2, and VGS respectively) provides enough energy to the charge carriers, e.g. electrons, being conducted across the channel 206 that, once the charge carriers are near the source region 202, a number of the charge carriers get excited into the gate oxide 210 adjacent to the source region 202. Here the charge carriers become trapped.
  • In one embodiment of the present invention, the method is continued by subsequently operating the MOSFET in the forward direction in its programmed state during a read operation. Accordingly, the read operation includes grounding the source region 202 and precharging the drain region a fractional voltage of VDD. If the device is addressed by a wordline coupled to the gate, then its conductivity will be determined by the presence or absence of stored charge in the gate insulator. That is, a gate potential can be applied to the gate 208 by a wordline 216 in an effort to form a conduction channel between the source and the drain regions as done with addressing and reading conventional DRAM cells.
  • However, now in its programmed state, the conduction channel 206 of the MOSFET will have a first voltage threshold region (Vt1) adjacent to the drain region 204 and a second voltage threshold region (Vt2) adjacent to the source region 202, as explained and described in detail in connection with FIG. 10A. According to the teachings of the present invention, the Vt2 has a greater voltage threshold than the Vt1 due to the hot electron injection 217 into a gate oxide 210 of the MOSFET adjacent to the source region 202.
  • FIG. 10C is a graph plotting a current signal (Ids) detected at the second source/drain region 204 versus a voltage potential, or drain voltage, (VDS) set up between the second source/drain region 204 and the first source/drain region 202 (Ids vs. VDS). In one embodiment, VDS represents the voltage potential set up between the drain region 204 and the source region 202. In FIG. 10C, the curve plotted as D1 represents the conduction behavior of a conventional MOSFET which is not programmed according to the teachings of the present invention. The curve D2 represents the conduction behavior of the programmed MOSFET, described above in connection with FIG. 10A, according to the teachings of the present invention. As shown in FIG. 10C, for a particular drain voltage, VDS, the current signal (IDS2) detected at the second source/drain region 204 for the programmed MOSFET (curve D2) is significantly lower than the current signal (IDS1) detected at the second source/drain region 204 for the conventional MOSFET which is not programmed according to the teachings of the present invention. Again, this is attributed to the fact that the channel 206 in the programmed MOSFET of the present invention has two voltage threshold regions and that the voltage threshold, Vt2, near the first source/drain region 202 has a higher voltage threshold than Vt1 near the second source/drain region due to the charge 217 trapped in the gate oxide 217 adjacent to the first source/drain region 202.
  • Some of these effects have recently been described for use in a different device structure, called an NROM, for flash memories. This latter work in Israel and Germany is based on employing charge trapping in a silicon nitride layer in a non-conventional flash memory device structure. (See generally, B. Eitan et al., “Characterization of Channel Hot Electron Injection by the Subthreshold Slope of NROM device,” IEEE Electron Device Lett., Vol. 22, No. 11, pp. 556-558, (November 2001); B. Etian et al., “NROM: A novel localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Lett., Vol. 21, No. 11, pp. 543-545, (November 2000)). Charge trapping in silicon nitride gate insulators was the basic mechanism used in MNOS memory devices (see generally, S. Sze, Physics of Semiconductor Devices, Wiley, N.Y., 1981, pp. 504-506), charge trapping in aluminum oxide gates was the mechanism used in MIOS memory devices (see generally, S. Sze, Physics of Semiconductor Devices, Wiley, N.Y., 1981, pp. 504-506), and Applicant has previously disclosed charge trapping at isolated point defects in gate insulators (see generally, L. Forbes and J. Geusic, “Memory using insulator traps,” U.S. Pat. No. 6,140,181, issued Oct. 31, 2000).
  • In contrast to the above work, the present invention discloses programming a MOSFET in a reverse direction to trap one of a number of charge levels near the source region and reading the device in a forward direction to form a multistate memory cell based on a modification of DRAM technology.
  • Prior art DRAM technology generally employs silicon oxide as the gate insulator. Further the emphasis in conventional DRAM devices is placed on trying to minimize charge trapping in the silicon oxide gate insulator. According to the teachings of the present invention, a variety of insulators are used to trap electrons more efficiently than in silicon oxide. That is, in the present invention, the multistate memory cell employs charge trapping in gate insulators such as, wet silicon oxide, silicon nitride, silicon oxynitride SON, silicon rich oxide SRO, aluminum oxide Al2O3, composite layers of these insulators such as oxide and then silicon nitride, or oxide and then aluminum oxide, or multiple layers as oxide-nitride-oxide. While the charge trapping efficiency of silicon oxide may be low such is not the case for silicon nitride or composite layers of silicon oxide and nitride.
  • FIG. 11 illustrates a portion of a memory array 300 according to the teachings of the present invention. The memory in FIG. 11 is shown illustrating a number of vertical pillars, or multistate cells, 301-1 and 301-2 formed according to the teachings of the present invention. As one of ordinary skill in the art will appreciate upon reading this disclosure, the number of vertical pillars are formed in rows and columns extending outwardly from a substrate 303. As shown in FIG. 11, the number of vertical pillars, 301-1 and 301-2 are separated by a number of trenches 340. According to the teachings of the present invention, the number of vertical pillars, 301-1 and 301-2, serve as transistors including a first source/drain region, 302-1 and 302-2, respectively. The first source/drain region, 302-1 and 302-2, is coupled to a sourceline 304. As shown in FIG. 11, the sourceline 304 is formed in a bottom of the trenches 340 between rows of the vertical pillars, 301-1 and 301-2. In one embodiment, according to the teachings of the present invention, the sourceline 304 is formed from a doped region implanted in the bottom of the trench. A second source/drain region, 306-1 and 306-2 respectively, is coupled to a bitline (not shown). A channel region 305 is located between the first and the second source/drain regions.
  • As shown in FIG. 11, a gate 309 is separated from the channel region 305 by a gate insulator 307 in the trenches 340 along rows of the vertical pillars, 301-1 and 301-2. In one embodiment, according to the teachings of the present invention, the gate insulator 307 includes a gate insulator 307 selected from the group of silicon dioxide (SiO2) formed by wet oxidation, silicon oxynitride (SON), silicon rich oxide (SRO), and aluminum oxide (Al2O3). In another embodiment, according to the teachings of the present invention, the gate insulator 307 includes a gate insulator 307 selected from the group of silicon rich aluminum oxide insulators, silicon rich oxides with inclusions of nanoparticles of silicon, silicon oxide insulators with inclusions of nanoparticles of silicon carbide, and silicon oxycarbide insulators. In another embodiment, according to the teachings of the present invention, the gate insulator 307 includes a composite layer 307. In this embodiment, the composite layer 307 includes a composite layer 307 selected from the group of an oxide-aluminum oxide (Al2O3)-oxide composite layer, and oxide-silicon oxycarbide-oxide composite layer. In another embodiment, the composite layer 307 includes a composite layer 307, or a non-stoichiometric single layer, of two or more materials selected from the group of silicon (Si), titanium (Ti), and tantalum (Ta). In another embodiment, according to the teachings of the present invention, the gate insulator 307 includes an oxide-nitride-oxide (ONO) gate insulator 307.
  • FIG. 12 illustrates an electrical equivalent circuit 400 for the portion of the memory array shown in FIG. 11. As shown in FIG. 12, a number of vertical multistate cells, 401-1 and 401-2, are provided. Each vertical multistate cell, 401-1 and 401-2, includes a first source/drain region, 402-1 and 402-2, a second source/drain region 406-1 and 406-2, a channel region 405 between the first and the second source/drain regions, and a gate 409 separated from the channel region by a gate insulator 407.
  • FIG. 12 further illustrates a number of bit lines, 411-1 and 411-2, coupled to the second source/drain region 406-1 and 406-2 of each multistate cell. In one embodiment, as shown in FIG. 12, the number of bit lines, 411-1 and 411-2, are coupled to the second source/drain region 406-1 and 406-2 along rows of the memory array. A number of word lines, such as wordline 413 in FIG. 12, are coupled to the gate 409 of each multistate cell along columns of the memory array. And, a number of sourcelines, such as common sourceline 415, are coupled to the first source/drain regions, e.g. 402-1 and 402-2, along columns of the vertical multistate cells, 401-1 and 401-2, such that adjacent pillars containing these transistors share the common sourceline 415. In one embodiment, column adjacent pillars include a transistor which operates as a vertical multistate cell, e.g. 401-1, on one side of a shared trench, the shared trench separating rows of the pillars as described in connection with FIG. 11, and a transistor which operates as a reference cell, e.g. 401-2, having a programmed conductivity state on the opposite side of the shared trench. In this manner, according to the teachings of the present invention and as described in more detail below, at least one of multistate cells can be programmed to have one of a number of charge levels trapped in the gate insulator, shown generally as 417, adjacent to the first source/drain region, e.g. 402-1, such that the channel region 405 will have a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed multistate cell operates at reduced drain source current.
  • FIG. 13 is another electrical equivalent circuit useful in illustrating a read operation on the novel multistate cell 500 according to the teachings of the present invention. The electrical equivalent circuit in FIG. 13 represents a programmed vertical multistate cell. As explained in detail in connection with FIG. 11, the programmed vertical multistate cell 500 includes a vertical metal oxide semiconductor field effect transistor (MOSFET) 500 extending outwardly from a substrate. The MOSFET has a source region 502, a drain region 506, a channel region 505 between the source region 502 and the drain region 506, and a gate 509 separated from the channel region 505 by a gate insulator, shown generally as 507.
  • As shown in FIG. 13 a wordline 513 is coupled to the gate 509. A sourceline 504, formed in a trench adjacent to the vertical MOSFET as described in connection with FIG. 11, is coupled to the source region 502. A bit line, or data line 511 is coupled to the drain region 506. The multistate cell 500 shown in FIG. 13 is an example of a programmed multistate cell 500 having one of a number of charge levels trapped in the gate insulator, shown generally as 517, adjacent to the first source/drain region, 502, such that the channel region 505 will have a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed multistate cell 500 operates at reduced drain source current. According to the teachings of the present invention, the second voltage threshold region (Vt2) is now a high voltage threshold region which is greater than the first voltage threshold region (Vt1).
  • FIG. 14 illustrates a portion of a memory array 600 according to the teachings of the present invention. The memory in FIG. 14 is shown illustrating a pair of multistate cells 601-1 and 601-2 formed according to the teachings of the present invention. As one of ordinary skill in the art will understand upon reading this disclosure, any number of multistate cells can be organized in an array, but for ease of illustration only two are displayed in FIG. 14. As shown in FIG. 14, a first source/drain region, 602-1 and 602-2 respectively, is coupled to a sourceline 604. A second source/drain region, 606-1 and 606-2 respectively, is coupled to a bitline, 608-1 and 608-2 respectively. Each of the bitlines, 608-1 and 608-2, couple to a sense amplifier, shown generally at 610. A wordline, 612-1 and 612-2 respectively, is couple to a gate, 614-1 and 614-2 respectively, for each of the multistate cells, 601-1 and 601-2. According to the teachings of the present invention, the wordlines, 612-1 and 612-2, run across or are perpendicular to the rows of the memory array 600. Finally, a write data/precharge circuit is shown at 624 for coupling a first or a second potential to bitline 608-1. As one of ordinary skill in the art will understand upon reading this disclosure, the write data/precharge circuit 624 is adapted to couple either a ground to the bitline 608-1 during a write operation in the reverse direction, or alternatively to precharge the bitline 608-1 to fractional voltage of VDD during a read operation in the forward direction. As one of ordinary skill in the art will understand upon reading this disclosure, the sourceline 604 can be biased to a voltage higher than VDD during a write operation in the reverse direction, or alternatively grounded during a read operation in the forward direction.
  • As shown in FIG. 14, the array structure 600, including multistate cells 601-1 and 601-2, has no capacitors. Instead, according to the teachings of the present invention, the first source/drain region or source region, 602-1 and 602-2, are coupled directly to the sourceline 604. In order to write, the sourceline 604 is biased to voltage higher than VDD and the devices stressed in the reverse direction by grounding the data or bit line, 608-1 or 608-2. If the multistate cell, 601-1 or 601-2, is selected by a word line address, 612-1 or 612-2, then the multistate cell, 601-1 or 601-2, will conduct and be stressed with accompanying hot electron injection into the cells gate insulator adjacent to the source region, 602-1 or 602-2. As one of ordinary skill in the art will understand upon reading this disclosure, a number of different charge levels can be programmed into the gate insulator adjacent to source region such that the cells is used as a differential cell and/or the cell is compared to a reference or dummy cell, as shown in FIG. 14, and multiple bits can be stored on the multistate cell.
  • During read the multistate cell, 601-1 or 601-2, is operated in the forward direction with the sourceline 604 grounded and the bit line, 608-1 or 608-2, and respective second source/drain region or drain region, 606-1 and 606-2, of the cells precharged to some fractional voltage of Vdd. If the device is addressed by the word line, 612-1 or 612-2, then its conductivity will be determined by the presence or absence of the amount of stored charge trapped in the gate insulator as measured or compared to the reference or dummy cell and so detected using the sense amplifier 610. The operation of DRAM sense amplifiers is described, for example, in U.S. Pat. Nos. 5,627,785; 5,280,205; and 5,042,011, all assigned to Micron Technology Inc., and incorporated by reference herein. The array would thus be addressed and read in the conventional manner used in DRAM's, but programmed as multistate cells in a novel fashion.
  • In operation the devices would be subjected to hot electron stress in the reverse direction by biasing the sourceline 604, and read while grounding the sourceline 604 to compare a stressed multistate cell, e.g. cell 601-1, to an unstressed dummy device/cell, e.g. 601-2, as shown in FIG. 14. The write and possible erase feature could be used during manufacture and test to initially program all cells or devices to have similar or matching conductivity before use in the field. Likewise, the transistors in the reference or dummy cells, e.g. 601-2, can all initially be programmed to have the same conductivity states. According to the teachings of the present invention, the sense amplifier 610 can then detect small differences in cell or device characteristics due to stress induced changes in device characteristics during the write operation.
  • As one of ordinary skill in the art will understand upon reading this disclosure such arrays of multistate cells are conveniently realized by a modification of DRAM technology. According to the teachings of the present invention a gate insulator of the multistate cell includes gate insulators selected from the group of thicker layers of SiO2 formed by wet oxidation, SON silicon oxynitride, SRO silicon rich oxide, Al2O3 aluminum oxide, composite layers and implanted oxides with traps (L. Forbes and J. Geusic, “Memory using insulator traps,” U.S. Pat. No. 6,140,181, issued Oct. 31, 2000). Conventional transistors for address decode and sense amplifiers can be fabricated after this step with normal thin gate insulators of silicon oxide.
  • FIGS. 15A-15B and 16A-16B are useful in illustrating the use of charge storage in the gate insulator to modulate the conductivity of the multistate cell according to the teachings of the present invention. That is, FIGS. 15A-16B illustrate the operation of the novel multistate cell 701 formed according to the teachings of the present invention. As shown in FIG. 15A, the gate insulator 707 has a number of layers, e.g. an ONO stack, where layer 707A is the oxide layer closest to the channel 705 and a nitride layer 707B is formed thereon. In the embodiment shown in FIG. 15A the oxide layer 707A is illustrated having a thickness of approximately 6.7 nm or 67 Å (roughly 10−6 cm). In the embodiment shown in FIG. 15A a multistate cell is illustrated having dimensions of 0.1 μm (10−5 cm) by 0.1 μm. For purposes of illustration, the charge storage region near the source can reasonably have dimensions of 0.1 micron (1000 Å) by 0.02 micron (200 Å) in a 0.1 micron technology. If the gate oxide 707A nearest the channel 705 is 67 Å then a charge of 100 electrons will cause a threshold voltage shift in this region of 1.6 Volts since the oxide capacitance is about 0.5 micro-Farad (μF) per square centimeter. If the transistor has a total effective oxide thickness of 200 Å then a change in the threshold voltage of only 0.16 Volts near the source, corresponding to 10 electrons, is estimated to change the transistor current by 4 micro Amperes (μA). The sense amplifier described in connection with FIG. 14, which is similar to a DRAM sense amplifier, can easily sense this charge difference on the data or bitlines. In this embodiment, the sensed charge difference on the data or bitlines will be 40 femto Coulombs (fC) over a sense period of 10 nano seconds (nS).
  • To illustrate these numbers, the capacitance, Ci, of the structure depends on the dielectric constant, εi, (which for silicon dioxide SiO2 equates to 1.06/3×10−12 F/cm), and the thickness of the insulating layers, t, (given here as 6.7×10−7 cm), such that Ci=εi/t=((1.06×10−12 F/cm/(3×6.7×10−7 cm))=0.5×10−6 Farads/cm2 (F/cm2). This value taken over the charge storage region near the source, e.g. 20 nm×100 nm or 2×10−11 cm2, results in a capacitance value of Ci=10−17 Farads. Thus, for a change in the threshold voltage of ΔV=1.6 Volts the stored charge must be Q=C×ΔV=(10−17 Farads×1.6 Volts)=1.6×10−17 Coulombs. Since Q=Nq, the number of electrons stored is approximately Q/q=(1.6×10−17 Coulombs/1.6×10−19 Coulombs) or 100 electrons. In effect, the programmed multistate cell, or modified MOSFET is a programmed MOSFET having a charge trapped in the gate insulator adjacent to a first source/drain region, or source region, such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2), where Vt2 is greater than Vt1, and Vt2 is adjacent the source region such that the programmed MOSFET operates at reduced drain source current. For ΔQ=100 electrons in the dimensions given above, if the transistor has a total effective oxide thickness of 200 Å then a change in the threshold voltage of only 0.16 Volts near the source, corresponding to 10 electrons, is estimated to change the transistor current by 4 micro Amperes (μA). As stated above, the sense amplifier described in connection with FIG. 14, which is similar to a DRAM sense amplifier, can easily sense this charge difference on the data or bitlines. And, the sensed charge difference on the data or bitlines will be 40 femto Coulombs (fC) over a sense period of 10 nano seconds (nS) for this representative one of a number of stored charge levels according to the teachings of the present invention. Again, a number of different charge levels can be programmed into the gate insulator adjacent to source region such that the cell is used as a differential cell and/or the cell is compared to a reference or dummy cell, as shown in FIG. 14, and multiple bits can be stored on the multistate cell of the present invention.
  • FIG. 15B aids to further illustrate the conduction behavior of the novel multistate cell of the present invention. The electrical equivalent circuit shown in FIG. 15B illustrates a multistate cell 701 having an equivalent oxide thickness of 200 Å. The charge storage region near the source 702 can reasonably have a length dimension of 0.02 micron (20 nm) in a 0.1 micron technology with a width dimension of 0.1 micron (100 nm). Therefore, for a change in the drain source voltage (ΔVDS) in this region an electric field of E=(0.1 V/2×10−6 cm)=0.5×105 V/cm or 5×104 V/cm is provided. The drain current is calculated using the formula ID=μCox×(W/L)×(Vgs−Vt)×ΔVDS. In this example, μCox=μCi is taken as 50 μA/V2 and W/L=5. Appropriate substitution into the drain current provides ID=(50 μA/V2×5×0.16 Volts×0.1 Volts)=2.5×1.6 μA=4 μA. As noted above this drain current ID corresponds to 10 electrons trapped in the gate insulator, or charge storage region 707 near the source 702. Sensed over a period of 10 nanoseconds (nS) produces a current on the bitline of 40 fC (e.g. 4 μA×10 nS=40×10−15 Coulombs).
  • FIGS. 16A and 16B, illustrate the operation and programming the novel multistate cell as described above. However, FIGS. 16A and 16B also help illustrate an alternative array configuration where adjacent devices are compared and one of the devices on the opposite side of a shared trench is used as a dummy cell transistor or reference device. Again, the reference devices can all be programmed to have the same initial conductivity state. FIG. 16A illustrates the operation and programming the novel multistate cell in the reverse direction. As shown in FIG. 16A, a transistor 801-1 on one side of the trench (as described in connection with FIG. 11) is stressed by grounding its respective drain line, e.g. 811-1. As shown in FIG. 16A, the drain line 811-2 for the transistor 801-2 on the opposite side of the trench is left floating. A voltage is applied to the shared sourceline 804 located at the bottom of the trench (as described in connection with FIG. 11) which now acts as a drain. As shown in this electrical equivalent circuit, the neighboring (shared trench)/column adjacent transistors, 801-1 and 801-2, share a gate 807 and the wordline 813, e.g. polysilicon gate lines, coupling thereto run across or are perpendicular to the rows containing the bit and source lines, e.g. 811-1, 811-2, and 804. A gate voltage is applied to the gates 807. Here the multistate cell 801-1 will conduct and be stressed with accompanying hot electron injection into the cells gate insulator 817 adjacent to the source region 802-1.
  • FIG. 16B illustrates the now programmed multistate cell's operation in the forward direction and differential read occurring in a this differential cell embodiment, e.g. 2 transistors in each cell. To read this state the drain and source (or ground) have the normal connections and the conductivity of the multistate cell is determined. That is, the drain line, 811-1 and 811-2, have the normal forward direction potential applied thereto. The shared sourceline 804 located at the bottom of the trench (as described in connection with FIG. 11) is grounded and once again acts as a source. And, a gate voltage is applied to the gates 807. As one of ordinary skill in the art will understand upon reading this disclosure, a number of different charge levels can be programmed into the gate insulator 817 adjacent to source region 802-1 and compared to the reference or dummy cell, 802-2. Thus, according to the teachings of present invention multiple bits can be stored on the multistate cell.
  • As stated above, these novel multistate cells can be used in a DRAM like array. Two transistors can occupy an area of 4 F squared (F=the minimum lithographic feature size) when viewed from above, or each memory cell consisting of one transistor utilizing an area of 2 F squared. Each transistor can now, however, store many bits so the data storage density is much higher than one bit for each 1 F squared unit area. Using a reference or dummy cell for each memory transistor where the reference transistor is in close proximity, e.g. the embodiment shown in FIGS. 16A and 16B vs. that shown in FIG. 12, results in better matching characteristics of transistors, but a lower memory density.
  • In FIG. 17 a memory device is illustrated according to the teachings of the present invention. The memory device 940 contains a memory array 942, row and column decoders 944, 948 and a sense amplifier circuit 946. The memory array 942 consists of a plurality of multistate cells 900, formed according to the teachings of the present invention whose word lines 980 and bit lines 960 are commonly arranged into rows and columns, respectively. The bit lines 960 of the memory array 942 are connected to the sense amplifier circuit 946, while its word lines 980 are connected to the row decoder 944. Address and control signals are input on address/control lines 961 into the memory device 940 and connected to the column decoder 948, sense amplifier circuit 946 and row decoder 944 and are used to gain read and write access, among other things, to the memory array 942.
  • The column decoder 948 is connected to the sense amplifier circuit 946 via control and column select signals on column select lines 962. The sense amplifier circuit 946 receives input data destined for the memory array 942 and outputs data read from the memory array 942 over input/output (I/O) data lines 963. Data is read from the cells of the memory array 942 by activating a word line 980 (via the row decoder 944), which couples all of the memory cells corresponding to that word line to respective bit lines 960, which define the columns of the array. One or more bit lines 960 are also activated. When a particular word line 980 and bit lines 960 are activated, the sense amplifier circuit 946 connected to a bit line column detects and amplifies the conduction sensed through a given multistate cell, where in the read operation the source region of a given cell is couple to a grounded array plate (not shown), and transferred its bit line 960 by measuring the potential difference between the activated bit line 960 and a reference line which may be an inactive bit line. The operation of Memory device sense amplifiers is described, for example, in U.S. Pat. Nos. 5,627,785; 5,280,205; and 5,042,011, all assigned to Micron Technology Inc., and incorporated by reference herein.
  • FIG. 18 is a block diagram of an electrical system, or processor-based system, 1000 utilizing multistate memory cells 1012 constructed in accordance with the present invention. That is, the multistate memory cells 1012 utilizes the modified DRAM cell as explained and described in detail in connection with FIGS. 2-4. The processor-based system 1000 may be a computer system, a process control system or any other system employing a processor and associated memory. The system 1000 includes a central processing unit (CPU) 1002, e.g., a microprocessor, that communicates with the multistate memory 1012 and an I/O device 1008 over a bus 1020. It must be noted that the bus 1020 may be a series of buses and bridges commonly used in a processor-based system, but for convenience purposes only, the bus 1020 has been illustrated as a single bus. A second I/O device 1010 is illustrated, but is not necessary to practice the invention. The processor-based system 1000 can also includes read-only memory (ROM) 1014 and may include peripheral devices such as a floppy disk drive 1004 and a compact disk (CD) ROM drive 1006 that also communicates with the CPU 1002 over the bus 1020 as is well known in the art.
  • It will be appreciated by those skilled in the art that additional circuitry and control signals can be provided, and that the memory device 1000 has been simplified to help focus on the invention. At least one of the multistate cell in NROM 1012 includes a programmed MOSFET having a charge trapped in the gate insulator adjacent to a first source/drain region, or source region, such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2), where Vt2 is greater than Vt1, and Vt2 is adjacent the source region such that the programmed MOSFET operates at reduced drain source current.
  • It will be understood that the embodiment shown in FIG. 18 illustrates an embodiment for electronic system circuitry in which the novel memory cells of the present invention are used. The illustration of system 1000, as shown in FIG. 18, is intended to provide a general understanding of one application for the structure and circuitry of the present invention, and is not intended to serve as a complete description of all the elements and features of an electronic system using the novel memory cell structures. Further, the invention is equally applicable to any size and type of memory device 1000 using the novel memory cells of the present invention and is not intended to be limited to that described above. As one of ordinary skill in the art will understand, such an electronic system can be fabricated in single-package processing units, or even on a single semiconductor chip, in order to reduce the communication time between the processor and the memory device.
  • Applications containing the novel memory cell of the present invention as described in this disclosure include electronic systems for use in memory modules, device drivers, power modules, communication modems, processor modules, and application-specific modules, and may include multilayer, multichip modules. Such circuitry can further be a subcomponent of a variety of electronic systems, such as a clock, a television, a cell phone, a personal computer, an automobile, an industrial control system, an aircraft, and others.
  • Conclusion
  • Utilization of a modification of well established DRAM technology and arrays will serve to afford an inexpensive memory device which can be regarded as disposable if the information is later transferred to another medium, for instance CDROM's. The high density of DRAM array structures will afford the storage of a large volume of digital data or images at a very low cost per bit. There are many applications where the data need only be written a limited number of times, the low cost of these memories will make it more efficient to just utilize a new memory array, and dispose of the old memory array, rather than trying to erase and reuse these arrays as is done with current flash memories. The novel multistate cells can be used in a DRAM like array. Two transistors can occupy an area of 4 F squared (F=the minimum lithographic feature size) when viewed from above, or each memory cell consisting of one transistor utilizing an area of 2 F squared. Each such transistor can now, however, store many bits so the data storage density is much higher than one bit for each 1 F squared unit area. Using a reference or dummy cell for each memory transistor where the reference transistor is in close proximity, e.g., the embodiment shown in FIGS. 16A and 16B vs. that shown in FIG. 12, results in better matching characteristics of transistors, but a lower memory density.
  • It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (24)

1. An array of memory cells configured to store at least one bit per one F2 comprising:
memory cells arranged in rows and columns each coupled to respective row and column decoding circuitry, wherein each memory cell comprises:
first doped regions formed on a surface of a semiconductor substrate;
an array of incisions formed into the substrate to provide an array of substantially vertical edge surfaces, pairs of the edge surfaces facing one another and spaced apart a distance equal to one half of a pitch of the array of edge surfaces;
second doped regions formed between the pairs of edge surfaces;
respective structures each providing an electronic memory function disposed on at least some respective ones of the edge surfaces; and
electrical contacts to the first and second regions and to the structures providing the electronic memory function.
2. The array of claim 1 wherein the structures providing an electronic memory function each comprise:
oxide-nitride-oxide (ONO) structures formed on at least some respective ones of the edge surfaces; and
respective gates formed on the ONO structures.
3. The array of claim 1 wherein the structures providing an electronic memory function each comprise:
oxide-nitride-oxide (ONO) structures each formed on at least some respective ones of the edge surfaces; and
respective gates formed on the ONO structures, wherein the ONO structures comprise:
silicon dioxide grown from silicon comprising the edge surfaces;
silicon nitride formed on the silicon dioxide; and
silicon dioxide formed on the silicon nitride.
4. The array of claim 1 wherein the structures providing an electronic memory function each comprise respective polysilicon gates formed on respective ones of the surface edges.
5. The array of claim 1 wherein the structures providing an electronic memory function each comprise:
a first gate dielectric formed on the edge surfaces;
a floating gate formed on the first gate dielectric;
a second gate dielectric formed on the floating gate; and
a control gate formed on the second gate dielectric.
6. The array of claim 1 wherein the structures providing an electronic memory function each comprise structures each configured to store more than one bit per gate.
7. The array of claim 1 wherein the structures providing an electronic memory function each comprise:
a first gate dielectric formed on the edge surfaces;
a floating gate formed on the first gate dielectric, wherein the floating gate is configured to store more than one bit per floating gate;
a second gate dielectric formed on the floating gate; and
a control gate formed on the second gate dielectric.
8. The array of claim 1 wherein the structures providing an electronic memory function each comprise:
oxide-nitride-oxide (ONO) structures formed on at least some of the edge surfaces; and
respective gates formed on the ONO structures, wherein the structures providing the electronic memory function are configured to store more than one bit per gate.
9. The array of claim 1 wherein the semiconductor substrate comprises silicon.
10. An array of memory cells configured to store at least one bit per one F2 comprising:
memory cells arranged in rows and columns each coupled to respective row and column decoding circuitry, wherein each memory cell comprises:
substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array; and
electrical contacts to the memory cells including the substantially vertical structures.
11. The array of claim 10 further comprising:
incisions in the substrate that provide an array of substantially vertical edge surfaces, pairs of the edge surfaces facing one another and spaced apart a distance equal to one half of a minimum pitch of the array of edge surfaces; and
second doped regions formed between the pairs of edge surfaces, wherein:
the substantially vertical structures are formed on the substantially vertical edge surfaces; and
the electrical contacts include electrical contacts to the first and second regions and to the substantially vertical structures.
12. The array of claim 11 wherein the substantially vertical structures on the substantially vertical edge surfaces each comprise:
oxide-nitride-oxide (ONO) structures formed on at least some of the edge surfaces; and
respective gates formed on the ONO structures, wherein the structures providing the electronic memory function are configured to store more than one bit per gate.
13. The array of claim 11 wherein disposing the substantially vertical structures on the substantially vertical edge surfaces comprises:
oxide-nitride-oxide (ONO) structures formed on at least some of the edge surfaces; and
respective gates formed on the ONO structures.
14. The array of claim 10 wherein the structures providing the electronic memory function are configured to store more than one bit per gate.
15. The array of claim 11 wherein each substantially vertical structure comprises:
a first gate dielectric formed on the edge surfaces;
a floating gate formed on the first gate dielectric, wherein the floating gate is configured to store more than one bit per floating gate;
a second gate dielectric formed on the floating gate; and
a control gate formed on the second gate dielectric.
16. The array of claim 11 wherein each of the substantially vertical structures on the substantially vertical edge surfaces comprises:
a first gate dielectric formed on the surface edge;
a floating gate formed on the first gate dielectric;
a second gate dielectric formed on the floating gate; and
a control gate formed on the second gate dielectric.
17. The array of claim 11 wherein the substantially vertical structures each include respective polysilicon gates formed on the edge surfaces.
18. The array of claim 10 wherein the substantially vertical structures comprise respective polysilicon gates.
19. The array of claim 10 wherein the substantially vertical structures are configured to provide an electronic memory function by storing holes.
20. An array of memory cells configured to store at least one bit per one F2 comprising:
substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array, wherein the structures providing the electronic memory function are configured to store more than one bit per gate; and
electrical contacts to the memory cells including the substantially vertical structures.
21. An array of memory cells configured to store at least one bit per one F2 comprising:
memory cells arranged in rows and columns each coupled to respective row and column decoding circuitry, wherein each memory cell comprises:
spaced-apart structures providing an electronic memory function separated by a distance equal to one half of a minimum pitch of the array; and
electrical contacts to the memory cells including the spaced-apart structures.
22. The array of claim 21 wherein the spaced apart structure comprise substantially vertical structures.
23. The array of claim 22 further comprising:
incisions in the substrate that provide an array of substantially vertical edge surfaces, pairs of the edge surfaces facing one another and spaced apart a distance equal to one half of a minimum pitch of the array of edge surfaces; and
second doped regions formed between the pairs of edge surfaces, wherein:
the substantially vertical structures are formed on the substantially vertical edge surfaces; and
the electrical contacts include electrical contacts to the first and second regions and to the substantially vertical structures.
24. The array of claim 23 wherein the substantially vertical structures on the substantially vertical edge surfaces each comprise:
oxide-nitride-oxide (ONO) structures formed on at least some of the edge surfaces; and
respective gates formed on the ONO structures, wherein the structures providing the electronic memory function are configured to store more than one bit per gate.
US11/346,049 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods Expired - Lifetime US7535048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/346,049 US7535048B2 (en) 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/177,211 US20030235076A1 (en) 2002-06-21 2002-06-21 Multistate NROM having a storage density much greater than 1 Bit per 1F2
US10/232,411 US20040041214A1 (en) 2002-08-29 2002-08-29 One F2 memory cell, memory array, related devices and methods
US10/738,408 US7220634B2 (en) 2002-06-21 2003-12-16 NROM memory cell, memory array, related devices and methods
US11/346,049 US7535048B2 (en) 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/738,408 Division US7220634B2 (en) 2002-06-21 2003-12-16 NROM memory cell, memory array, related devices and methods

Publications (3)

Publication Number Publication Date
US20060124998A1 US20060124998A1 (en) 2006-06-15
US20090072303A9 true US20090072303A9 (en) 2009-03-19
US7535048B2 US7535048B2 (en) 2009-05-19

Family

ID=30002651

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/738,408 Expired - Lifetime US7220634B2 (en) 2002-06-21 2003-12-16 NROM memory cell, memory array, related devices and methods
US11/346,049 Expired - Lifetime US7535048B2 (en) 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods
US11/346,413 Expired - Lifetime US7541242B2 (en) 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/738,408 Expired - Lifetime US7220634B2 (en) 2002-06-21 2003-12-16 NROM memory cell, memory array, related devices and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/346,413 Expired - Lifetime US7541242B2 (en) 2002-06-21 2006-02-02 NROM memory cell, memory array, related devices and methods

Country Status (8)

Country Link
US (3) US7220634B2 (en)
EP (1) EP1530803A2 (en)
JP (2) JP4678760B2 (en)
KR (1) KR100864135B1 (en)
CN (1) CN100407427C (en)
AU (1) AU2003263748A1 (en)
SG (1) SG125143A1 (en)
WO (1) WO2004001802A2 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131580A1 (en) * 2008-03-25 2010-05-27 Densbits Technologies Ltd. Apparatus and methods for hardware-efficient unbiased rounding
US20100131831A1 (en) * 2007-12-05 2010-05-27 Hanan Weingarten low power chien-search based bch/rs decoding system for flash memory, mobile communications devices and other applications
US20100146191A1 (en) * 2007-12-05 2010-06-10 Michael Katz System and methods employing mock thresholds to generate actual reading thresholds in flash memory devices
US20100211724A1 (en) * 2007-09-20 2010-08-19 Hanan Weingarten Systems and methods for determining logical values of coupled flash memory cells
US20100253555A1 (en) * 2009-04-06 2010-10-07 Hanan Weingarten Encoding method and system, decoding method and system
US20110051521A1 (en) * 2009-08-26 2011-03-03 Shmuel Levy Flash memory module and method for programming a page of flash memory cells
US20110119562A1 (en) * 2009-11-19 2011-05-19 Steiner Avi System and method for uncoded bit error rate equalization via interleaving
US20110151668A1 (en) * 2009-12-23 2011-06-23 Tang Sanh D Pitch division patterning techniques
US20110153919A1 (en) * 2009-12-22 2011-06-23 Erez Sabbag Device, system, and method for reducing program/read disturb in flash arrays
US20110161775A1 (en) * 2009-12-24 2011-06-30 Hanan Weingarten System and method for setting a flash memory cell read threshold
US20110214039A1 (en) * 2010-02-28 2011-09-01 Steiner Avi System and method for multi-dimensional decoding
US8276051B2 (en) 2007-12-12 2012-09-25 Densbits Technologies Ltd. Chien-search system employing a clock-gating scheme to save power for error correction decoder and other applications
US8327246B2 (en) 2007-12-18 2012-12-04 Densbits Technologies Ltd. Apparatus for coding at a plurality of rates in multi-level flash memory systems, and methods useful in conjunction therewith
US8332725B2 (en) 2008-08-20 2012-12-11 Densbits Technologies Ltd. Reprogramming non volatile memory portions
US8335977B2 (en) 2007-12-05 2012-12-18 Densbits Technologies Ltd. Flash memory apparatus and methods using a plurality of decoding stages including optional use of concatenated BCH codes and/or designation of “first below” cells
US8359516B2 (en) 2007-12-12 2013-01-22 Densbits Technologies Ltd. Systems and methods for error correction and decoding on multi-level physical media
US8365040B2 (en) 2007-09-20 2013-01-29 Densbits Technologies Ltd. Systems and methods for handling immediate data errors in flash memory
US8443242B2 (en) 2007-10-25 2013-05-14 Densbits Technologies Ltd. Systems and methods for multiple coding rates in flash devices
US8468431B2 (en) 2010-07-01 2013-06-18 Densbits Technologies Ltd. System and method for multi-dimensional encoding and decoding
US8467249B2 (en) 2010-07-06 2013-06-18 Densbits Technologies Ltd. Systems and methods for storing, retrieving, and adjusting read thresholds in flash memory storage system
US8508995B2 (en) 2010-09-15 2013-08-13 Densbits Technologies Ltd. System and method for adjusting read voltage thresholds in memories
US8508997B2 (en) 2009-12-23 2013-08-13 Intel Corporation Multi-cell vertical memory nodes
US8516274B2 (en) 2010-04-06 2013-08-20 Densbits Technologies Ltd. Method, system and medium for analog encryption in a flash memory
US8527840B2 (en) 2010-04-06 2013-09-03 Densbits Technologies Ltd. System and method for restoring damaged data programmed on a flash device
US8539311B2 (en) 2010-07-01 2013-09-17 Densbits Technologies Ltd. System and method for data recovery in multi-level cell memories
US8553468B2 (en) 2011-09-21 2013-10-08 Densbits Technologies Ltd. System and method for managing erase operations in a non-volatile memory
US8566510B2 (en) 2009-05-12 2013-10-22 Densbits Technologies Ltd. Systems and method for flash memory management
US8588003B1 (en) 2011-08-01 2013-11-19 Densbits Technologies Ltd. System, method and computer program product for programming and for recovering from a power failure
TWI427775B (en) * 2010-11-25 2014-02-21 Macronix Int Co Ltd Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
US8667211B2 (en) 2011-06-01 2014-03-04 Densbits Technologies Ltd. System and method for managing a non-volatile memory
US8693258B2 (en) 2011-03-17 2014-04-08 Densbits Technologies Ltd. Obtaining soft information using a hard interface
US8694715B2 (en) 2007-10-22 2014-04-08 Densbits Technologies Ltd. Methods for adaptively programming flash memory devices and flash memory systems incorporating same
US8724387B2 (en) 2009-10-22 2014-05-13 Densbits Technologies Ltd. Method, system, and computer readable medium for reading and programming flash memory cells using multiple bias voltages
US8730729B2 (en) 2009-10-15 2014-05-20 Densbits Technologies Ltd. Systems and methods for averaging error rates in non-volatile devices and storage systems
US8745317B2 (en) 2010-04-07 2014-06-03 Densbits Technologies Ltd. System and method for storing information in a multi-level cell memory
US8819385B2 (en) 2009-04-06 2014-08-26 Densbits Technologies Ltd. Device and method for managing a flash memory
US8838937B1 (en) 2012-05-23 2014-09-16 Densbits Technologies Ltd. Methods, systems and computer readable medium for writing and reading data
US8850100B2 (en) 2010-12-07 2014-09-30 Densbits Technologies Ltd. Interleaving codeword portions between multiple planes and/or dies of a flash memory device
US8868821B2 (en) 2009-08-26 2014-10-21 Densbits Technologies Ltd. Systems and methods for pre-equalization and code design for a flash memory
US8879325B1 (en) 2012-05-30 2014-11-04 Densbits Technologies Ltd. System, method and computer program product for processing read threshold information and for reading a flash memory module
US8947941B2 (en) 2012-02-09 2015-02-03 Densbits Technologies Ltd. State responsive operations relating to flash memory cells
US8964464B2 (en) 2010-08-24 2015-02-24 Densbits Technologies Ltd. System and method for accelerated sampling
US8990665B1 (en) 2011-04-06 2015-03-24 Densbits Technologies Ltd. System, method and computer program product for joint search of a read threshold and soft decoding
US8995197B1 (en) 2009-08-26 2015-03-31 Densbits Technologies Ltd. System and methods for dynamic erase and program control for flash memory device memories
US8996790B1 (en) 2011-05-12 2015-03-31 Densbits Technologies Ltd. System and method for flash memory management
US8996788B2 (en) 2012-02-09 2015-03-31 Densbits Technologies Ltd. Configurable flash interface
US8996793B1 (en) 2012-04-24 2015-03-31 Densbits Technologies Ltd. System, method and computer readable medium for generating soft information
US9021177B2 (en) 2010-04-29 2015-04-28 Densbits Technologies Ltd. System and method for allocating and using spare blocks in a flash memory
US9063878B2 (en) 2010-11-03 2015-06-23 Densbits Technologies Ltd. Method, system and computer readable medium for copy back
US9069659B1 (en) 2013-01-03 2015-06-30 Densbits Technologies Ltd. Read threshold determination using reference read threshold
US9110785B1 (en) 2011-05-12 2015-08-18 Densbits Technologies Ltd. Ordered merge of data sectors that belong to memory space portions
US9136876B1 (en) 2013-06-13 2015-09-15 Densbits Technologies Ltd. Size limited multi-dimensional decoding
US9195592B1 (en) 2011-05-12 2015-11-24 Densbits Technologies Ltd. Advanced management of a non-volatile memory
US9330767B1 (en) 2009-08-26 2016-05-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Flash memory module and method for programming a page of flash memory cells
US9348694B1 (en) 2013-10-09 2016-05-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Detecting and managing bad columns
US9368225B1 (en) 2012-11-21 2016-06-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Determining read thresholds based upon read error direction statistics
US9372792B1 (en) 2011-05-12 2016-06-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Advanced management of a non-volatile memory
US9397706B1 (en) 2013-10-09 2016-07-19 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for irregular multiple dimension decoding and encoding
US9396106B2 (en) 2011-05-12 2016-07-19 Avago Technologies General Ip (Singapore) Pte. Ltd. Advanced management of a non-volatile memory
US9407291B1 (en) 2014-07-03 2016-08-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Parallel encoding method and system
US9413491B1 (en) 2013-10-08 2016-08-09 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for multiple dimension decoding and encoding a message
US9449702B1 (en) 2014-07-08 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Power management
US9501392B1 (en) 2011-05-12 2016-11-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Management of a non-volatile memory module
US9524211B1 (en) 2014-11-18 2016-12-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Codeword management
US9536612B1 (en) 2014-01-23 2017-01-03 Avago Technologies General Ip (Singapore) Pte. Ltd Digital signaling processing for three dimensional flash memory arrays
US9542262B1 (en) 2014-05-29 2017-01-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Error correction
US9786388B1 (en) 2013-10-09 2017-10-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Detecting and managing bad columns
US9851921B1 (en) 2015-07-05 2017-12-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Flash memory chip processing
US9892033B1 (en) 2014-06-24 2018-02-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Management of memory units
US9921954B1 (en) 2012-08-27 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and system for split flash memory management between host and storage controller
US9954558B1 (en) 2016-03-03 2018-04-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Fast decoding of data stored in a flash memory
US9972393B1 (en) 2014-07-03 2018-05-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Accelerating programming of a flash memory module
US10079068B2 (en) 2011-02-23 2018-09-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Devices and method for wear estimation based memory management
US10120792B1 (en) 2014-01-29 2018-11-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Programming an embedded flash storage device
US10305515B1 (en) 2015-02-02 2019-05-28 Avago Technologies International Sales Pte. Limited System and method for encoding using multiple linear feedback shift registers
US10628255B1 (en) 2015-06-11 2020-04-21 Avago Technologies International Sales Pte. Limited Multi-dimensional decoding
US10943986B2 (en) 2012-11-20 2021-03-09 Micron Technology, Inc. Transistors, memory cells and semiconductor constructions comprising ferroelectric gate dielectric

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041214A1 (en) * 2002-08-29 2004-03-04 Prall Kirk D. One F2 memory cell, memory array, related devices and methods
JP4334315B2 (en) * 2003-10-10 2009-09-30 株式会社ルネサステクノロジ Manufacturing method of semiconductor memory device
US7050330B2 (en) * 2003-12-16 2006-05-23 Micron Technology, Inc. Multi-state NROM device
TWI251337B (en) * 2003-12-29 2006-03-11 Powerchip Semiconductor Corp Non-volatile memory cell and manufacturing method thereof
KR100546409B1 (en) * 2004-05-11 2006-01-26 삼성전자주식회사 2-bit SONOS type memory cell comprising recessed channel and manufacturing method for the same
DE102004028679A1 (en) * 2004-06-14 2006-01-05 Infineon Technologies Ag Isolation grave arrangement
US7190616B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. In-service reconfigurable DRAM and flash memory device
US7271052B1 (en) * 2004-09-02 2007-09-18 Micron Technology, Inc. Long retention time single transistor vertical memory gain cell
KR100634266B1 (en) * 2004-09-02 2006-10-13 삼성전자주식회사 Non-volatile memory device, method of manufacturing the same and method of operating the same
US7053447B2 (en) * 2004-09-14 2006-05-30 Infineon Technologies Ag Charge-trapping semiconductor memory device
TWI253748B (en) * 2004-09-17 2006-04-21 Powerchip Semiconductor Corp Nonvolatile memory and manufacturing method and operating method thereof
US7518179B2 (en) 2004-10-08 2009-04-14 Freescale Semiconductor, Inc. Virtual ground memory array and method therefor
KR100630725B1 (en) * 2004-12-17 2006-10-02 삼성전자주식회사 Semiconductor device having buried bit line and method of manufacturing the same
US7365382B2 (en) * 2005-02-28 2008-04-29 Infineon Technologies Ag Semiconductor memory having charge trapping memory cells and fabrication method thereof
US7642594B2 (en) 2005-07-25 2010-01-05 Freescale Semiconductor, Inc Electronic device including gate lines, bit lines, or a combination thereof
US7314798B2 (en) * 2005-07-25 2008-01-01 Freescale Semiconductor, Inc. Method of fabricating a nonvolatile storage array with continuous control gate employing hot carrier injection programming
US20070020840A1 (en) * 2005-07-25 2007-01-25 Freescale Semiconductor, Inc. Programmable structure including nanocrystal storage elements in a trench
US7262997B2 (en) * 2005-07-25 2007-08-28 Freescale Semiconductor, Inc. Process for operating an electronic device including a memory array and conductive lines
US7394686B2 (en) * 2005-07-25 2008-07-01 Freescale Semiconductor, Inc. Programmable structure including discontinuous storage elements and spacer control gates in a trench
US7250340B2 (en) * 2005-07-25 2007-07-31 Freescale Semiconductor, Inc. Method of fabricating programmable structure including discontinuous storage elements and spacer control gates in a trench
US7619275B2 (en) 2005-07-25 2009-11-17 Freescale Semiconductor, Inc. Process for forming an electronic device including discontinuous storage elements
US7256454B2 (en) * 2005-07-25 2007-08-14 Freescale Semiconductor, Inc Electronic device including discontinuous storage elements and a process for forming the same
US7582929B2 (en) 2005-07-25 2009-09-01 Freescale Semiconductor, Inc Electronic device including discontinuous storage elements
US7112490B1 (en) * 2005-07-25 2006-09-26 Freescale Semiconductor, Inc. Hot carrier injection programmable structure including discontinuous storage elements and spacer control gates in a trench
US7285819B2 (en) * 2005-07-25 2007-10-23 Freescale Semiconductor, Inc. Nonvolatile storage array with continuous control gate employing hot carrier injection programming
US7619270B2 (en) 2005-07-25 2009-11-17 Freescale Semiconductor, Inc. Electronic device including discontinuous storage elements
US7592224B2 (en) 2006-03-30 2009-09-22 Freescale Semiconductor, Inc Method of fabricating a storage device including decontinuous storage elements within and between trenches
KR100777016B1 (en) 2006-06-20 2007-11-16 재단법인서울대학교산학협력재단 A nand flash memory array having a pillar structure and a fabricating method of the same
US7906804B2 (en) * 2006-07-19 2011-03-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US7785965B2 (en) * 2006-09-08 2010-08-31 Spansion Llc Dual storage node memory devices and methods for fabricating the same
JP4903873B2 (en) * 2006-09-19 2012-03-28 サンディスク コーポレイション Nonvolatile memory cell array having floating gate formed from spacers in substrate trench and method for manufacturing the same
US7838920B2 (en) * 2006-12-04 2010-11-23 Micron Technology, Inc. Trench memory structures and operation
JP2008166528A (en) * 2006-12-28 2008-07-17 Spansion Llc Semiconductor device and its manufacturing method
US7572699B2 (en) 2007-01-24 2009-08-11 Freescale Semiconductor, Inc Process of forming an electronic device including fins and discontinuous storage elements
US7838922B2 (en) 2007-01-24 2010-11-23 Freescale Semiconductor, Inc. Electronic device including trenches and discontinuous storage elements
US7651916B2 (en) 2007-01-24 2010-01-26 Freescale Semiconductor, Inc Electronic device including trenches and discontinuous storage elements and processes of forming and using the same
JP5301123B2 (en) * 2007-07-25 2013-09-25 スパンション エルエルシー Semiconductor device and manufacturing method thereof
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
US8710576B2 (en) * 2008-02-12 2014-04-29 Halo Lsi Inc. High density vertical structure nitride flash memory
JP2010003916A (en) * 2008-06-20 2010-01-07 Elpida Memory Inc Semiconductor device and method of manufacturing the same
KR101529575B1 (en) * 2008-09-10 2015-06-29 삼성전자주식회사 Transistor, inverter comprising the same and methods of manufacturing transistor and inverter
KR101517390B1 (en) * 2008-11-03 2015-05-04 삼성전자주식회사 Vertical type semiconductor device and method for manufacturing the same
US8885407B1 (en) * 2010-01-19 2014-11-11 Perumal Ratnam Vertical memory cells and methods, architectures and devices for the same
KR20110085179A (en) * 2010-01-19 2011-07-27 주식회사 하이닉스반도체 Semiconductor memory device and method thereof
CN102222524B (en) * 2010-04-14 2014-07-16 旺宏电子股份有限公司 Method for operating memory cell
CN101847655B (en) * 2010-04-22 2014-10-22 上海华虹宏力半导体制造有限公司 Trench grate capable of improving trench grate MOS device performance and manufacture method thereof
TWI426600B (en) * 2010-05-13 2014-02-11 Macronix Int Co Ltd Method of operating memory cell
US8535992B2 (en) * 2010-06-29 2013-09-17 Micron Technology, Inc. Thyristor random access memory device and method
US20120019284A1 (en) * 2010-07-26 2012-01-26 Infineon Technologies Austria Ag Normally-Off Field Effect Transistor, a Manufacturing Method Therefor and a Method for Programming a Power Field Effect Transistor
KR20120117127A (en) * 2011-04-14 2012-10-24 삼성전자주식회사 A shallow trench isolation layer structure and method for forming the same
US8575035B2 (en) * 2012-02-22 2013-11-05 Omnivision Technologies, Inc. Methods of forming varying depth trenches in semiconductor devices
US9548380B2 (en) * 2013-03-14 2017-01-17 Silicon Storage Technology, Inc. Non-volatile memory cell having a trapping charge layer in a trench and an array and a method of manufacturing therefor
US20140264557A1 (en) * 2013-03-15 2014-09-18 International Business Machines Corporation Self-aligned approach for drain diffusion in field effect transistors
US9263349B2 (en) * 2013-11-08 2016-02-16 Globalfoundries Inc. Printing minimum width semiconductor features at non-minimum pitch and resulting device
TWI555120B (en) 2014-10-14 2016-10-21 力晶科技股份有限公司 Semiconductor device and method for fabricating the same
CN105810684A (en) * 2014-12-31 2016-07-27 上海复旦微电子集团股份有限公司 NAND flash memory storage unit, storage unit array structure and forming method thereof
TWI601215B (en) * 2016-09-26 2017-10-01 台灣半導體股份有限公司 Field effect transistor having electrode coated sequentially by oxide layer and nitride layer and manufacturing the same
FR3080949B1 (en) * 2018-05-04 2021-05-28 St Microelectronics Rousset NON-VOLATILE LOAD TRAP TYPE MEMORY DEVICE AND METHOD OF MANUFACTURING
KR102615012B1 (en) 2018-11-12 2023-12-19 삼성전자주식회사 Memory device and operation method thereof
US11605438B2 (en) 2020-11-16 2023-03-14 Ememory Technology Inc. Memory device for improving weak-program or stuck bit
CN113629059A (en) * 2021-05-21 2021-11-09 长江存储科技有限责任公司 Manufacturing method of 3D memory device and 3D memory device

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US531887A (en) * 1895-01-01 Paper or bill file and punch
US4184207A (en) * 1978-01-27 1980-01-15 Texas Instruments Incorporated High density floating gate electrically programmable ROM
US4755864A (en) * 1984-12-25 1988-07-05 Kabushiki Kaisha Toshiba Semiconductor read only memory device with selectively present mask layer
US5241496A (en) * 1991-08-19 1993-08-31 Micron Technology, Inc. Array of read-only memory cells, eacch of which has a one-time, voltage-programmable antifuse element constructed within a trench shared by a pair of cells
US5330930A (en) * 1992-12-31 1994-07-19 Chartered Semiconductor Manufacturing Pte Ltd. Formation of vertical polysilicon resistor having a nitride sidewall for small static RAM cell
US5341328A (en) * 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5378647A (en) * 1993-10-25 1995-01-03 United Microelectronics Corporation Method of making a bottom gate mask ROM device
US5379253A (en) * 1992-06-01 1995-01-03 National Semiconductor Corporation High density EEPROM cell array with novel programming scheme and method of manufacture
US5397725A (en) * 1993-10-28 1995-03-14 National Semiconductor Corporation Method of controlling oxide thinning in an EPROM or flash memory array
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5610099A (en) * 1994-06-28 1997-03-11 Ramtron International Corporation Process for fabricating transistors using composite nitride structure
US5617351A (en) * 1992-03-12 1997-04-01 International Business Machines Corporation Three-dimensional direct-write EEPROM arrays and fabrication methods
US5768192A (en) * 1996-07-23 1998-06-16 Saifun Semiconductors, Ltd. Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping
US5792697A (en) * 1997-01-07 1998-08-11 United Microelectronics Corporation Method for fabricating a multi-stage ROM
US5858841A (en) * 1997-01-20 1999-01-12 United Microelectronics Corporation ROM device having memory units arranged in three dimensions, and a method of making the same
US5892710A (en) * 1994-01-21 1999-04-06 Intel Corporation Method and circuitry for storing discrete amounts of charge in a single memory element
US5911106A (en) * 1996-08-29 1999-06-08 Nec Corporation Semiconductor memory device and fabrication thereof
US5936274A (en) * 1997-07-08 1999-08-10 Micron Technology, Inc. High density flash memory
US5946558A (en) * 1997-02-05 1999-08-31 United Microelectronics Corp. Method of making ROM components
US5966603A (en) * 1997-06-11 1999-10-12 Saifun Semiconductors Ltd. NROM fabrication method with a periphery portion
US5973356A (en) * 1997-07-08 1999-10-26 Micron Technology, Inc. Ultra high density flash memory
US6011725A (en) * 1997-08-01 2000-01-04 Saifun Semiconductors, Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6028342A (en) * 1996-11-22 2000-02-22 United Microelectronics Corp. ROM diode and a method of making the same
US6030871A (en) * 1998-05-05 2000-02-29 Saifun Semiconductors Ltd. Process for producing two bit ROM cell utilizing angled implant
US6044022A (en) * 1999-02-26 2000-03-28 Tower Semiconductor Ltd. Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays
US6072209A (en) * 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6081456A (en) * 1999-02-04 2000-06-27 Tower Semiconductor Ltd. Bit line control circuit for a memory array using 2-bit non-volatile memory cells
US6093606A (en) * 1998-03-05 2000-07-25 Taiwan Semiconductor Manufacturing Company Method of manufacture of vertical stacked gate flash memory device
US6108240A (en) * 1999-02-04 2000-08-22 Tower Semiconductor Ltd. Implementation of EEPROM using intermediate gate voltage to avoid disturb conditions
US6114725A (en) * 1997-01-22 2000-09-05 International Business Machines Corporation Structure for folded architecture pillar memory cell
US6124729A (en) * 1998-02-27 2000-09-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6133102A (en) * 1998-06-19 2000-10-17 Wu; Shye-Lin Method of fabricating double poly-gate high density multi-state flat mask ROM cells
US6134156A (en) * 1999-02-04 2000-10-17 Saifun Semiconductors Ltd. Method for initiating a retrieval procedure in virtual ground arrays
US6172396B1 (en) * 1998-02-03 2001-01-09 Worldwide Semiconductor Manufacturing Corp. ROM structure and method of manufacture
US6175523B1 (en) * 1999-10-25 2001-01-16 Advanced Micro Devices, Inc Precharging mechanism and method for NAND-based flash memory devices
US6174758B1 (en) * 1999-03-03 2001-01-16 Tower Semiconductor Ltd. Semiconductor chip having fieldless array with salicide gates and methods for making same
US6181597B1 (en) * 1999-02-04 2001-01-30 Tower Semiconductor Ltd. EEPROM array using 2-bit non-volatile memory cells with serial read operations
US6184089B1 (en) * 1999-01-27 2001-02-06 United Microelectronics Corp. Method of fabricating one-time programmable read only memory
US6201737B1 (en) * 2000-01-28 2001-03-13 Advanced Micro Devices, Inc. Apparatus and method to characterize the threshold distribution in an NROM virtual ground array
US6204529B1 (en) * 1999-08-27 2001-03-20 Hsing Lan Lung 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate
US6207504B1 (en) * 1998-07-29 2001-03-27 United Semiconductor Corp. Method of fabricating flash erasable programmable read only memory
US6208557B1 (en) * 1999-05-21 2001-03-27 National Semiconductor Corporation EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming
US6215702B1 (en) * 2000-02-16 2001-04-10 Advanced Micro Devices, Inc. Method of maintaining constant erasing speeds for non-volatile memory cells
US6218695B1 (en) * 1999-06-28 2001-04-17 Tower Semiconductor Ltd. Area efficient column select circuitry for 2-bit non-volatile memory cells
US6222768B1 (en) * 2000-01-28 2001-04-24 Advanced Micro Devices, Inc. Auto adjusting window placement scheme for an NROM virtual ground array
US20010001075A1 (en) * 1997-03-25 2001-05-10 Vantis Corporation Process for fabricating semiconductor memory device with high data retention including silicon nitride etch stop layer formed at high temperature with low hydrogen ion concentration
US6240020B1 (en) * 1999-10-25 2001-05-29 Advanced Micro Devices Method of bitline shielding in conjunction with a precharging scheme for nand-based flash memory devices
US6243300B1 (en) * 2000-02-16 2001-06-05 Advanced Micro Devices, Inc. Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell
US20010004332A1 (en) * 1998-05-20 2001-06-21 Saifun Semiconductors Ltd. NROM cell with improved programming, erasing and cycling
US6251731B1 (en) * 1998-08-10 2001-06-26 Acer Semiconductor Manufacturing, Inc. Method for fabricating high-density and high-speed nand-type mask roms
US6256231B1 (en) * 1999-02-04 2001-07-03 Tower Semiconductor Ltd. EEPROM array using 2-bit non-volatile memory cells and method of implementing same
US6255166B1 (en) * 1999-08-05 2001-07-03 Aalo Lsi Design & Device Technology, Inc. Nonvolatile memory cell, method of programming the same and nonvolatile memory array
US6266281B1 (en) * 2000-02-16 2001-07-24 Advanced Micro Devices, Inc. Method of erasing non-volatile memory cells
US6269023B1 (en) * 2000-05-19 2001-07-31 Advanced Micro Devices, Inc. Method of programming a non-volatile memory cell using a current limiter
US6272043B1 (en) * 2000-01-28 2001-08-07 Advanced Micro Devices, Inc. Apparatus and method of direct current sensing from source side in a virtual ground array
US6275414B1 (en) * 2000-05-16 2001-08-14 Advanced Micro Devices, Inc. Uniform bitline strapping of a non-volatile memory cell
US6282118B1 (en) * 2000-10-06 2001-08-28 Macronix International Co. Ltd. Nonvolatile semiconductor memory device
US6291854B1 (en) * 1999-12-30 2001-09-18 United Microelectronics Corp. Electrically erasable and programmable read only memory device and manufacturing therefor
US6297096B1 (en) * 1997-06-11 2001-10-02 Saifun Semiconductors Ltd. NROM fabrication method
US6303479B1 (en) * 1999-12-16 2001-10-16 Spinnaker Semiconductor, Inc. Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts
US6303436B1 (en) * 1999-09-21 2001-10-16 Mosel Vitelic, Inc. Method for fabricating a type of trench mask ROM cell
US6348711B1 (en) * 1998-05-20 2002-02-19 Saifun Semiconductors Ltd. NROM cell with self-aligned programming and erasure areas
US6392930B2 (en) * 2000-02-14 2002-05-21 United Microelectronics Corp. Method of manufacturing mask read-only memory cell
US6417053B1 (en) * 2001-11-20 2002-07-09 Macronix International Co., Ltd. Fabrication method for a silicon nitride read-only memory
US6421275B1 (en) * 2002-01-22 2002-07-16 Macronix International Co. Ltd. Method for adjusting a reference current of a flash nitride read only memory (NROM) and device thereof
US20020100932A1 (en) * 1999-04-05 2002-08-01 Fairchild Semiconductor Corporation Method of forming a trench transistor having a superior gate dielectric
US6429063B1 (en) * 1999-10-26 2002-08-06 Saifun Semiconductors Ltd. NROM cell with generally decoupled primary and secondary injection
US6432778B1 (en) * 2001-08-07 2002-08-13 Macronix International Co. Ltd. Method of forming a system on chip (SOC) with nitride read only memory (NROM)
US6448607B1 (en) * 2000-12-08 2002-09-10 Ememory Technology Inc. Nonvolatile memory having embedded word lines
US20020142569A1 (en) * 2001-03-29 2002-10-03 Chang Kent Kuohua Method for fabricating a nitride read-only -memory (nrom)
US20020146885A1 (en) * 2001-04-04 2002-10-10 Chia-Hsing Chen Method of fabricating a nitride read only memory cell
US20020151138A1 (en) * 2001-04-13 2002-10-17 Chien-Hung Liu Method for fabricating an NROM
US6468864B1 (en) * 2001-06-21 2002-10-22 Macronix International Co., Ltd. Method of fabricating silicon nitride read only memory
US6514831B1 (en) * 2001-11-14 2003-02-04 Macronix International Co., Ltd. Nitride read only memory cell
US20030057997A1 (en) * 2001-06-01 2003-03-27 Macronix International Co., Ltd. One cell programmable switch using non-volatile cell
US6541815B1 (en) * 2001-10-11 2003-04-01 International Business Machines Corporation High-density dual-cell flash memory structure
US6545309B1 (en) * 2002-03-11 2003-04-08 Macronix International Co., Ltd. Nitride read-only memory with protective diode and operating method thereof
US20030067807A1 (en) * 2001-09-28 2003-04-10 Hung-Sui Lin Erasing method for p-channel NROM
US6552387B1 (en) * 1997-07-30 2003-04-22 Saifun Semiconductors Ltd. Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6559013B1 (en) * 2002-06-20 2003-05-06 Macronix International Co., Ltd. Method for fabricating mask ROM device
US6576511B2 (en) * 2001-05-02 2003-06-10 Macronix International Co., Ltd. Method for forming nitride read only memory
US6580135B2 (en) * 2001-06-18 2003-06-17 Macronix International Co., Ltd. Silicon nitride read only memory structure and method of programming and erasure
US6580630B1 (en) * 2002-04-02 2003-06-17 Macronix International Co., Ltd. Initialization method of P-type silicon nitride read only memory
US20030117861A1 (en) * 2001-12-20 2003-06-26 Eduardo Maayan NROM NOR array
US6602805B2 (en) * 2000-12-14 2003-08-05 Macronix International Co., Ltd. Method for forming gate dielectric layer in NROM
US6607957B1 (en) * 2002-07-31 2003-08-19 Macronix International Co., Ltd. Method for fabricating nitride read only memory
US6610586B1 (en) * 2002-09-04 2003-08-26 Macronix International Co., Ltd. Method for fabricating nitride read-only memory
US6613632B2 (en) * 2001-05-28 2003-09-02 Macronix International Co., Ltd. Fabrication method for a silicon nitride read-only memory
US6617204B2 (en) * 2001-08-13 2003-09-09 Macronix International Co., Ltd. Method of forming the protective film to prevent nitride read only memory cell charging
US20040031984A1 (en) * 2002-08-19 2004-02-19 Sohrab Kianian Vertical NROM and methods for making thereof
US20040066672A1 (en) * 2002-06-21 2004-04-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per IF2
US6768166B2 (en) * 2001-06-26 2004-07-27 Infineon Technologies Ag Vertical transistor, memory arrangement and method for fabricating a vertical transistor
US6885060B2 (en) * 2001-03-19 2005-04-26 Sony Corporation Non-volatile semiconductor memory device and process for fabricating the same
US7050330B2 (en) * 2003-12-16 2006-05-23 Micron Technology, Inc. Multi-state NROM device
US7067875B2 (en) * 2001-09-20 2006-06-27 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US7075148B2 (en) * 2002-09-05 2006-07-11 Infineon Technologies Ag Semiconductor memory with vertical memory transistors in a cell array arrangement with 1-2F2 cells

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420504A (en) 1980-12-22 1983-12-13 Raytheon Company Programmable read only memory
JPS6240774A (en) * 1985-08-16 1987-02-21 Nippon Denso Co Ltd Non-volatile semiconductor memory
US4881114A (en) * 1986-05-16 1989-11-14 Actel Corporation Selectively formable vertical diode circuit element
US5042011A (en) 1989-05-22 1991-08-20 Micron Technology, Inc. Sense amplifier pulldown device with tailored edge input
US5280205A (en) 1992-04-16 1994-01-18 Micron Technology, Inc. Fast sense amplifier
JP2916610B2 (en) * 1992-06-26 1999-07-05 株式会社半導体エネルギー研究所 MOS memory semiconductor device and manufacturing method thereof
US5429967A (en) * 1994-04-08 1995-07-04 United Microelectronics Corporation Process for producing a very high density mask ROM
US5508543A (en) * 1994-04-29 1996-04-16 International Business Machines Corporation Low voltage memory
JPH08186183A (en) * 1994-12-28 1996-07-16 Sony Corp Non-volatile semiconductor memory device and its manufacture
US5576236A (en) * 1995-06-28 1996-11-19 United Microelectronics Corporation Process for coding and code marking read-only memory
DE19600423C2 (en) 1996-01-08 2001-07-05 Siemens Ag Electrically programmable memory cell arrangement and method for its production
US5627785A (en) 1996-03-15 1997-05-06 Micron Technology, Inc. Memory device with a sense amplifier
DE19631146A1 (en) * 1996-08-01 1998-02-05 Siemens Ag Non-volatile memory cell
KR20000005467A (en) * 1996-08-01 2000-01-25 칼 하인쯔 호르닝어 Operating method of a storing cell device
JPH118325A (en) * 1997-04-25 1999-01-12 Nippon Steel Corp Nonvolatile semiconductor device, its manufacturing method, its writing method, its reading method, storage medium and semiconductor device
US6150687A (en) 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US6232643B1 (en) 1997-11-13 2001-05-15 Micron Technology, Inc. Memory using insulator traps
US5991225A (en) * 1998-02-27 1999-11-23 Micron Technology, Inc. Programmable memory address decode array with vertical transistors
US6144093A (en) 1998-04-27 2000-11-07 International Rectifier Corp. Commonly housed diverse semiconductor die with reduced inductance
US6157570A (en) 1999-02-04 2000-12-05 Tower Semiconductor Ltd. Program/erase endurance of EEPROM memory cells
US6147904A (en) 1999-02-04 2000-11-14 Tower Semiconductor Ltd. Redundancy method and structure for 2-bit non-volatile memory cells
US6487050B1 (en) 1999-02-22 2002-11-26 Seagate Technology Llc Disc drive with wear-resistant ramp coating of carbon nitride or metal nitride
GB9906247D0 (en) 1999-03-18 1999-05-12 Koninkl Philips Electronics Nv An electronic device comprising a trench gate field effect device
GB9907184D0 (en) 1999-03-30 1999-05-26 Philips Electronics Nv A method of manufacturing a semiconductor device
JP2001077219A (en) * 1999-06-29 2001-03-23 Toshiba Corp Nonvolatile semiconductor storage device and manufacture thereof
FR2799570B1 (en) * 1999-10-08 2001-11-16 Itt Mfg Enterprises Inc IMPROVED ELECTRICAL SWITCH WITH MULTI-WAY TACTILE EFFECT AND SINGLE TRIGGER
TW507369B (en) * 2001-10-29 2002-10-21 Macronix Int Co Ltd Silicon nitride read only memory structure for preventing antenna effect
US6486028B1 (en) 2001-11-20 2002-11-26 Macronix International Co., Ltd. Method of fabricating a nitride read-only-memory cell vertical structure
US6498377B1 (en) 2002-03-21 2002-12-24 Macronix International, Co., Ltd. SONOS component having high dielectric property
DE10219917A1 (en) * 2002-05-03 2003-11-13 Infineon Technologies Ag Trench transistor for a storage cell comprises a trench with vertical side walls, a thin dielectric layer, and oxide layers on semiconductor material arranged on base of the trench and/or on part of the upper side of semiconductor body
US20040041214A1 (en) * 2002-08-29 2004-03-04 Prall Kirk D. One F2 memory cell, memory array, related devices and methods
US20030235076A1 (en) * 2002-06-21 2003-12-25 Micron Technology, Inc. Multistate NROM having a storage density much greater than 1 Bit per 1F2
US7221586B2 (en) * 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US531887A (en) * 1895-01-01 Paper or bill file and punch
US4184207A (en) * 1978-01-27 1980-01-15 Texas Instruments Incorporated High density floating gate electrically programmable ROM
US4755864A (en) * 1984-12-25 1988-07-05 Kabushiki Kaisha Toshiba Semiconductor read only memory device with selectively present mask layer
US5341328A (en) * 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5241496A (en) * 1991-08-19 1993-08-31 Micron Technology, Inc. Array of read-only memory cells, eacch of which has a one-time, voltage-programmable antifuse element constructed within a trench shared by a pair of cells
US5617351A (en) * 1992-03-12 1997-04-01 International Business Machines Corporation Three-dimensional direct-write EEPROM arrays and fabrication methods
US5379253A (en) * 1992-06-01 1995-01-03 National Semiconductor Corporation High density EEPROM cell array with novel programming scheme and method of manufacture
US5330930A (en) * 1992-12-31 1994-07-19 Chartered Semiconductor Manufacturing Pte Ltd. Formation of vertical polysilicon resistor having a nitride sidewall for small static RAM cell
US5378647A (en) * 1993-10-25 1995-01-03 United Microelectronics Corporation Method of making a bottom gate mask ROM device
US5397725A (en) * 1993-10-28 1995-03-14 National Semiconductor Corporation Method of controlling oxide thinning in an EPROM or flash memory array
US5892710A (en) * 1994-01-21 1999-04-06 Intel Corporation Method and circuitry for storing discrete amounts of charge in a single memory element
US5610099A (en) * 1994-06-28 1997-03-11 Ramtron International Corporation Process for fabricating transistors using composite nitride structure
US5768192A (en) * 1996-07-23 1998-06-16 Saifun Semiconductors, Ltd. Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping
US20010011755A1 (en) * 1996-08-29 2001-08-09 Kazuhiro Tasaka Semiconductor memory device and fabrication thereof
US5911106A (en) * 1996-08-29 1999-06-08 Nec Corporation Semiconductor memory device and fabrication thereof
US6028342A (en) * 1996-11-22 2000-02-22 United Microelectronics Corp. ROM diode and a method of making the same
US5792697A (en) * 1997-01-07 1998-08-11 United Microelectronics Corporation Method for fabricating a multi-stage ROM
US5858841A (en) * 1997-01-20 1999-01-12 United Microelectronics Corporation ROM device having memory units arranged in three dimensions, and a method of making the same
US6114725A (en) * 1997-01-22 2000-09-05 International Business Machines Corporation Structure for folded architecture pillar memory cell
US5946558A (en) * 1997-02-05 1999-08-31 United Microelectronics Corp. Method of making ROM components
US20010001075A1 (en) * 1997-03-25 2001-05-10 Vantis Corporation Process for fabricating semiconductor memory device with high data retention including silicon nitride etch stop layer formed at high temperature with low hydrogen ion concentration
US5966603A (en) * 1997-06-11 1999-10-12 Saifun Semiconductors Ltd. NROM fabrication method with a periphery portion
US6297096B1 (en) * 1997-06-11 2001-10-02 Saifun Semiconductors Ltd. NROM fabrication method
US5973356A (en) * 1997-07-08 1999-10-26 Micron Technology, Inc. Ultra high density flash memory
US5936274A (en) * 1997-07-08 1999-08-10 Micron Technology, Inc. High density flash memory
US6072209A (en) * 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6552387B1 (en) * 1997-07-30 2003-04-22 Saifun Semiconductors Ltd. Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6011725A (en) * 1997-08-01 2000-01-04 Saifun Semiconductors, Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6172396B1 (en) * 1998-02-03 2001-01-09 Worldwide Semiconductor Manufacturing Corp. ROM structure and method of manufacture
US6124729A (en) * 1998-02-27 2000-09-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6093606A (en) * 1998-03-05 2000-07-25 Taiwan Semiconductor Manufacturing Company Method of manufacture of vertical stacked gate flash memory device
US6201282B1 (en) * 1998-05-05 2001-03-13 Saifun Semiconductors Ltd. Two bit ROM cell and process for producing same
US6030871A (en) * 1998-05-05 2000-02-29 Saifun Semiconductors Ltd. Process for producing two bit ROM cell utilizing angled implant
US6348711B1 (en) * 1998-05-20 2002-02-19 Saifun Semiconductors Ltd. NROM cell with self-aligned programming and erasure areas
US20010004332A1 (en) * 1998-05-20 2001-06-21 Saifun Semiconductors Ltd. NROM cell with improved programming, erasing and cycling
US6133102A (en) * 1998-06-19 2000-10-17 Wu; Shye-Lin Method of fabricating double poly-gate high density multi-state flat mask ROM cells
US6207504B1 (en) * 1998-07-29 2001-03-27 United Semiconductor Corp. Method of fabricating flash erasable programmable read only memory
US6251731B1 (en) * 1998-08-10 2001-06-26 Acer Semiconductor Manufacturing, Inc. Method for fabricating high-density and high-speed nand-type mask roms
US6184089B1 (en) * 1999-01-27 2001-02-06 United Microelectronics Corp. Method of fabricating one-time programmable read only memory
US6081456A (en) * 1999-02-04 2000-06-27 Tower Semiconductor Ltd. Bit line control circuit for a memory array using 2-bit non-volatile memory cells
US6181597B1 (en) * 1999-02-04 2001-01-30 Tower Semiconductor Ltd. EEPROM array using 2-bit non-volatile memory cells with serial read operations
US6256231B1 (en) * 1999-02-04 2001-07-03 Tower Semiconductor Ltd. EEPROM array using 2-bit non-volatile memory cells and method of implementing same
US6108240A (en) * 1999-02-04 2000-08-22 Tower Semiconductor Ltd. Implementation of EEPROM using intermediate gate voltage to avoid disturb conditions
US6134156A (en) * 1999-02-04 2000-10-17 Saifun Semiconductors Ltd. Method for initiating a retrieval procedure in virtual ground arrays
US6044022A (en) * 1999-02-26 2000-03-28 Tower Semiconductor Ltd. Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays
US6174758B1 (en) * 1999-03-03 2001-01-16 Tower Semiconductor Ltd. Semiconductor chip having fieldless array with salicide gates and methods for making same
US20020100932A1 (en) * 1999-04-05 2002-08-01 Fairchild Semiconductor Corporation Method of forming a trench transistor having a superior gate dielectric
US6208557B1 (en) * 1999-05-21 2001-03-27 National Semiconductor Corporation EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming
US6218695B1 (en) * 1999-06-28 2001-04-17 Tower Semiconductor Ltd. Area efficient column select circuitry for 2-bit non-volatile memory cells
US6255166B1 (en) * 1999-08-05 2001-07-03 Aalo Lsi Design & Device Technology, Inc. Nonvolatile memory cell, method of programming the same and nonvolatile memory array
US6204529B1 (en) * 1999-08-27 2001-03-20 Hsing Lan Lung 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate
US6303436B1 (en) * 1999-09-21 2001-10-16 Mosel Vitelic, Inc. Method for fabricating a type of trench mask ROM cell
US6240020B1 (en) * 1999-10-25 2001-05-29 Advanced Micro Devices Method of bitline shielding in conjunction with a precharging scheme for nand-based flash memory devices
US6175523B1 (en) * 1999-10-25 2001-01-16 Advanced Micro Devices, Inc Precharging mechanism and method for NAND-based flash memory devices
US6429063B1 (en) * 1999-10-26 2002-08-06 Saifun Semiconductors Ltd. NROM cell with generally decoupled primary and secondary injection
US6303479B1 (en) * 1999-12-16 2001-10-16 Spinnaker Semiconductor, Inc. Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts
US6291854B1 (en) * 1999-12-30 2001-09-18 United Microelectronics Corp. Electrically erasable and programmable read only memory device and manufacturing therefor
US6222768B1 (en) * 2000-01-28 2001-04-24 Advanced Micro Devices, Inc. Auto adjusting window placement scheme for an NROM virtual ground array
US6272043B1 (en) * 2000-01-28 2001-08-07 Advanced Micro Devices, Inc. Apparatus and method of direct current sensing from source side in a virtual ground array
US6201737B1 (en) * 2000-01-28 2001-03-13 Advanced Micro Devices, Inc. Apparatus and method to characterize the threshold distribution in an NROM virtual ground array
US6392930B2 (en) * 2000-02-14 2002-05-21 United Microelectronics Corp. Method of manufacturing mask read-only memory cell
US6215702B1 (en) * 2000-02-16 2001-04-10 Advanced Micro Devices, Inc. Method of maintaining constant erasing speeds for non-volatile memory cells
US6243300B1 (en) * 2000-02-16 2001-06-05 Advanced Micro Devices, Inc. Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell
US6266281B1 (en) * 2000-02-16 2001-07-24 Advanced Micro Devices, Inc. Method of erasing non-volatile memory cells
US6275414B1 (en) * 2000-05-16 2001-08-14 Advanced Micro Devices, Inc. Uniform bitline strapping of a non-volatile memory cell
US6269023B1 (en) * 2000-05-19 2001-07-31 Advanced Micro Devices, Inc. Method of programming a non-volatile memory cell using a current limiter
US6282118B1 (en) * 2000-10-06 2001-08-28 Macronix International Co. Ltd. Nonvolatile semiconductor memory device
US6448607B1 (en) * 2000-12-08 2002-09-10 Ememory Technology Inc. Nonvolatile memory having embedded word lines
US6602805B2 (en) * 2000-12-14 2003-08-05 Macronix International Co., Ltd. Method for forming gate dielectric layer in NROM
US6885060B2 (en) * 2001-03-19 2005-04-26 Sony Corporation Non-volatile semiconductor memory device and process for fabricating the same
US20020142569A1 (en) * 2001-03-29 2002-10-03 Chang Kent Kuohua Method for fabricating a nitride read-only -memory (nrom)
US6461949B1 (en) * 2001-03-29 2002-10-08 Macronix International Co. Ltd. Method for fabricating a nitride read-only-memory (NROM)
US20020146885A1 (en) * 2001-04-04 2002-10-10 Chia-Hsing Chen Method of fabricating a nitride read only memory cell
US20020151138A1 (en) * 2001-04-13 2002-10-17 Chien-Hung Liu Method for fabricating an NROM
US6576511B2 (en) * 2001-05-02 2003-06-10 Macronix International Co., Ltd. Method for forming nitride read only memory
US6613632B2 (en) * 2001-05-28 2003-09-02 Macronix International Co., Ltd. Fabrication method for a silicon nitride read-only memory
US20030057997A1 (en) * 2001-06-01 2003-03-27 Macronix International Co., Ltd. One cell programmable switch using non-volatile cell
US6580135B2 (en) * 2001-06-18 2003-06-17 Macronix International Co., Ltd. Silicon nitride read only memory structure and method of programming and erasure
US6468864B1 (en) * 2001-06-21 2002-10-22 Macronix International Co., Ltd. Method of fabricating silicon nitride read only memory
US6768166B2 (en) * 2001-06-26 2004-07-27 Infineon Technologies Ag Vertical transistor, memory arrangement and method for fabricating a vertical transistor
US6432778B1 (en) * 2001-08-07 2002-08-13 Macronix International Co. Ltd. Method of forming a system on chip (SOC) with nitride read only memory (NROM)
US6617204B2 (en) * 2001-08-13 2003-09-09 Macronix International Co., Ltd. Method of forming the protective film to prevent nitride read only memory cell charging
US7067875B2 (en) * 2001-09-20 2006-06-27 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US20030067807A1 (en) * 2001-09-28 2003-04-10 Hung-Sui Lin Erasing method for p-channel NROM
US6541815B1 (en) * 2001-10-11 2003-04-01 International Business Machines Corporation High-density dual-cell flash memory structure
US6514831B1 (en) * 2001-11-14 2003-02-04 Macronix International Co., Ltd. Nitride read only memory cell
US6417053B1 (en) * 2001-11-20 2002-07-09 Macronix International Co., Ltd. Fabrication method for a silicon nitride read-only memory
US20030117861A1 (en) * 2001-12-20 2003-06-26 Eduardo Maayan NROM NOR array
US6421275B1 (en) * 2002-01-22 2002-07-16 Macronix International Co. Ltd. Method for adjusting a reference current of a flash nitride read only memory (NROM) and device thereof
US6545309B1 (en) * 2002-03-11 2003-04-08 Macronix International Co., Ltd. Nitride read-only memory with protective diode and operating method thereof
US6580630B1 (en) * 2002-04-02 2003-06-17 Macronix International Co., Ltd. Initialization method of P-type silicon nitride read only memory
US6559013B1 (en) * 2002-06-20 2003-05-06 Macronix International Co., Ltd. Method for fabricating mask ROM device
US20040066672A1 (en) * 2002-06-21 2004-04-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per IF2
US6607957B1 (en) * 2002-07-31 2003-08-19 Macronix International Co., Ltd. Method for fabricating nitride read only memory
US20040031984A1 (en) * 2002-08-19 2004-02-19 Sohrab Kianian Vertical NROM and methods for making thereof
US6610586B1 (en) * 2002-09-04 2003-08-26 Macronix International Co., Ltd. Method for fabricating nitride read-only memory
US7075148B2 (en) * 2002-09-05 2006-07-11 Infineon Technologies Ag Semiconductor memory with vertical memory transistors in a cell array arrangement with 1-2F2 cells
US7050330B2 (en) * 2003-12-16 2006-05-23 Micron Technology, Inc. Multi-state NROM device

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365040B2 (en) 2007-09-20 2013-01-29 Densbits Technologies Ltd. Systems and methods for handling immediate data errors in flash memory
US8650352B2 (en) * 2007-09-20 2014-02-11 Densbits Technologies Ltd. Systems and methods for determining logical values of coupled flash memory cells
US20100211724A1 (en) * 2007-09-20 2010-08-19 Hanan Weingarten Systems and methods for determining logical values of coupled flash memory cells
US8799563B2 (en) 2007-10-22 2014-08-05 Densbits Technologies Ltd. Methods for adaptively programming flash memory devices and flash memory systems incorporating same
US8694715B2 (en) 2007-10-22 2014-04-08 Densbits Technologies Ltd. Methods for adaptively programming flash memory devices and flash memory systems incorporating same
US8443242B2 (en) 2007-10-25 2013-05-14 Densbits Technologies Ltd. Systems and methods for multiple coding rates in flash devices
US8607128B2 (en) 2007-12-05 2013-12-10 Densbits Technologies Ltd. Low power chien-search based BCH/RS decoding system for flash memory, mobile communications devices and other applications
US9104550B2 (en) 2007-12-05 2015-08-11 Densbits Technologies Ltd. Physical levels deterioration based determination of thresholds useful for converting cell physical levels into cell logical values in an array of digital memory cells
US8453022B2 (en) 2007-12-05 2013-05-28 Densbits Technologies Ltd. Apparatus and methods for generating row-specific reading thresholds in flash memory
US8751726B2 (en) 2007-12-05 2014-06-10 Densbits Technologies Ltd. System and methods employing mock thresholds to generate actual reading thresholds in flash memory devices
US20100180073A1 (en) * 2007-12-05 2010-07-15 Hanan Weingarten Flash memory device with physical cell value deterioration accommodation and methods useful in conjunction therewith
US8843698B2 (en) 2007-12-05 2014-09-23 Densbits Technologies Ltd. Systems and methods for temporarily retiring memory portions
US8335977B2 (en) 2007-12-05 2012-12-18 Densbits Technologies Ltd. Flash memory apparatus and methods using a plurality of decoding stages including optional use of concatenated BCH codes and/or designation of “first below” cells
US20100146191A1 (en) * 2007-12-05 2010-06-10 Michael Katz System and methods employing mock thresholds to generate actual reading thresholds in flash memory devices
US20100131831A1 (en) * 2007-12-05 2010-05-27 Hanan Weingarten low power chien-search based bch/rs decoding system for flash memory, mobile communications devices and other applications
US8341335B2 (en) 2007-12-05 2012-12-25 Densbits Technologies Ltd. Flash memory apparatus with a heating system for temporarily retired memory portions
US8321625B2 (en) 2007-12-05 2012-11-27 Densbits Technologies Ltd. Flash memory device with physical cell value deterioration accommodation and methods useful in conjunction therewith
US8627188B2 (en) 2007-12-05 2014-01-07 Densbits Technologies Ltd. Flash memory apparatus and methods using a plurality of decoding stages including optional use of concatenated BCH codes and/or designation of “first below” cells
US8782500B2 (en) 2007-12-12 2014-07-15 Densbits Technologies Ltd. Systems and methods for error correction and decoding on multi-level physical media
US8359516B2 (en) 2007-12-12 2013-01-22 Densbits Technologies Ltd. Systems and methods for error correction and decoding on multi-level physical media
US8276051B2 (en) 2007-12-12 2012-09-25 Densbits Technologies Ltd. Chien-search system employing a clock-gating scheme to save power for error correction decoder and other applications
US8327246B2 (en) 2007-12-18 2012-12-04 Densbits Technologies Ltd. Apparatus for coding at a plurality of rates in multi-level flash memory systems, and methods useful in conjunction therewith
US8762800B1 (en) 2008-01-31 2014-06-24 Densbits Technologies Ltd. Systems and methods for handling immediate data errors in flash memory
US20100131580A1 (en) * 2008-03-25 2010-05-27 Densbits Technologies Ltd. Apparatus and methods for hardware-efficient unbiased rounding
US8972472B2 (en) 2008-03-25 2015-03-03 Densbits Technologies Ltd. Apparatus and methods for hardware-efficient unbiased rounding
US8332725B2 (en) 2008-08-20 2012-12-11 Densbits Technologies Ltd. Reprogramming non volatile memory portions
US8819385B2 (en) 2009-04-06 2014-08-26 Densbits Technologies Ltd. Device and method for managing a flash memory
US8850296B2 (en) 2009-04-06 2014-09-30 Densbits Technologies Ltd. Encoding method and system, decoding method and system
US8458574B2 (en) 2009-04-06 2013-06-04 Densbits Technologies Ltd. Compact chien-search based decoding apparatus and method
US20100253555A1 (en) * 2009-04-06 2010-10-07 Hanan Weingarten Encoding method and system, decoding method and system
US8566510B2 (en) 2009-05-12 2013-10-22 Densbits Technologies Ltd. Systems and method for flash memory management
US8305812B2 (en) 2009-08-26 2012-11-06 Densbits Technologies Ltd. Flash memory module and method for programming a page of flash memory cells
US8995197B1 (en) 2009-08-26 2015-03-31 Densbits Technologies Ltd. System and methods for dynamic erase and program control for flash memory device memories
US20110051521A1 (en) * 2009-08-26 2011-03-03 Shmuel Levy Flash memory module and method for programming a page of flash memory cells
US8868821B2 (en) 2009-08-26 2014-10-21 Densbits Technologies Ltd. Systems and methods for pre-equalization and code design for a flash memory
US9330767B1 (en) 2009-08-26 2016-05-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Flash memory module and method for programming a page of flash memory cells
US8730729B2 (en) 2009-10-15 2014-05-20 Densbits Technologies Ltd. Systems and methods for averaging error rates in non-volatile devices and storage systems
US8724387B2 (en) 2009-10-22 2014-05-13 Densbits Technologies Ltd. Method, system, and computer readable medium for reading and programming flash memory cells using multiple bias voltages
US8626988B2 (en) 2009-11-19 2014-01-07 Densbits Technologies Ltd. System and method for uncoded bit error rate equalization via interleaving
US20110119562A1 (en) * 2009-11-19 2011-05-19 Steiner Avi System and method for uncoded bit error rate equalization via interleaving
US9037777B2 (en) 2009-12-22 2015-05-19 Densbits Technologies Ltd. Device, system, and method for reducing program/read disturb in flash arrays
US20110153919A1 (en) * 2009-12-22 2011-06-23 Erez Sabbag Device, system, and method for reducing program/read disturb in flash arrays
US8508997B2 (en) 2009-12-23 2013-08-13 Intel Corporation Multi-cell vertical memory nodes
US20110151668A1 (en) * 2009-12-23 2011-06-23 Tang Sanh D Pitch division patterning techniques
US8222140B2 (en) 2009-12-23 2012-07-17 Intel Corporation Pitch division patterning techniques
US20110161775A1 (en) * 2009-12-24 2011-06-30 Hanan Weingarten System and method for setting a flash memory cell read threshold
US8607124B2 (en) 2009-12-24 2013-12-10 Densbits Technologies Ltd. System and method for setting a flash memory cell read threshold
US8341502B2 (en) 2010-02-28 2012-12-25 Densbits Technologies Ltd. System and method for multi-dimensional decoding
US20110214039A1 (en) * 2010-02-28 2011-09-01 Steiner Avi System and method for multi-dimensional decoding
US20110214029A1 (en) * 2010-02-28 2011-09-01 Steiner Avi System and method for multi-dimensional decoding
US8700970B2 (en) 2010-02-28 2014-04-15 Densbits Technologies Ltd. System and method for multi-dimensional decoding
US9104610B2 (en) 2010-04-06 2015-08-11 Densbits Technologies Ltd. Method, system and medium for analog encryption in a flash memory
US8516274B2 (en) 2010-04-06 2013-08-20 Densbits Technologies Ltd. Method, system and medium for analog encryption in a flash memory
US8527840B2 (en) 2010-04-06 2013-09-03 Densbits Technologies Ltd. System and method for restoring damaged data programmed on a flash device
US8745317B2 (en) 2010-04-07 2014-06-03 Densbits Technologies Ltd. System and method for storing information in a multi-level cell memory
US9021177B2 (en) 2010-04-29 2015-04-28 Densbits Technologies Ltd. System and method for allocating and using spare blocks in a flash memory
US8468431B2 (en) 2010-07-01 2013-06-18 Densbits Technologies Ltd. System and method for multi-dimensional encoding and decoding
US8510639B2 (en) 2010-07-01 2013-08-13 Densbits Technologies Ltd. System and method for multi-dimensional encoding and decoding
US8850297B1 (en) 2010-07-01 2014-09-30 Densbits Technologies Ltd. System and method for multi-dimensional encoding and decoding
US8621321B2 (en) 2010-07-01 2013-12-31 Densbits Technologies Ltd. System and method for multi-dimensional encoding and decoding
US8539311B2 (en) 2010-07-01 2013-09-17 Densbits Technologies Ltd. System and method for data recovery in multi-level cell memories
US8467249B2 (en) 2010-07-06 2013-06-18 Densbits Technologies Ltd. Systems and methods for storing, retrieving, and adjusting read thresholds in flash memory storage system
US8964464B2 (en) 2010-08-24 2015-02-24 Densbits Technologies Ltd. System and method for accelerated sampling
US8508995B2 (en) 2010-09-15 2013-08-13 Densbits Technologies Ltd. System and method for adjusting read voltage thresholds in memories
US9063878B2 (en) 2010-11-03 2015-06-23 Densbits Technologies Ltd. Method, system and computer readable medium for copy back
TWI427775B (en) * 2010-11-25 2014-02-21 Macronix Int Co Ltd Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
US8850100B2 (en) 2010-12-07 2014-09-30 Densbits Technologies Ltd. Interleaving codeword portions between multiple planes and/or dies of a flash memory device
US10079068B2 (en) 2011-02-23 2018-09-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Devices and method for wear estimation based memory management
US8693258B2 (en) 2011-03-17 2014-04-08 Densbits Technologies Ltd. Obtaining soft information using a hard interface
US8990665B1 (en) 2011-04-06 2015-03-24 Densbits Technologies Ltd. System, method and computer program product for joint search of a read threshold and soft decoding
US9372792B1 (en) 2011-05-12 2016-06-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Advanced management of a non-volatile memory
US8996790B1 (en) 2011-05-12 2015-03-31 Densbits Technologies Ltd. System and method for flash memory management
US9195592B1 (en) 2011-05-12 2015-11-24 Densbits Technologies Ltd. Advanced management of a non-volatile memory
US9396106B2 (en) 2011-05-12 2016-07-19 Avago Technologies General Ip (Singapore) Pte. Ltd. Advanced management of a non-volatile memory
US9501392B1 (en) 2011-05-12 2016-11-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Management of a non-volatile memory module
US9110785B1 (en) 2011-05-12 2015-08-18 Densbits Technologies Ltd. Ordered merge of data sectors that belong to memory space portions
US8667211B2 (en) 2011-06-01 2014-03-04 Densbits Technologies Ltd. System and method for managing a non-volatile memory
US8588003B1 (en) 2011-08-01 2013-11-19 Densbits Technologies Ltd. System, method and computer program product for programming and for recovering from a power failure
US8553468B2 (en) 2011-09-21 2013-10-08 Densbits Technologies Ltd. System and method for managing erase operations in a non-volatile memory
US8996788B2 (en) 2012-02-09 2015-03-31 Densbits Technologies Ltd. Configurable flash interface
US8947941B2 (en) 2012-02-09 2015-02-03 Densbits Technologies Ltd. State responsive operations relating to flash memory cells
US8996793B1 (en) 2012-04-24 2015-03-31 Densbits Technologies Ltd. System, method and computer readable medium for generating soft information
US8838937B1 (en) 2012-05-23 2014-09-16 Densbits Technologies Ltd. Methods, systems and computer readable medium for writing and reading data
US9431118B1 (en) 2012-05-30 2016-08-30 Avago Technologies General Ip (Singapore) Pte. Ltd. System, method and computer program product for processing read threshold information and for reading a flash memory module
US8879325B1 (en) 2012-05-30 2014-11-04 Densbits Technologies Ltd. System, method and computer program product for processing read threshold information and for reading a flash memory module
US9921954B1 (en) 2012-08-27 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and system for split flash memory management between host and storage controller
US11594611B2 (en) 2012-11-20 2023-02-28 Micron Technology, Inc. Transistors, memory cells and semiconductor constructions
US10943986B2 (en) 2012-11-20 2021-03-09 Micron Technology, Inc. Transistors, memory cells and semiconductor constructions comprising ferroelectric gate dielectric
US9368225B1 (en) 2012-11-21 2016-06-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Determining read thresholds based upon read error direction statistics
US9069659B1 (en) 2013-01-03 2015-06-30 Densbits Technologies Ltd. Read threshold determination using reference read threshold
US9136876B1 (en) 2013-06-13 2015-09-15 Densbits Technologies Ltd. Size limited multi-dimensional decoding
US9413491B1 (en) 2013-10-08 2016-08-09 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for multiple dimension decoding and encoding a message
US9397706B1 (en) 2013-10-09 2016-07-19 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for irregular multiple dimension decoding and encoding
US9786388B1 (en) 2013-10-09 2017-10-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Detecting and managing bad columns
US9348694B1 (en) 2013-10-09 2016-05-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Detecting and managing bad columns
US9536612B1 (en) 2014-01-23 2017-01-03 Avago Technologies General Ip (Singapore) Pte. Ltd Digital signaling processing for three dimensional flash memory arrays
US10120792B1 (en) 2014-01-29 2018-11-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Programming an embedded flash storage device
US9542262B1 (en) 2014-05-29 2017-01-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Error correction
US9892033B1 (en) 2014-06-24 2018-02-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Management of memory units
US9584159B1 (en) 2014-07-03 2017-02-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Interleaved encoding
US9407291B1 (en) 2014-07-03 2016-08-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Parallel encoding method and system
US9972393B1 (en) 2014-07-03 2018-05-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Accelerating programming of a flash memory module
US9449702B1 (en) 2014-07-08 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Power management
US9524211B1 (en) 2014-11-18 2016-12-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Codeword management
US10305515B1 (en) 2015-02-02 2019-05-28 Avago Technologies International Sales Pte. Limited System and method for encoding using multiple linear feedback shift registers
US10628255B1 (en) 2015-06-11 2020-04-21 Avago Technologies International Sales Pte. Limited Multi-dimensional decoding
US9851921B1 (en) 2015-07-05 2017-12-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Flash memory chip processing
US9954558B1 (en) 2016-03-03 2018-04-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Fast decoding of data stored in a flash memory

Also Published As

Publication number Publication date
SG125143A1 (en) 2006-09-29
US20090010075A9 (en) 2009-01-08
JP4678760B2 (en) 2011-04-27
AU2003263748A1 (en) 2004-01-06
US7220634B2 (en) 2007-05-22
WO2004001802A3 (en) 2004-08-05
JP2005531146A (en) 2005-10-13
JP2011071536A (en) 2011-04-07
US7535048B2 (en) 2009-05-19
EP1530803A2 (en) 2005-05-18
AU2003263748A8 (en) 2004-01-06
US20040130934A1 (en) 2004-07-08
KR100864135B1 (en) 2008-10-16
US20060126398A1 (en) 2006-06-15
US20060124998A1 (en) 2006-06-15
CN100407427C (en) 2008-07-30
CN1675770A (en) 2005-09-28
WO2004001802A2 (en) 2003-12-31
KR20050013221A (en) 2005-02-03
US7541242B2 (en) 2009-06-02

Similar Documents

Publication Publication Date Title
US7535048B2 (en) NROM memory cell, memory array, related devices and methods
US7269071B2 (en) NROM memory cell, memory array, related devices and methods
US7238599B2 (en) Multi-state NROM device
US7622355B2 (en) Write once read only memory employing charge trapping in insulators
US6842370B2 (en) Vertical NROM having a storage density of 1 bit per 1F2
US20070091661A1 (en) Nanocrystal write once read only memory for archival storage
US20030235076A1 (en) Multistate NROM having a storage density much greater than 1 Bit per 1F2

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12