US20090209082A1 - Semiconductor Device and Method for Fabricating the Same - Google Patents

Semiconductor Device and Method for Fabricating the Same Download PDF

Info

Publication number
US20090209082A1
US20090209082A1 US12/413,460 US41346009A US2009209082A1 US 20090209082 A1 US20090209082 A1 US 20090209082A1 US 41346009 A US41346009 A US 41346009A US 2009209082 A1 US2009209082 A1 US 2009209082A1
Authority
US
United States
Prior art keywords
layer
semiconductor substrate
oxide layer
mask pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/413,460
Inventor
Jin Hyo Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/413,460 priority Critical patent/US20090209082A1/en
Publication of US20090209082A1 publication Critical patent/US20090209082A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Definitions

  • the present invention relates to a semiconductor device, and more particularly, to a semiconductor device having improved isolation structures and/or characteristics, and a method for fabricating the same.
  • a semiconductor device comprises a plurality of electrical devices, such as transistors, diodes and capacitors, on a semiconductor substrate.
  • electrical devices such as transistors, diodes and capacitors
  • the size of the electrical devices is scaled below a nano degree.
  • the device isolation layer should have high isolation characteristics.
  • FIG. 1 is a cross sectional view of an isolation structure in a semiconductor device according to the related art.
  • a p-type well 12 and an n-type well 13 are formed at a predetermined depth in a semiconductor substrate 11 .
  • an STI layer 14 is formed in a predetermined portion of the semiconductor substrate 11 .
  • the STI layer 14 helps to electrically isolate the p-type well 12 and the n-type well 13 from each other.
  • the STI layer 14 divides each of the p-type and n-type wells 12 and 13 into an active region and a field region.
  • a plurality of n-type layers 15 are formed and are isolated from one another at least in part by the STI layers 14 .
  • a plurality of p-type layers 16 are formed and are isolated at least in part from one another by the STI layers 14 .
  • various factors such as the depth of the STI layer 14 , the width of the STI layer 14 , the characteristics of gap-fill oxide layer in the STI layer 14 , the lateral slope of the STI layer 14 , the p-type well and n-type well doping profile, and the lower doping profile of the STI layer 14 have an effect on the isolation characteristics (that is, the isolation characteristics between the adjacent n-type layers 15 , the isolation characteristics between the adjacent p-type layers 16 , and the latch-up characteristics between the n-type layer 15 and the p-type layer 16 adjacent to each other).
  • the lower doping profile of the STI layer 14 has a great effect on the isolation characteristics.
  • the wells and regions are divided primarily by the STI layers 14 , which may cause a deterioration in the isolation characteristics.
  • a leakage current may be generated in the semiconductor device.
  • the operation characteristics of the semiconductor device may deteriorate due to the leakage current.
  • the doping density is increased by implanting field stop ions and channel stop ions into the entire surface of the semiconductor substrate.
  • the doping density of the p-type well 12 and the n-type well 13 also increases, which may deteriorate the junction diode characteristics.
  • V th of MOS transistor As a threshold voltage V th of MOS transistor is rising, it may cause a limit on the increase of the density of the field channel stop ions.
  • the present invention is directed to a semiconductor device and a method for fabricating the same that substantially obviates one or more problems due to limitations and/or disadvantages of the related art.
  • An object of the present invention is to provide a semiconductor device and a method for fabricating the same, to improve the isolation characteristics, avoid deterioration of the junction diode characteristics, and/or avoid the increase of a threshold voltage of the MOS transistor.
  • a semiconductor device includes a semiconductor substrate; an STI layer in a predetermined portion of the semiconductor substrate, dividing the semiconductor substrate into an active region and a field region; and a field channel stop ion implantation layer in the semiconductor substrate under the STI layer.
  • a semiconductor device may include a semiconductor substrate; p-type and n-type wells in the semiconductor substrate; an STI layer in a predetermined portion of the semiconductor substrate, separating the p-type and n-type wells and dividing the substrate into an active region and a field region; a first field channel stop ion implantation layer in the p-type well under the STI layer; a second field channel stop ion implantation layer in the n-type well under the STI layer; n-type impurity ion areas in the active region of the p-type well; and p-type impurity ion areas in the active region of the n-type well.
  • a method for fabricating a semiconductor device includes implanting ions at a predetermined depth in a semiconductor substrate having an insulating mask pattern thereon, to form a field channel stop ion implantation layer; and etching the semiconductor substrate to form a trench and expose the field channel stop ion implantation layer.
  • a method for fabricating a semiconductor device includes defining active regions and field regions in a semiconductor substrate; forming an insulating pattern on the active regions of the semiconductor substrate; forming spacers at both sides of the insulating pattern; forming a first field channel stop ion implantation layer at a first predetermined depth in the semiconductor substrate using the insulating pattern and the spacers as a mask; forming a second field channel stop ion implantation layer at a second predetermined depth in the semiconductor substrate using the insulating pattern and the spacers as a mask; removing the spacers; etching the semiconductor substrate to form a trench and expose the first and second field channel stop ion implantation layers using the insulating pattern as a mask; forming an STI layer by gap-filling the trench with an STI insulator and planarizing the STI insulator; and forming p-type and n-type wells by respectively implanting impurity ions into different active regions of the substrate.
  • FIG. 1 is a cross sectional view of a semiconductor device according to the related art
  • FIG. 2 is a cross sectional view of an exemplary semiconductor device according to the present invention.
  • FIG. 3A to FIG. 3I are cross sectional views of an exemplary process for fabricating a semiconductor device according to the present invention.
  • FIG. 2 is a cross sectional view of a semiconductor device according to the present invention.
  • the semiconductor device includes a p-type well 39 , an n-type well 40 , an STI (Shallow Trench Isolation) layer 38 a , a first field channel stop ion implantation layer 35 a , a second field channel stop ion implantation layer 35 b , a heavily-doped n-type impurity ion layer 41 , and a heavily-doped n-type impurity ion layer 42 .
  • STI Shallow Trench Isolation
  • the p-type well 39 and the n-type well 40 are formed at a predetermined depth in a semiconductor substrate 30 .
  • the predetermined depth for the p-type well 39 may be the same as or different from the predetermined depth for the n-type well 40 , but preferably, it is about the same.
  • the STI layer 38 a is generally between the p-type well 39 and the n-type well 40 , and also divides each well 30 and 40 into one or more active regions and one or more field regions (alternatively, the p-type well 39 and the n-type well 40 are formed between and/or below STI structures 38 a , and/or one or more active regions and one or more field regions may be defined by STI layer 38 a in a given p-type well 39 or n-type well 40 ). Then, the first field channel stop ion implantation layer 35 a is generally formed in a part of the p-type well 39 under the STI layer 38 a .
  • the second field channel stop ion implantation layer 35 b is generally formed in a part of the n-type well 40 under the STI layer 38 a .
  • the heavily-doped n-type impurity ion layer 41 is formed in the active region of the p-type well 39 .
  • the heavily-doped p-type impurity ion layer 42 is formed in the active region of the n-type well 40 .
  • the first field channel stop ion implantation layer 35 a may be doped with a p-type dopant comprising boron (B) and/or indium (In), and the second field channel stop ion implantation layer 35 b may be doped with an n-type dopant comprising phosphorous (P), arsenic (As) and/or antimony (Sb).
  • first and second field channel stop ion implantation layers 35 a and 35 b are formed under the STI layers 38 a (e.g., in a field region), rather than in an active region, it is possible to enhance the isolation characteristics without deterioration of junction diode characteristics and/or an increase in the threshold voltage of a MOS transistor.
  • FIG. 3A to FIG. 3I are cross sectional views of the process for fabricating the semiconductor device according to the present invention.
  • a pad oxide layer 31 is formed (generally by depositing [e.g., by chemical vapor depositing, or CVD] or thermally growing silicon oxide [e.g., wet or dry thermal oxidation]).
  • the pad oxide layer 31 may have a thickness of from 300 ⁇ to 500 ⁇ .
  • a nitride layer 32 is formed (generally by depositing [e.g., by CVD] silicon nitride).
  • the nitride layer 32 may have a thickness of from 500 ⁇ to 3000 ⁇ .
  • a hard mask oxide layer 33 is formed (generally by CVD) having a thickness of from 500 ⁇ to 5000 ⁇ .
  • the pad oxide layer 31 , nitride layer 32 , and hard mask oxide layer 33 are generally formed on the semiconductor substrate 30 in sequence. At this time, it is possible to omit the hard mask oxide layer 33 since the hard mask oxide layer 33 generally prevents the nitride layer 32 from being etched in an STI etching process and/or reduces the generation of particles from a subsequent nitride etching step (to form an opening for subsequent pad oxide and trench etching).
  • portions of the hard mask oxide layer 33 and the nitride layer 32 are selectively removed by photolithography and etching, whereby the hard mask oxide layer 33 and the nitride layer 32 remain on the active regions and are removed from the field regions and the locations where the STI layers will be formed. That is, the portions on which the nitride layer 32 and the hard mask oxide layer 33 remain correspond to the active regions. Meanwhile, the portions from which the nitride layer 32 and the hard mask oxide layer 33 are removed correspond to the field regions.
  • an oxide layer is deposited on the entire surface of the semiconductor substrate 30 , and the deposited oxide layer is blanket-etched (e.g., dry etched or anisotropically etched), thereby forming insulating spacers 34 at the sides of the nitride layer 32 and the hard mask oxide layer 33 .
  • Other materials may also be used for insulating spacers 34 , such as nitride (e.g., silicon nitride), silicon or aluminum oxynitrides, organic materials, etc.
  • a first photoresist PR 1 is coated on the entire surface of the semiconductor substrate 30 , and then an exposure and development process is performed on the coated first photoresist PR 1 , whereby the first photoresist PR 1 remains only on or over regions in which the n-type wells will be later formed.
  • a p-type dopant e.g., boron [B] and/or indium [In]
  • a p-type dopant is implanted into the semiconductor substrate 30 at a first predetermined depth, thereby forming the first field channel stop ion implantation layer 35 a .
  • the patterned first photoresist PR 1 and the exposed hard mask oxide layer 33 and the spacers 34 are used as a mask when implanting the p-type dopant into the semiconductor substrate 30 .
  • the p-type dopant is implanted at a density of 1 ⁇ 10 11 ⁇ 1 ⁇ 10 15 ions/cm 2 , an energy of 50 ⁇ 2000 KeV, and a tilt angle of 0 ⁇ 7°.
  • a second photoresist PR 2 is coated on the entire surface of the semiconductor substrate 30 . Then, the coated second photoresist PR 2 is patterned to remain only on or over regions in which the p-type wells will be later formed. After that, an n-type dopant (e.g., phosphorous [P], arsenic [As] and/or antimony [Sb]) is implanted into the semiconductor substrate 30 at a second predetermined depth, thereby forming the second field channel stop ion implantation layer 35 b .
  • the first and second predetermined depths may be the same or different, but preferably, they are about the same.
  • the patterned second photoresist PR 2 and the exposed hard mask oxide layer 33 and the spacers 34 are used as a mask when implanting the n-type dopant into the semiconductor substrate 30 .
  • the n-type dopant is implanted at a density of 1 ⁇ 10 11 ⁇ 1 ⁇ 10 15 ions/cm 2 , an energy of 50 ⁇ 2000 KeV, and a tilt angle of 0 ⁇ 7°.
  • the second photoresist PR 2 and the insulating spacers 34 are removed (generally in that order).
  • the semiconductor substrate 30 is etched, generally sufficiently to expose the first and second field channel stop ion implantation layers 35 a and 35 b , using the oxide layer 33 as a mask, thereby forming a trench 36 .
  • a liner oxide layer 37 is formed on the surface of the semiconductor substrate 30 in the trench 36 , generally by thermal oxidation (which generally repairs any damage to the semiconductor substrate 30 that may have been caused during the trench etching step).
  • a gap-fill oxide layer 38 is formed (generally by CVD) on the entire surface of the semiconductor substrate to completely fill the trench 36 .
  • the STI layer 38 a is removed from the substrate 30 , but kept inside the trench 36 , by CMP (Chemical Mechanical Polishing) on the surface of the semiconductor substrate 30 .
  • CMP Chemical Mechanical Polishing
  • the gap-fill oxide layer 38 , the liner oxide layer 37 , the hard mask oxide layer 33 , the nitride layer 32 and the pad oxide layer 31 are sequentially removed from the upper side of the substrate 30 .
  • the STI layer 38 a is formed, with the gap-fill oxide layer 38 remaining in the trench 34 .
  • a third photoresist pattern (not shown) is formed on the semiconductor substrate 30 , wherein the third photoresist pattern has the same pattern or shape as the first photoresist pattern.
  • the p-type well 39 is formed by implanting impurity ions to the semiconductor substrate 30 with the third photoresist pattern (not shown) as a mask.
  • a fourth photoresist pattern (not shown) is formed on the semiconductor substrate 30 , wherein the fourth photoresist pattern has the same pattern or shape as the second photoresist pattern. Then, the n-type well 40 is formed by implanting impurity ions to the semiconductor substrate 30 with the fourth photoresist pattern (not shown) as a mask.
  • the density of the impurity ions in the first and second field channel stop ion implantation layers 35 a and 35 b is generally higher than the density of the impurity ions in the p-type well and the n-type well.
  • one or more (generally two or more) heavily-doped n-type impurity ion layers 41 are formed in the p-type well 39
  • one or more (generally two or more) heavily-doped p-type impurity ion layers 42 are formed in the n-type well 40 .
  • the CMP process of FIG. 3H is performed such that the surface of the nitride layer 32 is exposed. After that, the nitride layer 32 and the pad oxide layer 31 may be removed by wet or dry etching, rather than further polishing.
  • the semiconductor device and the method for fabricating the same according to the present invention has the following advantages.
  • the first and second field channel stop ion implantation layers are formed under the STI layers, and preferably only under the STI layers (in the field regions, rather than in the active regions).
  • the dopant density of the field channel stop ion implantation layer is higher than that of the well in which it is located, it is possible to reduce or prevent deterioration of junction diode characteristics and an increase in the threshold voltage of a MOS transistor. Accordingly, it is possible to improve the isolation characteristics of the semiconductor device by sufficiently increasing the density of the field channel stop ions.

Abstract

A semiconductor device and a method for fabricating the same may improve the isolation characteristics without deterioration of the junction diode characteristics and an increase in a threshold voltage of a MOS transistor. The device includes a semiconductor substrate; an STI layer in a predetermined portion of the semiconductor substrate, dividing the semiconductor substrate into an active region and a field region; and a field channel stop ion implantation layer in the semiconductor substrate under the STI layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/205,540, filed Aug. 16, 2005 (Attorney Docket No. OPP-GZ-2005-0086-US-00), pending, which is incorporated herein by reference in its entirety. This application also claims the benefit of Korean Application No. P2004-66290 filed on Aug. 23, 2004, which is hereby incorporated by reference as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device, and more particularly, to a semiconductor device having improved isolation structures and/or characteristics, and a method for fabricating the same.
  • 2. Discussion of the Related Art
  • Generally, a semiconductor device comprises a plurality of electrical devices, such as transistors, diodes and capacitors, on a semiconductor substrate. In this case, it is necessary for the semiconductor device to have an electrical device isolation layer. With high integration in the semiconductor device, the size of the electrical devices is scaled below a nano degree. Thus, the device isolation layer should have high isolation characteristics.
  • Hereinafter, a semiconductor device according to the related art will be described with reference to the accompanying drawings.
  • FIG. 1 is a cross sectional view of an isolation structure in a semiconductor device according to the related art.
  • As shown in FIG. 1, a p-type well 12 and an n-type well 13 are formed at a predetermined depth in a semiconductor substrate 11. Also, an STI layer 14 is formed in a predetermined portion of the semiconductor substrate 11. The STI layer 14 helps to electrically isolate the p-type well 12 and the n-type well 13 from each other. Also, the STI layer 14 divides each of the p-type and n- type wells 12 and 13 into an active region and a field region.
  • In the p-type well 12, a plurality of n-type layers 15 are formed and are isolated from one another at least in part by the STI layers 14. In the n-type well 13, a plurality of p-type layers 16 are formed and are isolated at least in part from one another by the STI layers 14.
  • In the semiconductor device, various factors such as the depth of the STI layer 14, the width of the STI layer 14, the characteristics of gap-fill oxide layer in the STI layer 14, the lateral slope of the STI layer 14, the p-type well and n-type well doping profile, and the lower doping profile of the STI layer 14 have an effect on the isolation characteristics (that is, the isolation characteristics between the adjacent n-type layers 15, the isolation characteristics between the adjacent p-type layers 16, and the latch-up characteristics between the n-type layer 15 and the p-type layer 16 adjacent to each other). Especially, the lower doping profile of the STI layer 14 has a great effect on the isolation characteristics.
  • However, in the method for fabricating the semiconductor device according to the related art, the wells and regions are divided primarily by the STI layers 14, which may cause a deterioration in the isolation characteristics. For example, a leakage current may be generated in the semiconductor device. As a result, the operation characteristics of the semiconductor device may deteriorate due to the leakage current.
  • Although not shown, when forming the p-type well 12 and the n-type well 13 to enhance the isolation characteristics in the semiconductor device, the doping density is increased by implanting field stop ions and channel stop ions into the entire surface of the semiconductor substrate.
  • As impurity ions are implanted into the entire surface of the semiconductor substrate during field stop ion implantation and channel stop ion implantation, the doping density of the p-type well 12 and the n-type well 13 also increases, which may deteriorate the junction diode characteristics. Thus, as a threshold voltage Vth of MOS transistor is rising, it may cause a limit on the increase of the density of the field channel stop ions.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a semiconductor device and a method for fabricating the same that substantially obviates one or more problems due to limitations and/or disadvantages of the related art.
  • An object of the present invention is to provide a semiconductor device and a method for fabricating the same, to improve the isolation characteristics, avoid deterioration of the junction diode characteristics, and/or avoid the increase of a threshold voltage of the MOS transistor.
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a semiconductor device includes a semiconductor substrate; an STI layer in a predetermined portion of the semiconductor substrate, dividing the semiconductor substrate into an active region and a field region; and a field channel stop ion implantation layer in the semiconductor substrate under the STI layer.
  • In another aspect, a semiconductor device may include a semiconductor substrate; p-type and n-type wells in the semiconductor substrate; an STI layer in a predetermined portion of the semiconductor substrate, separating the p-type and n-type wells and dividing the substrate into an active region and a field region; a first field channel stop ion implantation layer in the p-type well under the STI layer; a second field channel stop ion implantation layer in the n-type well under the STI layer; n-type impurity ion areas in the active region of the p-type well; and p-type impurity ion areas in the active region of the n-type well.
  • In another aspect, a method for fabricating a semiconductor device includes implanting ions at a predetermined depth in a semiconductor substrate having an insulating mask pattern thereon, to form a field channel stop ion implantation layer; and etching the semiconductor substrate to form a trench and expose the field channel stop ion implantation layer.
  • In another aspect, a method for fabricating a semiconductor device includes defining active regions and field regions in a semiconductor substrate; forming an insulating pattern on the active regions of the semiconductor substrate; forming spacers at both sides of the insulating pattern; forming a first field channel stop ion implantation layer at a first predetermined depth in the semiconductor substrate using the insulating pattern and the spacers as a mask; forming a second field channel stop ion implantation layer at a second predetermined depth in the semiconductor substrate using the insulating pattern and the spacers as a mask; removing the spacers; etching the semiconductor substrate to form a trench and expose the first and second field channel stop ion implantation layers using the insulating pattern as a mask; forming an STI layer by gap-filling the trench with an STI insulator and planarizing the STI insulator; and forming p-type and n-type wells by respectively implanting impurity ions into different active regions of the substrate.
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle(s) of the invention. In the drawings:
  • FIG. 1 is a cross sectional view of a semiconductor device according to the related art;
  • FIG. 2 is a cross sectional view of an exemplary semiconductor device according to the present invention; and
  • FIG. 3A to FIG. 3I are cross sectional views of an exemplary process for fabricating a semiconductor device according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • Hereinafter, a semiconductor device and a method for fabricating the same according to the present invention will be described with reference to the accompanying drawings.
  • FIG. 2 is a cross sectional view of a semiconductor device according to the present invention.
  • As shown in FIG. 2, the semiconductor device according to the present invention includes a p-type well 39, an n-type well 40, an STI (Shallow Trench Isolation) layer 38 a, a first field channel stop ion implantation layer 35 a, a second field channel stop ion implantation layer 35 b, a heavily-doped n-type impurity ion layer 41, and a heavily-doped n-type impurity ion layer 42.
  • At this time, the p-type well 39 and the n-type well 40 are formed at a predetermined depth in a semiconductor substrate 30. The predetermined depth for the p-type well 39 may be the same as or different from the predetermined depth for the n-type well 40, but preferably, it is about the same. The STI layer 38 a is generally between the p-type well 39 and the n-type well 40, and also divides each well 30 and 40 into one or more active regions and one or more field regions (alternatively, the p-type well 39 and the n-type well 40 are formed between and/or below STI structures 38 a, and/or one or more active regions and one or more field regions may be defined by STI layer 38 a in a given p-type well 39 or n-type well 40). Then, the first field channel stop ion implantation layer 35 a is generally formed in a part of the p-type well 39 under the STI layer 38 a. The second field channel stop ion implantation layer 35 b is generally formed in a part of the n-type well 40 under the STI layer 38 a. The heavily-doped n-type impurity ion layer 41 is formed in the active region of the p-type well 39. The heavily-doped p-type impurity ion layer 42 is formed in the active region of the n-type well 40.
  • The first field channel stop ion implantation layer 35 a may be doped with a p-type dopant comprising boron (B) and/or indium (In), and the second field channel stop ion implantation layer 35 b may be doped with an n-type dopant comprising phosphorous (P), arsenic (As) and/or antimony (Sb).
  • As the first and second field channel stop ion implantation layers 35 a and 35 b are formed under the STI layers 38 a (e.g., in a field region), rather than in an active region, it is possible to enhance the isolation characteristics without deterioration of junction diode characteristics and/or an increase in the threshold voltage of a MOS transistor.
  • A method for fabricating the semiconductor device according to the present invention will be described as follows.
  • FIG. 3A to FIG. 3I are cross sectional views of the process for fabricating the semiconductor device according to the present invention.
  • As shown in FIG. 3A, a pad oxide layer 31 is formed (generally by depositing [e.g., by chemical vapor depositing, or CVD] or thermally growing silicon oxide [e.g., wet or dry thermal oxidation]). The pad oxide layer 31 may have a thickness of from 300 Å to 500 Å. Then, a nitride layer 32 is formed (generally by depositing [e.g., by CVD] silicon nitride). The nitride layer 32 may have a thickness of from 500 Å to 3000 Å. Then, a hard mask oxide layer 33 is formed (generally by CVD) having a thickness of from 500 Å to 5000 Å. The pad oxide layer 31, nitride layer 32, and hard mask oxide layer 33 are generally formed on the semiconductor substrate 30 in sequence. At this time, it is possible to omit the hard mask oxide layer 33 since the hard mask oxide layer 33 generally prevents the nitride layer 32 from being etched in an STI etching process and/or reduces the generation of particles from a subsequent nitride etching step (to form an opening for subsequent pad oxide and trench etching).
  • Referring to FIG. 3B, portions of the hard mask oxide layer 33 and the nitride layer 32 are selectively removed by photolithography and etching, whereby the hard mask oxide layer 33 and the nitride layer 32 remain on the active regions and are removed from the field regions and the locations where the STI layers will be formed. That is, the portions on which the nitride layer 32 and the hard mask oxide layer 33 remain correspond to the active regions. Meanwhile, the portions from which the nitride layer 32 and the hard mask oxide layer 33 are removed correspond to the field regions.
  • As shown in FIG. 3C, an oxide layer is deposited on the entire surface of the semiconductor substrate 30, and the deposited oxide layer is blanket-etched (e.g., dry etched or anisotropically etched), thereby forming insulating spacers 34 at the sides of the nitride layer 32 and the hard mask oxide layer 33. Other materials may also be used for insulating spacers 34, such as nitride (e.g., silicon nitride), silicon or aluminum oxynitrides, organic materials, etc.
  • Referring to FIG. 3D, a first photoresist PR1 is coated on the entire surface of the semiconductor substrate 30, and then an exposure and development process is performed on the coated first photoresist PR1, whereby the first photoresist PR1 remains only on or over regions in which the n-type wells will be later formed.
  • Subsequently, a p-type dopant (e.g., boron [B] and/or indium [In]) is implanted into the semiconductor substrate 30 at a first predetermined depth, thereby forming the first field channel stop ion implantation layer 35 a. In this case, the patterned first photoresist PR1 and the exposed hard mask oxide layer 33 and the spacers 34 (i.e., which are not masked by the first photoresist PR1) are used as a mask when implanting the p-type dopant into the semiconductor substrate 30. At this time, the p-type dopant is implanted at a density of 1×1011˜1×1015 ions/cm2, an energy of 50˜2000 KeV, and a tilt angle of 0˜7°.
  • As shown in FIG. 3E, after removing the first photoresist PR1, a second photoresist PR2 is coated on the entire surface of the semiconductor substrate 30. Then, the coated second photoresist PR2 is patterned to remain only on or over regions in which the p-type wells will be later formed. After that, an n-type dopant (e.g., phosphorous [P], arsenic [As] and/or antimony [Sb]) is implanted into the semiconductor substrate 30 at a second predetermined depth, thereby forming the second field channel stop ion implantation layer 35 b. As described above, the first and second predetermined depths may be the same or different, but preferably, they are about the same. In this case, the patterned second photoresist PR2 and the exposed hard mask oxide layer 33 and the spacers 34 (i.e., which are not masked by the second photoresist PR2) are used as a mask when implanting the n-type dopant into the semiconductor substrate 30. At this time, the n-type dopant is implanted at a density of 1×1011˜1×1015 ions/cm2, an energy of 50˜2000 KeV, and a tilt angle of 0˜7°.
  • As shown in FIG. 3F, the second photoresist PR2 and the insulating spacers 34 are removed (generally in that order). Then, the semiconductor substrate 30 is etched, generally sufficiently to expose the first and second field channel stop ion implantation layers 35 a and 35 b, using the oxide layer 33 as a mask, thereby forming a trench 36. Thereafter, a liner oxide layer 37 is formed on the surface of the semiconductor substrate 30 in the trench 36, generally by thermal oxidation (which generally repairs any damage to the semiconductor substrate 30 that may have been caused during the trench etching step).
  • Referring to FIG. 3G, a gap-fill oxide layer 38 is formed (generally by CVD) on the entire surface of the semiconductor substrate to completely fill the trench 36.
  • As shown in FIG. 3H, the STI layer 38 a is removed from the substrate 30, but kept inside the trench 36, by CMP (Chemical Mechanical Polishing) on the surface of the semiconductor substrate 30. At this time, when performing the CMP process, the gap-fill oxide layer 38, the liner oxide layer 37, the hard mask oxide layer 33, the nitride layer 32 and the pad oxide layer 31 are sequentially removed from the upper side of the substrate 30. In this state, the STI layer 38 a is formed, with the gap-fill oxide layer 38 remaining in the trench 34.
  • Subsequently, a third photoresist pattern (not shown) is formed on the semiconductor substrate 30, wherein the third photoresist pattern has the same pattern or shape as the first photoresist pattern. Then, the p-type well 39 is formed by implanting impurity ions to the semiconductor substrate 30 with the third photoresist pattern (not shown) as a mask.
  • Also, a fourth photoresist pattern (not shown) is formed on the semiconductor substrate 30, wherein the fourth photoresist pattern has the same pattern or shape as the second photoresist pattern. Then, the n-type well 40 is formed by implanting impurity ions to the semiconductor substrate 30 with the fourth photoresist pattern (not shown) as a mask.
  • The density of the impurity ions in the first and second field channel stop ion implantation layers 35 a and 35 b is generally higher than the density of the impurity ions in the p-type well and the n-type well.
  • As shown in FIG. 3I, one or more (generally two or more) heavily-doped n-type impurity ion layers 41 are formed in the p-type well 39, and one or more (generally two or more) heavily-doped p-type impurity ion layers 42 are formed in the n-type well 40.
  • In the CMP process of FIG. 3H, the CMP process is performed such that the surface of the nitride layer 32 is exposed. After that, the nitride layer 32 and the pad oxide layer 31 may be removed by wet or dry etching, rather than further polishing.
  • As mentioned above, the semiconductor device and the method for fabricating the same according to the present invention has the following advantages.
  • In the semiconductor device according to the present invention, the first and second field channel stop ion implantation layers are formed under the STI layers, and preferably only under the STI layers (in the field regions, rather than in the active regions). Thus, even though the dopant density of the field channel stop ion implantation layer is higher than that of the well in which it is located, it is possible to reduce or prevent deterioration of junction diode characteristics and an increase in the threshold voltage of a MOS transistor. Accordingly, it is possible to improve the isolation characteristics of the semiconductor device by sufficiently increasing the density of the field channel stop ions.
  • Also, it is possible to fabricate a high-integration semiconductor device by improving the isolation characteristics.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (20)

1. A method for fabricating a semiconductor device comprising:
forming an insulating mask pattern and spacers at sides of the insulating mask pattern on a semiconductor substrate, wherein the insulating mask pattern defines an active region and a field region of the semiconductor substrate;
implanting ions at a predetermined depth in the semiconductor substrate using the insulating mask pattern and the spacers as a mask to form a field channel stop ion implantation layer;
removing the spacers; and
after removing the spacers, etching the semiconductor substrate having the insulating mask pattern thereon to form a trench and expose the field channel stop ion implantation layer.
2. The method as claimed in claim 1, further comprising, after forming the trench, forming an STI layer by filling the trench with an STI insulator and planarizing the STI insulator.
3. The method as claimed in claim 2, further comprising forming a liner layer on a surface of the semiconductor substrate in the trench before filling the trench.
4. The method as claimed in claim 3, wherein the liner layer comprises a thermal oxide layer.
5. The method as claimed in claim 1, wherein forming the field channel stop ion implantation layer comprises implanting impurity ions at a density of 1×1011˜1×1015 ions/cm2 and an energy of 50˜2000 KeV.
6. The method as claimed in claim 2, further comprising forming a pad oxide layer having a thickness of from 300 to about 500 Å on the semiconductor substrate before forming the insulating mask pattern.
7. The method as claimed in claim 6, wherein the insulating mask pattern comprises a nitride layer having a thickness of from 500 to about 3000 Å.
8. The method as claimed in claim 7, wherein the insulating mask pattern further comprises an oxide layer on the nitride layer having a thickness of from 500 to about 5000 Å.
9. The method as claimed in claim 1, wherein etching the semiconductor substrate comprises etching a field region of the semiconductor substrate.
10. The method as claimed in claim 1, wherein the field channel stop ion implantation layer is formed in a field region of the semiconductor substrate.
11. The method as claimed in claim 8, wherein forming the insulating mask pattern comprises removing the oxide layer and the nitride layer from the field regions of the semiconductor substrate using photolithography and etching.
12. The method as claimed in claim 8, wherein planarizing the STI insulator comprises sequentially removing the oxide layer, the nitride layer, and the pad oxide layer to expose the active region.
13. The method as claimed in claim 11, wherein planarizing the STI insulator comprises removing the oxide layer.
14. The method as claimed in claim 13, further comprising removing the nitride layer and the pad oxide layer by wet or dry etching to expose the active region.
15. The method as claimed in claim 7, wherein forming the insulating mask pattern comprises removing the nitride layer from the field regions of the semiconductor substrate using photolithography and etching.
16. The method as claimed in claim 15, further comprising removing the nitride layer and the pad oxide layer by wet or dry etching to expose the active region.
17. The method as claimed in claim 12, further comprising implanting impurity ions into the active region to form a well.
18. The method as claimed in claim 5, wherein the impurity ions are implanted at a tilt angle of 0 to about 7°.
19. The method as claimed in claim 5, wherein the impurity ions are p-type ions.
20. The method as claimed in claim 5, wherein the impurity ions are n-type ions.
US12/413,460 2004-08-23 2009-03-27 Semiconductor Device and Method for Fabricating the Same Abandoned US20090209082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/413,460 US20090209082A1 (en) 2004-08-23 2009-03-27 Semiconductor Device and Method for Fabricating the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2004-0066290 2004-08-23
KR1020040066290A KR100606935B1 (en) 2004-08-23 2004-08-23 method for fabrication Semiconductor device
US11/205,540 US7544582B2 (en) 2004-08-23 2005-08-16 Semiconductor device and method for fabricating the same
US12/413,460 US20090209082A1 (en) 2004-08-23 2009-03-27 Semiconductor Device and Method for Fabricating the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/205,540 Continuation US7544582B2 (en) 2004-08-23 2005-08-16 Semiconductor device and method for fabricating the same

Publications (1)

Publication Number Publication Date
US20090209082A1 true US20090209082A1 (en) 2009-08-20

Family

ID=35910146

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/205,540 Expired - Fee Related US7544582B2 (en) 2004-08-23 2005-08-16 Semiconductor device and method for fabricating the same
US12/413,460 Abandoned US20090209082A1 (en) 2004-08-23 2009-03-27 Semiconductor Device and Method for Fabricating the Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/205,540 Expired - Fee Related US7544582B2 (en) 2004-08-23 2005-08-16 Semiconductor device and method for fabricating the same

Country Status (2)

Country Link
US (2) US7544582B2 (en)
KR (1) KR100606935B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368696C (en) * 2002-07-10 2008-02-13 特伯考尔公司 Device to relieve thrust load in a rotor-bearing system using permanent magnets
US20100025809A1 (en) * 2008-07-30 2010-02-04 Trion Technology, Inc. Integrated Circuit and Method of Forming Sealed Trench Junction Termination
US8163624B2 (en) * 2008-07-30 2012-04-24 Bowman Ronald R Discrete semiconductor device and method of forming sealed trench junction termination
KR101592505B1 (en) * 2009-02-16 2016-02-05 삼성전자주식회사 Semiconductor memory device and method of manufacturing the same
US8232177B2 (en) * 2009-09-30 2012-07-31 International Business Machines Corporation Method of generating uniformly aligned well and isolation regions in a substrate and resulting structure
US8198700B2 (en) * 2010-01-21 2012-06-12 International Business Machines Corporation Deep well structures with single depth shallow trench isolation regions
KR102037867B1 (en) 2013-03-04 2019-10-29 삼성전자주식회사 Method of manufacturing a semiconductor device
KR102053354B1 (en) 2013-07-17 2019-12-06 삼성전자주식회사 A semiconductor device having a buried channel array and method of manufacturing the same
US9728598B2 (en) * 2015-04-07 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having barrier layer to prevent impurity diffusion
US10354878B2 (en) * 2017-01-10 2019-07-16 United Microelectronics Corp. Doping method for semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH204H (en) * 1984-11-29 1987-02-03 At&T Bell Laboratories Method for implanting the sidewalls of isolation trenches
US5668044A (en) * 1994-12-28 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Method of forming element isolating region in a semiconductor device
US6087210A (en) * 1998-06-05 2000-07-11 Hyundai Electronics Industries Method of manufacturing a CMOS Transistor
US6144086A (en) * 1999-04-30 2000-11-07 International Business Machines Corporation Structure for improved latch-up using dual depth STI with impurity implant
US20020011644A1 (en) * 2000-07-26 2002-01-31 Samsung Electronics Co., Ltd. Semiconductor device for reducing junction leakage current and narrow width effect, and fabrication method thereof
US6586804B2 (en) * 2000-09-21 2003-07-01 Samsung Electronics Co., Ltd. Shallow trench isolation type semiconductor device and method of manufacturing the same
US6967316B2 (en) * 2002-12-27 2005-11-22 Hynix Semiconductor Inc. Method for fabricating image sensor including isolation layer having trench structure
US6979628B2 (en) * 2003-01-10 2005-12-27 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices having field oxides in trenches and devices formed thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004450A (en) 1999-06-29 2001-01-15 김영환 A method of semiconductor device isolation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH204H (en) * 1984-11-29 1987-02-03 At&T Bell Laboratories Method for implanting the sidewalls of isolation trenches
US5668044A (en) * 1994-12-28 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Method of forming element isolating region in a semiconductor device
US6087210A (en) * 1998-06-05 2000-07-11 Hyundai Electronics Industries Method of manufacturing a CMOS Transistor
US6144086A (en) * 1999-04-30 2000-11-07 International Business Machines Corporation Structure for improved latch-up using dual depth STI with impurity implant
US20020011644A1 (en) * 2000-07-26 2002-01-31 Samsung Electronics Co., Ltd. Semiconductor device for reducing junction leakage current and narrow width effect, and fabrication method thereof
US6537888B2 (en) * 2000-07-26 2003-03-25 Samsung Electronics Co., Ltd. Method for fabricating a semiconductor device reducing junction leakage current and narrow width effect
US6740954B2 (en) * 2000-07-26 2004-05-25 Samsung Electronics Co, Ltd. Semiconductor device reducing junction leakage current and narrow width effect
US6586804B2 (en) * 2000-09-21 2003-07-01 Samsung Electronics Co., Ltd. Shallow trench isolation type semiconductor device and method of manufacturing the same
US6967316B2 (en) * 2002-12-27 2005-11-22 Hynix Semiconductor Inc. Method for fabricating image sensor including isolation layer having trench structure
US6979628B2 (en) * 2003-01-10 2005-12-27 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices having field oxides in trenches and devices formed thereby

Also Published As

Publication number Publication date
KR20060017985A (en) 2006-02-28
US7544582B2 (en) 2009-06-09
US20060040464A1 (en) 2006-02-23
KR100606935B1 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US20090209082A1 (en) Semiconductor Device and Method for Fabricating the Same
US7399679B2 (en) Narrow width effect improvement with photoresist plug process and STI corner ion implantation
US8987112B2 (en) Semiconductor device and method for fabricating the same
US7691734B2 (en) Deep trench based far subcollector reachthrough
US7071515B2 (en) Narrow width effect improvement with photoresist plug process and STI corner ion implantation
US7915155B2 (en) Double trench for isolation of semiconductor devices
US7981783B2 (en) Semiconductor device and method for fabricating the same
US7838934B2 (en) Semiconductor device and method for manufacturing the same
JP3691963B2 (en) Semiconductor device and manufacturing method thereof
US6518645B2 (en) SOI-type semiconductor device and method of forming the same
US6391726B1 (en) Method of fabricating integrated circuitry
US10008532B2 (en) Implant isolated devices and method for forming the same
US20080032483A1 (en) Trench isolation methods of semiconductor device
US20120205777A1 (en) Semiconductor device and method for fabricating the same
TWI694544B (en) Semiconductor device and method of preparing the same
US7118956B2 (en) Trench capacitor and a method for manufacturing the same
US9048218B2 (en) Semiconductor device with buried gates and method for fabricating the same
US7537981B2 (en) Silicon on insulator device and method of manufacturing the same
US7714382B2 (en) Trench gate semiconductor with NPN junctions beneath shallow trench isolation structures
US20090140332A1 (en) Semiconductor device and method of fabricating the same
US6812149B1 (en) Method of forming junction isolation to isolate active elements
US6620698B1 (en) Method of manufacturing a flash memory
US6780737B2 (en) Method of manufacturing semiconductor device with buried conductive lines
KR20050003290A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION