US20100064222A1 - Object-aware transitions - Google Patents

Object-aware transitions Download PDF

Info

Publication number
US20100064222A1
US20100064222A1 US12/206,217 US20621708A US2010064222A1 US 20100064222 A1 US20100064222 A1 US 20100064222A1 US 20621708 A US20621708 A US 20621708A US 2010064222 A1 US2010064222 A1 US 2010064222A1
Authority
US
United States
Prior art keywords
slide
processor
animation
routine
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/206,217
Inventor
James Eric Tilton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to US12/206,217 priority Critical patent/US20100064222A1/en
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TILTON, JAMES ERIC
Priority to US12/422,808 priority patent/US7721209B2/en
Priority to US12/694,222 priority patent/US20100118037A1/en
Publication of US20100064222A1 publication Critical patent/US20100064222A1/en
Priority to US12/776,531 priority patent/US8694889B2/en
Priority to US12/793,402 priority patent/US20100238176A1/en
Priority to US14/962,936 priority patent/US10984577B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/802D [Two Dimensional] animation, e.g. using sprites

Definitions

  • the present invention relates generally to transitioning between sequential screens.
  • these presentations are composed of “slides” that are sequentially presented in a specified order.
  • a first slide would be replaced by a second slide on the screen.
  • some form of animation might be performed on the slides as they move on and off.
  • the slides themselves are generally static images. Due to the prevalence of such computer-generated and facilitated presentations, one challenge is to maintain the interest level generated by such presentations, i.e., to keep the audience interested in the material being presented on the screen.
  • the present disclosure generally relates to techniques for providing object-aware transitions between slides of a presentation.
  • object-aware transitions may include identifying each object on the slides being transitioned in and out.
  • the objects or object-types may then be individually manipulated as part of the transition, such as by application of various effects, That is, the transition process may account for and independently animate or otherwise transition each of the objects or object-types composing the different slides.
  • such object awareness can be leveraged as part of the transition.
  • the same object such as a graphic, word, number, or characters in a word or number
  • the transition may take advantage of the presence of the common objects in the outgoing and incoming slides to provide an effect or animations specifically for those objects present in both slides. In this way, the presence of the object in both slides may be used to tailor the slide transition.
  • FIG. 1 is a perspective view illustrating an electronic device in accordance with one embodiment of the present invention
  • FIG. 2 is a simplified block diagram illustrating components of an electronic device in accordance with one embodiment of the present invention
  • FIG. 3 depicts a slide including objects in accordance with one embodiment of the present invention
  • FIG. 4 depicts the slide of FIG. 3 undergoing a transition in accordance with one embodiment of the present invention
  • FIGS. 5A-5F depict screenshots of an object-aware slide transition in accordance with one embodiment of the present invention.
  • FIGS. 6A-6D depict screenshots of another object-aware slide transition in accordance with one embodiment of the present invention.
  • FIGS. 7A-7I depict screenshots of a further object-aware slide transition in accordance with one embodiment of the present invention.
  • FIGS. 8A-8F depict screenshots of an additional object-aware slide transition in accordance with one embodiment of the present invention.
  • FIGS. 9A-9F depict screenshots of another object-aware slide transition in accordance with one embodiment of the present invention.
  • FIGS. 10A-10I depict screenshots of an object-aware slide transition with persistent objects in accordance with one embodiment of the present invention.
  • FIGS. 11A-11F depict screenshots of another object-aware slide transition with persistent objects in accordance with one embodiment of the present invention.
  • the application is generally directed to providing object-aware transitions between slides of a presentation.
  • different objects within each slide are identified and can be separately and independently handled during slide transitions.
  • this involves identifying objects present in both and outgoing and incoming slide and providing specific animation or handling for those objects.
  • FIG. 1 An exemplary electronic device 100 is illustrated in FIG. 1 in accordance with one embodiment of the present invention.
  • the device 100 may be processor-based system, such as a laptop or desktop computer, suitable for preparing and/or displaying presentations, such as using the Keynote® software package available from Apple Inc as part of the iWork® productivity package.
  • processor-based systems suitable for preparing and/or displaying presentations may include servers, thin-client workstations, portable or handheld devices capable of running presentation software, or the like.
  • the electronic device 100 may be a model of a MacBook, MacBook Pro, MacBook Air, iMac, Mac mini, or Mac Pro available from Apple Inc.
  • the exemplary electronic device 100 includes an enclosure or housing 102 , a display 104 , input structures 106 , and input/output connectors 108 .
  • the enclosure 102 may be formed from plastic, metal, composite materials, or other suitable materials, or any combination thereof.
  • the enclosure 102 may protect the interior components of the electronic device 100 from physical damage, and may also shield the interior components from electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • the display 104 may be a liquid crystal display (LCD), cathode ray tube (CRT) or other suitable display type.
  • a suitable LCD display may be based on light emitting diodes (LED) or organic light emitting diodes (OLED).
  • one or more of the input structures 106 are configured to control the device 100 or applications running on the device 100 .
  • Embodiments of the portable electronic device 100 may include any number of input structures 106 , including buttons, switches, a mouse, a control or touch pad, a keyboard, or any other suitable input structures.
  • the input structures 106 may operate to control functions of the electronic device 100 and/or any interfaces or devices connected to or used by the electronic device 100 .
  • the input structures 106 may allow a user to navigate a displayed user interface or application interface.
  • the exemplary device 100 may also include various input and output ports 108 to allow connection of additional devices.
  • the device 100 may include any number of input and/or output ports 108 , such as headphone and headset jacks, video ports, universal serial bus (USB) ports, IEEE-1394 ports, Ethernet and modem ports, and AC and/or DC power connectors.
  • the electronic device 100 may use the input and output ports 108 to connect to and send or receive data with any other device, such as a modem, external display, projector, networked computers, printers, or the like.
  • the electronic device 100 may connect to a scanner, digital camera or other device capable of generating digital images (such as an iPhone or other camera-equipped cellular telephone) via a USB connection to send and receive data files, such as image files.
  • the electronic device 100 includes various internal components which contribute to the function of the device 100 .
  • FIG. 2 is a block diagram illustrating the components that may be present in the electronic device 100 and which may allow the device 100 to function in accordance with the techniques discussed herein.
  • the various functional blocks shown in FIG. 2 may comprise hardware elements (including circuitry), software elements (including computer code stored on a machine-readable medium) or a combination of both hardware and software elements.
  • FIG. 2 is merely one example of a particular implementation and is merely intended to illustrate the types of components that may be present in a device 100 that allow the device 100 to function in accordance with the present techniques.
  • the components may include the display 104 and the I/O ports 108 discussed above.
  • the components may include input circuitry 150 , one or more processors 152 , a memory device 154 , a non-volatile storage 156 , expansion card(s) 158 , a networking device 160 , and a power source 162 .
  • the input circuitry 150 may include circuitry and/or electrical pathways by which user interactions with one or more input structures 106 are conveyed to the processor(s) 152 .
  • user interaction with the input structures 106 such as to interact with a user or application interface displayed on the display 104 , may generate electrical signals indicative of the user input.
  • These input signals may be routed via the input circuitry 150 , such as an input hub or bus, to the processor(s) 152 for further processing.
  • the processor(s) 152 may provide the processing capability to execute the operating system, programs, user and application interfaces, and any other functions of the electronic device 100 .
  • the processor(s) 152 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or ASICS, or some combination thereof.
  • the processor 152 may include one or more instruction processors, as well as graphics processors, video processors, and/or related chip sets.
  • the components may also include a memory 154 .
  • the memory 154 may include a volatile memory, such as random access memory (RAM), and/or a non-volatile memory, such as read-only memory (ROM).
  • RAM random access memory
  • ROM read-only memory
  • the memory 154 may store a variety of information and may be used for various purposes.
  • the memory 154 may store firmware for the electronic device 100 (such as a basic input/output instruction or operating system instructions), other programs that enable various functions of the electronic device 100 , user interface functions, processor functions, and may be used for buffering or caching during operation of the electronic device 100 .
  • the components may further include the non-volatile storage 156 .
  • the non-volatile storage 156 may include ROM, flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof.
  • the non-volatile storage 156 may be used to store data files such as media content (e.g., music, image, video, and/or presentation files), software (e.g., a presentation application for implementing the presently disclosed techniques on electronic device 100 ), wireless connection information (e.g., information that may enable the electronic device 100 to establish a wireless connection, such as a telephone or wireless network connection), and any other suitable data.
  • the embodiment illustrated in FIG. 2 may also include one or more card slots.
  • the card slots may be configured to receive an expansion card 158 that may be used to add functionality to the electronic device 100 , such as additional memory, I/O functionality, or networking capability.
  • Such an expansion card 158 may connect to the device through any type of suitable connector, and may be accessed internally or external to the enclosure 102 .
  • the expansion card 158 may be flash memory card, such as a SecureDigital (SD) card, mini- or microSD, CompactFlash card, Multimedia card (MMC), or the like.
  • SD SecureDigital
  • MMC Multimedia card
  • the components depicted in FIG. 2 also include a network device 160 , such as a network controller or a network interface card (NIC).
  • the network device 160 may be a wireless NIC providing wireless connectivity over any 802.11 standard or any other suitable wireless networking standard.
  • the network device 160 may allow the electronic device 100 to communicate over a network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. Further, the electronic device 100 may connect to and send or receive data with any device on the network, such as portable electronic devices, personal computers, printers, and so forth. Alternatively, in some embodiments, the electronic device 100 may not include a network device 160 . In such an embodiment, a NIC may be added into card slot 158 to provide similar networking capability as described above.
  • the components may also include a power source 162 .
  • the power source 162 may be one or more batteries, such as a lithium-ion polymer battery.
  • the battery may be user-removable or may be secured within the housing 102 , and may be rechargeable.
  • the power source 162 may include AC power, such as provided by an electrical outlet, and the electronic device 100 may be connected to the power source 162 via a power adapter. This power adapter may also be used to recharge one or more batteries if present.
  • a slide 180 having graphic objects 182 and character objects 184 i.e., text and/or numbers or strings of text and/or numbers
  • Such a slide is typically one part of a presentation that typically includes many slides that are sequentially displayed.
  • a presentation (and the individual slides of the presentation) may be composed in an application (such as Keynote® available from Apple Inc.) suitable for generating and displaying presentations on processor-based system such as a computer.
  • the presentation application may provide multiple modes of operation, such as an edit mode and a presentation mode.
  • the presentation application when in the edit mode, may provide a convenient and user-friendly interface for a user to add, edit, remove, or otherwise modify the slides of a slide show, such as by adding text, numeric, graphic, or video objects to a slide.
  • a presentation mode of the presentation application may be employed.
  • the presentation application may provide a full-screen presentation of the slides in the presentation mode, including any animations, transitions, or other properties defined for each object within the slides.
  • the term “object” refers to any individually editable component on a slide of a presentation. That is, something that can be added to a slide and/or be altered or edited on the slide, such as to change its location or size or to change its content, may be described as an object.
  • a graphic such as an image, photo, line drawing, clip-art, chart, table, which may be provided on a slide may constitute an object.
  • a character or string of characters may constitute an object.
  • an embedded video clip may also constitute an object that is a component of a slide.
  • characters and/or character strings (alphabetic, numeric, and/or symbolic), image files (.jpg, .bmp, .gif, .tif, .png, .cgm, .svg, .pdf, .wmf, and so forth), video files (.avi, .mov, .mp4, .mpg, .qt, .rm, .swf, .wmv, and so forth) and other multimedia files or other files in general may constitute “objects” as used herein.
  • the objects provided on the slides of a presentation are identified, automatically or by a user, allowing each object to be independently manipulated, such an animated, when transitioning between slides. That is, for a slide being transitioned out, each object may be separately handled, so that different objects or types of objects may undergo a different effect as part of the transition. For example, turning to FIG. 4 , text and numeric objects 184 on the slide may fade out as graphic objects 182 are animated off the edges of the slide. Likewise, objects or object types on the incoming slide may also be independently handled, such as by fading in text on the incoming slide and animating the entrance of images of the incoming slide from above or from the sides.
  • effects for transitioning an object on or off the screen may be specified (automatically or by a user) for each object or each type of object (such as graphics files, text boxes, videos, etc.) independently of one another.
  • the effect used in transitioning an object may depend on some characteristic of the object, such as a file type, location on the slide, color, shape, size, and so forth. For example, how close an object is to an edge may be a factor in determining whether the object will be animated on to or off of a slide and, if such an animation is selected, which edge the animation will occur relative to, how fast the animation will occur, and so forth.
  • transition effects for different objects or object types may be handled automatically in one embodiment (such as based upon the factors described above), in other embodiments, a user may specify what effects are associated with the transition of an object on or off the screen. For example, a user may use a presentation application interface screen to specify properties of one or more objects on a slide, including transition effects for moving the object on or off the screen.
  • Such object, or content, aware transitions differ from traditional approaches to transition between slides in which each slide is represented by a static image (and, therefore, treated as a single unit) and transitions would generally be an animation between the static images.
  • individual objects on the slides were not individually manipulated, such as animated, during transitions.
  • object-aware transitions in the present context, are transitions that have access to the different individual objects of which the slides or slides are composed, and where each object can be animated or otherwise manipulated independent of the others.
  • FIGS. 5A-5F a sequence of screenshots depicting an example of an animated slide transition is depicted.
  • the animation may be characterized as a “rotate and slide” animation in which a graphic object 182 , here a circle, is “rotated” while “sliding” off of the right side of the slide from the center.
  • a character object 184 Independent of the graphic object 182 , a character object 184 , here the text string “Circles”, is also rotated and slid off the right of the slide.
  • the character object 184 while rotating and sliding to the right of the slide, is also slid upward from beneath the circle to the vertical center of the slide while being animated off of the slide.
  • the character object 184 and the graphic object 182 are animated independently of one another such that one object undergoes a different animation, i.e., vertical sliding, in the transition.
  • the selected transition such as “rotate and slide”, may be used to animate in the objects of the next sequential slide. For example, in an incoming slide, a graphic object and character object may be rotated and slid in from the vertical center of the left side of the next slide, with one or both objects also undergoing an upward or downward animation to achieve the desired presentation location on the slide.
  • the identification of the graphic and character objects in the slide may be accomplished automatically, such as by an algorithm of a presentation application that identifies such objects by file type extensions or other indicators, or by user designation that the slide component is an object for purposes of object-aware transitions.
  • a transition effect such as “rotate and slide”
  • the manner in which the selected effect is applied to each object in the slide may be determined automatically. For example, it may be automatically determined that all objects will rotate and slide the off of the slide from the vertical center of the slide, and the animation of each object may be determined accordingly.
  • the user may be able to specify particular effects or animations for each object of the slide, or to specify the manner in which an effect is accomplished, such as with or without vertical centering for an individual object.
  • the animation may be characterized as a “dissolve and flip” animation in which a graphic object 182 , here a square, and a character object 184 , here the text string “Squares”, are rotated in place, i.e., flipped, while dissolving or fading from view, such as by progressively increasing the transparency of the objects.
  • the character object 184 and the graphic object 182 are animated independently of one another.
  • the “dissolve and flip” transition may also be used to animate the objects of the next sequential slide to introduce those objects, though obviously in such an implementation, the objects will not be dissolving but appearing or materializing.
  • FIGS. 7A-7I a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 7A-7I .
  • the animation may be characterized as an “isometric” animation in which, as depicted in FIGS. 7A-7F , a first graphic object 200 , here a circle, and a first character object 202 , here the text string “Circles”, are subjected to an isometric transformation and moved off the top and left edges, respectively, of a slide.
  • the first character object 202 and the first graphic object 200 are animated independently of one another, of other objects in the slide, and/or of other objects in the next slide.
  • the sequence of screenshots depicts, in FIGS.
  • FIGS. 8A-8F a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 8A-8F .
  • the animation may be characterized as an “object push” animation in which, as depicted in FIGS. 8A-8D , a first graphic object 200 , here a circle, and a first character object 202 , here the text string “Circles”, are “pushed” in from the left side of the slide.
  • the first graphic object 200 and the first character object 202 are pushed in at different speeds, e.g., the first graphic object 200 is lagging, though, at the end of the push in animation, the first graphic object 200 is aligned over the center of the first character object 202 .
  • the first character object 202 and the first graphic object 200 move independently of one another, of other objects in the slide, and/or of other objects in the next slide.
  • the sequence of screenshots depicts, in FIGS. 8E-8F , the first graphic object 200 and the first character object 202 being pushed off the right side of the slide at different speeds, i.e., the graphic is lagging relative to the text, and a second character object 206 associated with the next slide is being pushed onto the slide from the left side.
  • the “object push” transition for the incoming slide may also be applied to each object of the incoming slide in an independent manner (such as each object moving at a different speed or entering from a different direction) and/or without regard for the objects of the previous slide.
  • FIGS. 9A-9F a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 9A-9F .
  • the animation may be characterized as an “object zoom” animation in which, as depicted in FIGS. 9A-9D , a graphic object 182 , here a circle, and a character object 184 , here the text string “Circles”, arise out of the slide.
  • the graphic object 182 and the character object 184 rise up or appear at different times, i.e., the character object 184 is discernible first.
  • the character object 184 and the graphic object 182 are animated independently of one another, of other objects in the slide, and/or of other objects in the next slide.
  • the sequence of screenshots depicts, in FIGS. 9E-9F , the exiting transition of the graphic object 182 and the character object 184 from the slide.
  • the graphic object 182 and the character object 184 rise off the surface of the slide until they disappear, with the character object 184 disappearing first.
  • the “object zoom” transition for the outgoing objects may be applied to each object in an independent manner (such as each object moving, appearing, or disappearing at a different speed) and/or without regard for the objects of the next slide.
  • the identification and assignment of animations may be largely automatic in some embodiments.
  • a user may design two or more sequential slides, such as by placing the desired objects on each slide in the desired locations. The user may then simply select a type of transition, such as the above-described isometric transition, for transitioning between two or more of the slides.
  • the presentation application may, knowing only the selected transition and the type and location of the objects on the slides, assigns suitable animation direction, speeds, effects, translucencies, and other animation effects to each object being transitioned in and out.
  • the object aware transition may take such object persistence in to account.
  • an animation or manipulation may be applied to the object while maintaining the object on the screen.
  • an object may be present in consecutive slides (though it may be in different locations, orientations, or at a different scale in the two slides) and an animation may be applied to the object such that the object appears to move, turn, resize, and so forth to reach the appropriate size, location, and/or orientation in the second slide after the transition.
  • the identification of the object may be performed automatically or based on user inputs.
  • the determination that the object is present in consecutive slides, though perhaps with different size or location properties may be performed automatically.
  • the object may be a .jpg or a .gif image which is referenced by a common file name or location (such as an image gallery or library) when placed on the first and second slides or may be a text or numeric object that contains the same characters.
  • an automated routine may determine that the same image file or character string (word, phrase, sentence, paragraph, and so forth) is present in both slides, even if it is at different locations in the slides or at different sizes.
  • the presentation application may then also evaluate different attributes of the common object, such as size, position, color, rotation, font, and so forth, to determine if any of these attributes that differ between slides would preclude animation from one to the other. If however, the differences are susceptible to a transitional animation, the presentation application may automatically determine an animation for the transition between slides such that the common object appears to be moved, scaled, rotated, and so forth into the proper location for the incoming slide.
  • the user may do no more than design two sequential slides with one or more objects in common and the presentation application will identify the common objects on the sequential slides and provide appropriate animated transitions for the common objects when going from the first slide to the second.
  • FIGS. 10A-10I a sequence of screenshots depicting a slide transition is depicted.
  • a graphic object 182 here a stand, is present in both the outgoing and incoming slides.
  • the graphic image 182 is at a different size and location in the first slide relative to the second slide.
  • a character object 184 here the text string “Keynote”, is introduced in the second slide which is not present in the first slide.
  • the graphic object 182 is animated to appear to shrink and to move upward on the screen as part of the transition between slides.
  • the character object 184 is added during the transition.
  • the graphic object 182 and character object 184 may be animated or manipulated independently of one another.
  • a character-based example is provided.
  • the actual characters, be they letters, numbers, punctuation, etc., on a slide may be evaluated for persistence between slides. That is, the characters within a text and/or numeric string may be considered to be the objects in the present context.
  • the presentation application may evaluate different attributes of the character, such as the letter or number itself, the font, the font size, the color, the presence of certain emphasis (highlight, underlining, italics, bold, strikethrough, and so forth) and other attributes that may affect the similarity of the perceived character in consecutive slides.
  • the character might be identical across the evaluated attributes to be retained or animated between slides.
  • certain attributes, such as color changes, emphases, and so forth may still allow animation and retention of the character between slides.
  • FIGS. 11A-11F a sequence of screenshots depicting a slide transition is depicted.
  • the character string “Reduce” is initially displayed though, after the slide transition, the character “Reuse” will be displayed.
  • the persistent character objects 210 “R”, “e”, and “u” are present in both the first and second slide, though there is an intervening “d” in one slide but not the other.
  • the non-persistent characters are slid away and faded form view as part of the transition while the persistent character objects 210 remain in view and are slid into their new positions consistent with the word displayed on the second slide.
  • the character objects 210 may be animated or manipulated independently of one another.
  • the present example depicts letters, however the characters may also be numbers, symbols, punctuation and so forth.
  • the present example described sliding and fading (or retaining) of the characters, in other embodiments other types of character animation may be employed.
  • the transition animation may instead of sliding on the screen, the transition animation may instead rotate or flip the word about a vertical or horizontal axis, with the changes to the word being accomplished during the rotation or flip of the word.
  • any suitable form of character animation may be employed in manipulating characters in such an embodiment.
  • the present techniques allow for identification of objects on slides of a presentation and the independent manipulation, such as animation, of the objects during slide transitions.
  • no weight is given as to whether the same object or objects are present in consecutive slides.
  • the presence of an object or objects in consecutive slides may be noted and manipulation of the objects during slide transition may take advantage of the persistence of the objects.
  • the identification of objects and/or the transitional manipulation of the identified objects may be automatically derived, such as by a presentation application executing on a processor-based system.

Abstract

Techniques for accomplishing slide transitions in a presentation are disclosed. In accordance with these techniques, objects within the slides are identified, automatically or by a user, and each object is individually manipulable during slide transitions. The individual manipulation applied to each object during a transition may also be automatically determined or specified by a user. In certain embodiments, the persistence of an object between slides may be taken into account in the manipulation of the object during slide transition.

Description

    BACKGROUND
  • 1. Technical Field
  • The present invention relates generally to transitioning between sequential screens.
  • 2. Description of the Related Art
  • This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
  • One use which has been found for computers has been to facilitate the communication of information to an audience. For example, it is not uncommon for various types of public speaking, (such as lectures, seminars, classroom discussions, keynote addresses, and so forth), to be accompanied by computer generated presentations that emphasize or illustrate points being made by the speaker. For example, such presentations may include music, sound effects, images, videos, text passages, numeric examples or spreadsheets, or audiovisual content that emphasizes points being made by the speaker.
  • Typically, these presentations are composed of “slides” that are sequentially presented in a specified order. Typically, to transition between slides, a first slide would be replaced by a second slide on the screen. In some circumstances, some form of animation might be performed on the slides as they move on and off. However, the slides themselves are generally static images. Due to the prevalence of such computer-generated and facilitated presentations, one challenge is to maintain the interest level generated by such presentations, i.e., to keep the audience interested in the material being presented on the screen.
  • SUMMARY
  • Certain aspects of embodiments disclosed herein by way of example are summarized below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms an invention disclosed and/or claimed herein might take and that these aspects are not intended to limit the scope of any invention disclosed and/or claimed herein. Indeed, any invention disclosed and/or claimed herein may encompass a variety of aspects that may not be set forth below.
  • The present disclosure generally relates to techniques for providing object-aware transitions between slides of a presentation. Such object-aware transitions may include identifying each object on the slides being transitioned in and out. The objects or object-types may then be individually manipulated as part of the transition, such as by application of various effects, That is, the transition process may account for and independently animate or otherwise transition each of the objects or object-types composing the different slides.
  • In some instances, such object awareness can be leveraged as part of the transition. For example, in one embodiment, the same object, such as a graphic, word, number, or characters in a word or number, may be present in the outgoing and incoming slides. In one such example, the transition may take advantage of the presence of the common objects in the outgoing and incoming slides to provide an effect or animations specifically for those objects present in both slides. In this way, the presence of the object in both slides may be used to tailor the slide transition.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description of certain exemplary embodiments is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
  • FIG. 1 is a perspective view illustrating an electronic device in accordance with one embodiment of the present invention;
  • FIG. 2 is a simplified block diagram illustrating components of an electronic device in accordance with one embodiment of the present invention;
  • FIG. 3 depicts a slide including objects in accordance with one embodiment of the present invention;
  • FIG. 4 depicts the slide of FIG. 3 undergoing a transition in accordance with one embodiment of the present invention;
  • FIGS. 5A-5F depict screenshots of an object-aware slide transition in accordance with one embodiment of the present invention;
  • FIGS. 6A-6D depict screenshots of another object-aware slide transition in accordance with one embodiment of the present invention;
  • FIGS. 7A-7I depict screenshots of a further object-aware slide transition in accordance with one embodiment of the present invention;
  • FIGS. 8A-8F depict screenshots of an additional object-aware slide transition in accordance with one embodiment of the present invention;
  • FIGS. 9A-9F depict screenshots of another object-aware slide transition in accordance with one embodiment of the present invention;
  • FIGS. 10A-10I depict screenshots of an object-aware slide transition with persistent objects in accordance with one embodiment of the present invention; and
  • FIGS. 11A-11F depict screenshots of another object-aware slide transition with persistent objects in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
  • The application is generally directed to providing object-aware transitions between slides of a presentation. In particular, in accordance with the present disclosure, different objects within each slide are identified and can be separately and independently handled during slide transitions. In certain embodiments, this involves identifying objects present in both and outgoing and incoming slide and providing specific animation or handling for those objects. With this in mind, an example of a suitable device for use in accordance with the present disclosure is as follows.
  • An exemplary electronic device 100 is illustrated in FIG. 1 in accordance with one embodiment of the present invention. In some embodiments, including the presently illustrated embodiment, the device 100 may be processor-based system, such as a laptop or desktop computer, suitable for preparing and/or displaying presentations, such as using the Keynote® software package available from Apple Inc as part of the iWork® productivity package. Other processor-based systems suitable for preparing and/or displaying presentations may include servers, thin-client workstations, portable or handheld devices capable of running presentation software, or the like. By way of example, the electronic device 100 may be a model of a MacBook, MacBook Pro, MacBook Air, iMac, Mac mini, or Mac Pro available from Apple Inc.
  • In the presently illustrated embodiment, the exemplary electronic device 100 includes an enclosure or housing 102, a display 104, input structures 106, and input/output connectors 108. The enclosure 102 may be formed from plastic, metal, composite materials, or other suitable materials, or any combination thereof. The enclosure 102 may protect the interior components of the electronic device 100 from physical damage, and may also shield the interior components from electromagnetic interference (EMI).
  • The display 104 may be a liquid crystal display (LCD), cathode ray tube (CRT) or other suitable display type. For example, in one embodiment, a suitable LCD display may be based on light emitting diodes (LED) or organic light emitting diodes (OLED). In one embodiment, one or more of the input structures 106 are configured to control the device 100 or applications running on the device 100. Embodiments of the portable electronic device 100 may include any number of input structures 106, including buttons, switches, a mouse, a control or touch pad, a keyboard, or any other suitable input structures. The input structures 106 may operate to control functions of the electronic device 100 and/or any interfaces or devices connected to or used by the electronic device 100. For example, the input structures 106 may allow a user to navigate a displayed user interface or application interface.
  • The exemplary device 100 may also include various input and output ports 108 to allow connection of additional devices. For example, the device 100 may include any number of input and/or output ports 108, such as headphone and headset jacks, video ports, universal serial bus (USB) ports, IEEE-1394 ports, Ethernet and modem ports, and AC and/or DC power connectors. Further, the electronic device 100 may use the input and output ports 108 to connect to and send or receive data with any other device, such as a modem, external display, projector, networked computers, printers, or the like. For example, in one embodiment, the electronic device 100 may connect to a scanner, digital camera or other device capable of generating digital images (such as an iPhone or other camera-equipped cellular telephone) via a USB connection to send and receive data files, such as image files.
  • The electronic device 100 includes various internal components which contribute to the function of the device 100. FIG. 2 is a block diagram illustrating the components that may be present in the electronic device 100 and which may allow the device 100 to function in accordance with the techniques discussed herein. Those of ordinary skill in the art will appreciate that the various functional blocks shown in FIG. 2 may comprise hardware elements (including circuitry), software elements (including computer code stored on a machine-readable medium) or a combination of both hardware and software elements. It should further be noted that FIG. 2 is merely one example of a particular implementation and is merely intended to illustrate the types of components that may be present in a device 100 that allow the device 100 to function in accordance with the present techniques.
  • In the presently illustrated embodiment, the components may include the display 104 and the I/O ports 108 discussed above. In addition, as discussed in greater detail below, the components may include input circuitry 150, one or more processors 152, a memory device 154, a non-volatile storage 156, expansion card(s) 158, a networking device 160, and a power source 162.
  • The input circuitry 150 may include circuitry and/or electrical pathways by which user interactions with one or more input structures 106 are conveyed to the processor(s) 152. For example, user interaction with the input structures 106, such as to interact with a user or application interface displayed on the display 104, may generate electrical signals indicative of the user input. These input signals may be routed via the input circuitry 150, such as an input hub or bus, to the processor(s) 152 for further processing.
  • The processor(s) 152 may provide the processing capability to execute the operating system, programs, user and application interfaces, and any other functions of the electronic device 100. The processor(s) 152 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or ASICS, or some combination thereof. For example, the processor 152 may include one or more instruction processors, as well as graphics processors, video processors, and/or related chip sets.
  • As noted above, the components may also include a memory 154. The memory 154 may include a volatile memory, such as random access memory (RAM), and/or a non-volatile memory, such as read-only memory (ROM). The memory 154 may store a variety of information and may be used for various purposes. For example, the memory 154 may store firmware for the electronic device 100 (such as a basic input/output instruction or operating system instructions), other programs that enable various functions of the electronic device 100, user interface functions, processor functions, and may be used for buffering or caching during operation of the electronic device 100.
  • The components may further include the non-volatile storage 156. The non-volatile storage 156 may include ROM, flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof. The non-volatile storage 156 may be used to store data files such as media content (e.g., music, image, video, and/or presentation files), software (e.g., a presentation application for implementing the presently disclosed techniques on electronic device 100), wireless connection information (e.g., information that may enable the electronic device 100 to establish a wireless connection, such as a telephone or wireless network connection), and any other suitable data.
  • The embodiment illustrated in FIG. 2 may also include one or more card slots. The card slots may be configured to receive an expansion card 158 that may be used to add functionality to the electronic device 100, such as additional memory, I/O functionality, or networking capability. Such an expansion card 158 may connect to the device through any type of suitable connector, and may be accessed internally or external to the enclosure 102. For example, in one embodiment, the expansion card 158 may be flash memory card, such as a SecureDigital (SD) card, mini- or microSD, CompactFlash card, Multimedia card (MMC), or the like.
  • The components depicted in FIG. 2 also include a network device 160, such as a network controller or a network interface card (NIC). In one embodiment, the network device 160 may be a wireless NIC providing wireless connectivity over any 802.11 standard or any other suitable wireless networking standard. The network device 160 may allow the electronic device 100 to communicate over a network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. Further, the electronic device 100 may connect to and send or receive data with any device on the network, such as portable electronic devices, personal computers, printers, and so forth. Alternatively, in some embodiments, the electronic device 100 may not include a network device 160. In such an embodiment, a NIC may be added into card slot 158 to provide similar networking capability as described above.
  • Further, the components may also include a power source 162. In one embodiment, the power source 162 may be one or more batteries, such as a lithium-ion polymer battery. The battery may be user-removable or may be secured within the housing 102, and may be rechargeable. Additionally, the power source 162 may include AC power, such as provided by an electrical outlet, and the electronic device 100 may be connected to the power source 162 via a power adapter. This power adapter may also be used to recharge one or more batteries if present.
  • With the foregoing discussion in mind, various techniques and algorithms for implementing aspects of the present disclosure on such devices 100 and accompanying hardware and memory devices are discussed below. Turning to FIG. 3, a slide 180 having graphic objects 182 and character objects 184 (i.e., text and/or numbers or strings of text and/or numbers) is depicted. Such a slide is typically one part of a presentation that typically includes many slides that are sequentially displayed. For example, such a presentation (and the individual slides of the presentation) may be composed in an application (such as Keynote® available from Apple Inc.) suitable for generating and displaying presentations on processor-based system such as a computer.
  • The presentation application may provide multiple modes of operation, such as an edit mode and a presentation mode. In such an embodiment, when in the edit mode, the presentation application may provide a convenient and user-friendly interface for a user to add, edit, remove, or otherwise modify the slides of a slide show, such as by adding text, numeric, graphic, or video objects to a slide. To display a created slide or a sequence of slides in a format suitable for audience viewing, a presentation mode of the presentation application may be employed. In some embodiments, the presentation application may provide a full-screen presentation of the slides in the presentation mode, including any animations, transitions, or other properties defined for each object within the slides.
  • As used herein, the term “object” refers to any individually editable component on a slide of a presentation. That is, something that can be added to a slide and/or be altered or edited on the slide, such as to change its location or size or to change its content, may be described as an object. For example, a graphic, such as an image, photo, line drawing, clip-art, chart, table, which may be provided on a slide may constitute an object. Likewise, a character or string of characters may constitute an object. Likewise, an embedded video clip may also constitute an object that is a component of a slide. Therefore, in certain embodiments, characters and/or character strings (alphabetic, numeric, and/or symbolic), image files (.jpg, .bmp, .gif, .tif, .png, .cgm, .svg, .pdf, .wmf, and so forth), video files (.avi, .mov, .mp4, .mpg, .qt, .rm, .swf, .wmv, and so forth) and other multimedia files or other files in general may constitute “objects” as used herein.
  • In one embodiment, the objects provided on the slides of a presentation are identified, automatically or by a user, allowing each object to be independently manipulated, such an animated, when transitioning between slides. That is, for a slide being transitioned out, each object may be separately handled, so that different objects or types of objects may undergo a different effect as part of the transition. For example, turning to FIG. 4, text and numeric objects 184 on the slide may fade out as graphic objects 182 are animated off the edges of the slide. Likewise, objects or object types on the incoming slide may also be independently handled, such as by fading in text on the incoming slide and animating the entrance of images of the incoming slide from above or from the sides.
  • By identifying each object on a slide, effects for transitioning an object on or off the screen may be specified (automatically or by a user) for each object or each type of object (such as graphics files, text boxes, videos, etc.) independently of one another. The effect used in transitioning an object may depend on some characteristic of the object, such as a file type, location on the slide, color, shape, size, and so forth. For example, how close an object is to an edge may be a factor in determining whether the object will be animated on to or off of a slide and, if such an animation is selected, which edge the animation will occur relative to, how fast the animation will occur, and so forth. While the transition effects for different objects or object types may be handled automatically in one embodiment (such as based upon the factors described above), in other embodiments, a user may specify what effects are associated with the transition of an object on or off the screen. For example, a user may use a presentation application interface screen to specify properties of one or more objects on a slide, including transition effects for moving the object on or off the screen.
  • Such object, or content, aware transitions differ from traditional approaches to transition between slides in which each slide is represented by a static image (and, therefore, treated as a single unit) and transitions would generally be an animation between the static images. However, individual objects on the slides were not individually manipulated, such as animated, during transitions. Thus, object-aware transitions, in the present context, are transitions that have access to the different individual objects of which the slides or slides are composed, and where each object can be animated or otherwise manipulated independent of the others.
  • In terms of the various effects that each object can be subjected to in such object-aware transitions, virtually any animation and/or manipulation that can be performed on the respective type of object may be suitable. By way of example, turning now to FIGS. 5A-5F, a sequence of screenshots depicting an example of an animated slide transition is depicted. In this example, the animation may be characterized as a “rotate and slide” animation in which a graphic object 182, here a circle, is “rotated” while “sliding” off of the right side of the slide from the center. Independent of the graphic object 182, a character object 184, here the text string “Circles”, is also rotated and slid off the right of the slide. The character object 184, while rotating and sliding to the right of the slide, is also slid upward from beneath the circle to the vertical center of the slide while being animated off of the slide. Thus, the character object 184 and the graphic object 182 are animated independently of one another such that one object undergoes a different animation, i.e., vertical sliding, in the transition. It is also worth noting that the selected transition, such as “rotate and slide”, may be used to animate in the objects of the next sequential slide. For example, in an incoming slide, a graphic object and character object may be rotated and slid in from the vertical center of the left side of the next slide, with one or both objects also undergoing an upward or downward animation to achieve the desired presentation location on the slide.
  • In practice, the identification of the graphic and character objects in the slide may be accomplished automatically, such as by an algorithm of a presentation application that identifies such objects by file type extensions or other indicators, or by user designation that the slide component is an object for purposes of object-aware transitions. Once the objects are identified and a transition effect, such as “rotate and slide”, is selected for the slide by the user, the manner in which the selected effect is applied to each object in the slide may be determined automatically. For example, it may be automatically determined that all objects will rotate and slide the off of the slide from the vertical center of the slide, and the animation of each object may be determined accordingly. Alternatively, in other embodiments, the user may be able to specify particular effects or animations for each object of the slide, or to specify the manner in which an effect is accomplished, such as with or without vertical centering for an individual object.
  • In another example, turning now to FIGS. 6A-6D, a sequence of screenshots depicting another animated slide transition is provided. In this example, the animation may be characterized as a “dissolve and flip” animation in which a graphic object 182, here a square, and a character object 184, here the text string “Squares”, are rotated in place, i.e., flipped, while dissolving or fading from view, such as by progressively increasing the transparency of the objects. As in the previous example, the character object 184 and the graphic object 182 are animated independently of one another. As noted above, the “dissolve and flip” transition may also be used to animate the objects of the next sequential slide to introduce those objects, though obviously in such an implementation, the objects will not be dissolving but appearing or materializing.
  • In yet another example, a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 7A-7I. In this example, the animation may be characterized as an “isometric” animation in which, as depicted in FIGS. 7A-7F, a first graphic object 200, here a circle, and a first character object 202, here the text string “Circles”, are subjected to an isometric transformation and moved off the top and left edges, respectively, of a slide. As in the previous example, the first character object 202 and the first graphic object 200 are animated independently of one another, of other objects in the slide, and/or of other objects in the next slide. In addition, the sequence of screenshots depicts, in FIGS. 7D-7I, the animation onto the screen of a second graphic object 204, here a square, and a second character object 206, here the text string “Squares”. In the incoming transition of the second graphic object 204 and the second character object 206, these objects under go the reverse isometric transformation and slide in from opposite respective sides of the screen as their first slide counterparts. As noted above, the “isometric” transition for the incoming slide may also be applied to each object of the incoming slide in an independent manner and/or without regard for the objects of the previous slide.
  • In a further example, a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 8A-8F. In this example, the animation may be characterized as an “object push” animation in which, as depicted in FIGS. 8A-8D, a first graphic object 200, here a circle, and a first character object 202, here the text string “Circles”, are “pushed” in from the left side of the slide. In the depicted example, the first graphic object 200 and the first character object 202 are pushed in at different speeds, e.g., the first graphic object 200 is lagging, though, at the end of the push in animation, the first graphic object 200 is aligned over the center of the first character object 202. Thus, the first character object 202 and the first graphic object 200 move independently of one another, of other objects in the slide, and/or of other objects in the next slide. In addition, the sequence of screenshots depicts, in FIGS. 8E-8F, the first graphic object 200 and the first character object 202 being pushed off the right side of the slide at different speeds, i.e., the graphic is lagging relative to the text, and a second character object 206 associated with the next slide is being pushed onto the slide from the left side. As with the previous slide, the “object push” transition for the incoming slide may also be applied to each object of the incoming slide in an independent manner (such as each object moving at a different speed or entering from a different direction) and/or without regard for the objects of the previous slide.
  • In another example, a sequence of screenshots depicting another animated slide transition is depicted in FIGS. 9A-9F. In this example, the animation may be characterized as an “object zoom” animation in which, as depicted in FIGS. 9A-9D, a graphic object 182, here a circle, and a character object 184, here the text string “Circles”, arise out of the slide. In the depicted example, the graphic object 182 and the character object 184 rise up or appear at different times, i.e., the character object 184 is discernible first. Thus, the character object 184 and the graphic object 182 are animated independently of one another, of other objects in the slide, and/or of other objects in the next slide. In addition, the sequence of screenshots depicts, in FIGS. 9E-9F, the exiting transition of the graphic object 182 and the character object 184 from the slide. In this outgoing transition the graphic object 182 and the character object 184 rise off the surface of the slide until they disappear, with the character object 184 disappearing first. As with the previous slide, the “object zoom” transition for the outgoing objects may be applied to each object in an independent manner (such as each object moving, appearing, or disappearing at a different speed) and/or without regard for the objects of the next slide.
  • The preceding examples are illustrative of the manner in which individual objects on a slide may be differentially or independently manipulated, e.g., animated, without regard to other objects in a slide. The preceding examples, however, are not exhaustive, and it is to be understood that any animation or manipulation suitable for an object identified in a slide may be applied to that object without regard to the other objects in the slide or the objects in the previous or next slides in certain object-aware transition embodiments.
  • Further, as previously noted, the identification and assignment of animations may be largely automatic in some embodiments. For example, a user may design two or more sequential slides, such as by placing the desired objects on each slide in the desired locations. The user may then simply select a type of transition, such as the above-described isometric transition, for transitioning between two or more of the slides. In an automated implementation, the presentation application may, knowing only the selected transition and the type and location of the objects on the slides, assigns suitable animation direction, speeds, effects, translucencies, and other animation effects to each object being transitioned in and out.
  • The preceding discussion describes implementations in which the transitions between slides do not take into account what the objects are that are in the slides or whether the same object is present in both the outgoing and incoming slide. However, in certain embodiments, the object aware transition may take such object persistence in to account. For example, in certain implementations where the same object, be it a text, numeric, graphic, and/or video object, is present in consecutive slides, an animation or manipulation may be applied to the object while maintaining the object on the screen. Thus, in one implementation, an object may be present in consecutive slides (though it may be in different locations, orientations, or at a different scale in the two slides) and an animation may be applied to the object such that the object appears to move, turn, resize, and so forth to reach the appropriate size, location, and/or orientation in the second slide after the transition.
  • As in the previously described embodiments, the identification of the object may be performed automatically or based on user inputs. In addition, the determination that the object is present in consecutive slides, though perhaps with different size or location properties, may be performed automatically. For example, the object may be a .jpg or a .gif image which is referenced by a common file name or location (such as an image gallery or library) when placed on the first and second slides or may be a text or numeric object that contains the same characters. Thus, an automated routine may determine that the same image file or character string (word, phrase, sentence, paragraph, and so forth) is present in both slides, even if it is at different locations in the slides or at different sizes. The presentation application may then also evaluate different attributes of the common object, such as size, position, color, rotation, font, and so forth, to determine if any of these attributes that differ between slides would preclude animation from one to the other. If however, the differences are susceptible to a transitional animation, the presentation application may automatically determine an animation for the transition between slides such that the common object appears to be moved, scaled, rotated, and so forth into the proper location for the incoming slide. Thus, in this embodiment, the user may do no more than design two sequential slides with one or more objects in common and the presentation application will identify the common objects on the sequential slides and provide appropriate animated transitions for the common objects when going from the first slide to the second.
  • For example, turning now to FIGS. 10A-10I, a sequence of screenshots depicting a slide transition is depicted. In this example, a graphic object 182, here a stand, is present in both the outgoing and incoming slides. However, the graphic image 182 is at a different size and location in the first slide relative to the second slide. In addition, a character object 184, here the text string “Keynote”, is introduced in the second slide which is not present in the first slide. In the depicted example, the graphic object 182 is animated to appear to shrink and to move upward on the screen as part of the transition between slides. In addition, the character object 184 is added during the transition. As in previous embodiments, the graphic object 182 and character object 184 may be animated or manipulated independently of one another.
  • In another embodiment of an object-aware transition that takes into account the persistence of objects between slides, a character-based example is provided. In this example, the actual characters, be they letters, numbers, punctuation, etc., on a slide may be evaluated for persistence between slides. That is, the characters within a text and/or numeric string may be considered to be the objects in the present context. In an automated implementation, when evaluating the character objects to determine if the character object is present in consecutive slides, the presentation application may evaluate different attributes of the character, such as the letter or number itself, the font, the font size, the color, the presence of certain emphasis (highlight, underlining, italics, bold, strikethrough, and so forth) and other attributes that may affect the similarity of the perceived character in consecutive slides. In certain embodiments, the character might be identical across the evaluated attributes to be retained or animated between slides. In other embodiments, certain attributes, such as color changes, emphases, and so forth, may still allow animation and retention of the character between slides.
  • In this example, while the characters may be present in consecutive slides, they need no be used in the same words or numbers, and therefore need not remain in the same order. Turning to FIGS. 11A-11F, a sequence of screenshots depicting a slide transition is depicted. In this example, the character string “Reduce” is initially displayed though, after the slide transition, the character “Reuse” will be displayed. Thus, the persistent character objects 210 “R”, “e”, and “u” are present in both the first and second slide, though there is an intervening “d” in one slide but not the other.
  • In the depicted example, the non-persistent characters are slid away and faded form view as part of the transition while the persistent character objects 210 remain in view and are slid into their new positions consistent with the word displayed on the second slide. As in previous embodiments, the character objects 210 may be animated or manipulated independently of one another. As will be appreciated, the present example depicts letters, however the characters may also be numbers, symbols, punctuation and so forth. In addition, though the present example described sliding and fading (or retaining) of the characters, in other embodiments other types of character animation may be employed. For example, instead of sliding on the screen, the transition animation may instead rotate or flip the word about a vertical or horizontal axis, with the changes to the word being accomplished during the rotation or flip of the word. Indeed, any suitable form of character animation may be employed in manipulating characters in such an embodiment.
  • As will be appreciated, the present techniques allow for identification of objects on slides of a presentation and the independent manipulation, such as animation, of the objects during slide transitions. As described herein, in some embodiments, no weight is given as to whether the same object or objects are present in consecutive slides. However, in other embodiments, the presence of an object or objects in consecutive slides may be noted and manipulation of the objects during slide transition may take advantage of the persistence of the objects. In certain embodiments, as described herein, the identification of objects and/or the transitional manipulation of the identified objects may be automatically derived, such as by a presentation application executing on a processor-based system.
  • While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims (28)

1-20. (canceled)
21. A method comprising:
identifying one or more characters as being present in a character string on a first slide and in a different character string in a second slide; and
generating a transition between the first slide and the second slide in which the one or more characters remain on the screen and are animated from the character string into the different character string.
22. The method of claim 21, wherein the one or more characters comprise one or more of alphabetic characters, numeric characters, symbols, or punctuation marks.
23. The method of claim 21, wherein the act of identifying is performed by a routine implemented by a presentation application executing on a processor-based system.
24. The method of claim 21, wherein the act of generating is performed by a routine implemented by a presentation application executing on a processor-based system.
25. The method of claim 21, wherein the character string and/or the different character string comprise one or more of a word, a phrase, a sentence, or a paragraph.
26. The method of claim 21, wherein the transition comprises an animation sliding, rotating, and/or flipping the one or more characters.
27. The method of claim 21, wherein the transition comprises an animation sliding, rotating, and/or flipping the character string to reveal the different character string containing the one or more characters.
28. A method for generating slide transitions for a computer-implemented slide show presentation, comprising:
providing a first computer-executable routine to a processor or to a memory utilized by the processor, wherein the first computer-executable routine, when executed by the processor, determines an animation path for an object on an outgoing slide of a presentation slide show; and
providing a second computer-executable routine to the processor or to the memory utilized by the processor, wherein the second computer-executable routine, when executed by the processor, animates the object along the animation path during a transition to an incoming slide, wherein the object is animated independently of animations applied to other objects on the outgoing slide during the transition.
29. The method of claim 28, comprising providing a third computer-executable routine to the processor or to the memory utilized by the processor, wherein the third computer-executable routine, when executed by the processor, automatically identifies the object on the outgoing slide.
30. The method of claim 28, wherein the object comprises a graphical object or a character object.
31. The method of claim 28, wherein the animation path comprises one or more of a translation of the object, a rotation of the object, a scaling of the object, or a change in opacity of the object.
32. The method of claim 28, wherein the animation path translates the object off of an edge of the slide.
33. The method of claim 28, wherein the object comprises an image, a shape, or a character or character string.
34. The method of claim 28, comprising:
providing a third computer-executable routine to the processor or to the memory utilized by the processor, wherein the third computer-executable routine, when executed by the processor, determines a different animation path for a different object on an incoming slide of the presentation slide show.
35. The method of claim 34, comprising:
providing a fourth computer-executable routine to the processor or to the memory utilized by the processor, wherein the fourth computer-executable routine, when executed by the processor, animates the different object along the different animation path during the transition to the incoming slide, wherein the different object is animated independently of animations applied to other objects on the incoming slide during the transition.
36. A method for animating transitions between slides of a computer-implemented slide show presentation, comprising:
providing a first routine to a processor or to a memory utilized by the processor, wherein the first routine, when executed by the processor, determines a first object animation for a first object on a slide of a slide show presentation;
providing a second routine to the processor or to the memory utilized by the processor, wherein the second routine, when executed by the processor, determines a second object animation for a second object on the slide, wherein the second object animation is different from the first object animation; and
providing a third routine to the processor or to the memory utilized by the processor, wherein the third routine, when executed by the processor, animates the first object in accordance with the first object animation and the second object in accordance with the second object animation during a slide transition.
37. The method of claim 36, comprising:
providing a third routine to the processor or to the memory utilized by the processor, wherein the third routine, when executed by the processor, automatically identifies the first object and the second object on the slide by reference to one or more features of the objects.
38. The method of claim 37, wherein the one or more features comprise one or more of a file name, a file type, a path shape, the presence of characters or character attributes, the presence of a visual effect, or the presence of a mask.
39. The method of claim 36, comprising:
providing a third routine to the processor or to the memory utilized by the processor, wherein the third routine, when executed by the processor, automatically classifies as least one of the first object or the second object by object type.
40. The method of claim 39, wherein at least one of the first object animation or the second object animation is determined based in at least in part on the object type of the respective first object or second object.
41. The method of claim 36, wherein at least one of the first object animation or the second object animation comprises one or more of a translation, a rotation, a scaling, or a change in opacity of the respective first object or second object.
42. The method of claim 36, wherein at least one of the first object animation or the second object animation is determined based in at least in part on the location of the respective first object or second object on the slide.
43. Computer-readable media comprising a computer program product, the computer program product comprising:
a first routine capable of determining a first animation for a first object on a slide and a second animation for a second object on the slide, wherein the slide is part of a multi-slide presentation; and
a second routine capable of animating the first object in accordance with the first animation and the second object in accordance with the second animation when the slide transitions to a next slide of the multi-slide presentation.
44. The computer-readable media of claim 43, the computer program product comprising a third routine capable of identifying the first object and the second object on the slide.
45. The computer-readable media of claim 44, wherein the third routine is further capable of locating the first object and the second object on the slide.
46. The computer-readable media of claim 44, wherein the third routine is further capable of classifying the first object and the second object as respective object types.
47. The computer-readable media of claim 43, wherein at least one of the first animation or the second animation comprises one or more of a translation, a rotation, a scaling or a change in opacity of the respective first object or second object.
US12/206,217 2008-09-08 2008-09-08 Object-aware transitions Abandoned US20100064222A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/206,217 US20100064222A1 (en) 2008-09-08 2008-09-08 Object-aware transitions
US12/422,808 US7721209B2 (en) 2008-09-08 2009-04-13 Object-aware transitions
US12/694,222 US20100118037A1 (en) 2008-09-08 2010-01-26 Object-aware transitions
US12/776,531 US8694889B2 (en) 2008-09-08 2010-05-10 Object-aware transitions
US12/793,402 US20100238176A1 (en) 2008-09-08 2010-06-03 Systems, methods, and devices for flash exposure control using preflash statistics
US14/962,936 US10984577B2 (en) 2008-09-08 2015-12-08 Object-aware transitions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/206,217 US20100064222A1 (en) 2008-09-08 2008-09-08 Object-aware transitions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/422,808 Continuation-In-Part US7721209B2 (en) 2008-09-08 2009-04-13 Object-aware transitions
US14/962,936 Continuation US10984577B2 (en) 2008-09-08 2015-12-08 Object-aware transitions

Publications (1)

Publication Number Publication Date
US20100064222A1 true US20100064222A1 (en) 2010-03-11

Family

ID=41800219

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/206,217 Abandoned US20100064222A1 (en) 2008-09-08 2008-09-08 Object-aware transitions
US14/962,936 Active 2030-02-04 US10984577B2 (en) 2008-09-08 2015-12-08 Object-aware transitions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/962,936 Active 2030-02-04 US10984577B2 (en) 2008-09-08 2015-12-08 Object-aware transitions

Country Status (1)

Country Link
US (2) US20100064222A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223554A1 (en) * 2008-09-08 2010-09-02 Apple Inc. Object-aware transitions
US20100293330A1 (en) * 2009-05-14 2010-11-18 Microsoft Corporation Displaying transition images during a slide transition
US20120293534A1 (en) * 2009-10-09 2012-11-22 Rainer Dehmann Method and Display Device for Displaying Information
US20140033087A1 (en) * 2008-09-30 2014-01-30 Adobe Systems Incorporated Default transitions
US8819567B2 (en) 2011-09-13 2014-08-26 Apple Inc. Defining and editing user interface behaviors
US8907957B2 (en) 2011-08-30 2014-12-09 Apple Inc. Automatic animation generation
US20150113372A1 (en) * 2013-10-18 2015-04-23 Apple Inc. Text and shape morphing in a presentation application
US9164576B2 (en) 2011-09-13 2015-10-20 Apple Inc. Conformance protocol for heterogeneous abstractions for defining user interface behaviors
US20150370447A1 (en) * 2014-06-24 2015-12-24 Google Inc. Computerized systems and methods for cascading user interface element animations
US9710240B2 (en) 2008-11-15 2017-07-18 Adobe Systems Incorporated Method and apparatus for filtering object-related features
US20170236318A1 (en) * 2016-02-15 2017-08-17 Microsoft Technology Licensing, Llc Animated Digital Ink
USD830389S1 (en) * 2016-11-10 2018-10-09 Karma Automotive Llc Automotive display screen with graphical user interface
US11816303B2 (en) * 2015-06-18 2023-11-14 Apple Inc. Device, method, and graphical user interface for navigating media content
US11899919B2 (en) * 2013-09-29 2024-02-13 Microsoft Technology Licensing, Llc Media presentation effects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111401A (en) * 2018-01-31 2019-08-09 北京新唐思创教育科技有限公司 Animation playing method and device for online class
US11295087B2 (en) 2019-03-18 2022-04-05 Apple Inc. Shape library suggestions based on document content

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640522A (en) * 1994-12-05 1997-06-17 Microsoft Corporation Method and system for previewing transition effects between pairs of images
US5673401A (en) * 1995-07-31 1997-09-30 Microsoft Corporation Systems and methods for a customizable sprite-based graphical user interface
US5687331A (en) * 1995-08-03 1997-11-11 Microsoft Corporation Method and system for displaying an animated focus item
US5717848A (en) * 1990-06-11 1998-02-10 Hitachi, Ltd. Method and apparatus for generating object motion path, method of setting object display attribute, and computer graphics system
US5917480A (en) * 1996-06-04 1999-06-29 Microsoft Corporation Method and system for interacting with the content of a slide presentation
US5933150A (en) * 1996-08-06 1999-08-03 Interval Research Corporation System for image manipulation and animation using embedded constraint graphics
US6081262A (en) * 1996-12-04 2000-06-27 Quark, Inc. Method and apparatus for generating multi-media presentations
US6091427A (en) * 1997-07-18 2000-07-18 International Business Machines Corp. Method and system for a true-scale motion path editor using time segments, duration and synchronization
US6111590A (en) * 1997-07-18 2000-08-29 International Business Machines Corp. Method and system for a true scale motion path editor to create motion paths as independent entities
US6252677B1 (en) * 1998-05-07 2001-06-26 Xerox Corporation Method and apparatus for rendering object oriented image data using multiple rendering states selected based on imaging operator type
US6351265B1 (en) * 1993-10-15 2002-02-26 Personalized Online Photo Llc Method and apparatus for producing an electronic image
US6369835B1 (en) * 1999-05-18 2002-04-09 Microsoft Corporation Method and system for generating a movie file from a slide show presentation
US6396500B1 (en) * 1999-03-18 2002-05-28 Microsoft Corporation Method and system for generating and displaying a slide show with animations and transitions in a browser
US6424743B1 (en) * 1999-11-05 2002-07-23 Motorola, Inc. Graphical handwriting recognition user interface
US20020191013A1 (en) * 2001-06-15 2002-12-19 Abrams Stephen Alfred Method and system for incorporating a dynamic situation display in a powerpoint slide show presentation
US6546397B1 (en) * 1999-12-02 2003-04-08 Steven H. Rempell Browser based web site generation tool and run time engine
US6573899B2 (en) * 1999-12-13 2003-06-03 International Business Machines Corporation Morphing processing apparatus, method, storage medium, program transmission apparatus, and animation creation apparatus
US6580438B1 (en) * 1999-11-22 2003-06-17 Fuji Xerox Co., Ltd. Systems and methods for maintaining uniformity in a presentation environment
US20030160814A1 (en) * 2002-02-27 2003-08-28 Brown David K. Slide show presentation and method for viewing same
US6646655B1 (en) * 1999-03-09 2003-11-11 Webex Communications, Inc. Extracting a time-sequence of slides from video
US6674484B1 (en) * 2000-01-10 2004-01-06 Koninklijke Philips Electronics N.V. Video sample rate conversion to achieve 3-D effects
US6717591B1 (en) * 2000-08-31 2004-04-06 International Business Machines Corporation Computer display system for dynamically controlling the pacing of sequential presentation segments in response to user variations in the time allocated to specific presentation segments
US20040130566A1 (en) * 2003-01-07 2004-07-08 Prashant Banerjee Method for producing computerized multi-media presentation
US20040218894A1 (en) * 2003-04-30 2004-11-04 Michael Harville Automatic generation of presentations from "path-enhanced" multimedia
US20050041872A1 (en) * 2003-08-20 2005-02-24 Wai Yim Method for converting PowerPoint presentation files into compressed image files
US20050091672A1 (en) * 2003-10-24 2005-04-28 Microsoft Corporation Facilitating presentation functionality through a programming interface media namespace
US20050154679A1 (en) * 2004-01-08 2005-07-14 Stanley Bielak System for inserting interactive media within a presentation
US20050156931A1 (en) * 2004-01-16 2005-07-21 Olchevski Viatcheslav F. Method of transmutation of alpha-numeric characters shapes and the data handling system
US20050188311A1 (en) * 2003-12-31 2005-08-25 Automatic E-Learning, Llc System and method for implementing an electronic presentation
US6957389B2 (en) * 2001-04-09 2005-10-18 Microsoft Corp. Animation on-object user interface
US7017115B2 (en) * 2000-12-07 2006-03-21 Nec Corporation Portable information terminal equipment and display method therefor
US20060067578A1 (en) * 2004-09-30 2006-03-30 Fuji Xerox Co., Ltd. Slide contents processor, slide contents processing method, and storage medium storing program
US7042464B1 (en) * 2003-08-01 2006-05-09 Apple Computer, Inc. Methods and apparatuses for the automated display of visual effects
US20060129934A1 (en) * 2004-12-15 2006-06-15 Stephan Siebrecht Presentation engine
US20060129933A1 (en) * 2000-12-19 2006-06-15 Sparkpoint Software, Inc. System and method for multimedia authoring and playback
US20060136827A1 (en) * 2004-12-20 2006-06-22 Microsoft Corporation File formats, methods, and computer program products for representing presentations
US20060167903A1 (en) * 2005-01-25 2006-07-27 Microsoft Corporation MediaDescription data structures for carrying descriptive content metadata and content acquisition data in multimedia systems
US7084875B2 (en) * 2002-07-19 2006-08-01 Autodesk Canada Co. Processing scene objects
US7102643B2 (en) * 2001-11-09 2006-09-05 Vibe Solutions Group, Inc. Method and apparatus for controlling the visual presentation of data
US20060197764A1 (en) * 2005-03-02 2006-09-07 Yang George L Document animation system
US20060246409A1 (en) * 2005-04-06 2006-11-02 Aram Akopian ScreenXbook publishing method
US20060265643A1 (en) * 2005-05-17 2006-11-23 Keith Saft Optimal viewing of digital images and voice annotation transitions in slideshows
US20060271871A1 (en) * 2005-05-31 2006-11-30 Blaukopf Jacob B Fine-grained control of z-order elements in a presentation
US20060288389A1 (en) * 2002-03-15 2006-12-21 Microsoft Corporation Interactive presentation viewing system employing multi-media components
US7155676B2 (en) * 2000-12-19 2006-12-26 Coolernet System and method for multimedia authoring and playback
US20070038937A1 (en) * 2005-02-09 2007-02-15 Chieko Asakawa Method, Program, and Device for Analyzing Document Structure
US20070081197A1 (en) * 2001-06-22 2007-04-12 Nosa Omoigui System and method for semantic knowledge retrieval, management, capture, sharing, discovery, delivery and presentation
US20070101251A1 (en) * 2005-11-02 2007-05-03 Samsung Electronics Co., Ltd. System, medium, and method automatically creating a dynamic image object
US20070101125A1 (en) * 2005-10-29 2007-05-03 Hewlett-Packard Development Company, L.P. Method of authorising a computing entity
US20070106927A1 (en) * 2005-11-04 2007-05-10 International Business Machines Corporation Creating accessible, translatable multimedia presentations
US7236632B2 (en) * 2003-04-11 2007-06-26 Ricoh Company, Ltd. Automated techniques for comparing contents of images
US20070162853A1 (en) * 2006-01-06 2007-07-12 Ralf Weber Controlling behavior of elements in a display environment
US7246316B2 (en) * 1999-11-30 2007-07-17 Siebel Systems, Inc. Methods and apparatus for automatically generating presentations
US20070226625A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation System and method for unique labeling of animation display states in electronic slide presentations
US20070245243A1 (en) * 2006-03-28 2007-10-18 Michael Lanza Embedded metadata in a media presentation
US7302113B2 (en) * 2001-07-31 2007-11-27 Hewlett-Packard Development Company, L.P. Displaying digital images
US20070277106A1 (en) * 2006-05-26 2007-11-29 International Business Machines Corporation Method and structure for managing electronic slides using a slide-reading program
US20070300158A1 (en) * 2006-06-21 2007-12-27 Microsoft Corporation Dynamically modifying a theme-based media presentation
US20080005652A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Media presentation driven by meta-data events
US7372991B2 (en) * 2003-09-26 2008-05-13 Seiko Epson Corporation Method and apparatus for summarizing and indexing the contents of an audio-visual presentation
US7383509B2 (en) * 2002-09-13 2008-06-03 Fuji Xerox Co., Ltd. Automatic generation of multimedia presentation
US20080192056A1 (en) * 2007-02-12 2008-08-14 Microsoft Corporation Animated transitions for data visualization
US7428704B2 (en) * 2004-03-29 2008-09-23 Lehman Brothers Holdings Inc. Dynamic presentation generator
US7434177B1 (en) * 1999-12-20 2008-10-07 Apple Inc. User interface for providing consolidation and access
US7434153B2 (en) * 2004-01-21 2008-10-07 Fuji Xerox Co., Ltd. Systems and methods for authoring a media presentation
US20080250321A1 (en) * 2007-04-04 2008-10-09 Nhn Corporation Method and software for creating an image file including multiple still images and special effects
US7443401B2 (en) * 2001-10-18 2008-10-28 Microsoft Corporation Multiple-level graphics processing with animation interval generation
US20080265659A1 (en) * 2007-04-24 2008-10-30 Joachim Heyse Spoke, wheel and process for manufacturing a spoke, especially for bicycles
US7454077B1 (en) * 2004-06-28 2008-11-18 Microsoft Corporation Slideshow animation algorithms
US7467351B1 (en) * 2002-01-31 2008-12-16 Adobe Systems Incorporated Layered master pages
US20080313214A1 (en) * 2006-12-07 2008-12-18 Canon Kabushiki Kaisha Method of ordering and presenting images with smooth metadata transitions
US20090044123A1 (en) * 2007-08-06 2009-02-12 Apple Inc. Action builds and smart builds for use in a presentation application
US20090049075A1 (en) * 2005-10-13 2009-02-19 Tae Hyeon Kim Method and apparatus for encoding/decoding
US20090055745A1 (en) * 2007-08-22 2009-02-26 Citrix Systems, Inc. Method and apparatus for automated content marking
US7498833B2 (en) * 2006-04-17 2009-03-03 Panasonic Corporation Semiconductor integrated circuit
US20090142737A1 (en) * 2007-11-30 2009-06-04 Breig Donna J Method and system for developing reading skills
US7721209B2 (en) * 2008-09-08 2010-05-18 Apple Inc. Object-aware transitions
US20100218100A1 (en) * 2009-02-25 2010-08-26 HNTB Holdings, Ltd. Presentation system
US20100238176A1 (en) * 2008-09-08 2010-09-23 Apple Inc. Systems, methods, and devices for flash exposure control using preflash statistics
US20100293470A1 (en) * 2009-05-12 2010-11-18 Microsoft Corporatioin Hierarchically-Organized Control Galleries
US20110029902A1 (en) * 2008-04-01 2011-02-03 Leap Marketing Technologies Inc. Systems and methods for implementing and tracking identification tests
US20110185297A1 (en) * 2010-01-26 2011-07-28 Apple Inc. Image mask interface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539530A (en) 1999-03-09 2002-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Document encoding method
EP1380013A4 (en) * 2000-07-18 2007-01-24 Incredimail Ltd System and method for visual feedback of command execution in electronic mail systems
AUPR947701A0 (en) 2001-12-14 2002-01-24 Activesky, Inc. Digital multimedia publishing system for wireless devices
US7370065B1 (en) * 2002-08-21 2008-05-06 Adobe Systems Incorporated Renaming multiple files
US20110107223A1 (en) 2003-01-06 2011-05-05 Eric Tilton User Interface For Presenting Presentations
US7173623B2 (en) * 2003-05-09 2007-02-06 Microsoft Corporation System supporting animation of graphical display elements through animation object instances
US8086963B2 (en) 2005-05-19 2011-12-27 Microsoft Corporation Inheritance model between masters, layouts and slides
GB0602710D0 (en) 2006-02-10 2006-03-22 Picsel Res Ltd Processing Comic Art
US8275814B2 (en) 2006-07-12 2012-09-25 Lg Electronics Inc. Method and apparatus for encoding/decoding signal
WO2008115747A2 (en) 2007-03-16 2008-09-25 Simdesk Technologies, Inc. Technique for synchronizing audio and slides in a presentation
US9189875B2 (en) * 2007-08-06 2015-11-17 Apple Inc. Advanced import/export panel notifications using a presentation application
US20090079744A1 (en) * 2007-09-21 2009-03-26 Microsoft Corporation Animating objects using a declarative animation scheme
KR101041869B1 (en) 2008-07-29 2011-06-16 한국전자통신연구원 Coated nanoparticles and method for coating nanoparticles
US20120280991A1 (en) * 2011-05-03 2012-11-08 Microsoft Corporation Employing mesh files to animate transitions in client applications

Patent Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717848A (en) * 1990-06-11 1998-02-10 Hitachi, Ltd. Method and apparatus for generating object motion path, method of setting object display attribute, and computer graphics system
US6351265B1 (en) * 1993-10-15 2002-02-26 Personalized Online Photo Llc Method and apparatus for producing an electronic image
US5640522A (en) * 1994-12-05 1997-06-17 Microsoft Corporation Method and system for previewing transition effects between pairs of images
US5673401A (en) * 1995-07-31 1997-09-30 Microsoft Corporation Systems and methods for a customizable sprite-based graphical user interface
US5687331A (en) * 1995-08-03 1997-11-11 Microsoft Corporation Method and system for displaying an animated focus item
US5917480A (en) * 1996-06-04 1999-06-29 Microsoft Corporation Method and system for interacting with the content of a slide presentation
US5933150A (en) * 1996-08-06 1999-08-03 Interval Research Corporation System for image manipulation and animation using embedded constraint graphics
US6081262A (en) * 1996-12-04 2000-06-27 Quark, Inc. Method and apparatus for generating multi-media presentations
US6091427A (en) * 1997-07-18 2000-07-18 International Business Machines Corp. Method and system for a true-scale motion path editor using time segments, duration and synchronization
US6111590A (en) * 1997-07-18 2000-08-29 International Business Machines Corp. Method and system for a true scale motion path editor to create motion paths as independent entities
US6252677B1 (en) * 1998-05-07 2001-06-26 Xerox Corporation Method and apparatus for rendering object oriented image data using multiple rendering states selected based on imaging operator type
US6646655B1 (en) * 1999-03-09 2003-11-11 Webex Communications, Inc. Extracting a time-sequence of slides from video
US6396500B1 (en) * 1999-03-18 2002-05-28 Microsoft Corporation Method and system for generating and displaying a slide show with animations and transitions in a browser
US6369835B1 (en) * 1999-05-18 2002-04-09 Microsoft Corporation Method and system for generating a movie file from a slide show presentation
US6424743B1 (en) * 1999-11-05 2002-07-23 Motorola, Inc. Graphical handwriting recognition user interface
US6580438B1 (en) * 1999-11-22 2003-06-17 Fuji Xerox Co., Ltd. Systems and methods for maintaining uniformity in a presentation environment
US7246316B2 (en) * 1999-11-30 2007-07-17 Siebel Systems, Inc. Methods and apparatus for automatically generating presentations
US6546397B1 (en) * 1999-12-02 2003-04-08 Steven H. Rempell Browser based web site generation tool and run time engine
US6573899B2 (en) * 1999-12-13 2003-06-03 International Business Machines Corporation Morphing processing apparatus, method, storage medium, program transmission apparatus, and animation creation apparatus
US7434177B1 (en) * 1999-12-20 2008-10-07 Apple Inc. User interface for providing consolidation and access
US6674484B1 (en) * 2000-01-10 2004-01-06 Koninklijke Philips Electronics N.V. Video sample rate conversion to achieve 3-D effects
US6717591B1 (en) * 2000-08-31 2004-04-06 International Business Machines Corporation Computer display system for dynamically controlling the pacing of sequential presentation segments in response to user variations in the time allocated to specific presentation segments
US7017115B2 (en) * 2000-12-07 2006-03-21 Nec Corporation Portable information terminal equipment and display method therefor
US7155676B2 (en) * 2000-12-19 2006-12-26 Coolernet System and method for multimedia authoring and playback
US20060129933A1 (en) * 2000-12-19 2006-06-15 Sparkpoint Software, Inc. System and method for multimedia authoring and playback
US6957389B2 (en) * 2001-04-09 2005-10-18 Microsoft Corp. Animation on-object user interface
US7165212B2 (en) * 2001-04-09 2007-01-16 Microsoft Corp. Animation on object user interface
US6836870B2 (en) * 2001-06-15 2004-12-28 Cubic Corporation Method and system for incorporating a dynamic situation display in a powerpoint slide show presentation
US20020191013A1 (en) * 2001-06-15 2002-12-19 Abrams Stephen Alfred Method and system for incorporating a dynamic situation display in a powerpoint slide show presentation
US20070081197A1 (en) * 2001-06-22 2007-04-12 Nosa Omoigui System and method for semantic knowledge retrieval, management, capture, sharing, discovery, delivery and presentation
US7302113B2 (en) * 2001-07-31 2007-11-27 Hewlett-Packard Development Company, L.P. Displaying digital images
US7443401B2 (en) * 2001-10-18 2008-10-28 Microsoft Corporation Multiple-level graphics processing with animation interval generation
US7102643B2 (en) * 2001-11-09 2006-09-05 Vibe Solutions Group, Inc. Method and apparatus for controlling the visual presentation of data
US7467351B1 (en) * 2002-01-31 2008-12-16 Adobe Systems Incorporated Layered master pages
US20030160814A1 (en) * 2002-02-27 2003-08-28 Brown David K. Slide show presentation and method for viewing same
US20060288389A1 (en) * 2002-03-15 2006-12-21 Microsoft Corporation Interactive presentation viewing system employing multi-media components
US7084875B2 (en) * 2002-07-19 2006-08-01 Autodesk Canada Co. Processing scene objects
US7383509B2 (en) * 2002-09-13 2008-06-03 Fuji Xerox Co., Ltd. Automatic generation of multimedia presentation
US20040130566A1 (en) * 2003-01-07 2004-07-08 Prashant Banerjee Method for producing computerized multi-media presentation
US7236632B2 (en) * 2003-04-11 2007-06-26 Ricoh Company, Ltd. Automated techniques for comparing contents of images
US20040218894A1 (en) * 2003-04-30 2004-11-04 Michael Harville Automatic generation of presentations from "path-enhanced" multimedia
US7042464B1 (en) * 2003-08-01 2006-05-09 Apple Computer, Inc. Methods and apparatuses for the automated display of visual effects
US20050041872A1 (en) * 2003-08-20 2005-02-24 Wai Yim Method for converting PowerPoint presentation files into compressed image files
US7372991B2 (en) * 2003-09-26 2008-05-13 Seiko Epson Corporation Method and apparatus for summarizing and indexing the contents of an audio-visual presentation
US20050091672A1 (en) * 2003-10-24 2005-04-28 Microsoft Corporation Facilitating presentation functionality through a programming interface media namespace
US20050188311A1 (en) * 2003-12-31 2005-08-25 Automatic E-Learning, Llc System and method for implementing an electronic presentation
US20050154679A1 (en) * 2004-01-08 2005-07-14 Stanley Bielak System for inserting interactive media within a presentation
US20050156931A1 (en) * 2004-01-16 2005-07-21 Olchevski Viatcheslav F. Method of transmutation of alpha-numeric characters shapes and the data handling system
US7434153B2 (en) * 2004-01-21 2008-10-07 Fuji Xerox Co., Ltd. Systems and methods for authoring a media presentation
US7428704B2 (en) * 2004-03-29 2008-09-23 Lehman Brothers Holdings Inc. Dynamic presentation generator
US7454077B1 (en) * 2004-06-28 2008-11-18 Microsoft Corporation Slideshow animation algorithms
US20060067578A1 (en) * 2004-09-30 2006-03-30 Fuji Xerox Co., Ltd. Slide contents processor, slide contents processing method, and storage medium storing program
US20060129934A1 (en) * 2004-12-15 2006-06-15 Stephan Siebrecht Presentation engine
US20060136827A1 (en) * 2004-12-20 2006-06-22 Microsoft Corporation File formats, methods, and computer program products for representing presentations
US20060167903A1 (en) * 2005-01-25 2006-07-27 Microsoft Corporation MediaDescription data structures for carrying descriptive content metadata and content acquisition data in multimedia systems
US20070038937A1 (en) * 2005-02-09 2007-02-15 Chieko Asakawa Method, Program, and Device for Analyzing Document Structure
US20060197764A1 (en) * 2005-03-02 2006-09-07 Yang George L Document animation system
US20060246409A1 (en) * 2005-04-06 2006-11-02 Aram Akopian ScreenXbook publishing method
US20060265643A1 (en) * 2005-05-17 2006-11-23 Keith Saft Optimal viewing of digital images and voice annotation transitions in slideshows
US20060271871A1 (en) * 2005-05-31 2006-11-30 Blaukopf Jacob B Fine-grained control of z-order elements in a presentation
US20090049075A1 (en) * 2005-10-13 2009-02-19 Tae Hyeon Kim Method and apparatus for encoding/decoding
US20070101125A1 (en) * 2005-10-29 2007-05-03 Hewlett-Packard Development Company, L.P. Method of authorising a computing entity
US20070101251A1 (en) * 2005-11-02 2007-05-03 Samsung Electronics Co., Ltd. System, medium, and method automatically creating a dynamic image object
US20070106927A1 (en) * 2005-11-04 2007-05-10 International Business Machines Corporation Creating accessible, translatable multimedia presentations
US20070162853A1 (en) * 2006-01-06 2007-07-12 Ralf Weber Controlling behavior of elements in a display environment
US20070226625A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation System and method for unique labeling of animation display states in electronic slide presentations
US20070245243A1 (en) * 2006-03-28 2007-10-18 Michael Lanza Embedded metadata in a media presentation
US7498833B2 (en) * 2006-04-17 2009-03-03 Panasonic Corporation Semiconductor integrated circuit
US20070277106A1 (en) * 2006-05-26 2007-11-29 International Business Machines Corporation Method and structure for managing electronic slides using a slide-reading program
US20070300158A1 (en) * 2006-06-21 2007-12-27 Microsoft Corporation Dynamically modifying a theme-based media presentation
US20080005652A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Media presentation driven by meta-data events
US20080313214A1 (en) * 2006-12-07 2008-12-18 Canon Kabushiki Kaisha Method of ordering and presenting images with smooth metadata transitions
US20080192056A1 (en) * 2007-02-12 2008-08-14 Microsoft Corporation Animated transitions for data visualization
US20080250321A1 (en) * 2007-04-04 2008-10-09 Nhn Corporation Method and software for creating an image file including multiple still images and special effects
US20080265659A1 (en) * 2007-04-24 2008-10-30 Joachim Heyse Spoke, wheel and process for manufacturing a spoke, especially for bicycles
US20090044123A1 (en) * 2007-08-06 2009-02-12 Apple Inc. Action builds and smart builds for use in a presentation application
US20090055745A1 (en) * 2007-08-22 2009-02-26 Citrix Systems, Inc. Method and apparatus for automated content marking
US20090142737A1 (en) * 2007-11-30 2009-06-04 Breig Donna J Method and system for developing reading skills
US20110029902A1 (en) * 2008-04-01 2011-02-03 Leap Marketing Technologies Inc. Systems and methods for implementing and tracking identification tests
US7721209B2 (en) * 2008-09-08 2010-05-18 Apple Inc. Object-aware transitions
US20100223554A1 (en) * 2008-09-08 2010-09-02 Apple Inc. Object-aware transitions
US20100238176A1 (en) * 2008-09-08 2010-09-23 Apple Inc. Systems, methods, and devices for flash exposure control using preflash statistics
US20100218100A1 (en) * 2009-02-25 2010-08-26 HNTB Holdings, Ltd. Presentation system
US20100293470A1 (en) * 2009-05-12 2010-11-18 Microsoft Corporatioin Hierarchically-Organized Control Galleries
US20110185297A1 (en) * 2010-01-26 2011-07-28 Apple Inc. Image mask interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PowerPoint Tutorial 2000, Pages 1-2, animation. *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694889B2 (en) * 2008-09-08 2014-04-08 Appl Inc. Object-aware transitions
US20100223554A1 (en) * 2008-09-08 2010-09-02 Apple Inc. Object-aware transitions
US9274764B2 (en) * 2008-09-30 2016-03-01 Adobe Systems Incorporated Defining transitions based upon differences between states
US20140033087A1 (en) * 2008-09-30 2014-01-30 Adobe Systems Incorporated Default transitions
US9710240B2 (en) 2008-11-15 2017-07-18 Adobe Systems Incorporated Method and apparatus for filtering object-related features
US20100293330A1 (en) * 2009-05-14 2010-11-18 Microsoft Corporation Displaying transition images during a slide transition
US20120293534A1 (en) * 2009-10-09 2012-11-22 Rainer Dehmann Method and Display Device for Displaying Information
US9802484B2 (en) * 2009-10-09 2017-10-31 Volkswagen Ag Method and display device for transitioning display information
US9633464B2 (en) 2011-08-30 2017-04-25 Apple Inc. Automatic animation generation
US8907957B2 (en) 2011-08-30 2014-12-09 Apple Inc. Automatic animation generation
US10176620B2 (en) 2011-08-30 2019-01-08 Apple Inc. Automatic animation generation
US9164576B2 (en) 2011-09-13 2015-10-20 Apple Inc. Conformance protocol for heterogeneous abstractions for defining user interface behaviors
US8819567B2 (en) 2011-09-13 2014-08-26 Apple Inc. Defining and editing user interface behaviors
US11899919B2 (en) * 2013-09-29 2024-02-13 Microsoft Technology Licensing, Llc Media presentation effects
US20150113372A1 (en) * 2013-10-18 2015-04-23 Apple Inc. Text and shape morphing in a presentation application
US20150370447A1 (en) * 2014-06-24 2015-12-24 Google Inc. Computerized systems and methods for cascading user interface element animations
US11816303B2 (en) * 2015-06-18 2023-11-14 Apple Inc. Device, method, and graphical user interface for navigating media content
US20170236318A1 (en) * 2016-02-15 2017-08-17 Microsoft Technology Licensing, Llc Animated Digital Ink
USD830389S1 (en) * 2016-11-10 2018-10-09 Karma Automotive Llc Automotive display screen with graphical user interface

Also Published As

Publication number Publication date
US20160196681A1 (en) 2016-07-07
US10984577B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
US10984577B2 (en) Object-aware transitions
US8694889B2 (en) Object-aware transitions
US20100118037A1 (en) Object-aware transitions
US20100238176A1 (en) Systems, methods, and devices for flash exposure control using preflash statistics
US9761033B2 (en) Object matching in a presentation application using a matching function to define match categories
KR102291479B1 (en) Detection and reconstruction of east asian layout features in a fixed format document
US20160093080A1 (en) Optimizing the Legibility of Displayed Text
US20110181520A1 (en) Video out interface for electronic device
JP2005228339A (en) Method, system and program to support freeform annotations
US11410701B2 (en) Systems and methods for direct video retouching for text, strokes and images
US20150113396A1 (en) Curved shadows in visual representations
US9697636B2 (en) Applying motion blur to animated objects within a presentation system
US9465785B2 (en) Methods and apparatus for comic creation
US20120306914A1 (en) Systems, methods, and computer-readable media for manipulating and mapping tiles of graphical object data
US20150113372A1 (en) Text and shape morphing in a presentation application
US9881399B2 (en) Custom map configuration
US10818050B2 (en) Vector graphic font character generation techniques
US20130127916A1 (en) Adaptive Content Display
US20140325404A1 (en) Generating Screen Data
US9396581B2 (en) Contact shadows in visual representations
US9965885B2 (en) Object matching and animation in a presentation application
US11048376B2 (en) Text editing system for 3D environment
US8866842B2 (en) Adaptive content authoring
US10621763B2 (en) Sketch-effect hatching
AU2015258332A1 (en) Method, apparatus and system for reproducing a document defined in a page description language

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLE INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TILTON, JAMES ERIC;REEL/FRAME:021495/0947

Effective date: 20080905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION