US20090264918A1 - Clevis assemblies for medical instruments and methods of manufacture of same - Google Patents

Clevis assemblies for medical instruments and methods of manufacture of same Download PDF

Info

Publication number
US20090264918A1
US20090264918A1 US12/385,514 US38551409A US2009264918A1 US 20090264918 A1 US20090264918 A1 US 20090264918A1 US 38551409 A US38551409 A US 38551409A US 2009264918 A1 US2009264918 A1 US 2009264918A1
Authority
US
United States
Prior art keywords
clevis
axle
arms
end effector
effector assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/385,514
Inventor
Christopher D. Endara
Otto E. Anderhub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US12/385,514 priority Critical patent/US20090264918A1/en
Publication of US20090264918A1 publication Critical patent/US20090264918A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws

Definitions

  • Embodiments of the invention relate to medical devices, for example endoscopic instruments. More particularly, embodiments of the invention relate to features on the distal clevis portion of such devices and instruments.
  • the devises may be stamped from a sheet material and formed to obtain a substantially cylindrical end and at least one clevis arm.
  • Endoscopic medical devices may be used in cooperation with an endoscope to perform a medical procedure on a patent.
  • an endoscopic biopsy forceps may be used for taking tissue samples from the human body for analysis.
  • Endoscopic instruments typically include a proximal handle, a distal end effector assembly, and a long, slender, flexible member connecting the handle to the distal assembly.
  • the elongate member is covered with a PTFE, FEP or polyolefin sheath along substantially its entire length.
  • the member may include a pair of axially displaceable control wires extending therethrough.
  • the control wires may be flexible and longitudinally inelastic, and may be formed from metal such as steel.
  • the control wires are coupled to on their proximal ends to a portion of the handle and on their distal ends to a portion of the end effector assembly.
  • An endoscopic medical procedure is typically accomplished in HENDERSON connection with an endoscope which is inserted into a body and guided by medical device, for example a biopsy forceps.
  • the practitioner guides the endoscope to the procedure site, with appropriate imaging through use of the optical lens, and inserts the endoscopic medical device through the lumen of the endoscope to the procedure site.
  • the practitioner manipulates the actuating handle cause the end effector, for example, biopsy forceps jaws, to perform the medical procedure.
  • the practitioner and/or an assistant carefully withdraws the medical instrument from the endoscope.
  • the distal assembly of many endoscopic instruments include a clevis that connects the distal assembly to the elongate member and also holds the distal end effectors, such as biopsy forceps jaws.
  • One current cast clevis design has two opposing distal arms. An axle protrudes from one of the distal arms, while the opposing distal arm has a through hole. When the jaws are placed onto the axle, the opposing distal arm is folded over to place the axle in the through hole, and then the end of the axle protruding past the through hole is riveted so as to prevent the distal arms from spreading.
  • Other clevis arrangements are shown and described in U.S. Pat. No. 5,716,374, the complete disclosure of which is incorporated by reference herein.
  • An embodiment of the invention includes a clevis assembly for a medical instrument.
  • the medical instrument includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms.
  • Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
  • the invention in another embodiment, includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly.
  • the end effector assembly includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms.
  • Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
  • the invention includes a method of manufacturing an end effector assembly of a medical instrument.
  • the method includes manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base and mounting an axle to the plurality of arms, the axle holding an end effector and including a first flared portion at a first end of the axle.
  • Mounting the axle includes engaging the first flared portion with an outer surface of one of the plurality of arms.
  • the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • the invention in still another embodiment, includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly.
  • the end effector assembly includes a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • the invention includes a method of manufacturing a clevis of a medical instrument, the method including manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • the invention in another embodiment, includes a clevis for a medical instrument including a base and a plurality of arms extending from the base. At least one of the plurality of arms includes a reinforcing portion.
  • FIG. 1 is a schematic view of a medical instrument according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of an end effector assembly of the medical instrument of FIG. 1 .
  • FIG. 3A is a perspective view of a clevis of the end effector assembly of FIG. 2 .
  • FIG. 3B is a schematic view of a production layout of the clevis of FIG. 3A .
  • FIG. 3C is a perspective view of an axle for use with the clevis of FIG. 3A .
  • FIG. 4A is a perspective view of a clevis of an end effector assembly for us in a medical instrument, according to another embodiment of the present invention.
  • FIG. 4B is a schematic view of a production layout of the clevis of FIG. 4A .
  • FIG. 4C is a perspective view of an axle for use with the clevis of FIG. 4B .
  • FIG. 1 An exemplary embodiment of an endoscopic instrument 10 is depicted in FIG. 1 .
  • the endoscopic instrument 10 includes a handle portion 11 and an end effector assembly 12 connected to each other by a flexible elongate member 13 .
  • Control wires 26 , 27 extend between the handle portion 11 and the end effector assembly 12 through the flexible elongate member 13 .
  • the handle portion 11 includes a ring portion 11 c disposed at the proximal end of an elongate portion 11 b .
  • a spool portion 11 a is disposed around the elongate portion 11 b and is configured to move longitudinally relative to the elongate portion 11 b .
  • the spool portion 11 a is connected to the control wires 26 , 27 .
  • the elongate member 13 may include an inner coiled portion 13 b (see FIG. 2 ) surrounded by an outer covering or jacket portion 13 a .
  • the inner coiled portion 13 b is hollow, and configured to accommodate control wires 26 , 27 and allow the longitudinal movement of the control wires 26 , 27 therethrough.
  • the handle portion 11 and elongate member 13 described are exemplary only and may have other suitable configurations.
  • FIG. 2 An exemplary embodiment of an end effector assembly 12 is depicted in FIG. 2 .
  • the end effector assembly 12 has a clevis 21 which is coupled, on its proximal end to the elongate member 13 .
  • the end effector assembly 12 also has a pair of forceps jaws 22 , 23 that may be substantially similar in shape and appearance.
  • the clevis 21 has a pair of clevis arms 24 which accommodate an axle 25 therethrough. Jaws 22 , 23 are rotatably mounted on the portion of the axle 25 between the clevis arms 24 . Each jaw 22 , 23 has a distal cutting edge 22 a , 23 a , a proximal tang 22 b , 23 b , and a mounting hole 22 c , 23 c on the proximal tang 22 b , 23 b .
  • the proximal tangs 22 b , 23 b are each coupled to the distal end of a respective control wire 26 , 27 which run through the hollow center of the elongate member 13 .
  • Manipulation of the handle portion 11 results in the longitudinal movement of the control wires 26 , 27 relative to the elongate member 13 .
  • the movement of the control wires 26 , 27 acts on the proximal tangs 22 b , 23 b of the jaws 22 , 23 , resulting in the opening and closing of the jaws 22 , 23 relative to each other.
  • the end effector assembly 12 may also include a flat knife or spike 28 which is mounted on the distal end of the clevis 21 and disposed between the jaws 22 , 23 .
  • the clevis 21 may be formed as a unitary molded or cast member.
  • the clevis 21 has a proximal end 29 from which the clevis arms 24 extend, and the proximal end 29 may be configured so that is can be crimped or welded to the distal end of the elongate member 13 .
  • the proximal end 29 can be wrapped to form a cylinder or a broken cylinder 33 configured to centrally receive, or be received by, the elongate member 13 .
  • Each of the clevis arms 24 have a mounting hole 30 for receiving an axle 25 .
  • the clevis arms 24 are joined by a substantially orthogonal cross member 31 disposed distal to the proximal end and proximal to the mounting holes 30 .
  • a central tab 32 may extend distally from the cross member 31 to spike 28 and be FINNEGAN provided with a third mounting hole 30 that is located at a substantially similar position to the other mounting holes 30 on the clevis arms 24 .
  • This third mounting hole 30 may improve stability of the axle 25 .
  • the jaws 22 , 23 may be mounted on both sides or either side of the central tab 32 with the spike 28 extending between the jaws 22 , 23 .
  • clevis 21 may include stiffening ribs along the arms 24 to provide additional strength and make the arms 24 less flexible in certain directions.
  • the clevis 21 may be stamped from a stainless steel sheet 34 which is cut (stamped) to form at least two relatively broad proximal bases 39 and at least two relatively narrow substantially parallel clevis arms 24 , one arm 24 extending from each base 39 .
  • the cut sheet is formed by bending the cross member 31 on either side of the central tab in an “S” configuration so that the mounting holes 30 of each clevis arm 24 and the central tab 32 are aligned substantially coaxially with each other.
  • the steel sheet 34 may also be cut so that a distal spike 28 may extend from the central tab 32 .
  • the arms 24 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 24 a just proximal of the mounting holes 30 .
  • the at least two proximal bases 39 are bent towards each other to form a bifurcated cylinder 33 .
  • the bifurcated cylinder 33 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
  • the axle 25 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the axle 25 .
  • the flared end or flange 25 a may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24 , to a minimum circumference (e.g., inner diameter) substantially similar to the either the outer circumference of the non-flared portion of the axle 25 or the inner circumference of the axle 25 .
  • the end effector assembly 12 may be placed on the axle 25 via the end 25 b opposite the flared end or flange 25 a .
  • the end effector assembly 12 may be placed on the axle 25 after placing end 25 b of the axle 25 through the first mounting hole 30 , and then the end 25 b may be placed through the other mounting hole 30 .
  • end 25 b may first be placed through one mounting hole 30 , a portion of the end effector assembly 12 , for example a jaw, may be placed on the axle 25 .
  • the end 25 b may then be placed through the mounting hole on the central arm 24 , the other portion of the end effector assembly 12 may then be placed on the axle 25 , and then the end 25 b may be placed through the remaining mounting hole 30 .
  • the flared end or flange 25 a may contact the outer surface of an arm 24 , while the outer surface of the rest of the axle 25 may contact the inner surfaces of the mounting holes 30 and rotate within the mounting holes 30 .
  • the other end 25 b of the axle 25 is then flared out, or otherwise configured, to lodge the axle 25 in the arms 24 of the clevis 21 , making the axle 25 and the end effector assembly 12 relatively difficult to dislodge from the mounting holes 30 , for example, during the actuation of the end effector assembly 12 .
  • portions of the end 25 b are in contact with the outer surface of an arm 24 and flared out portions of the end 25 b may also be disposed within the adjacent mounting hole 30 (i.e., the a circumference of the end 25 b in the mounting hole 30 may increase and form a press-fit with the mounting hole 30 due to the flaring out of the rest of the end 25 b ).
  • the inner portion of the axle 25 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length.
  • the outer surface of the axle 25 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the axle 25 . That surface may also have a roughened surface at certain portions to interact with portions of the clevis 21 defining holes 30 and thereby limit its rotational motion relative to those arms.
  • the flared end or flange 25 a may not be disposed around the entire circumference of an end of the axle 25 , but may instead be a tab or a plurality of tabs disposed around the end of the axle 25 that function substantially similarly to the flange 25 a .
  • the other end 25 b of the axle 25 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
  • the design of the axle 25 and its use during the forming of clevis 21 may improve manufacturability of the end effector assembly 12 by utilizing the placement of the axle 25 in the mounting holes 30 as an alignment aid, if necessary, for the clevis 21 and the jaws 22 , 23 . Furthermore, by flaring out each end 25 a , 25 b of the axle 25 , the axle 25 , and anything mounted to the axle 25 , for example, the jaws 22 , 23 , may be prevented from axially shifting in the mounting holes 30 . However, in some cases, it may be desirable to flare out the ends 25 a , 25 b of the axle 25 in a manner so as to allow axial shifting of the axle 25 and/or the jaws 22 , 23 in the mounting holes 30 .
  • the design of the axle 25 with a flared end 25 a may improve the manufacturability of the axle 25 by utilizing the central orifice of the axle 25 as an alignment in the production of the axle 25 .
  • manufacturability may be improved because the design of the axle 25 may ensure riveting accuracy axially.
  • FIGS. 4A-4B Another exemplary embodiment of a clevis is shown in FIGS. 4A-4B .
  • the clevis 121 is formed as a unitary molded or cast member and has a substantially cylindrical proximal end 129 from which the clevis arms 124 extend.
  • the proximal end 129 of the clevis 121 is wrapped to form a cylinder or a broken cylinder 133 , and may be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
  • the clevis arms 124 each define at least one U-shaped groove 130 for receiving an axle pin 125 shown in FIG. 4C .
  • the clevis arms 124 are joined by a substantially orthogonal cross member 131 disposed proximal to the U-shaped grooves 130 .
  • a central tab 132 may extend distally from the cross member 131 and be provided with a third U-shaped groove 130 .
  • the jaws 22 , 23 may be mounted on both sides or either side of the central tab 132 with a spike 128 extending between the jaws 22 , 23 .
  • the clevis arms 121 may also include stiffening ribs 135 on the outside surfaces 136 of each of the clevis arms 121 so as to provide FINNEGAN additional strength, and make the arms 121 less flexible in certain directions.
  • the clevis 121 may be stamped from a stainless steel sheet 134 which is cut (stamped) to form at least two relatively broad proximal bases 139 and at least two relatively narrow substantially parallel clevis arms 124 , one arm 124 extending from each base 139 .
  • the cut sheet is formed by bending the cross member 131 on either side of the central tab in an “S” configuration so that the U-shaped grooves 130 of each clevis arm 124 and the central tab 132 are aligned substantially coaxially with each other.
  • the steel sheet 134 may also be cut so that a distal spike 128 may extend from the central tab 132 .
  • the arms 124 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 124 a just proximal of the U-shaped grooves 130 .
  • the at least two proximal bases 139 are bent towards each other to form a bifurcated cylinder 133 .
  • the bifurcated cylinder 133 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
  • the U-shaped grooves 130 are configured to receive and retain an axle pin 125 , for example, as depicted in FIG. 4C , configured to accommodate the jaws 22 , 23 .
  • the axle pin 125 may be snapped or otherwise affixed into place in the U-shaped grooves 130 .
  • the U-shaped grooves 130 may have protrusions or bumps 137 (shown in FIG. 4B ) on the inside portions of their ends configured to retain the axle pin 125 . Bumps 137 would overlie pin 125 once pin 125 is in place within grooves 130 .
  • pin 125 may be bonded within grooves 130 with a suitable biocompatible adhesive.
  • Other contemplated methods of retaining the axle pin include spot welding, seam welding, brazing, resistance welding of contact areas, and any other method known in the art.
  • the jaws 22 , 23 may be placed on the axle pin 125 , and then the axle pin 125 may be placed in the U-shaped grooves 130 , simplifying the process of both installing the jaws 22 , 23 and aligning axle pin 125 in the U-shaped grooves 130 .
  • this configuration is also tolerant of slight axial misalignments of the U-shaped grooves 130 during the bending of the sheet 134 .
  • the stiffening ribs 135 may be stamped on the sheet 134 , and displace some of the material on the inside surface 138 of the sheet to the outside surface 136 . This configuration imparts greater stability on the arms 124 , and makes it more resistant to bending or torqueing either due to outside forces, or due to the actuation of the end effector assembly 112 .
  • the pin 125 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the pin 125 .
  • the flared ends or flanges 125 a , 125 b may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24 , to a minimum circumference (e.g., inner diameter) substantially similar to either the outer circumference of the non-flared portion of the pin 125 of the inner circumference of the pin 125 .
  • the end effector assembly 12 for example jaws, may be placed on the pin 125 , and then the pin 125 may be inserted into the grooves 130 .
  • the flared ends or flanges 125 a , 125 b may contact the outer surface of an arm 24 , while the outer surface of the rest of the pin 125 may contact the inner surfaces of the grooves 130 and rotate within the grooves 130 .
  • the pin 125 and the end effector assembly 12 may be relatively difficult to dislodge from the grooves 30 , for example, during the actuation of the end effector assembly 12 .
  • Portions of the pin 125 may also be in contact with bumps or protrusions 137 which may assist in retaining the pin 125 in the grooves 130 .
  • the inner portion of the pin 125 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length.
  • the outer surface of the pin 125 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the pin 125 . That surface may also have a roughened surface at certain portions to interact with portions of the clevis 121 defining U-shaped grooves 130 and thereby limit its rotational motion relative to those arms 124 .
  • the flared ends or flanges 125 a , 125 b may not be disposed around the entire circumference of an end of the pin 125 , but may instead be a tab or a plurality of tabs disposed around the ends of the pin 125 that function substantially similarly to the flange 25 a in FIG. 3C .
  • either end 125 a , 125 b of the pin 125 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
  • the disclosed clevises may be formed of any suitable biocompatible material including various metals and non-metals.
  • cylindrical portions have been shown as incomplete or broken cylinders, it will be recognized that welding, soldering, brazing, or other operations may be used to complete the cylindrical portions if desired.
  • the clevis and end effector may not only be stamped out of steel, but may also be cast, molded, or machined out of bronze, plastics, metals, ceramics, or other suitable materials known in the art.
  • the jaws may be substantially similar in shape to each other, however, they may also be different in configuration from each other.
  • the clevis is shown with respect to use in a biopsy forceps instrument, the clevis could be used with any of a variety of end effectors as part of any endoscopic or non-endoscopic medical device, including, for example, clamp, scissors, dissectors, graspers, etc.
  • the invention is not limited to use in endoscopic procedures or medical instruments, but may also be used in any other medical procedure (e.g., gastrointestinal, urological, gynecological, cardiological, etc.) or non-medical procedure, or in medical or non-medical instruments.
  • clevis may have arms where at least one of the arms has a mounting hole, while at least one other arm has a U-shaped grooves. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.

Abstract

Embodiments of the invention relate to endoscopic instruments. More particularly, embodiments of the invention relate to features on the clevis portion of endoscopic instruments. The devises may be formed from a sheet material to obtain a substantially cylindrical end and at least one clevis arm. The clevis features may include an axle having at least one flared end to engage a clevis arm, one or more U-shaped grooves on the clevis arms to receive an axle, and stiffening ribs to strengthen the clevis arms.

Description

    FIELD OF THE INVENTION
  • Embodiments of the invention relate to medical devices, for example endoscopic instruments. More particularly, embodiments of the invention relate to features on the distal clevis portion of such devices and instruments. The devises may be stamped from a sheet material and formed to obtain a substantially cylindrical end and at least one clevis arm.
  • BACKGROUND OF THE INVENTION
  • Endoscopic medical devices may be used in cooperation with an endoscope to perform a medical procedure on a patent. For example, an endoscopic biopsy forceps may be used for taking tissue samples from the human body for analysis. Endoscopic instruments typically include a proximal handle, a distal end effector assembly, and a long, slender, flexible member connecting the handle to the distal assembly. The elongate member is covered with a PTFE, FEP or polyolefin sheath along substantially its entire length. The member may include a pair of axially displaceable control wires extending therethrough. The control wires may be flexible and longitudinally inelastic, and may be formed from metal such as steel. The control wires are coupled to on their proximal ends to a portion of the handle and on their distal ends to a portion of the end effector assembly.
  • An endoscopic medical procedure is typically accomplished in HENDERSON connection with an endoscope which is inserted into a body and guided by medical device, for example a biopsy forceps. The practitioner guides the endoscope to the procedure site, with appropriate imaging through use of the optical lens, and inserts the endoscopic medical device through the lumen of the endoscope to the procedure site. While viewing the procedure site through use of the optical lens of the endoscope, the practitioner manipulates the actuating handle cause the end effector, for example, biopsy forceps jaws, to perform the medical procedure. After the procedure, the practitioner and/or an assistant carefully withdraws the medical instrument from the endoscope.
  • The distal assembly of many endoscopic instruments include a clevis that connects the distal assembly to the elongate member and also holds the distal end effectors, such as biopsy forceps jaws. One current cast clevis design has two opposing distal arms. An axle protrudes from one of the distal arms, while the opposing distal arm has a through hole. When the jaws are placed onto the axle, the opposing distal arm is folded over to place the axle in the through hole, and then the end of the axle protruding past the through hole is riveted so as to prevent the distal arms from spreading. Other clevis arrangements are shown and described in U.S. Pat. No. 5,716,374, the complete disclosure of which is incorporated by reference herein.
  • SUMMARY OF THE INVENTION
  • An embodiment of the invention includes a clevis assembly for a medical instrument. The medical instrument includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms. Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
  • In another embodiment, the invention includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly. The end effector assembly includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms. Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
  • In a further embodiment, the invention includes a method of manufacturing an end effector assembly of a medical instrument. The method includes manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base and mounting an axle to the plurality of arms, the axle holding an end effector and including a first flared portion at a first end of the axle. Mounting the axle includes engaging the first flared portion with an outer surface of one of the plurality of arms.
  • In yet another embodiment, the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • In still another embodiment, the invention includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly. The end effector assembly includes a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • In a still further embodiment, the invention includes a method of manufacturing a clevis of a medical instrument, the method including manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
  • In another embodiment, the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base. At least one of the plurality of arms includes a reinforcing portion.
  • Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a schematic view of a medical instrument according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of an end effector assembly of the medical instrument of FIG. 1.
  • FIG. 3A is a perspective view of a clevis of the end effector assembly of FIG. 2.
  • FIG. 3B is a schematic view of a production layout of the clevis of FIG. 3A.
  • FIG. 3C is a perspective view of an axle for use with the clevis of FIG. 3A.
  • FIG. 4A is a perspective view of a clevis of an end effector assembly for us in a medical instrument, according to another embodiment of the present invention.
  • FIG. 4B is a schematic view of a production layout of the clevis of FIG. 4A.
  • FIG. 4C is a perspective view of an axle for use with the clevis of FIG. 4B.
  • DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • An exemplary embodiment of an endoscopic instrument 10 is depicted in FIG. 1. The endoscopic instrument 10 includes a handle portion 11 and an end effector assembly 12 connected to each other by a flexible elongate member 13. Control wires 26, 27 extend between the handle portion 11 and the end effector assembly 12 through the flexible elongate member 13.
  • The handle portion 11 includes a ring portion 11 c disposed at the proximal end of an elongate portion 11 b. A spool portion 11 a is disposed around the elongate portion 11 b and is configured to move longitudinally relative to the elongate portion 11 b. The spool portion 11 a is connected to the control wires 26, 27. The elongate member 13 may include an inner coiled portion 13 b (see FIG. 2) surrounded by an outer covering or jacket portion 13 a. The inner coiled portion 13 b is hollow, and configured to accommodate control wires 26, 27 and allow the longitudinal movement of the control wires 26, 27 therethrough. The handle portion 11 and elongate member 13 described are exemplary only and may have other suitable configurations.
  • An exemplary embodiment of an end effector assembly 12 is depicted in FIG. 2. The end effector assembly 12 has a clevis 21 which is coupled, on its proximal end to the elongate member 13. The end effector assembly 12 also has a pair of forceps jaws 22, 23 that may be substantially similar in shape and appearance.
  • The clevis 21 has a pair of clevis arms 24 which accommodate an axle 25 therethrough. Jaws 22, 23 are rotatably mounted on the portion of the axle 25 between the clevis arms 24. Each jaw 22, 23 has a distal cutting edge 22 a, 23 a, a proximal tang 22 b, 23 b, and a mounting hole 22 c, 23 c on the proximal tang 22 b, 23 b. The proximal tangs 22 b, 23 b are each coupled to the distal end of a respective control wire 26, 27 which run through the hollow center of the elongate member 13. Manipulation of the handle portion 11, for example the movement of the spool portion 11 a relative to the elongate portion 11 b, results in the longitudinal movement of the control wires 26, 27 relative to the elongate member 13. The movement of the control wires 26, 27 acts on the proximal tangs 22 b, 23 b of the jaws 22, 23, resulting in the opening and closing of the jaws 22, 23 relative to each other. The end effector assembly 12 may also include a flat knife or spike 28 which is mounted on the distal end of the clevis 21 and disposed between the jaws 22, 23.
  • An exemplary embodiment of a clevis is shown in FIGS. 3A-3C. The clevis 21 may be formed as a unitary molded or cast member. The clevis 21 has a proximal end 29 from which the clevis arms 24 extend, and the proximal end 29 may be configured so that is can be crimped or welded to the distal end of the elongate member 13. For example, the proximal end 29 can be wrapped to form a cylinder or a broken cylinder 33 configured to centrally receive, or be received by, the elongate member 13. Each of the clevis arms 24 have a mounting hole 30 for receiving an axle 25. The clevis arms 24 are joined by a substantially orthogonal cross member 31 disposed distal to the proximal end and proximal to the mounting holes 30. A central tab 32 may extend distally from the cross member 31 to spike 28 and be FINNEGAN provided with a third mounting hole 30 that is located at a substantially similar position to the other mounting holes 30 on the clevis arms 24. This third mounting hole 30 may improve stability of the axle 25. The jaws 22, 23 may be mounted on both sides or either side of the central tab 32 with the spike 28 extending between the jaws 22, 23. As will be described in connection with the embodiment of FIGS. 4A-4B, clevis 21 may include stiffening ribs along the arms 24 to provide additional strength and make the arms 24 less flexible in certain directions.
  • As shown in FIG. 3B, the clevis 21 may be stamped from a stainless steel sheet 34 which is cut (stamped) to form at least two relatively broad proximal bases 39 and at least two relatively narrow substantially parallel clevis arms 24, one arm 24 extending from each base 39. The cut sheet is formed by bending the cross member 31 on either side of the central tab in an “S” configuration so that the mounting holes 30 of each clevis arm 24 and the central tab 32 are aligned substantially coaxially with each other. The steel sheet 34 may also be cut so that a distal spike 28 may extend from the central tab 32. The arms 24 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 24 a just proximal of the mounting holes 30. The at least two proximal bases 39 are bent towards each other to form a bifurcated cylinder 33. The bifurcated cylinder 33 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13.
  • An axle 25 with one flared end or flange 25 a as shown in FIG. 3C is then provided. The axle 25 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the axle 25. The flared end or flange 25 a may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24, to a minimum circumference (e.g., inner diameter) substantially similar to the either the outer circumference of the non-flared portion of the axle 25 or the inner circumference of the axle 25. The end effector assembly 12, for example jaws, may be placed on the axle 25 via the end 25 b opposite the flared end or flange 25 a. The end effector assembly 12 may be placed on the axle 25 after placing end 25 b of the axle 25 through the first mounting hole 30, and then the end 25 b may be placed through the other mounting hole 30. In embodiments wherein there is a third arm 24 between the outer arms 24, end 25 b may first be placed through one mounting hole 30, a portion of the end effector assembly 12, for example a jaw, may be placed on the axle 25. The end 25 b may then be placed through the mounting hole on the central arm 24, the other portion of the end effector assembly 12 may then be placed on the axle 25, and then the end 25 b may be placed through the remaining mounting hole 30. At this time, the flared end or flange 25 a may contact the outer surface of an arm 24, while the outer surface of the rest of the axle 25 may contact the inner surfaces of the mounting holes 30 and rotate within the mounting holes 30. The other end 25 b of the axle 25 is then flared out, or otherwise configured, to lodge the axle 25 in the arms 24 of the clevis 21, making the axle 25 and the end effector assembly 12 relatively difficult to dislodge from the mounting holes 30, for example, during the actuation of the end effector assembly 12. In such a state, portions of the end 25 b are in contact with the outer surface of an arm 24 and flared out portions of the end 25 b may also be disposed within the adjacent mounting hole 30 (i.e., the a circumference of the end 25 b in the mounting hole 30 may increase and form a press-fit with the mounting hole 30 due to the flaring out of the rest of the end 25 b).
  • In various embodiments, the inner portion of the axle 25 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length. The outer surface of the axle 25 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the axle 25. That surface may also have a roughened surface at certain portions to interact with portions of the clevis 21 defining holes 30 and thereby limit its rotational motion relative to those arms. The flared end or flange 25 a may not be disposed around the entire circumference of an end of the axle 25, but may instead be a tab or a plurality of tabs disposed around the end of the axle 25 that function substantially similarly to the flange 25 a. In addition to being flared out, the other end 25 b of the axle 25 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
  • The design of the axle 25 and its use during the forming of clevis 21 may improve manufacturability of the end effector assembly 12 by utilizing the placement of the axle 25 in the mounting holes 30 as an alignment aid, if necessary, for the clevis 21 and the jaws 22, 23. Furthermore, by flaring out each end 25 a, 25 b of the axle 25, the axle 25, and anything mounted to the axle 25, for example, the jaws 22, 23, may be prevented from axially shifting in the mounting holes 30. However, in some cases, it may be desirable to flare out the ends 25 a, 25 b of the axle 25 in a manner so as to allow axial shifting of the axle 25 and/or the jaws 22, 23 in the mounting holes 30.
  • The design of the axle 25 with a flared end 25 a may improve the manufacturability of the axle 25 by utilizing the central orifice of the axle 25 as an alignment in the production of the axle 25. For example, manufacturability may be improved because the design of the axle 25 may ensure riveting accuracy axially. With this design of the axle 25 with an orifice, rework or replacement of the axle 25 is possible during manufacturing, possibly avoiding disposal of the entire axle or device.
  • Another exemplary embodiment of a clevis is shown in FIGS. 4A-4B. The clevis 121 is formed as a unitary molded or cast member and has a substantially cylindrical proximal end 129 from which the clevis arms 124 extend. The proximal end 129 of the clevis 121 is wrapped to form a cylinder or a broken cylinder 133, and may be crimped, welded, or otherwise affixed to the distal end of the elongate member 13. The clevis arms 124 each define at least one U-shaped groove 130 for receiving an axle pin 125 shown in FIG. 4C. The clevis arms 124 are joined by a substantially orthogonal cross member 131 disposed proximal to the U-shaped grooves 130. A central tab 132 may extend distally from the cross member 131 and be provided with a third U-shaped groove 130. The jaws 22, 23 may be mounted on both sides or either side of the central tab 132 with a spike 128 extending between the jaws 22, 23. The clevis arms 121 may also include stiffening ribs 135 on the outside surfaces 136 of each of the clevis arms 121 so as to provide FINNEGAN additional strength, and make the arms 121 less flexible in certain directions.
  • As shown in FIG. 4B, the clevis 121 may be stamped from a stainless steel sheet 134 which is cut (stamped) to form at least two relatively broad proximal bases 139 and at least two relatively narrow substantially parallel clevis arms 124, one arm 124 extending from each base 139. The cut sheet is formed by bending the cross member 131 on either side of the central tab in an “S” configuration so that the U-shaped grooves 130 of each clevis arm 124 and the central tab 132 are aligned substantially coaxially with each other. The steel sheet 134 may also be cut so that a distal spike 128 may extend from the central tab 132. The arms 124 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 124 a just proximal of the U-shaped grooves 130. The at least two proximal bases 139 are bent towards each other to form a bifurcated cylinder 133. The bifurcated cylinder 133 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13.
  • The U-shaped grooves 130 are configured to receive and retain an axle pin 125, for example, as depicted in FIG. 4C, configured to accommodate the jaws 22, 23. The axle pin 125 may be snapped or otherwise affixed into place in the U-shaped grooves 130. For example, the U-shaped grooves 130 may have protrusions or bumps 137 (shown in FIG. 4B) on the inside portions of their ends configured to retain the axle pin 125. Bumps 137 would overlie pin 125 once pin 125 is in place within grooves 130. Alternatively or additionally, pin 125 may be bonded within grooves 130 with a suitable biocompatible adhesive. Other contemplated methods of retaining the axle pin include spot welding, seam welding, brazing, resistance welding of contact areas, and any other method known in the art.
  • The jaws 22, 23 may be placed on the axle pin 125, and then the axle pin 125 may be placed in the U-shaped grooves 130, simplifying the process of both installing the jaws 22, 23 and aligning axle pin 125 in the U-shaped grooves 130. As in the embodiment of FIGS. 3A-3C, this configuration is also tolerant of slight axial misalignments of the U-shaped grooves 130 during the bending of the sheet 134.
  • The stiffening ribs 135 may be stamped on the sheet 134, and displace some of the material on the inside surface 138 of the sheet to the outside surface 136. This configuration imparts greater stability on the arms 124, and makes it more resistant to bending or torqueing either due to outside forces, or due to the actuation of the end effector assembly 112.
  • The pin 125 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the pin 125. The flared ends or flanges 125 a, 125 b may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24, to a minimum circumference (e.g., inner diameter) substantially similar to either the outer circumference of the non-flared portion of the pin 125 of the inner circumference of the pin 125. The end effector assembly 12, for example jaws, may be placed on the pin 125, and then the pin 125 may be inserted into the grooves 130. At this time, the flared ends or flanges 125 a, 125 b may contact the outer surface of an arm 24, while the outer surface of the rest of the pin 125 may contact the inner surfaces of the grooves 130 and rotate within the grooves 130. In such a state, the pin 125 and the end effector assembly 12 may be relatively difficult to dislodge from the grooves 30, for example, during the actuation of the end effector assembly 12. Portions of the pin 125 may also be in contact with bumps or protrusions 137 which may assist in retaining the pin 125 in the grooves 130.
  • In various embodiments, the inner portion of the pin 125 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length. The outer surface of the pin 125 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the pin 125. That surface may also have a roughened surface at certain portions to interact with portions of the clevis 121 defining U-shaped grooves 130 and thereby limit its rotational motion relative to those arms 124. The flared ends or flanges 125 a, 125 b may not be disposed around the entire circumference of an end of the pin 125, but may instead be a tab or a plurality of tabs disposed around the ends of the pin 125 that function substantially similarly to the flange 25 a in FIG. 3C. Furthermore, instead of being flared out, either end 125 a, 125 b of the pin 125 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
  • There have been described and illustrated herein several embodiments of a clevis for an endoscopic instrument and methods of making the same. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise.
  • Thus, while particular materials have been disclosed, it will be appreciated that other materials could be utilized. For example, the disclosed clevises may be formed of any suitable biocompatible material including various metals and non-metals. In addition, while cylindrical portions have been shown as incomplete or broken cylinders, it will be recognized that welding, soldering, brazing, or other operations may be used to complete the cylindrical portions if desired. For example, the clevis and end effector may not only be stamped out of steel, but may also be cast, molded, or machined out of bronze, plastics, metals, ceramics, or other suitable materials known in the art. Additionally, the jaws may be substantially similar in shape to each other, however, they may also be different in configuration from each other.
  • In a further example, while the clevis is shown with respect to use in a biopsy forceps instrument, the clevis could be used with any of a variety of end effectors as part of any endoscopic or non-endoscopic medical device, including, for example, clamp, scissors, dissectors, graspers, etc. In various embodiments, the invention is not limited to use in endoscopic procedures or medical instruments, but may also be used in any other medical procedure (e.g., gastrointestinal, urological, gynecological, cardiological, etc.) or non-medical procedure, or in medical or non-medical instruments.
  • Moreover, while particular configurations have been disclosed in reference to the mounting holes and the spike, other configurations could be used as well. In yet another example, any of the features disclosed in the specification may be rearranged to be on any other portion disclosed in the specification. For example, a clevis may have arms where at least one of the arms has a mounting hole, while at least one other arm has a U-shaped grooves. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.
  • Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples are exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (2)

1. A clevis assembly for a medical instrument comprising:
a clevis having a base and a plurality of arms extending from the base; and
an axle to extend between the plurality of arms,
wherein each of the plurality of arms is configured to accommodate a portion of the axle, and
wherein an end of the axle includes a flared portion to engage a first outer surface of one of the plurality of arms.
2.-65. (canceled)
US12/385,514 2003-12-10 2009-04-09 Clevis assemblies for medical instruments and methods of manufacture of same Abandoned US20090264918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/385,514 US20090264918A1 (en) 2003-12-10 2009-04-09 Clevis assemblies for medical instruments and methods of manufacture of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/731,153 US7534253B2 (en) 2003-12-10 2003-12-10 Clevis assemblies for medical instruments and methods of manufacture of same
US12/385,514 US20090264918A1 (en) 2003-12-10 2009-04-09 Clevis assemblies for medical instruments and methods of manufacture of same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/731,153 Continuation US7534253B2 (en) 2003-12-10 2003-12-10 Clevis assemblies for medical instruments and methods of manufacture of same

Publications (1)

Publication Number Publication Date
US20090264918A1 true US20090264918A1 (en) 2009-10-22

Family

ID=34652741

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/731,153 Active 2026-01-06 US7534253B2 (en) 2003-12-10 2003-12-10 Clevis assemblies for medical instruments and methods of manufacture of same
US12/385,514 Abandoned US20090264918A1 (en) 2003-12-10 2009-04-09 Clevis assemblies for medical instruments and methods of manufacture of same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/731,153 Active 2026-01-06 US7534253B2 (en) 2003-12-10 2003-12-10 Clevis assemblies for medical instruments and methods of manufacture of same

Country Status (9)

Country Link
US (2) US7534253B2 (en)
EP (1) EP1703843B1 (en)
JP (1) JP5340541B2 (en)
AT (1) ATE424766T1 (en)
AU (1) AU2004305507A1 (en)
CA (1) CA2549187C (en)
DE (1) DE602004019976D1 (en)
ES (1) ES2324103T3 (en)
WO (1) WO2005060834A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043758A1 (en) * 2003-08-18 2005-02-24 Scimed Life Systems, Inc. Endoscopic medical instrument and related methods of use
US20120296167A1 (en) * 2011-05-18 2012-11-22 Three-In-One Enterprises Co., Ltd. Flexible-Tubed Structure of Endoscope
US8317726B2 (en) 2005-05-13 2012-11-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8469993B2 (en) 2003-06-18 2013-06-25 Boston Scientific Scimed, Inc. Endoscopic instruments
US20170020370A1 (en) * 2014-08-19 2017-01-26 Olympus Corporation Transmission mechanism, raising device, and inserting apparatus
US9681857B2 (en) 2003-06-18 2017-06-20 Boston Scientific Scimed, Inc. Endoscopic instruments and methods of manufacture

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239202A1 (en) * 2006-04-10 2007-10-11 Rodriguez Richard A Abrasively coated surgical end effector
US20070244510A1 (en) * 2006-04-14 2007-10-18 Ethicon Endo-Surgery, Inc. Endoscopic device
US7998167B2 (en) * 2006-04-14 2011-08-16 Ethicon Endo-Surgery, Inc. End effector and method of manufacture
US7857827B2 (en) * 2006-04-14 2010-12-28 Ethicon Endo-Surgery, Inc. Endoscopic device
USD785793S1 (en) * 2016-06-14 2017-05-02 Landanger Device for mitral prosthesis rope laying
US10502091B2 (en) 2016-12-12 2019-12-10 United Technologies Corporation Sync ring assembly and associated clevis including a rib

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641038A (en) * 1923-01-30 1927-08-30 Hudson Motor Car Co Rod clamp and clevis
US4744278A (en) * 1985-04-22 1988-05-17 Weyerhaeuser Company Rotary machining tool and method of its manufacture
US4750261A (en) * 1987-09-22 1988-06-14 Amp Incorporated Pick up head
US5391166A (en) * 1991-06-07 1995-02-21 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments having a detachable working end
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5707392A (en) * 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5716374A (en) * 1995-10-10 1998-02-10 Symbiosis Corporation Stamped clevis for endoscopic instruments and method of making the same
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5898980A (en) * 1998-04-23 1999-05-04 Casket Hardware Development, Llc Casket handle with separately demountable lug
US5924655A (en) * 1997-02-27 1999-07-20 Sigma-Aldrich, Co. Clevis hanger
US6168605B1 (en) * 1999-07-08 2001-01-02 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
US6206903B1 (en) * 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US20020013595A1 (en) * 2000-06-13 2002-01-31 Olympus Optical Co., Ltd. Endoscopic treating instrument
US6427509B1 (en) * 1999-11-18 2002-08-06 Asahi Kogaku Kogyo Kabusihi Kaisha Process for producing a distal end support member of an endoscopic treatment tool
US20030191464A1 (en) * 2002-04-09 2003-10-09 Pentax Corporation Endoscopic forceps instrument
US20040084928A1 (en) * 2002-11-06 2004-05-06 Bacon Bruce C. Prop assembly for vehicle bed covers and the like
US20040260337A1 (en) * 2003-06-18 2004-12-23 Scimed Life Systems, Inc. Endoscopic instruments and methods of manufacture
US20050054946A1 (en) * 2003-09-04 2005-03-10 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
US7942885B2 (en) * 2001-06-25 2011-05-17 Ethicon Endo-Surgery, Inc. Surgical clip applier having clip chamber with clip chain
US7998167B2 (en) * 2006-04-14 2011-08-16 Ethicon Endo-Surgery, Inc. End effector and method of manufacture
US8070759B2 (en) * 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2065987A1 (en) * 1991-04-19 1992-10-20 Lutz Kothe Surgical instrument
DK200001520A (en) 1999-10-18 2001-04-19 Asahi Optical Co Ltd Component of endoscopic treatment instrument

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641038A (en) * 1923-01-30 1927-08-30 Hudson Motor Car Co Rod clamp and clevis
US4744278A (en) * 1985-04-22 1988-05-17 Weyerhaeuser Company Rotary machining tool and method of its manufacture
US4750261A (en) * 1987-09-22 1988-06-14 Amp Incorporated Pick up head
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5391166A (en) * 1991-06-07 1995-02-21 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments having a detachable working end
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5707392A (en) * 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5716374A (en) * 1995-10-10 1998-02-10 Symbiosis Corporation Stamped clevis for endoscopic instruments and method of making the same
US5924655A (en) * 1997-02-27 1999-07-20 Sigma-Aldrich, Co. Clevis hanger
US5898980A (en) * 1998-04-23 1999-05-04 Casket Hardware Development, Llc Casket handle with separately demountable lug
US6168605B1 (en) * 1999-07-08 2001-01-02 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
US6206903B1 (en) * 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6427509B1 (en) * 1999-11-18 2002-08-06 Asahi Kogaku Kogyo Kabusihi Kaisha Process for producing a distal end support member of an endoscopic treatment tool
US20020013595A1 (en) * 2000-06-13 2002-01-31 Olympus Optical Co., Ltd. Endoscopic treating instrument
US6514269B2 (en) * 2000-06-13 2003-02-04 Olympus Optical Co., Ltd. Endoscopic treating instrument
US7942885B2 (en) * 2001-06-25 2011-05-17 Ethicon Endo-Surgery, Inc. Surgical clip applier having clip chamber with clip chain
US20030191464A1 (en) * 2002-04-09 2003-10-09 Pentax Corporation Endoscopic forceps instrument
US6964662B2 (en) * 2002-04-09 2005-11-15 Pentax Corporation Endoscopic forceps instrument
US20040084928A1 (en) * 2002-11-06 2004-05-06 Bacon Bruce C. Prop assembly for vehicle bed covers and the like
US20040260337A1 (en) * 2003-06-18 2004-12-23 Scimed Life Systems, Inc. Endoscopic instruments and methods of manufacture
US20050054946A1 (en) * 2003-09-04 2005-03-10 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
US7998167B2 (en) * 2006-04-14 2011-08-16 Ethicon Endo-Surgery, Inc. End effector and method of manufacture
US8070759B2 (en) * 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469993B2 (en) 2003-06-18 2013-06-25 Boston Scientific Scimed, Inc. Endoscopic instruments
US9681857B2 (en) 2003-06-18 2017-06-20 Boston Scientific Scimed, Inc. Endoscopic instruments and methods of manufacture
US20050043758A1 (en) * 2003-08-18 2005-02-24 Scimed Life Systems, Inc. Endoscopic medical instrument and related methods of use
US7951165B2 (en) 2003-08-18 2011-05-31 Boston Scientific Scimed, Inc. Endoscopic medical instrument and related methods of use
US8317726B2 (en) 2005-05-13 2012-11-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8672859B2 (en) 2005-05-13 2014-03-18 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US20120296167A1 (en) * 2011-05-18 2012-11-22 Three-In-One Enterprises Co., Ltd. Flexible-Tubed Structure of Endoscope
US20170020370A1 (en) * 2014-08-19 2017-01-26 Olympus Corporation Transmission mechanism, raising device, and inserting apparatus

Also Published As

Publication number Publication date
JP5340541B2 (en) 2013-11-13
CA2549187C (en) 2013-04-16
EP1703843A1 (en) 2006-09-27
JP2007516030A (en) 2007-06-21
US20050131312A1 (en) 2005-06-16
ES2324103T3 (en) 2009-07-30
EP1703843B1 (en) 2009-03-11
CA2549187A1 (en) 2005-07-07
ATE424766T1 (en) 2009-03-15
WO2005060834A1 (en) 2005-07-07
US7534253B2 (en) 2009-05-19
DE602004019976D1 (en) 2009-04-23
AU2004305507A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US20090264918A1 (en) Clevis assemblies for medical instruments and methods of manufacture of same
US5716374A (en) Stamped clevis for endoscopic instruments and method of making the same
US5707392A (en) Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US7951165B2 (en) Endoscopic medical instrument and related methods of use
US6743185B2 (en) Handle assembly for surgical instrument and method of making the assembly
US8187288B2 (en) Re-shapeable medical device
JP4907555B2 (en) Surgical instrument end effector, surgical instrument, and method of forming an end effector
US5967997A (en) Endoscopic surgical instrument with deflectable and rotatable distal end
US6273882B1 (en) Snap handle assembly for an endoscopic instrument
US9681857B2 (en) Endoscopic instruments and methods of manufacture
JP3696621B2 (en) Jaw-like member assembly for endoscopic inspection instruments
JP5020942B2 (en) Biopsy forceps assembly
JP2006061704A (en) Super-elastic flexible jaw assembly
JP2009533155A (en) Endoscope device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION