US20090310272A1 - Energy savings and surge protection device - Google Patents

Energy savings and surge protection device Download PDF

Info

Publication number
US20090310272A1
US20090310272A1 US12/140,391 US14039108A US2009310272A1 US 20090310272 A1 US20090310272 A1 US 20090310272A1 US 14039108 A US14039108 A US 14039108A US 2009310272 A1 US2009310272 A1 US 2009310272A1
Authority
US
United States
Prior art keywords
protection device
surge protection
energy savings
capacitor
indicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/140,391
Inventor
William D. Howell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Energy Savings Inc
Original Assignee
Global Energy Savings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Savings Inc filed Critical Global Energy Savings Inc
Priority to US12/140,391 priority Critical patent/US20090310272A1/en
Assigned to GLOBAL ENERGY SAVINGS, INC. reassignment GLOBAL ENERGY SAVINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWELL, WILLIAM D., SR.
Publication of US20090310272A1 publication Critical patent/US20090310272A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/40Structural combinations of variable capacitors with other electric elements not covered by this subclass, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/38Multiple capacitors, e.g. ganged
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1828Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepwise control, the possibility of switching in or out the entire compensating arrangement not being considered as stepwise control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • This invention relates to energy saving devices, more particularly, an energy savings device with surge protection which may provide selectable periods of correction to optimize reduction in energy usage over expected periods of high or low energy demand.
  • the loads served by electric utility companies are generally primarily resistive, such as a space heater, or primarily inductive, such as a motor.
  • the inductive loads draw a combination of kilowatts (real or inductive power) and kilovars (reactive power).
  • Capacitors are a static source of kilovars.
  • Capacitors installed at inductive loads provide a number of benefits: reduced electrical energy consumption, reduced line current, increased voltage at the load, better voltage regulation and lower energy losses. These benefits are accomplished by installing sufficiently sized capacitors at the load to bring power factor to just under unity. Power factor is equal to killowatts divided by kilovars.
  • capacitors are not used to optimize load factor as widely as they might be. This is especially true in residential and commercial applications.
  • energy saving devices use capacitors with fixed levels of capacitance, commonly measured in microfarads (mF).
  • the size of a capacitor to be used in any residential or commercial application is determined by the average energy usage at the time of installation.
  • this method of determining the required capacitance does not take into account periods of high or low energy demand. As a result, during periods of high energy demand, the capacitor may not be large enough to achieve the optimal reduction in kilowatt usage. Alternatively, during periods of low energy demand, the energy used to power the capacitor may offset any energy savings.
  • Patent No. (U.S. unless Issue/ stated otherwise) Inventor Publication Date 3,300,712 Segsworth 01/24/1967 3,859,564 Zulaski 01/07/1975 3,900,772 Anderl, et al. 08/19/1975 5,138,519 Stockman 08/11/1992 5,227,962 Marsh 07/13/1993 5,287,288 Brennen, et al. 02/15/1994 5,510,689 Lipo, et al. 04/23/1996 5,627,737 Maekawa, et al. 05/06/1997 5,638,265 Gabor 06/10/1997 5,793,623 Kawashima, et al. 08/11/1998 5,878,584 Sasaki, et al.
  • the primary objects of the present invention are to provide an energy savings and surge protection device that:
  • the present invention fulfills the above and other objects by providing a device that saves electrical energy by optimizing the power factor through the use of capacitors and provides selectable periods of correction for periods of high or low energy demand through the use of on/off switches, timers, meters, servo-loop control systems and variable capacitance capacitors. Additionally, surge protection is promoted through the use of surge arresters, also called metal oxide varistors (MOVs).
  • MOVs metal oxide varistors
  • Power factor optimization is a technique used to improve the relationship between inductive power and reactive power as follows:
  • the present device uses capacitors, however, unlike prior devices, the present device uses capacitors in which the capacitance can be varied depending on the amount of power factor correction that is needed.
  • Capacitors are static sources of kilovars or reactive power and can be installed at a circuit breaker box or switch of inductive equipment, such as air conditioner motors, to reduce amperage usage and adjust the power factor as close as possible to unity, i.e., 1. In this manner the equipment is provided only the power necessary to operate optimally.
  • the device also provides surge, lightning, and brown-out protection through the use of surge arresters.
  • FIG. 1 is a front perspective exterior view of an energy savings and surge protection device of the present invention
  • FIG. 2 is a front perspective interior view of an energy savings and surge protection device of the present invention for use in single-phase applications;
  • FIG. 3 is a front perspective interior view of an energy savings and surge protection device of the present invention for use in three-phase applications;
  • FIG. 4 is a front perspective interior view of an energy savings and surge protection device of the present invention having a variable capacitance capacitor for use in single-phase applications;
  • FIG. 5 is a front perspective interior view of an energy savings and surge protection device of the present invention having a variable capacitance capacitor for use in three-phase applications;
  • FIG. 6 is a wiring diagram of an energy savings and surge protection device of the present invention.
  • FIG. 7 is a front perspective view of a variable capacitance capacitor used in the energy savings device of the present invention having an on/off switchable capacitor;
  • FIG. 8 is an interior view of a variable capacitance capacitor used in the energy savings device of the present invention.
  • FIG. 9 is a front perspective interior view of an energy savings and surge protection device of the present invention with timer for use in single-phase applications;
  • FIG. 10 is a front perspective interior view of an energy savings and surge protection device of the present invention with timer for use in three-phase applications;
  • FIG. 11 is a front perspective exterior view of an energy savings and surge protection device of the present invention having a meter.
  • a preferred embodiment of the present invention is a unit 1 , made up of an outer enclosure 2 having a removable front cover 3 , an inner cover 4 and knockout holes 5 for connection to an electrical service, preferably a circuit breaker switch or switch at an electrical panel or meter.
  • an electrical service preferably a circuit breaker switch or switch at an electrical panel or meter.
  • the front cover 3 may be secured to the outer enclosure 2 using screws 20 , rivets, etc. to prevent unapproved access to the unit.
  • Surge arresters 11 located inside the outer enclosure 2 provide surge, lightning, and brown-out protection by consistently supplying appropriate voltage load. The number of surge arresters 11 depend on the electrical demand of an application.
  • At least one capacitor 10 is located inside of the outer enclosure 2 .
  • the number and capacitance level measured in microfarads of the capacitors 10 in the unit 1 depend on the electrical demand of an application and if the application is a single-phase or three-phase application.
  • At least one on/off switches/button 6 may be for manually activating and deactivating the at least one capacitor 10 during periods of high or low energy consumption is located on the inner cover 4 of the outer enclosure 2 .
  • multiple on/off switches/buttons 6 may be used for individually activating and deactivating the capacitors 10 to achieve various capacitance levels.
  • a capacitor on/off indicator lamp 7 indicates whether the capacitors 10 are activated or deactivated
  • a power indicator lamp 8 preferably amber
  • a hazard indicator lamp 9 preferably red
  • the unit 1 may be connected to an electrical service at the breaker box in any single phase or three phase service.
  • variable capacitance capacitor 13 in place of a standard capacitor 10 having a fixed level of capacitance.
  • the number of variable capacitance capacitors 13 in the unit 1 depend on the electrical demand of an application and if the application is a single-phase or three-phase application.
  • FIG. 6 shows a wiring diagram of the invention having a single capacitance capacitor 10 with taps 16 electrically connected to a bank of surge arresters 11 with an on/off switch 6 and a capacitor on/off indicator light 7 .
  • variable capacitance capacitor 13 is made up of multiple discreet capacitive cells 15 separated from each other and having individual taps 16 or a common terminal 17 .
  • Each discreet capacitive cell 15 has a fixed capacitance level.
  • the individual taps 16 allow the user to individually activate and deactivate each discreet capacitive cell 15 through the use of activator switches/buttons 21 , timers 12 and/or meters 18 to achieve various levels of capacitance without the use of multiple standard capacitors with fixed levels of capacitance. For example, as shown in FIG.
  • a single-phase unit 1 having a variable capacitance capacitor 13 with three multiple discreet capacitive cells 15 , one discreet capacitive cell 15 having a capacitance level of twenty microfarads, a second discreet capacitive cell 15 having a capacitance level of forty microfarads and a third discreet capacitive cell 15 having a capacitance level of forty microfarads maybe set using the three activator switches/buttons 21 , located on the inner cover 4 , to capacitance levels of twenty microfarads, forty microfarads, sixty microfarads, eighty microfarads, or one-hundred microfarads.
  • the multiple discreet capacitive cells 15 may all be deactivated at the same time when no power correction is needed.
  • the level of capacitance may be displayed on the outside of the unit with the use of capacitance indicator lamps 19 .
  • the discreet capacitive cells 15 may also be controlled through the use of a servo-loop control 14 which actively monitors power consumption and automatically activates or deactivates discreet capacitive cells 15 so as to change the level of capacitance according to the energy demand at any given time.
  • a timer 12 located inside the outer enclosure 2 provides the option of programing the unit 1 with multiple start and stop times for activating and deactivating the capacitor 10 depending on periods of high or low energy demands.
  • the timer 12 may be programmed to activate the capacitor 9 during a business' hours of operation when there is a high energy demand and programmed to deactivate the capacitor 10 while the business is closed and when there is a low energy demand.
  • the timer 12 may be programmed to individually activate and deactivate multiple capacitors 10 or multiple discreet capacitive cells 15 of variable capacitance capacitor 13 to achieve various capacitance levels at different times.
  • a forth embodiment of the invention uses a meter 18 to measure energy usage and automatically activates and deactivates the capacitor 10 or multiple discreet capacitive cells 15 of variable capacitance capacitor 13 to achieve various capacitance levels depending on the energy demand at any given time.

Abstract

An energy savings and surge protection devices device that saves electrical energy by optimizing the power factor in single-phase and three-phase applications through the use of capacitors (10) with fixed levels of capacitance and variable capacitance capacitors (13) while providing selectable periods of correction for periods of high or low energy demand through the use of on/off switches/buttons (6), timers (12), meters (17), and servo-loop controls (14) which are used to activate and deactivate capacitors (10) with fixed levels of capacitance and/or discreet capacitive cells (15) of variable capacitance capacitors (13). Additionally, surge protection is promoted through the use of surge arresters (11), also called metal oxide varistors (MOVs).

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to energy saving devices, more particularly, an energy savings device with surge protection which may provide selectable periods of correction to optimize reduction in energy usage over expected periods of high or low energy demand.
  • In residential or commercial establishments, the loads served by electric utility companies are generally primarily resistive, such as a space heater, or primarily inductive, such as a motor. The inductive loads draw a combination of kilowatts (real or inductive power) and kilovars (reactive power). Capacitors are a static source of kilovars.
  • Capacitors installed at inductive loads provide a number of benefits: reduced electrical energy consumption, reduced line current, increased voltage at the load, better voltage regulation and lower energy losses. These benefits are accomplished by installing sufficiently sized capacitors at the load to bring power factor to just under unity. Power factor is equal to killowatts divided by kilovars.
  • Unfortunately, capacitors are not used to optimize load factor as widely as they might be. This is especially true in residential and commercial applications. One reason for the latter is that current devices do not allow for any periods of correction to optimize reduction in energy usage over periods of high or low energy demand. Currently, energy saving devices use capacitors with fixed levels of capacitance, commonly measured in microfarads (mF). The size of a capacitor to be used in any residential or commercial application is determined by the average energy usage at the time of installation. However, this method of determining the required capacitance does not take into account periods of high or low energy demand. As a result, during periods of high energy demand, the capacitor may not be large enough to achieve the optimal reduction in kilowatt usage. Alternatively, during periods of low energy demand, the energy used to power the capacitor may offset any energy savings.
  • Thus, a need exists for an energy savings device which provides the user with selectable periods of correction to optimize reduction in energy usage over expected periods of high or low energy demand.
  • The relevant prior art includes the following references:
  • Patent No.
    (U.S. unless Issue/
    stated otherwise) Inventor Publication Date
    3,300,712 Segsworth 01/24/1967
    3,859,564 Zulaski 01/07/1975
    3,900,772 Anderl, et al. 08/19/1975
    5,138,519 Stockman 08/11/1992
    5,227,962 Marsh 07/13/1993
    5,287,288 Brennen, et al. 02/15/1994
    5,510,689 Lipo, et al. 04/23/1996
    5,627,737 Maekawa, et al. 05/06/1997
    5,638,265 Gabor 06/10/1997
    5,793,623 Kawashima, et al. 08/11/1998
    5,878,584 Sasaki, et al. 03/09/1999
    6,008,548 Fenner, et al. 12/28/1999
    6,191,676 Gabor 02/20/2001
    2002/0089373 Shashoua 07/11/2002
    6,462,492 Sakamoto, et al. 10/08/2002
    6,573,691 Ma, et al. 06/03/2003
    6,747,373 Hu, et al. 06/08/2004
    6,876,178 Wu, et al. 04/05/2005
    7,092,232 Yamagata, et al. 08/15/2006
    7,203,053 Stockman 05/10/2007
  • SUMMARY OF THE INVENTION
  • The primary objects of the present invention are to provide an energy savings and surge protection device that:
  • optimizes power factor;
  • reduces kilowatt usage;
  • provides surge protection;
  • provides brown-out protection;
  • optimizes reduction in energy usage over expected periods of high or low energy demand; and
  • extends the life span of motors and appliances.
  • The present invention fulfills the above and other objects by providing a device that saves electrical energy by optimizing the power factor through the use of capacitors and provides selectable periods of correction for periods of high or low energy demand through the use of on/off switches, timers, meters, servo-loop control systems and variable capacitance capacitors. Additionally, surge protection is promoted through the use of surge arresters, also called metal oxide varistors (MOVs).
  • Power factor optimization is a technique used to improve the relationship between inductive power and reactive power as follows:
  • power factor ( pf ) = kilowatts ( working / real / inductive power ) kilovars ( apparent / total reactive power )
  • As is typical of energy saving devices, the present device uses capacitors, however, unlike prior devices, the present device uses capacitors in which the capacitance can be varied depending on the amount of power factor correction that is needed. Capacitors are static sources of kilovars or reactive power and can be installed at a circuit breaker box or switch of inductive equipment, such as air conditioner motors, to reduce amperage usage and adjust the power factor as close as possible to unity, i.e., 1. In this manner the equipment is provided only the power necessary to operate optimally. In addition to reducing electrical usage, the device also provides surge, lightning, and brown-out protection through the use of surge arresters.
  • The above and other objects, features and advantages of the present invention should become even more readily apparent to those skilled in the art upon a reading of the following detailed description in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following detailed description, reference will be made to the attached drawings in which:
  • FIG. 1 is a front perspective exterior view of an energy savings and surge protection device of the present invention;
  • FIG. 2 is a front perspective interior view of an energy savings and surge protection device of the present invention for use in single-phase applications;
  • FIG. 3 is a front perspective interior view of an energy savings and surge protection device of the present invention for use in three-phase applications;
  • FIG. 4 is a front perspective interior view of an energy savings and surge protection device of the present invention having a variable capacitance capacitor for use in single-phase applications;
  • FIG. 5 is a front perspective interior view of an energy savings and surge protection device of the present invention having a variable capacitance capacitor for use in three-phase applications;
  • FIG. 6 is a wiring diagram of an energy savings and surge protection device of the present invention;
  • FIG. 7 is a front perspective view of a variable capacitance capacitor used in the energy savings device of the present invention having an on/off switchable capacitor;
  • FIG. 8 is an interior view of a variable capacitance capacitor used in the energy savings device of the present invention;
  • FIG. 9 is a front perspective interior view of an energy savings and surge protection device of the present invention with timer for use in single-phase applications;
  • FIG. 10 is a front perspective interior view of an energy savings and surge protection device of the present invention with timer for use in three-phase applications; and
  • FIG. 11 is a front perspective exterior view of an energy savings and surge protection device of the present invention having a meter.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • For purposes of describing the preferred embodiment, the terminology used in reference to the numbered components in the drawings is as follows:
  • 1. unit
  • 2. outer enclosure
  • 3. front cover
  • 4. inner cover
  • 5. knockout hole
  • 6. on/off switches/buttons
  • 7. capacitor on/off indicator lamp
  • 8. power indicator lamp
  • 9. hazard indicator lamp
  • 10. capacitor
  • 11. surge arresters
  • 12. timer
  • 13. variable capacitance capacitor
  • 14. servo-loop control
  • 15. discreet capacitive cell
  • 16. tap
  • 17. common terminal
  • 18. meter
  • 19. capacitance indicator lamp
  • 20. screws
  • 21. activation switches
  • As shown in FIGS. 1, 2 and 3, a preferred embodiment of the present invention is a unit 1, made up of an outer enclosure 2 having a removable front cover 3, an inner cover 4 and knockout holes 5 for connection to an electrical service, preferably a circuit breaker switch or switch at an electrical panel or meter. Upon installation the front cover 3 may be secured to the outer enclosure 2 using screws 20, rivets, etc. to prevent unapproved access to the unit. Surge arresters 11 located inside the outer enclosure 2 provide surge, lightning, and brown-out protection by consistently supplying appropriate voltage load. The number of surge arresters 11 depend on the electrical demand of an application. At least one capacitor 10 is located inside of the outer enclosure 2. The number and capacitance level measured in microfarads of the capacitors 10 in the unit 1 depend on the electrical demand of an application and if the application is a single-phase or three-phase application. At least one on/off switches/button 6 may be for manually activating and deactivating the at least one capacitor 10 during periods of high or low energy consumption is located on the inner cover 4 of the outer enclosure 2. When a unit 1 has more than one capacitor, as shown in FIG. 3, multiple on/off switches/buttons 6 may be used for individually activating and deactivating the capacitors 10 to achieve various capacitance levels.
  • Three indicator lamps may be located on the front cover 3. A capacitor on/off indicator lamp 7 indicates whether the capacitors 10 are activated or deactivated, a power indicator lamp 8, preferably amber, indicates that electricity is being supplied to the unit 1, and a hazard indicator lamp 9, preferably red, indicates if the unit 1 is not functioning properly. The unit 1 may be connected to an electrical service at the breaker box in any single phase or three phase service.
  • Referring now to FIGS. 4 and 5, a second embodiment of the invention is shown in which the unit 1 uses at least one variable capacitance capacitor 13 in place of a standard capacitor 10 having a fixed level of capacitance. The number of variable capacitance capacitors 13 in the unit 1 depend on the electrical demand of an application and if the application is a single-phase or three-phase application.
  • FIG. 6 shows a wiring diagram of the invention having a single capacitance capacitor 10 with taps 16 electrically connected to a bank of surge arresters 11 with an on/off switch 6 and a capacitor on/off indicator light 7.
  • As further shown in FIGS. 7 and 8, the variable capacitance capacitor 13 is made up of multiple discreet capacitive cells 15 separated from each other and having individual taps 16 or a common terminal 17. Each discreet capacitive cell 15 has a fixed capacitance level. The individual taps 16 allow the user to individually activate and deactivate each discreet capacitive cell 15 through the use of activator switches/buttons 21, timers 12 and/or meters 18 to achieve various levels of capacitance without the use of multiple standard capacitors with fixed levels of capacitance. For example, as shown in FIG. 4, a single-phase unit 1 having a variable capacitance capacitor 13 with three multiple discreet capacitive cells 15, one discreet capacitive cell 15 having a capacitance level of twenty microfarads, a second discreet capacitive cell 15 having a capacitance level of forty microfarads and a third discreet capacitive cell 15 having a capacitance level of forty microfarads, maybe set using the three activator switches/buttons 21, located on the inner cover 4, to capacitance levels of twenty microfarads, forty microfarads, sixty microfarads, eighty microfarads, or one-hundred microfarads. Alternatively, the multiple discreet capacitive cells 15 may all be deactivated at the same time when no power correction is needed. The level of capacitance may be displayed on the outside of the unit with the use of capacitance indicator lamps 19. The discreet capacitive cells 15 may also be controlled through the use of a servo-loop control 14 which actively monitors power consumption and automatically activates or deactivates discreet capacitive cells 15 so as to change the level of capacitance according to the energy demand at any given time.
  • Referring now to FIG. 9, a third embodiment is illustrated in which a timer 12 located inside the outer enclosure 2, provides the option of programing the unit 1 with multiple start and stop times for activating and deactivating the capacitor 10 depending on periods of high or low energy demands. For example, in a commercial setting, the timer 12 may be programmed to activate the capacitor 9 during a business' hours of operation when there is a high energy demand and programmed to deactivate the capacitor 10 while the business is closed and when there is a low energy demand.
  • In addition, as shown in FIG. 10, the timer 12 may be programmed to individually activate and deactivate multiple capacitors 10 or multiple discreet capacitive cells 15 of variable capacitance capacitor 13 to achieve various capacitance levels at different times.
  • As shown in FIG. 11, a forth embodiment of the invention uses a meter 18 to measure energy usage and automatically activates and deactivates the capacitor 10 or multiple discreet capacitive cells 15 of variable capacitance capacitor 13 to achieve various capacitance levels depending on the energy demand at any given time.
  • It is to be understood that while a preferred embodiment of the invention is illustrated, it is not to be limited to the specific form or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not be considered limited to what is shown and described in the specification and drawings.

Claims (24)

1. An energy savings and surge protection device comprising:
an enclosure;
at least one capacitor; and
at least one on/off switch/button for activating and deactivating the at least one capacitor.
2. The energy savings and surge protection device of claim 1 further comprising:
at least one capacitor indicator light to indicate if the at least one capacitor is activated or deactivated.
3. The energy savings and surge protection device of claim 1 further comprising:
a power indicator light to indicate if electricity is being conducted through the energy savings and surge protection device.
4. The energy savings and surge protection device of claim 2 further comprising:
a power indicator light to indicate if electricity is being conducted through the energy savings and surge protection device.
5. The energy savings and surge protection device of claim 1 further comprising:
a hazard indicator light to indicate a problem with the energy savings and surge protection device.
6. The energy savings and surge protection device of claim 2 further comprising:
a hazard indicator light to indicate a problem with the energy savings and surge protection device.
7. The energy savings and surge protection device of claim 3 further comprising:
a hazard indicator light to indicate a problem with the energy savings and surge protection device.
8. The energy savings and surge protection device of claim 1 further comprising:
at least one surge arrester.
9. The energy savings and surge protection device of claim 1 further comprising:
at least one timer for activating and deactivating the at least one capacitor.
10. The energy savings and surge protection device of claim 1 further comprising:
a meter which measures kilowatt usage and automatically activates or deactivates the at least one capacitor depending on the energy demand.
11. The energy savings and surge protection device of claim 1 further comprising:
at least one capacitance indicator lamp to indicate the level of capacitance.
12. The energy savings and surge protection device of claim 1 further comprising:
a meter to indicate the level of capacitance.
13. An energy savings and surge protection device of claim 1 wherein:
the at least one capacitor is at least one variable capacitance capacitor;
said at least one variable capacitance capacitor having multiple discreet capacitive cells;
said discreet capacitive cells having individual capacitance levels;
said multiple discreet capacitive cells each having an individual terminal; and
said multiple discreet capacitive cells all having a common terminal.
14. The energy savings and surge protection device of claim 13 further comprising:
at least one on/off switch/button to individually activate and deactivate said multiple discreet capacitive cells.
15. The energy savings and surge protection device of claim 13 further comprising:
a capacitor indicator light to indicate if the at least one variable capacitance capacitor is activated or deactivated.
16. The energy savings and surge protection device of claim 13 further comprising:
a power indicator light to indicate if electricity is being conducted through the energy savings and surge protection device.
17. The energy savings and surge protection device of claim 13 further comprising:
a hazard indicator light to indicate a problem with the energy savings and surge protection device.
18. The energy savings and surge protection device of claim 13 further comprising:
at least one surge arrester.
19. The energy savings and surge protection device of claim 13 further comprising:
at least one timer for activating and deactivating said multiple discreet capacitive cells.
20. The energy savings and surge protection device of claim 13 further comprising:
a meter which actively measures kilowatt usage and individually activates or deactivates said multiple discreet capacitive cells depending on the energy demand.
21. The energy savings and surge protection device of claim 13 further comprising:
at least one servo-loop control system.
22. The energy savings and surge protection device of claim 13 further comprising:
multiple capacitance lamps to indicate if said multiple discreet capacitive cells are activated or deactivated.
23. The energy savings and surge protection device of claim 13 further comprising:
a meter to indicate the level of capacitance of said at least one variable capacitance capacitor.
24. A variable capacitance capacitor comprising:
multiple discreet capacitive cells;
said discreet capacitive cells having individual capacitance levels;
said multiple discreet capacitive cells each having an individual terminal;
said multiple discreet capacitive cells all having a common terminal; and
a servo-loop control system to automatically activate various discreet capacitive cells as needed.
US12/140,391 2008-06-17 2008-06-17 Energy savings and surge protection device Abandoned US20090310272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/140,391 US20090310272A1 (en) 2008-06-17 2008-06-17 Energy savings and surge protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/140,391 US20090310272A1 (en) 2008-06-17 2008-06-17 Energy savings and surge protection device

Publications (1)

Publication Number Publication Date
US20090310272A1 true US20090310272A1 (en) 2009-12-17

Family

ID=41414541

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/140,391 Abandoned US20090310272A1 (en) 2008-06-17 2008-06-17 Energy savings and surge protection device

Country Status (1)

Country Link
US (1) US20090310272A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259230A1 (en) * 2009-04-13 2010-10-14 Boothroyd Howard G Power factor correction device with adjustable capacitance
US20140042991A1 (en) * 2011-10-31 2014-02-13 Powermag, LLC Power conditioning and saving device
CN106169768A (en) * 2016-08-02 2016-11-30 江苏卓特电气科技有限公司 Three-phase load unbalance self-checking device
US10566600B2 (en) 2011-10-31 2020-02-18 Powermag, LLC Power conditioning and saving device

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300712A (en) * 1964-03-26 1967-01-24 Ajax Magnethermic Corp Control device for automatically adding and subtracting capacitors to maintain preselective power output
US3859564A (en) * 1973-03-19 1975-01-07 John Andrew Zulaski Apparatus for detecting neutral displacement of a polyphase system
US3900772A (en) * 1974-10-29 1975-08-19 Us Army Digitally variable capacitor
US4160174A (en) * 1976-11-29 1979-07-03 Myron Zucker Power capacitor mounting and indicator light structure
US4317076A (en) * 1980-03-20 1982-02-23 Hilscher-Clarke Electric Co. Power factor control system
US5138519A (en) * 1991-09-16 1992-08-11 Stockman Robert M Selectively variable capacitor
US5227962A (en) * 1991-03-06 1993-07-13 Constant Velocity Transmission Lines, Inc. Filter and power factor compensation network
US5287288A (en) * 1992-10-30 1994-02-15 Electric Power Research Institute, Inc. Active power line conditioner with low cost surge protection and fast overload recovery
US5510942A (en) * 1994-12-19 1996-04-23 General Electric Company Series-capacitor compensation equipment
US5510689A (en) * 1990-10-01 1996-04-23 Wisconsin Alumni Research Foundation Air gap flux measurement using stator third harmonic voltage
US5627737A (en) * 1993-09-13 1997-05-06 Sanyo Electric Co., Ltd. Power inverter for use in system interconnection
US5638265A (en) * 1993-08-24 1997-06-10 Gabor; George Low line harmonic AC to DC power supply
US5793623A (en) * 1994-07-01 1998-08-11 Sharp Kabushiki Kaisha Air conditioning device
US5878584A (en) * 1995-06-13 1999-03-09 Sanyo Electric Co., Ltd. Air conditioner with solar generator
US6008548A (en) * 1997-09-19 1999-12-28 Cinergy Corp. Programmable logic controller for resonance control in complex capacitor switching
US6191676B1 (en) * 1994-10-21 2001-02-20 Spinel Llc Apparatus for suppressing nonlinear current drawing characteristics
US20020089373A1 (en) * 2000-01-19 2002-07-11 Ken Takei RF amplifier
US6462492B1 (en) * 1999-11-30 2002-10-08 Hitachi, Ltd. Position-sensorless controlling method of synchronous motor
US6573691B2 (en) * 2001-10-17 2003-06-03 Hatch Associates Ltd. Control system and method for voltage stabilization in electric power system
US6747373B1 (en) * 2001-12-26 2004-06-08 Abb Technology Ag System and method for coordinated control of a switched power capacitor with an integrated resonance protection system
US6876178B2 (en) * 2002-11-08 2005-04-05 Uis Abler Electronics., Ltd. Hybrid reactive power compensation device
US7092232B2 (en) * 2004-06-28 2006-08-15 Kyocera Corporation Variable capacitance capacitor, circuit module, and communications apparatus
US7203053B2 (en) * 2005-04-07 2007-04-10 American Radionic Company, Inc. Capacitor for multiple replacement applications

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300712A (en) * 1964-03-26 1967-01-24 Ajax Magnethermic Corp Control device for automatically adding and subtracting capacitors to maintain preselective power output
US3859564A (en) * 1973-03-19 1975-01-07 John Andrew Zulaski Apparatus for detecting neutral displacement of a polyphase system
US3900772A (en) * 1974-10-29 1975-08-19 Us Army Digitally variable capacitor
US4160174A (en) * 1976-11-29 1979-07-03 Myron Zucker Power capacitor mounting and indicator light structure
US4317076A (en) * 1980-03-20 1982-02-23 Hilscher-Clarke Electric Co. Power factor control system
US5510689A (en) * 1990-10-01 1996-04-23 Wisconsin Alumni Research Foundation Air gap flux measurement using stator third harmonic voltage
US5227962A (en) * 1991-03-06 1993-07-13 Constant Velocity Transmission Lines, Inc. Filter and power factor compensation network
US5138519A (en) * 1991-09-16 1992-08-11 Stockman Robert M Selectively variable capacitor
US5287288A (en) * 1992-10-30 1994-02-15 Electric Power Research Institute, Inc. Active power line conditioner with low cost surge protection and fast overload recovery
US5638265A (en) * 1993-08-24 1997-06-10 Gabor; George Low line harmonic AC to DC power supply
US5627737A (en) * 1993-09-13 1997-05-06 Sanyo Electric Co., Ltd. Power inverter for use in system interconnection
US5793623A (en) * 1994-07-01 1998-08-11 Sharp Kabushiki Kaisha Air conditioning device
US6191676B1 (en) * 1994-10-21 2001-02-20 Spinel Llc Apparatus for suppressing nonlinear current drawing characteristics
US5510942A (en) * 1994-12-19 1996-04-23 General Electric Company Series-capacitor compensation equipment
US5878584A (en) * 1995-06-13 1999-03-09 Sanyo Electric Co., Ltd. Air conditioner with solar generator
US6008548A (en) * 1997-09-19 1999-12-28 Cinergy Corp. Programmable logic controller for resonance control in complex capacitor switching
US6462492B1 (en) * 1999-11-30 2002-10-08 Hitachi, Ltd. Position-sensorless controlling method of synchronous motor
US20020089373A1 (en) * 2000-01-19 2002-07-11 Ken Takei RF amplifier
US6573691B2 (en) * 2001-10-17 2003-06-03 Hatch Associates Ltd. Control system and method for voltage stabilization in electric power system
US6747373B1 (en) * 2001-12-26 2004-06-08 Abb Technology Ag System and method for coordinated control of a switched power capacitor with an integrated resonance protection system
US6876178B2 (en) * 2002-11-08 2005-04-05 Uis Abler Electronics., Ltd. Hybrid reactive power compensation device
US7092232B2 (en) * 2004-06-28 2006-08-15 Kyocera Corporation Variable capacitance capacitor, circuit module, and communications apparatus
US7203053B2 (en) * 2005-04-07 2007-04-10 American Radionic Company, Inc. Capacitor for multiple replacement applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259230A1 (en) * 2009-04-13 2010-10-14 Boothroyd Howard G Power factor correction device with adjustable capacitance
US20140042991A1 (en) * 2011-10-31 2014-02-13 Powermag, LLC Power conditioning and saving device
US10566600B2 (en) 2011-10-31 2020-02-18 Powermag, LLC Power conditioning and saving device
CN106169768A (en) * 2016-08-02 2016-11-30 江苏卓特电气科技有限公司 Three-phase load unbalance self-checking device

Similar Documents

Publication Publication Date Title
US20100259230A1 (en) Power factor correction device with adjustable capacitance
US6891478B2 (en) Methods and apparatus for controlling electric appliances during reduced power conditions
US6806446B1 (en) Power management controls for electric appliances
AP647A (en) Measuring process for measuring chargeable electrical consumption from an electrical network and electronic electricity meter.
US20120185107A1 (en) Power distribution system
EP2479863B1 (en) System for controlling electric power supply to devices
KR101264142B1 (en) New and renewable energy system for home and/or microgrid application
US20090310272A1 (en) Energy savings and surge protection device
WO2007016346A2 (en) Ststem for managing electrical consumption
CN105864970A (en) Method and device used for regulating consumption power of air conditioner
KR101664328B1 (en) Switching board capable of automatic power factor compensation using fuzzy-engine
US6384583B1 (en) Power pod controller system
KR20130117998A (en) A electric controling box having an elctronic compensating device for reactive power
US9859049B2 (en) System for reducing electrical consumption with triple core iterative transformers
WO2020039207A1 (en) Capacitive unit for local power factor correction and system comprising multiple capacitive units
KR101642755B1 (en) Apparatus and method for intelligent power factor control, switchgear comprising the same
CN100386939C (en) Power user intelligent reactive power automatic compensation energy saving device
KR102215075B1 (en) Container-type switchboard system
Stochitoiu et al. Aspects of energy efficiency in modern electrical installations
CN203205883U (en) Detachable low voltage reactive power compensation device
GB2479519A (en) Apparatus for coupling to a mains electrical supply for reducing the reactive, apparent and also the real power components
AU2015100624A4 (en) Domestic Electrical Demand Limiting Controller
CN220585721U (en) Electrical control cabinet
KR100982786B1 (en) High efficiency automatic voltage regulator for power distributer
CN216622437U (en) Multifunctional electric power instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLOBAL ENERGY SAVINGS, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOWELL, WILLIAM D., SR.;REEL/FRAME:021105/0175

Effective date: 20080617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION