US20100069947A1 - Device especially useful for hernia repair surgeries and methods thereof - Google Patents

Device especially useful for hernia repair surgeries and methods thereof Download PDF

Info

Publication number
US20100069947A1
US20100069947A1 US12/516,373 US51637307A US2010069947A1 US 20100069947 A1 US20100069947 A1 US 20100069947A1 US 51637307 A US51637307 A US 51637307A US 2010069947 A1 US2010069947 A1 US 2010069947A1
Authority
US
United States
Prior art keywords
balloon
mesh
inflatable
repair device
hernia repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/516,373
Inventor
Mordehai Sholev
Amir Szold
Ibrahim Matter
Ziv Tamir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Davol Inc
Original Assignee
Surgical Structure Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surgical Structure Ltd filed Critical Surgical Structure Ltd
Priority to US12/516,373 priority Critical patent/US20100069947A1/en
Assigned to SURGICAL STRUCTURE LTD. reassignment SURGICAL STRUCTURE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAMIR, ZIV, SZOLD, AMIR, MATTER, IBRAHIM, SHOLEV, MORDEHAI
Publication of US20100069947A1 publication Critical patent/US20100069947A1/en
Assigned to DAVOL, INC. reassignment DAVOL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SURGICAL STRUCTURES, LTD.
Priority to US15/825,806 priority patent/US10898309B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • A61B2017/0225Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery flexible, e.g. fabrics, meshes, or membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • A61F2002/0072Delivery tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having an inflatable pocket filled with fluid, e.g. liquid or gas

Definitions

  • the present invention generally related to a device especially useful in hernia repair and a method of using the same.
  • This invention generally relates to a device, especially useful for hernia repair surgery.
  • Hernia denoted hereinafter for umbilical hernia, ventral hernia, postoperative ventral hernia epigastric hernia, aptian hernia inguinal hernia, etc. is a common medical condition in which an organ protrudes through an opening in its surrounding walls (especially in the abdominal region). Hernia is sometimes treated in a tension free repair, such as implementation of meshes, patches etc. This procedure requires the insertion of a wide mesh via a relatively small aperture such that the mesh is located in a posterior layer parallel to the abdominal wall. The insertion of the mesh implants to the abdominal wall by means of laparoscopic technique or similar medical procedures requires more than one aperture and thus the abdominal wall is punctured several times. Those procedures require anesthesia and usually demand a relatively long healing time.
  • One of the major problems of the above procedure is the unrolling or spreading and the positioning or deploying of the mesh inside the abdominal or the pre-peritoneal cavity.
  • the step of unrolling the mesh, directing the right side of the mesh, positioning and fixating the mesh and positioning it in the right place usually adds significantly to the time required for carrying out the procedure.
  • inserting the mesh/patch into the body without a trocar may expose the mesh/patch to infections.
  • U.S. Pat. No. 5,824,082 ('082) relates to a prosthetic hernia repair patch that can be rolled into a tube for laparoscopic delivery through a trocar and which deploys to a generally planar form when ejected from the trocar into the abdominal cavity.
  • the deployment of the prosthetic is done by embedding a wire frame made of shape memory alloys into the prosthetic. When the prosthetic is inserted into the body it is heated thus, activated—i.e. it springs into its functional, predetermined configuration and deploys the patch.
  • embedding a wire frame in a prosthetic is complicated.
  • the method comprises step selected inter alia from (a) obtaining an inflatable contour-balloon as define above; (b) attaching said inflatable contour-balloon to said mesh and/or to said patch; (c) coupling said inflating means to said inflatable contour-balloon; (d) adjusting said inflatable contour-balloon; (e) inserting said adjusted inflatable contour-balloon into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and, (f) inflating at least a portion of said inflatable contour-balloon via said inflating means; thereby spreading and/or deploying said mesh and/or said patch in said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and
  • EOBP comprising:
  • At least one inflatable dissection balloon at least one inflatable dissection balloon; said inflatable contour-balloon and said inflatable dissection balloon are adjustable and located at said distal portion; and,
  • actuating means located at said proximal portion; said actuating means is in communication with said inflatable contour-balloon and said inflatable dissection balloon; said actuating means is adapted to provide said inflatable contour-balloon and said inflatable dissection balloon with independent activation and/or de-activation;
  • said device is adapted to spread and/or deploy a mesh and/or a patch and/or a net in said abdominal cavity and/or in said pre-peritoneal and/or in said space and/or hollow body organs and/or in said natural and/or artificial orifices and/or said spaces and/or said post operative spaces.
  • actuating means additionally comprises inflating means used to inflate said at least one inflatable dissection balloon and said at least one inflatable contour-balloon.
  • the step comprises step selected inter alia from (a) obtaining an EOBP as defined above; (b) attaching said inflatable contour-balloon to said mesh and/or to said patch; (c) coupling said inflating means to said inflatable contour-balloon and said inflatable dissection balloon; (d) adjusting said inflatable contour-balloon and said inflatable dissection balloon; (e) introducing said device into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and, (f) inflating at least a portion of said inflatable contour-balloon via said inflating means; thereby spreading and/or deploying said mesh and/or said patch in said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orific
  • FIG. 1 schematically present general view of the of the elongate open-bored applicator.
  • FIGS. 1 a - 1 d schematically display wings-like means adapted to anchor the elongate open-bored applicator 100 within the tissue and to thrust the tissue.
  • FIG. 2 schematically display the elongate open-bored applicator once the posterior portion is inside the body.
  • FIGS. 2-2 d schematically present general view of the applicator, the inflatable dissection balloon, the inflatable contour-balloon and the mesh.
  • FIG. 3 schematically presents cut view of the in the middle of the applicator.
  • FIG. 4 a and FIG. 4 b displaying an applicator according to another embodiment of the present invention.
  • FIG. 5 schematically presents the applicator according to another embodiment of the present invention.
  • FIG. 6 a presents a cut view in the middle of the applicator 100 according to the embodiment described in FIG. 5 .
  • FIG. 6 b displays the applicator according to another embodiment of the present invention.
  • FIGS. 7 a to 7 e schematically present the mesh implanting process according to one embodiment of the present invention.
  • FIGS. 8 a to 8 e schematically present the mesh implanting process according to another embodiment of the present invention.
  • FIGS. 9 a to 9 g present possible solutions or means for centering the mesh with respect to the inflatable dissection balloon.
  • FIGS. 10 a - 10 g present possible designs of the inflatable dissection balloon and possible coupling options between said inflatable balloon and the mesh.
  • FIGS. 11 a - 11 d present possible valve designs for sealing the airway of the inflatable contour-balloon.
  • FIG. 12 presents a possible design a handle which is also used as an air pump.
  • FIGS. 13-13 o schematically displays a different design of the inflatable contour-balloon; furthermore FIGS. 13-13 o display different options for connecting the mesh/net/patch to the balloons.
  • FIGS. 14 , 15 and 16 schematically display different rectangle shapes of the inflatable contour-balloon and the mesh.
  • FIG. 17 schematically represents the inflatable contour-balloon and the mesh according to another embodiment of the present invention.
  • FIG. 18 displays an option of attaching the mesh to the inflatable contour-balloon.
  • FIG. 19 displays the inflatable contour-balloon with the mesh threaded inside the slits.
  • FIGS. 20 a and 20 b display a more detail look of the same.
  • FIGS. 20 c - 20 e display a different way to couple the inflatable contour-balloon and the mesh.
  • FIG. 20 f displays another design of the inflatable contour-balloon and the mesh.
  • FIGS. 20 g and 20 h display another option to couple the inflatable contour-balloon and the mesh.
  • FIG. 20 i - 20 i display different designs of the inflatable contour-balloon.
  • the inflatable contour-balloon is adapted to spread and/or deploy a mesh and/or a patch and/or a net in the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • the present invention also provides a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery.
  • the method comprises step selected inter alia from (a) obtaining an inflatable contour-balloon; (b) attaching the inflatable contour-balloon to the mesh and/or to the patch; (c) coupling the inflating means to the inflatable contour-balloon; (d) adjusting the inflatable contour-balloon; (e) inserting the adjusted inflatable contour-balloon into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and (f) inflating at least a portion of the inflatable contour-balloon via the inflating pump; thereby spreading and/or deploying said mesh and/or the patch in the abdominal cavity and/or the pre-peritoneal and/or the hollow body organs and/or the natural and/or the artificial orifices and/or the spaces and/or
  • the present invention also provides a device adapted to spread and/or deploy a mesh and/or a patch, useful in minimal invasive and/or open surgery.
  • the device comprising: (a) at least one inflatable contour-balloon; (b) one inflatable dissection balloon; (c) at least one actuating means.
  • the device is adapted to spread and/or deploy a mesh and/or a patch and/or a net in the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • the present invention also provides a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery.
  • the method comprises step selected inter alia from (a) obtaining a device; (b) attaching the inflatable contour-balloon to the mesh and/or to the patch; (c) coupling the inflating means to the inflatable contour-balloon and the inflatable dissection balloon; (d) adjusting the inflatable contour-balloon and the inflatable dissection balloon; (e) introducing the device into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; (f) inflating at least a portion of the inflatable dissection balloon via the inflating means; and, (g) at least a portion of inflating the inflatable contour-balloon via the inflating means; thereby spreading and/or deploying the mesh and/or the patch in the abdominal cavity and/or the pre-peritoneal and/or
  • the methods can comprise steps selected inter alia from extracting the inflatable contour-balloon and/or the inflatable dissection balloon from the abdominal cavity and/or the pre-peritoneal and/or the hollow body organs and/or the natural and/or the artificial orifices and/or the spaces and/or the post operative spaces; continuing inflating the inflatable contour-balloon and/or the inflatable dissection balloon according to a predetermined medical need; deflating the inflatable contour-balloon and/or the inflatable dissection balloon.
  • the term “balloon” refers hereinafter to any flexible bag which can inflates or expands.
  • the balloon can be made from materials such as rubber, latex, silicone, polyurethane, chloroprene or a nylon fabric or any thermoelastomeric materials.
  • the balloon can be made of biocompatible materials, self-dissolving materials or shape memory materials.
  • Hernia refers hereinafter for umbilical hernia, hiatal hernia, ventral hernia, postoperative hernia, epigastric hernia, aptian hernia, inguinal hernia and femoral hernia, generally any abdominal wall related hernia.
  • minimally invasive surgery refers hereinafter to a procedure that is carried out by entering the body through the skin or through a body cavity or anatomical opening, but with the smallest damage possible.
  • Biocompatible materials refers hereinafter to materials that have the ability to perform with an appropriate host response in a specific application. Biocompatible materials have the quality of not having toxic or injurious effects on biological systems.
  • self-dissolving materials refers hereinafter to materials that are degraded by the body's enzymatic and/or hydrolytic pathways through a reaction against “foreign” material. Some urologists may prefer self-dissolving materials in catheter simply because then they don't have to go necessarily through the procedure of removing them afterwards. Examples of self-dissolving polymers are Polydioxanone (PDO), Polycaprolactone (PCL), Polylactic acid (PLA), Polyglycolic acid (PGA), Adipic acid, PEG and glutamic acid.
  • PDO Polydioxanone
  • PCL Polycaprolactone
  • PLA Polylactic acid
  • PGA Polyglycolic acid
  • Adipic acid PEG and glutamic acid.
  • shape memory materials refers hereinafter to materials which can “remember” there original geometry. After a sample of shape memory materials has been deformed from its original geometry, it regains its original geometry by itself during heating (one-way effect) or, at higher ambient temperatures, simply during unloading (pseudo-elasticity or superelasticity).
  • polymers such as polyurethanes, poly(styrene-block-butadiene), Polydioxanone and polynorbornene, metallic alloys, such as copper-zinc-aluminium-nickel, copper-aluminium-nickel, and nickel-titanium (NiTi) alloys.
  • adjusting refers hereinafter to rolling, bending, twisting, folding and winding.
  • activation refers hereinafter to the act of inflating a balloon.
  • de-activation refers hereinafter to the act of deflating the balloon (i.e. extracting the air out of the balloon).
  • FIGS. 1-2 d schematically present a general view of the elongate open-bored applicator 100 according to the present invention.
  • the elongate open-bored applicator 100 has an anterior portion 11 terminated outside the body and a posterior portion 12 terminated with an orifice 13 insertable into the abdominal cavity abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • the elongate open-bored applicator 100 comprises at least one inflatable contour-balloon 30 , which is attached to the contours of mesh 20 (the different ways of attaching the inflatable contour-balloon 30 to mesh 20 will be discussed later on in the detail description).
  • the elongate open-bored applicator 100 may additionally comprises a second inflatable balloon (refers herein after as inflatable dissection balloon) 10 .
  • the mesh and the inflatable contour-balloon are adjusted to fit inside the applicator 100 .
  • Mesh 20 is adapted to deploy when injected outside the applicator inside the body cavity.
  • the elongate open-bored applicator 100 additionally comprises actuating means 14 adapted to push mesh 20 throughout the applicator via said posterior orifice 13 .
  • the actuating means 14 can comprises a maneuverable pistol and/or handles operating the same (denotes as 14 in FIG. 1 ) or inflating pumps for inflating the inflatable dissection balloon 10 and the inflatable contour-balloon 30 (denotes as 14 in FIG. 2 ).
  • FIG. 1 a represent the wings-like means 77 in a semi open configuration
  • FIG. 1 b represents the wings-like means 77 in a fully open configuration.
  • Activation means 78 are also provided for activating (i.e. opening and closing) the wings-like means 77 .
  • the activation or de-activation of the wings-like means 77 by the activation means 78 can be performed by sliding the activation means 78 towards and away from the posterior portion 12 .
  • the wings-like means 77 can have the configuration as shown in FIGS. 1 c - 1 d. In those figures the wings-like means 77 are fixed in their positions.
  • FIG. 2 schematically display the elongate open-bored applicator 100 once the posterior portion 12 is inside the body. As can be seen from FIG. 2 , both the inflatable dissection balloon 10 and the inflatable contour-balloon 30 are inflated so as mesh 20 is in parallel to the wall of the abdominal cavity.
  • the modus in which both the balloon are inflated can include different timing.
  • the inflatable contour-balloon 30 is inflated to about 50% of its volume, then the inflatable dissection balloon 10 is inflated to about 70% of its volume, and then the inflation of the inflatable contour-balloon 30 is completed.
  • the actuating means 14 are represented in FIG. 2 as two pumps 14 used for inflating balloons 10 and 30 . It should be pointed out that the present invention is not limited to the use of two pumps. One pump can be used to inflate both balloons 10 and 20 (as seen in FIG. 2 a ).
  • FIGS. 2 a and 2 b schematically present general view of the applicator, the inflatable contour-balloon 30 and mesh 20 .
  • the applicator 100 comprises only the inflatable contour-balloon 30 .
  • FIG. 2 b is an enclose view of the inflatable contour-balloon 30 and mesh 20 .
  • FIGS. 2 c and 2 d schematically present general view of the applicator, the inflatable dissection balloon 10 , the inflatable contour-balloon 30 and mesh 20 .
  • the applicator 100 comprises the inflatable contour-balloon 30 and inflatable dissection balloon 10 .
  • FIG. 2 d is an enclose view of the inflatable contour-balloon 30 , the inflatable dissection balloon 10 and mesh 20 .
  • FIGS. 2 a - 2 d also display the actuating means 14 (which are handles is in those figures) enabling the surgeon to control and to pump air into the inflatable contour-balloon 30 and to the inflatable dissection balloon 10 .
  • the elongate open-bored applicator is activated as follows: applicator 100 is introduced into the wall of the abdominal cavity. Next, at least a portion of the inflatable dissection balloon 10 is inflated, hence thrusting. Then the inflatable contour-balloon 30 which is attached to mesh 20 is inflated to a predetermined size, such that said mesh is laying in parallel to said wall. Next, the inflatable dissection balloon 10 is deflated and evacuated throughout said applicator 100 . Finally, applicator 100 is removed and mesh 20 is fastened to the posterior abdominal wall.
  • Contour-balloon 30 and/or the inflatable dissection balloon 10 can be made of a group comprising bio compatible materials, self-dissolving materials such that after a period of time only mesh 20 stays connected to the tissue.
  • Inflatable contour-balloon 30 can be made of shape memory materials.
  • Inflatable contour-balloon 30 may be covered with mesh 20 all-around. Furthermore, inflatable contour-balloon 30 can be removed out of the body when mesh 20 is fully spread.
  • the shape of the inflatable contour-balloon 30 and/or the inflatable dissection balloon 10 can be a polygonal shape, a curved shape, a symmetrical, a non-symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a U-like shape, a grid-like shape and a rake-like shape or any combination thereof.
  • Mesh 20 is attached to the inflatable contour-balloon 30 by means of gluing, sewing, or threading the mesh into the inflatable contour-balloon 30 .
  • Another option to couple the mesh to the balloon is by velcro.
  • the mesh can be attached to the inflatable contour-balloon 30 by means of gluing the balloon to the mesh such that the balloon remains in the body.
  • Another option is to glue the mesh to the inflatable contour-balloon 30 such that the balloon can be separated from the mesh and extracted from the body. I.e., only the mesh remains in the body.
  • the actuating means 14 can be used for extracting the inflatable contour-balloon 30 and/or the inflatable dissection balloon 10 .
  • Another option is to use the mesh as bedding for building the inflatable contour-balloon 30 .
  • a proofing material is spread on the mesh's fibers.
  • the inflatable contour-balloon 30 will be created by folding the edges of mesh.
  • Both the balloons ( 30 or 10 ) can be inflated by air, CO2, saline etc.
  • FIG. 3 schematically presents cut view of the middle of the applicator 100 showing mesh 20 , inflatable contour-balloon 30 , inflatable dissection balloon 10 and the relation between them.
  • FIGS. 4 a and FIG. 4 b displaying an applicator according to another embodiment of the present invention.
  • the applicator additionally comprising a cover 52 and means 51 enabling the surgeon to pull aside the cover 52 from the balloons system.
  • FIG. 5 displays the applicator according to another embodiment of the present invention.
  • the inflatable contour-balloon 30 is positioned above the inflatable dissection balloon 10 .
  • FIG. 6 a schematically presents a cut view in the middle of the applicator 100 according to the embodiment described in FIG. 5 .
  • FIG. 6 b displays the applicator according to another embodiment of the present invention.
  • the inflatable contour-balloon 30 comprises two independent parts (as seen clearly from FIG. 20 i or 20 j which display a balloon comprising several independent parts).
  • the applicator according to this embodiment comprises three handles: one for the inflatable dissection balloon 10 and two for the inflatable contour-balloon (one for each part).
  • FIGS. 7 a to 7 e schematically present the mesh implanting process according to one embodiment of the present invention.
  • the mesh is spread by using the inflatable contour-balloon 30 only (without the inflatable dissection balloon 10 ).
  • the applicator 100 comprises mesh 20 and the inflatable contour-balloon 30 .
  • FIG. 7 a schematically shows the surgeon check the hernia area through the incision made by the surgeon.
  • FIG. 7 b schematically displays the placement of applicator 100 in the incision made by the surgeon.
  • the inflatable contour-balloon 30 is inflated (thus producing a cavity in which the mesh will be placed) and mesh 20 is spread in its anterior part.
  • FIG. 7 d shows the surgeon insuring, through the incision, that mesh 20 is fully spread.
  • FIG. 7 e shows the incision closed with stitches.
  • FIGS. 8 a to 8 e schematically present the mesh implanting process according to another embodiment of the present invention:
  • the applicator 100 comprises mesh 20 , the inflatable contour-balloon 30 and the inflatable dissection balloon 10 .
  • FIG. 8 a represents the first step in which the applicator 100 is placed in the incision made by the surgeon.
  • FIG. 8 b represents the second step in which the inflatable dissection balloon 10 is semi inflated starting to produce a cavity in which mesh 20 will be spread in.
  • FIG. 8 c represents the next step in which the inflatable dissection balloon 10 is inflated and the inflatable contour-balloon 30 is inflated thus mesh 20 is spread in its anterior part.
  • FIG. 8 d represents the next step in which the inflatable dissection balloon 10 is emptied and drawn out from the incision while mesh 20 stays spread around the incision and lying in parallel to abdominal wall.
  • FIG. 8 e represents the last step in which the incision is closed with stitches.
  • FIGS. 9 a, 9 b and 9 c presenting a possible solutions or means for centering mesh 20 with respect to the inflatable dissection balloon 10 .
  • centralization of mesh 20 may be realized with wires 91 stretching from the posterior side of the inflatable dissection balloon 10 to mesh 20 .
  • FIG. 9 b displays the inflatable dissection balloon 10 with Velcro and/or double sided masking tape and/or small Silicon tubes 92 .
  • FIG. 9 c displays the inflatable dissection balloon 10 with Velcro and/or double sided masking tape and/or small Silicon tubes 92 , attached/combined/adjusted with the inflatable contour-balloon 30 and mesh 20 .
  • FIG. 9 d displays the Velcro and/or double sided masking tape and/or small Silicon tubes 92 after the inflatable dissection balloon 10 is inflated enough such that the connection between the inflatable dissection balloon 10 and mesh 20 is torn apart.
  • FIGS. 9 e - 9 f centralization of mesh 20 is made by a ribbon 90 that surrounds the balloon and holds the mesh tight to the dissection balloon.
  • the ribbon expands until mesh 20 is relapsed.
  • FIG. 9 e displays the inflatable dissection balloon 10 is inflated such that mesh 20 is relapsed.
  • FIG. 9 f displays the inflatable dissection balloon 10 prior to the inflation.
  • FIGS. 10 a - 10 g presenting possible designs of the inflatable dissection balloon 10 and possible coupling options between said inflatable balloon 10 and the mesh 20 .
  • tube 101 is used to inflate the inflatable dissection balloon 10 and tube 102 is used to inflate the inflatable contour-balloon 30 .
  • the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30 .
  • FIGS. 10 a - 10 b mesh 20 and the inflatable contour-balloon 30 are positioned in the internal portion of the inflatable dissection balloon 10 .
  • FIG. 10 a is a cut view of the same.
  • FIG. 10 c mesh 20 and the inflatable contour-balloon 30 are positioned in the internal portion of the inflatable dissection balloon 10 .
  • FIG. 10 d is a cut view of the same. The difference between FIGS. 10 a and 10 c is the location of the two balloon with respect to each other. In FIGS. 10 a and 10 b the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30 from bellow and in FIGS. 10 c and 10 d the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30 from above.
  • e mesh 20 and the inflatable contour-balloon 30 are positioned in the inner portion 103 of the inflatable dissection balloon 10 .
  • FIG. 10 f mesh 20 and the inflatable contour-balloon 30 are incorporated within inflatable dissection balloon 10 .
  • FIG. 10 g is a cut view of the same.
  • FIGS. 11 a - 11 d presenting possible valve designs for sealing the airway of the inflatable contour-balloon 30 :
  • FIG. 11 a displays a possible valve design according to one embodiment of the present invention.
  • a rigid tube 110 in inserted into the flexible inflating tube 102 .
  • the inside portion of the tube 102 is covered with glue 111 .
  • glue 111 glue
  • FIG. 11 b displays another possible design of a valve.
  • the valve is made of a rigid tube 113 .
  • the rigid tube 113 is positioned inside the flexible inflating tube 102 .
  • leafs 114 inside the inflating tube 102 expand and stick to each other and thus do not allow air to escape.
  • FIGS. 11 c and 11 d display a rubber band 115 positioned around the rigid tube 116 .
  • the rubber band 116 applies force on the flexible inflating tube 102 and thus do not allow air to escape.
  • FIG. 12 presents a possible design a handle which is also used as an air pump.
  • the air pump can be used either to pump air or to empty the air out of the inflatable contour-balloon 30 .
  • FIG. 13 schematically displays different designs of the inflatable contour-balloon 30 .
  • the inflatable contour-balloon 30 may have a flat structure as displays in FIGS. 13 a, 13 b, 13 c, or a 3D structure as displays in FIGS. 13 d, 13 e and 13 f.
  • the inflatable contour-balloon 30 may not have a complete closed shape as can be seen in FIGS. 13 g and 13 h.
  • the different parts of the inflatable balloon may be connected to each other with glue, wire, scotch Etc.
  • the inflating tube 102 may be flexible (FIG. 13 ), or rigid ( FIG. 13 j ). Moreover, the inflating tube 102 may not be connected to the center of the balloon 30 .
  • FIG. 13 k represents a different design for the inflatable contour-balloon 30 . According to this design, inflatable contour-balloon 30 has two parts. An internal part 31 and an external part 32 . Mesh 20 is positioned in between the internal part 31 and the external part 32 . An inflating tube 102 is coupled to a tube 34 , which passes through both the internal part 31 and the external part 32 .
  • FIG. 13 l is a cross section area of the same.
  • the 2 balloons may be inflated with different pumps allowing the use of sequenced pumping.
  • FIG. 13 m represent another different design for the inflatable contour balloon 30 .
  • the inflatable contour-balloon 30 encapsulate an internal balloon 40 shaped as an o-ring.
  • Mesh 20 is captured in between the inflatable contour-balloon 30 and the internal balloon 40 .
  • FIG. 13 n is a cut and an enlarge view of the same.
  • FIG. 13 o displays the inflatable contour-balloon 30 and the internal balloon 40 according to this design.
  • FIGS. 14 , 15 and 16 schematically display different rectangle shapes of the inflatable contour-balloon 30 and mesh 20 .
  • the shape of the inflatable contour-balloon 30 is a rectangle shape having two oppositely faced curves. The two curves can be fused one to the other in a common section. Additionally, according to this embodiment mesh 20 is threaded in slits 7 which are positioned in two oppositely sides ribs on the rectangle. Inflating tube 102 is connected to inflatable contour-balloon 30 . An inflating pump 14 is connected to the inflating tube 102 .
  • FIG. 15 schematically represents the inflatable contour-balloon 30 and the mesh 20 according to another embodiment of the present invention. According to this embodiment mesh 20 extends beyond the inflatable contour-balloon 30 .
  • FIG. 16 schematically represents the inflatable contour-balloon 30 and the mesh 20 according to another embodiment of the present invention.
  • FIG. 17 schematically represents the inflatable contour-balloon 30 and mesh 20 according to another embodiment of the present invention.
  • the inflatable contour-balloon 30 additionally comprises two arcs 10 that may replace the function of the dissection balloon.
  • the inflatable contour-balloon 30 is fixed to its position by creating pressure on the mesh/patch towards the abdominal wall.
  • FIG. 18 displays an option of attaching mesh 20 to the inflatable contour-balloon 30 .
  • the inflatable contour-balloon 30 additionally comprises at least one slit 7 into which the edges of mesh 20 are threaded.
  • FIG. 19 displays the inflatable contour-balloon 30 with mesh 20 threaded inside the slits.
  • FIG. 20 a and FIG. 20 b display a more detail look of the same.
  • Another way of coupling between the inflatable contour-balloon 30 and the mesh is by making specials cuts in the mesh such that those cute surround the balloon as can be seen from FIGS. 20 c and 20 d.
  • FIG. 20 f displays another design of the inflatable contour-balloon 30 and mesh 20 .
  • the inflatable contour-balloon 30 can additionally comprise means 25 (such as bulge, lines, signs and symbols) adapted to adjust the center of said inflatable balloon to the center of the hernia.
  • FIG. 20 i schematically displays the inflatable contour-balloon 30 , which comprises several independent parts 40 and several inflating tubes 102 (which will be couple to the inflating means). As can be seen from FIG. 20 i tubes 102 are not positioned in the center of the balloon.
  • FIG. 20 j schematically displays the inflatable contour-balloon 30 comprising several independent parts 40 and several inflating tubes.
  • tubes 102 are not radial. I.e., tubes 102 are positioned in the perimeter of the inflatable balloon.

Abstract

An elongate open-bored applicator (EOBP) adapted to deploy a mesh comprising (a) at least one inflatable contour-balloon; (b) at least one inflatable dissection balloon. The inflatable contour-balloon and the inflatable dissection balloon are adjustable and located at the distal portion; and, (c) at least one actuating means located at the proximal portion. The actuating means is in communication with the inflatable contour-balloon and the inflatable dissection balloon. The actuating means is adapted to provide the inflatable contour-balloon and the inflatable dissection balloon with independent activation and/or de-activation.

Description

    FILED OF THE INVENTION
  • The present invention generally related to a device especially useful in hernia repair and a method of using the same.
  • BACKGROUND OF THE INVENTION
  • This invention generally relates to a device, especially useful for hernia repair surgery.
  • Hernia, denoted hereinafter for umbilical hernia, ventral hernia, postoperative ventral hernia epigastric hernia, spiegelian hernia inguinal hernia, etc. is a common medical condition in which an organ protrudes through an opening in its surrounding walls (especially in the abdominal region). Hernia is sometimes treated in a tension free repair, such as implementation of meshes, patches etc. This procedure requires the insertion of a wide mesh via a relatively small aperture such that the mesh is located in a posterior layer parallel to the abdominal wall. The insertion of the mesh implants to the abdominal wall by means of laparoscopic technique or similar medical procedures requires more than one aperture and thus the abdominal wall is punctured several times. Those procedures require anesthesia and usually demand a relatively long healing time.
  • One of the major problems of the above procedure is the unrolling or spreading and the positioning or deploying of the mesh inside the abdominal or the pre-peritoneal cavity. The step of unrolling the mesh, directing the right side of the mesh, positioning and fixating the mesh and positioning it in the right place usually adds significantly to the time required for carrying out the procedure. Moreover, inserting the mesh/patch into the body without a trocar may expose the mesh/patch to infections.
  • Some techniques suggested in the literature disclose mesh-like for treating hernia. Those techniques fail to guarantee even, complete and smooth deployment of the mesh, without formation of wrinkles, and cannot ensure full anchoring of the implant to the abdominal wall. U.S. Pat. No. 5,824,082 ('082) relates to a prosthetic hernia repair patch that can be rolled into a tube for laparoscopic delivery through a trocar and which deploys to a generally planar form when ejected from the trocar into the abdominal cavity. The deployment of the prosthetic is done by embedding a wire frame made of shape memory alloys into the prosthetic. When the prosthetic is inserted into the body it is heated thus, activated—i.e. it springs into its functional, predetermined configuration and deploys the patch. However, embedding a wire frame in a prosthetic is complicated.
  • Thus, there is still a long felt need for a device that is simple, will shorten the time required for the spreading and the positioning of the mesh inside the body and will be inserted via a single small-bore opening.
  • SUMMARY OF THE INVENTION
  • It is one object of the invention to disclose an inflatable contour-balloon useful in minimal invasive and/or open surgery; wherein at least a portion of said inflatable contour-balloon is positioned in the contour of a mesh and/or a patch and/or a net; further wherein said inflatable contour-balloon is adapted to spread and/or deploy said mesh and/or said patch and/or said net in the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is especially adapted for use in hernia repair surgery.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon additionally comprising means adapted to adjust the center of said inflatable contour-balloon to the center of said hernia.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon additionally comprising means adapted to ensure the right side of said mesh or said patch or said net is directed to said abdominal cavity and/or said pre-peritoneal and/or said space and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is provided with means enabling coupling of inflating means to said inflatable contour-balloon.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said means is selected from a group comprising at least one radial tube, non radial tubes.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflating means is selected from a group consisting manually inflating pump, motorized inflating pump.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is provided with means enabling threading of said mesh and/or said patch to said inflatable contour-balloon.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said means is selected from a group comprising at least one slit.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is glued to said mesh and/or said patch and/or said net.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is provided with means enabling sewing of said inflatable contour-balloon to said mesh and/or patch and/or said net.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon is made of a group comprising biocompatible materials, self-dissolving materials and shape memory materials.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein the shape of said inflatable contour-balloon is selected from a group comprising a polygonal shape, a curved shape, a symmetrical, a non-symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a rectangular shape, an oval shape, a U-like shape, a grid-like shape, a flat structure, a 3D structure and a rake-like shape or any combination thereof.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein said inflatable contour-balloon comprises at least two independent parts.
  • It is another object of the invention to disclose the inflatable contour-balloon as define above, wherein the configuration is as described in any of FIG. 13 to FIG. 17.
  • It is another object of the invention to disclose a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery. The method comprises step selected inter alia from (a) obtaining an inflatable contour-balloon as define above; (b) attaching said inflatable contour-balloon to said mesh and/or to said patch; (c) coupling said inflating means to said inflatable contour-balloon; (d) adjusting said inflatable contour-balloon; (e) inserting said adjusted inflatable contour-balloon into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and, (f) inflating at least a portion of said inflatable contour-balloon via said inflating means; thereby spreading and/or deploying said mesh and/or said patch in said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of uncoupling said inflating means from said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of extracting said inflatable contour-balloon from said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of deflating said inflatable contour-balloon. It is another object of the invention to disclose the method as define above, especially in hernia repair surgery.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of fitting the center of said inflatable contour-balloon to the center of said hernia.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of ensuring the right side of said mesh or said patch or said net is directed to said abdominal cavity and/or said pre-peritoneal and/or said space and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of threading said mesh or/and said patch or/and said net to said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of gluing said mesh or/and said patch or/and said net to said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of selecting said inflatable contour-balloon from a group comprising biocompatible materials, self-dissolving materials, shape memory materials.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of selecting the shape of said inflatable contour-balloon from a group comprising a polygonal shape, a curved shape, a symmetrical, a non-symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a rectangular shape, an oval shape, a U-like shape, a grid-like shape, a flat structure, a 3D structure and a rake-like shape or any combination thereof.
  • It is another object of the invention to disclose the method as define above, additionally comprising the step of continuing inflating said inflatable contour-balloon according to a predetermined medical need.
  • It is another object of the invention to disclose an elongate open-bored applicator (EOBP) useful in minimal invasive surgery; said EOBP having a distal portion that is insertable into the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and a proximal portion that remains outside said body. The EOBP comprising:
  • a. at least one inflatable contour-balloon as defined above;
  • b. at least one inflatable dissection balloon; said inflatable contour-balloon and said inflatable dissection balloon are adjustable and located at said distal portion; and,
  • c. at least one actuating means located at said proximal portion; said actuating means is in communication with said inflatable contour-balloon and said inflatable dissection balloon; said actuating means is adapted to provide said inflatable contour-balloon and said inflatable dissection balloon with independent activation and/or de-activation;
  • wherein said device is adapted to spread and/or deploy a mesh and/or a patch and/or a net in said abdominal cavity and/or in said pre-peritoneal and/or in said space and/or hollow body organs and/or in said natural and/or artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said actuating means additionally comprises inflating means used to inflate said at least one inflatable dissection balloon and said at least one inflatable contour-balloon.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP is especially adapted for use in hernia repair surgery.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP additionally comprising means adapted to adjust the center of said inflatable contour-balloon to the center of said hernia.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP additionally comprising means adapted to ensure the right side of said mesh or said patch or said net is directed to said abdominal cavity and/or said pre-peritoneal and/or said space and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP is provided with means enabling coupling of inflating means to said inflatable contour-balloon; and the coupling of inflating means to said inflatable dissection balloon.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said means is selected from a group comprising at least one radial tube, non radial tubes.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said inflating means is selected from a group comprising manually inflating pump, motorized inflating pump.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP is provided with means enabling threading of said mesh and/or said patch to said inflatable contour-balloon.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said means is selected from a group comprising at least one slit.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said inflatable contour-balloon is glued to the edges of said mesh and/or said patch and/or said net.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said EOBP is provided with means enabling sewing of said inflatable contour-balloon to said mesh and/or patch and/or said net.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said inflatable contour-balloon and/or said dissection balloon is made of a group comprising biocompatible materials, self-dissolving materials and shape memory materials.
  • It is another object of the invention to disclose the EOBP as defined above, wherein the shape of said inflatable contour-balloon and/or said inflatable dissection balloon is selected from a group comprising a polygonal shape, a curved shape, a symmetrical, a non- symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a rectangular shape, an oval shape, a U-like shape, a grid-like shape, a flat structure, a 3D structure and a rake-like shape or any combination thereof.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said inflatable contour-balloon comprises at least two independent parts. It is another object of the invention to disclose the EOBP as defined above, configured as described in any of FIG. 13 to FIG. 17.
  • It is another object of the invention to disclose the EOBP as defined above, configured as described in any of FIG. 10 a to FIG. 10 g.
  • It is another object of the invention to disclose a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery. The step comprises step selected inter alia from (a) obtaining an EOBP as defined above; (b) attaching said inflatable contour-balloon to said mesh and/or to said patch; (c) coupling said inflating means to said inflatable contour-balloon and said inflatable dissection balloon; (d) adjusting said inflatable contour-balloon and said inflatable dissection balloon; (e) introducing said device into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and, (f) inflating at least a portion of said inflatable contour-balloon via said inflating means; thereby spreading and/or deploying said mesh and/or said patch in said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of inflating at least a portion of said inflatable dissection balloon via said inflating means.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of uncoupling said inflating means from said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of uncoupling said inflating means from said inflatable dissection balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of deflating said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of deflating said inflatable dissection balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of extracting said inflatable contour-balloon from said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of extracting said inflatable dissection balloon from said abdominal cavity and/or said pre-peritoneal and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as defined above, especially in hernia repair surgery.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of fitting the center of said inflatable contour-balloon to the center of said hernia.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of ensuring the right side of said mesh or said patch or said net is directed to said abdominal cavity and/or said pre-peritoneal and/or said space and/or said hollow body organs and/or said natural and/or said artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of threading said mesh or/and said patch or/and said net to said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of gluing said mesh or/and said patch or/and said net to said inflatable contour-balloon.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of selecting said inflatable contour-balloon and/or said inflatable dissection balloon from a group comprising biocompatible materials, self-dissolving materials, shape memory materials.
  • It is another object of the invention to disclose the method as defined above, additionally comprising the step of selecting the shape of said inflatable contour-balloon and/or said inflatable dissection balloon from a group comprising a polygonal shape, a curved shape, a symmetrical, a non-symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a rectangular shape, an oval shape, a U-like shape, a grid-like shape, a flat structure, a 3D structure and a rake-like shape or any combination thereof.
  • It is another object of the invention to disclose the EOBP as defined above, wherein said actuating means are adapted to extract said inflatable contour-balloon and/or said inflatable dissection balloon from said abdominal cavity and/or in said pre-peritoneal and/or in said space and/or hollow body organs and/or in said natural and/or artificial orifices and/or said spaces and/or said post operative spaces.
  • It is another object of the invention to disclose the EOBP as defined above, additionally comprising means adapted to anchor said EOBP in said abdominal cavity and/or in said pre-peritoneal and/or in said space and/or hollow body organs and/or in said natural and/or artificial orifices and/or said spaces and/or said post operative spaces.
  • It is still an object of the invention to disclose the method as defined above, additionally comprising the step of continuing inflating said inflatable dissection balloon according to a predetermined medical need.
  • It is lastly an object of the invention to disclose the method as defined above, additionally comprising the step of continuing inflating said inflatable contour-balloon according to a predetermined medical need.
  • BRIEF DESCRIPTION OF THE FIGURES
  • In order to understand the invention and to see how it may be implemented in practice, a plurality of preferred embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which
  • FIG. 1 schematically present general view of the of the elongate open-bored applicator.
  • FIGS. 1 a-1 d schematically display wings-like means adapted to anchor the elongate open-bored applicator 100 within the tissue and to thrust the tissue.
  • FIG. 2 schematically display the elongate open-bored applicator once the posterior portion is inside the body.
  • FIGS. 2-2 d schematically present general view of the applicator, the inflatable dissection balloon, the inflatable contour-balloon and the mesh.
  • FIG. 3 schematically presents cut view of the in the middle of the applicator.
  • FIG. 4 a and FIG. 4 b displaying an applicator according to another embodiment of the present invention.
  • FIG. 5 schematically presents the applicator according to another embodiment of the present invention.
  • FIG. 6 a presents a cut view in the middle of the applicator 100 according to the embodiment described in FIG. 5.
  • FIG. 6 b displays the applicator according to another embodiment of the present invention.
  • FIGS. 7 a to 7 e schematically present the mesh implanting process according to one embodiment of the present invention.
  • FIGS. 8 a to 8 e schematically present the mesh implanting process according to another embodiment of the present invention.
  • FIGS. 9 a to 9 g present possible solutions or means for centering the mesh with respect to the inflatable dissection balloon.
  • FIGS. 10 a-10 g present possible designs of the inflatable dissection balloon and possible coupling options between said inflatable balloon and the mesh.
  • FIGS. 11 a-11 d present possible valve designs for sealing the airway of the inflatable contour-balloon.
  • FIG. 12 presents a possible design a handle which is also used as an air pump.
  • FIGS. 13-13 o schematically displays a different design of the inflatable contour-balloon; furthermore FIGS. 13-13 o display different options for connecting the mesh/net/patch to the balloons.
  • FIGS. 14, 15 and 16 schematically display different rectangle shapes of the inflatable contour-balloon and the mesh.
  • FIG. 17 schematically represents the inflatable contour-balloon and the mesh according to another embodiment of the present invention.
  • FIG. 18 displays an option of attaching the mesh to the inflatable contour-balloon.
  • FIG. 19 displays the inflatable contour-balloon with the mesh threaded inside the slits.
  • FIGS. 20 a and 20 b display a more detail look of the same.
  • FIGS. 20 c-20 e display a different way to couple the inflatable contour-balloon and the mesh.
  • FIG. 20 f displays another design of the inflatable contour-balloon and the mesh.
  • FIGS. 20 g and 20 h display another option to couple the inflatable contour-balloon and the mesh.
  • FIG. 20 i-20 i display different designs of the inflatable contour-balloon.
  • DETAIL DESCRIPTION OF THE INVENTION
  • The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, is adapted to remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide an inflatable contour-balloon useful in minimal invasive and/or open surgery. The inflatable contour-balloon positioned in the contour of a mesh and/or a patch and/or a net. The inflatable contour-balloon is adapted to spread and/or deploy a mesh and/or a patch and/or a net in the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • The present invention also provides a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery. The method comprises step selected inter alia from (a) obtaining an inflatable contour-balloon; (b) attaching the inflatable contour-balloon to the mesh and/or to the patch; (c) coupling the inflating means to the inflatable contour-balloon; (d) adjusting the inflatable contour-balloon; (e) inserting the adjusted inflatable contour-balloon into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; and (f) inflating at least a portion of the inflatable contour-balloon via the inflating pump; thereby spreading and/or deploying said mesh and/or the patch in the abdominal cavity and/or the pre-peritoneal and/or the hollow body organs and/or the natural and/or the artificial orifices and/or the spaces and/or the post operative spaces.
  • The present invention also provides a device adapted to spread and/or deploy a mesh and/or a patch, useful in minimal invasive and/or open surgery. The device comprising: (a) at least one inflatable contour-balloon; (b) one inflatable dissection balloon; (c) at least one actuating means. The device is adapted to spread and/or deploy a mesh and/or a patch and/or a net in the abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces.
  • The present invention also provides a method for spreading and/or deploying a mesh and/or a patch, useful in minimal invasive and/or open surgery. The method comprises step selected inter alia from (a) obtaining a device; (b) attaching the inflatable contour-balloon to the mesh and/or to the patch; (c) coupling the inflating means to the inflatable contour-balloon and the inflatable dissection balloon; (d) adjusting the inflatable contour-balloon and the inflatable dissection balloon; (e) introducing the device into abdominal cavity and/or pre-peritoneal and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces; (f) inflating at least a portion of the inflatable dissection balloon via the inflating means; and, (g) at least a portion of inflating the inflatable contour-balloon via the inflating means; thereby spreading and/or deploying the mesh and/or the patch in the abdominal cavity and/or the pre-peritoneal and/or the hollow body organs and/or the natural and/or the artificial orifices and/or the spaces and/or the post operative spaces.
  • The methods can comprise steps selected inter alia from extracting the inflatable contour-balloon and/or the inflatable dissection balloon from the abdominal cavity and/or the pre-peritoneal and/or the hollow body organs and/or the natural and/or the artificial orifices and/or the spaces and/or the post operative spaces; continuing inflating the inflatable contour-balloon and/or the inflatable dissection balloon according to a predetermined medical need; deflating the inflatable contour-balloon and/or the inflatable dissection balloon.
  • The term “balloon” refers hereinafter to any flexible bag which can inflates or expands. The balloon can be made from materials such as rubber, latex, silicone, polyurethane, chloroprene or a nylon fabric or any thermoelastomeric materials. The balloon can be made of biocompatible materials, self-dissolving materials or shape memory materials.
  • The term “Hernia” refers hereinafter for umbilical hernia, hiatal hernia, ventral hernia, postoperative hernia, epigastric hernia, spiegelian hernia, inguinal hernia and femoral hernia, generally any abdominal wall related hernia.
  • The term “minimally invasive surgery” refers hereinafter to a procedure that is carried out by entering the body through the skin or through a body cavity or anatomical opening, but with the smallest damage possible.
  • The term “Biocompatible materials” refers hereinafter to materials that have the ability to perform with an appropriate host response in a specific application. Biocompatible materials have the quality of not having toxic or injurious effects on biological systems.
  • The term “self-dissolving materials” refers hereinafter to materials that are degraded by the body's enzymatic and/or hydrolytic pathways through a reaction against “foreign” material. Some urologists may prefer self-dissolving materials in catheter simply because then they don't have to go necessarily through the procedure of removing them afterwards. Examples of self-dissolving polymers are Polydioxanone (PDO), Polycaprolactone (PCL), Polylactic acid (PLA), Polyglycolic acid (PGA), Adipic acid, PEG and glutamic acid.
  • The term “shape memory materials” refers hereinafter to materials which can “remember” there original geometry. After a sample of shape memory materials has been deformed from its original geometry, it regains its original geometry by itself during heating (one-way effect) or, at higher ambient temperatures, simply during unloading (pseudo-elasticity or superelasticity). The thermally induced shape-memory effect has been described for different material classes: polymers, such as polyurethanes, poly(styrene-block-butadiene), Polydioxanone and polynorbornene, metallic alloys, such as copper-zinc-aluminium-nickel, copper-aluminium-nickel, and nickel-titanium (NiTi) alloys.
  • The term “adjusting” or “adjustable” refers hereinafter to rolling, bending, twisting, folding and winding.
  • The term “activation” refers hereinafter to the act of inflating a balloon.
  • The term “de-activation” refers hereinafter to the act of deflating the balloon (i.e. extracting the air out of the balloon).
  • The term “contour” refers hereinafter to any section (and not only to the outer edge) of the mesh and/or patch and/or net.
  • Reference is now FIGS. 1-2 d, which schematically present a general view of the elongate open-bored applicator 100 according to the present invention. The elongate open-bored applicator 100 has an anterior portion 11 terminated outside the body and a posterior portion 12 terminated with an orifice 13 insertable into the abdominal cavity abdominal cavity and/or pre-peritoneal and/or space and/or hollow body organs and/or natural and/or artificial orifices and/or spaces and/or post operative spaces. The elongate open-bored applicator 100 comprises at least one inflatable contour-balloon 30, which is attached to the contours of mesh 20 (the different ways of attaching the inflatable contour-balloon 30 to mesh 20 will be discussed later on in the detail description). The elongate open-bored applicator 100 may additionally comprises a second inflatable balloon (refers herein after as inflatable dissection balloon) 10. The mesh and the inflatable contour-balloon are adjusted to fit inside the applicator 100. Mesh 20 is adapted to deploy when injected outside the applicator inside the body cavity. The elongate open-bored applicator 100 additionally comprises actuating means 14 adapted to push mesh 20 throughout the applicator via said posterior orifice 13. The actuating means 14 can comprises a maneuverable pistol and/or handles operating the same (denotes as 14 in FIG. 1) or inflating pumps for inflating the inflatable dissection balloon 10 and the inflatable contour-balloon 30 (denotes as 14 in FIG. 2).
  • Reference is now made to figures la-lb, which schematically display wings-like means 77 adapted to anchor the elongate open-bored applicator 100 within the tissue and to thrust the tissue. The wings-like means 77 are positioned in the posterior portion 12. FIG. 1 a represent the wings-like means 77 in a semi open configuration and FIG. 1 b represents the wings-like means 77 in a fully open configuration. Activation means 78 are also provided for activating (i.e. opening and closing) the wings-like means 77. The activation or de-activation of the wings-like means 77 by the activation means 78 can be performed by sliding the activation means 78 towards and away from the posterior portion 12.
  • The wings-like means 77 can have the configuration as shown in FIGS. 1 c-1 d. In those figures the wings-like means 77 are fixed in their positions. Reference is now made to FIG. 2 which schematically display the elongate open-bored applicator 100 once the posterior portion 12 is inside the body. As can be seen from FIG. 2, both the inflatable dissection balloon 10 and the inflatable contour-balloon 30 are inflated so as mesh 20 is in parallel to the wall of the abdominal cavity.
  • The modus in which both the balloon are inflated can include different timing. For example, the inflatable contour-balloon 30 is inflated to about 50% of its volume, then the inflatable dissection balloon 10 is inflated to about 70% of its volume, and then the inflation of the inflatable contour-balloon 30 is completed.
  • The actuating means 14 are represented in FIG. 2 as two pumps 14 used for inflating balloons 10 and 30. It should be pointed out that the present invention is not limited to the use of two pumps. One pump can be used to inflate both balloons 10 and 20 (as seen in FIG. 2 a).
  • Reference is now made to FIGS. 2 a and 2 b schematically present general view of the applicator, the inflatable contour-balloon 30 and mesh 20. According to FIG. 2 a the applicator 100 comprises only the inflatable contour-balloon 30. FIG. 2 b is an enclose view of the inflatable contour-balloon 30 and mesh 20.
  • Reference is now made to FIGS. 2 c and 2 d schematically present general view of the applicator, the inflatable dissection balloon 10, the inflatable contour-balloon 30 and mesh 20. As can be seen in FIG. 2 c, the applicator 100 comprises the inflatable contour-balloon 30 and inflatable dissection balloon 10. FIG. 2 d is an enclose view of the inflatable contour-balloon 30, the inflatable dissection balloon 10 and mesh 20.
  • Those figures (FIGS. 2 a-2 d) also display the actuating means 14 (which are handles is in those figures) enabling the surgeon to control and to pump air into the inflatable contour-balloon 30 and to the inflatable dissection balloon 10.
  • The elongate open-bored applicator is activated as follows: applicator 100 is introduced into the wall of the abdominal cavity. Next, at least a portion of the inflatable dissection balloon 10 is inflated, hence thrusting. Then the inflatable contour-balloon 30 which is attached to mesh 20 is inflated to a predetermined size, such that said mesh is laying in parallel to said wall. Next, the inflatable dissection balloon 10 is deflated and evacuated throughout said applicator 100. Finally, applicator 100 is removed and mesh 20 is fastened to the posterior abdominal wall.
  • Contour-balloon 30 and/or the inflatable dissection balloon 10 can be made of a group comprising bio compatible materials, self-dissolving materials such that after a period of time only mesh 20 stays connected to the tissue. Inflatable contour-balloon 30 can be made of shape memory materials.
  • Inflatable contour-balloon 30 may be covered with mesh 20 all-around. Furthermore, inflatable contour-balloon 30 can be removed out of the body when mesh 20 is fully spread.
  • The shape of the inflatable contour-balloon 30 and/or the inflatable dissection balloon 10 can be a polygonal shape, a curved shape, a symmetrical, a non-symmetrical shape, a linear shape, continues, non-continues, a concave shape, a irregular shape, a square-like shape, a U-like shape, a grid-like shape and a rake-like shape or any combination thereof.
  • Mesh 20 is attached to the inflatable contour-balloon 30 by means of gluing, sewing, or threading the mesh into the inflatable contour-balloon 30. Another option to couple the mesh to the balloon is by velcro. The mesh can be attached to the inflatable contour-balloon 30 by means of gluing the balloon to the mesh such that the balloon remains in the body. Another option is to glue the mesh to the inflatable contour-balloon 30 such that the balloon can be separated from the mesh and extracted from the body. I.e., only the mesh remains in the body. The actuating means 14 can be used for extracting the inflatable contour-balloon 30 and/or the inflatable dissection balloon 10.
  • Another option is to use the mesh as bedding for building the inflatable contour-balloon 30. A proofing material is spread on the mesh's fibers. The inflatable contour-balloon 30 will be created by folding the edges of mesh.
  • Both the balloons (30 or 10) can be inflated by air, CO2, saline etc.
  • Reference is now made to FIG. 3, which schematically presents cut view of the middle of the applicator 100 showing mesh 20, inflatable contour-balloon 30, inflatable dissection balloon 10 and the relation between them.
  • Reference is now made to FIGS. 4 a and FIG. 4 b displaying an applicator according to another embodiment of the present invention. According to this embodiment, the applicator additionally comprising a cover 52 and means 51 enabling the surgeon to pull aside the cover 52 from the balloons system.
  • Reference is now made to FIG. 5, displays the applicator according to another embodiment of the present invention. According to this embodiment, the inflatable contour-balloon 30 is positioned above the inflatable dissection balloon 10.
  • FIG. 6 a schematically presents a cut view in the middle of the applicator 100 according to the embodiment described in FIG. 5.
  • FIG. 6 b displays the applicator according to another embodiment of the present invention. According to this embodiment, the inflatable contour-balloon 30 comprises two independent parts (as seen clearly from FIG. 20 i or 20 j which display a balloon comprising several independent parts). Furthermore, the applicator according to this embodiment comprises three handles: one for the inflatable dissection balloon 10 and two for the inflatable contour-balloon (one for each part).
  • Reference is now made to FIGS. 7 a to 7 e, which schematically present the mesh implanting process according to one embodiment of the present invention. According to this embodiment, the mesh is spread by using the inflatable contour-balloon 30 only (without the inflatable dissection balloon 10).
  • According to this embodiment, the applicator 100 comprises mesh 20 and the inflatable contour-balloon 30.
  • FIG. 7 a schematically shows the surgeon check the hernia area through the incision made by the surgeon.
  • FIG. 7 b schematically displays the placement of applicator 100 in the incision made by the surgeon.
  • In FIG. 7 c the inflatable contour-balloon 30 is inflated (thus producing a cavity in which the mesh will be placed) and mesh 20 is spread in its anterior part.
  • FIG. 7 d shows the surgeon insuring, through the incision, that mesh 20 is fully spread.
  • FIG. 7 e shows the incision closed with stitches.
  • Reference is now made to FIGS. 8 a to 8 e, which schematically present the mesh implanting process according to another embodiment of the present invention:
  • According to this embodiment, the applicator 100 comprises mesh 20, the inflatable contour-balloon 30 and the inflatable dissection balloon 10.
  • FIG. 8 a represents the first step in which the applicator 100 is placed in the incision made by the surgeon.
  • FIG. 8 b represents the second step in which the inflatable dissection balloon 10 is semi inflated starting to produce a cavity in which mesh 20 will be spread in.
  • FIG. 8 c represents the next step in which the inflatable dissection balloon 10 is inflated and the inflatable contour-balloon 30 is inflated thus mesh 20 is spread in its anterior part.
  • FIG. 8 d represents the next step in which the inflatable dissection balloon 10 is emptied and drawn out from the incision while mesh 20 stays spread around the incision and lying in parallel to abdominal wall.
  • FIG. 8 e represents the last step in which the incision is closed with stitches. Reference is now made to FIGS. 9 a, 9 b and 9 c presenting a possible solutions or means for centering mesh 20 with respect to the inflatable dissection balloon 10.
  • In FIG. 9 a, centralization of mesh 20 may be realized with wires 91 stretching from the posterior side of the inflatable dissection balloon 10 to mesh 20.
  • Centralization of mesh 20 is realized by using Velcro and/or double sided masking tape and/or small Silicon tubes 92 that hold the mesh until the inflatable dissection balloon 10 is inflated enough to tear the connection. FIG. 9 b displays the inflatable dissection balloon 10 with Velcro and/or double sided masking tape and/or small Silicon tubes 92. FIG. 9 c displays the inflatable dissection balloon 10 with Velcro and/or double sided masking tape and/or small Silicon tubes 92, attached/combined/adjusted with the inflatable contour-balloon 30 and mesh 20. FIG. 9 d displays the Velcro and/or double sided masking tape and/or small Silicon tubes 92 after the inflatable dissection balloon 10 is inflated enough such that the connection between the inflatable dissection balloon 10 and mesh 20 is torn apart.
  • In FIGS. 9 e-9 f centralization of mesh 20 is made by a ribbon 90 that surrounds the balloon and holds the mesh tight to the dissection balloon. When the inflatable dissection balloon 10 is inflated, the ribbon expands until mesh 20 is relapsed. FIG. 9 e displays the inflatable dissection balloon 10 is inflated such that mesh 20 is relapsed. FIG. 9 f displays the inflatable dissection balloon 10 prior to the inflation.
  • In FIG. 9 g, rigid but flexible stripes 91 are leaning on the inflatable contour-balloon 30. just like the mechanism of an umbrella, when the stripes 91 are pushed they stretch mesh 20. The inflatable dissection balloon 10 makes room in between the tissues and strengths the central part of the mesh 20.
  • Reference is now made to FIGS. 10 a-10 g presenting possible designs of the inflatable dissection balloon 10 and possible coupling options between said inflatable balloon 10 and the mesh 20. As can be seen from the figures tube 101 is used to inflate the inflatable dissection balloon 10 and tube 102 is used to inflate the inflatable contour-balloon 30.
  • As can be seen from FIGS. 10 a and 10 b the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30.
  • In FIGS. 10 a -10 b mesh 20 and the inflatable contour-balloon 30 are positioned in the internal portion of the inflatable dissection balloon 10. FIG. 10 a is a cut view of the same.
  • In FIG. 10 c mesh 20 and the inflatable contour-balloon 30 are positioned in the internal portion of the inflatable dissection balloon 10. FIG. 10 d is a cut view of the same. The difference between FIGS. 10 a and 10 c is the location of the two balloon with respect to each other. In FIGS. 10 a and 10 b the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30 from bellow and in FIGS. 10 c and 10 d the inflatable dissection balloon 10 surrounds mesh 20 and the inflatable contour-balloon 30 from above.
  • In FIG. 10 e mesh 20 and the inflatable contour-balloon 30 are positioned in the inner portion 103 of the inflatable dissection balloon 10.
  • In FIG. 10 f mesh 20 and the inflatable contour-balloon 30 are incorporated within inflatable dissection balloon 10. FIG. 10 g is a cut view of the same. Reference is now made to FIGS. 11 a-11 d presenting possible valve designs for sealing the airway of the inflatable contour-balloon 30:
  • FIG. 11 a displays a possible valve design according to one embodiment of the present invention. According to this embodiment, a rigid tube 110 in inserted into the flexible inflating tube 102. The inside portion of the tube 102 is covered with glue 111. When the rigid tube 110 is drawn out of the flexible inflating tube 102, the inside portion of said tube 102 stick together and do not allow air to escape.
  • FIG. 11 b displays another possible design of a valve. In this embodiment, the valve is made of a rigid tube 113. The rigid tube 113 is positioned inside the flexible inflating tube 102. In the inside of the flexible inflating tube 102 there are leafs 114 covered with glue. When the rigid tube 113 is drawn out of the flexible inflating tube 102, leafs 114 inside the inflating tube 102 expand and stick to each other and thus do not allow air to escape.
  • FIGS. 11 c and 11 d display a rubber band 115 positioned around the rigid tube 116. When the rigid tube 116 is drawn out of the flexible inflating tube 102 (see FIG. 11 d), the rubber band 116 applies force on the flexible inflating tube 102 and thus do not allow air to escape.
  • Reference is now made to FIG. 12, which presents a possible design a handle which is also used as an air pump. The air pump can be used either to pump air or to empty the air out of the inflatable contour-balloon 30.
  • Reference is now made to FIG. 13, which schematically displays different designs of the inflatable contour-balloon 30.
  • The inflatable contour-balloon 30 may have a flat structure as displays in FIGS. 13 a, 13 b, 13 c, or a 3D structure as displays in FIGS. 13 d, 13 e and 13 f.
  • The inflatable contour-balloon 30 may not have a complete closed shape as can be seen in FIGS. 13 g and 13 h. The different parts of the inflatable balloon may be connected to each other with glue, wire, scotch Etc.
  • The inflating tube 102 may be flexible (FIG. 13), or rigid (FIG. 13 j). Moreover, the inflating tube 102 may not be connected to the center of the balloon 30. FIG. 13 k represents a different design for the inflatable contour-balloon 30. According to this design, inflatable contour-balloon 30 has two parts. An internal part 31 and an external part 32. Mesh 20 is positioned in between the internal part 31 and the external part 32. An inflating tube 102 is coupled to a tube 34, which passes through both the internal part 31 and the external part 32. FIG. 13 l is a cross section area of the same.
  • In another embodiment of the invention the 2 balloons may be inflated with different pumps allowing the use of sequenced pumping.
  • FIG. 13 m represent another different design for the inflatable contour balloon 30. According to this design, the inflatable contour-balloon 30 encapsulate an internal balloon 40 shaped as an o-ring. Mesh 20 is captured in between the inflatable contour-balloon 30 and the internal balloon 40. FIG. 13 n is a cut and an enlarge view of the same. FIG. 13 o displays the inflatable contour-balloon 30 and the internal balloon 40 according to this design.
  • Reference is now made to FIGS. 14, 15 and 16, which schematically display different rectangle shapes of the inflatable contour-balloon 30 and mesh 20.
  • As can be seen from FIG. 14, the shape of the inflatable contour-balloon 30 is a rectangle shape having two oppositely faced curves. The two curves can be fused one to the other in a common section. Additionally, according to this embodiment mesh 20 is threaded in slits 7 which are positioned in two oppositely sides ribs on the rectangle. Inflating tube 102 is connected to inflatable contour-balloon 30. An inflating pump 14 is connected to the inflating tube 102.
  • Reference is now made to FIG. 15, which schematically represents the inflatable contour-balloon 30 and the mesh 20 according to another embodiment of the present invention. According to this embodiment mesh 20 extends beyond the inflatable contour-balloon 30.
  • Reference is now made to FIG. 16, which schematically represents the inflatable contour-balloon 30 and the mesh 20 according to another embodiment of the present invention.
  • Reference is now made to FIG. 17, which schematically represents the inflatable contour-balloon 30 and mesh 20 according to another embodiment of the present invention. According to this embodiment, the inflatable contour-balloon 30 additionally comprises two arcs 10 that may replace the function of the dissection balloon. The inflatable contour-balloon 30 is fixed to its position by creating pressure on the mesh/patch towards the abdominal wall.
  • Reference is now made to FIG. 18, which displays an option of attaching mesh 20 to the inflatable contour-balloon 30. According to that embodiment, the inflatable contour-balloon 30 additionally comprises at least one slit 7 into which the edges of mesh 20 are threaded. FIG. 19 displays the inflatable contour-balloon 30 with mesh 20 threaded inside the slits. FIG. 20 a and FIG. 20 b display a more detail look of the same.
  • Another way of coupling between the inflatable contour-balloon 30 and the mesh is by making specials cuts in the mesh such that those cute surround the balloon as can be seen from FIGS. 20 c and 20 d.
  • Another way to attach the inflatable contour-balloon 30 to the mesh is by double-sided adhesive material as displayed in FIG. 20 e. FIG. 20 f displays another design of the inflatable contour-balloon 30 and mesh 20.
  • Another option to couple the inflatable contour-balloon 30 and mesh 20 is by using special extensions 11 as can be seen in FIGS. 20 g and 20 h. The special extensions 11 are insertable into extension 18 in the mesh 20. The inflatable contour-balloon 30 can additionally comprise means 25 (such as bulge, lines, signs and symbols) adapted to adjust the center of said inflatable balloon to the center of the hernia.
  • Reference is now made to FIG. 20 i, which schematically displays the inflatable contour-balloon 30, which comprises several independent parts 40 and several inflating tubes 102 (which will be couple to the inflating means). As can be seen from FIG. 20 i tubes 102 are not positioned in the center of the balloon.
  • Reference is now made to FIG. 20 j, which schematically displays the inflatable contour-balloon 30 comprising several independent parts 40 and several inflating tubes. As can be seen from FIG. 20 i tubes 102 are not radial. I.e., tubes 102 are positioned in the perimeter of the inflatable balloon.

Claims (24)

1.-63. (canceled)
64. A hernia repair device, comprising:
an inflatable balloon having a flexible inflation tube; and
a mesh removably attached to said balloon such that, when the device is in a deployed state, the mesh is situated only on one side of said balloon,
wherein the inflation tube passes through the mesh.
65. A hernia repair device according to claim 64, wherein the balloon when inflated has a smaller extent in one direction than the respective extents in the two directions perpendicular to the one direction wherein the tube is attached to the balloon at a central region of a surface formed in the directions of the two larger extents.
66. A hernia repair device according to claim 64 wherein the inside of said inflatable balloon comprises inflation fluid only.
67. A hernia repair device according to claim 64, wherein the extent of the mesh is larger than any extent of the balloon.
68. A hernia repair device according to claim 64, wherein said balloon comprises a plurality of interconnected inflatable parts.
69. A hernia repair device according to claim 64, wherein the balloon has a generally flat structure.
70. A hernia repair device according to claim 64, wherein said balloon is made of a shape memory material.
71. A hernia repair device according to claim 64, wherein said balloon has a substantially non-symmetrical shape.
72. A hernia repair device, comprising:
an inflatable balloon having a plurality of connected portions separated by open areas, the open areas comprising more than 50% of the extent of the balloon; and
a mesh attached to and supported by said balloon such that the mesh is situated only on one side of said balloon,
wherein the balloon comprises an inflation tube which passes through
said mesh.
73. A hernia repair device according to claim 72, wherein the inside of said balloon comprises inflation fluid only.
74. A hernia repair device according to claim 72, wherein the area of the balloon is less than 50% of the area of the mesh.
75. A hernia repair device according to claim 72, wherein the open areas of the balloon are covered by the mesh when the balloon is attached to the mesh.
76. A hernia repair device according to claim 72 wherein the largest extent of the balloon is no larger than the largest extent of the mesh.
77. A hernia repair device according to claim 72, wherein the balloon has a generally flat structure.
78. A hernia repair device according to claim 72, wherein said mesh is removably attached to said balloon.
79. A hernia repair device according to claim 72, wherein said mesh and said balloon comprise extensions, the extensions of the balloon adapted to be inserted into the extensions of the mesh.
80. A hernia repair device according to claim 72, wherein said balloon further comprises a centering element for adjusting the center of the balloon to the center of the hernia.
81. A hernia repair device according to claim 72, wherein said balloon has a substantially non-symmetrical shape.
82. A method of positioning a hernia, the method comprising:
inserting a balloon and a mesh into an abdominal cavity of a subject, the balloon having a flexible inflation tube which passes through the mesh;
inflating the balloon, thereby deploying the mesh in the abdominal cavity, such that the mesh is situated on one side of the balloon only;
deflating the balloon; and
extracting the balloon from the abdominal cavity.
83. A method according to claim 82, further comprising:
directing the right side of said mesh to said abdominal cavity.
84. A method according to claim 82, further comprising:
attaching said mesh to said balloon before inserting the balloon and mesh into the abdominal cavity.
85. A method according to claim 82, further comprising:
fitting the center of said balloon to the center of said hernia.
86. A method according to claim 82, further comprising:
fastening the mesh to the abdominal wall.
US12/516,373 2006-11-27 2007-11-27 Device especially useful for hernia repair surgeries and methods thereof Abandoned US20100069947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/516,373 US20100069947A1 (en) 2006-11-27 2007-11-27 Device especially useful for hernia repair surgeries and methods thereof
US15/825,806 US10898309B2 (en) 2006-11-27 2017-11-29 Device especially useful for hernia repair surgeries and methods thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86109506P 2006-11-27 2006-11-27
PCT/IL2007/001463 WO2008065653A1 (en) 2006-11-27 2007-11-27 A device especially useful for hernia repair surgeries and methods thereof
US12/516,373 US20100069947A1 (en) 2006-11-27 2007-11-27 Device especially useful for hernia repair surgeries and methods thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2007/001463 A-371-Of-International WO2008065653A1 (en) 2005-10-09 2007-11-27 A device especially useful for hernia repair surgeries and methods thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/770,637 Continuation US9861462B2 (en) 2006-11-27 2013-02-19 Device especially useful for hernia repair surgeries and methods thereof

Publications (1)

Publication Number Publication Date
US20100069947A1 true US20100069947A1 (en) 2010-03-18

Family

ID=39267754

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/516,373 Abandoned US20100069947A1 (en) 2006-11-27 2007-11-27 Device especially useful for hernia repair surgeries and methods thereof
US13/770,637 Active 2029-01-22 US9861462B2 (en) 2006-11-27 2013-02-19 Device especially useful for hernia repair surgeries and methods thereof
US15/825,806 Active 2028-07-31 US10898309B2 (en) 2006-11-27 2017-11-29 Device especially useful for hernia repair surgeries and methods thereof
US17/131,505 Pending US20210169628A1 (en) 2006-11-27 2020-12-22 Device especially useful for hernia repair surgeries and methods thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/770,637 Active 2029-01-22 US9861462B2 (en) 2006-11-27 2013-02-19 Device especially useful for hernia repair surgeries and methods thereof
US15/825,806 Active 2028-07-31 US10898309B2 (en) 2006-11-27 2017-11-29 Device especially useful for hernia repair surgeries and methods thereof
US17/131,505 Pending US20210169628A1 (en) 2006-11-27 2020-12-22 Device especially useful for hernia repair surgeries and methods thereof

Country Status (6)

Country Link
US (4) US20100069947A1 (en)
EP (1) EP2099385B1 (en)
CA (1) CA2670673C (en)
ES (1) ES2869849T3 (en)
IL (1) IL198937A0 (en)
WO (1) WO2008065653A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070260179A1 (en) * 2004-10-14 2007-11-08 Mordehai Sholev Hernia Repair Device
US20080033471A1 (en) * 2004-06-23 2008-02-07 Bioprotect Ltd. Device System And Method For Tissue Displacement Or Separation
US20100023127A1 (en) * 2007-03-15 2010-01-28 Ortho-Space Ltd. Prosthetic devices and methods for using same
US20100137999A1 (en) * 2007-03-15 2010-06-03 Bioprotect Led. Soft tissue fixation devices
US20100292718A1 (en) * 2007-10-17 2010-11-18 Davol, Inc Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US20110082479A1 (en) * 2009-10-07 2011-04-07 Jack Friedlander Apparatus, method and system for the deployment of surgical mesh
US20110112560A1 (en) * 2008-05-07 2011-05-12 Mordehai Sholev Method and apparatus for repairing a hernia
US20110118706A1 (en) * 2007-08-30 2011-05-19 Proxy Biomedical Limited Device Suitable for Use During Deployment of a Medical Device
US8480647B2 (en) 2007-05-14 2013-07-09 Bioprotect Ltd. Delivery device for delivering bioactive agents to internal tissue in a body
US20130231526A1 (en) * 2010-10-05 2013-09-05 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
JP2014507202A (en) * 2011-01-04 2014-03-27 ザ・ジョンズ・ホプキンス・ユニバーシティ Minimally invasive laparoscopic retractor
US8894713B2 (en) 2010-08-04 2014-11-25 Ortho-Space Ltd. Shoulder implant
US20140364698A1 (en) * 2011-09-29 2014-12-11 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern Californ Minimally obstructive retractor for vaginal repairs
US20150173882A1 (en) * 2012-09-27 2015-06-25 Ethicon, Inc. Temporary Aids for Deployment and Fixation of Tissue Repair Implants
US20150366547A1 (en) * 2014-06-18 2015-12-24 President And Fellows Of Harvard College Soft retractors
US9339365B2 (en) 2011-07-07 2016-05-17 David D. Park Device and method for delivering grafts
US9504548B2 (en) 2008-11-21 2016-11-29 C.R. Bard, Inc. Soft tissue repair prosthesis, expandable device, and method of soft tissue repair
US20170100160A1 (en) * 2015-10-08 2017-04-13 Karl Storz Gmbh & Co. Kg Access system for endoscopic operations
US20170189197A1 (en) * 2015-12-30 2017-07-06 Wasas, Llc. System and method for non-binding allograft subtalar joint implant
US9861462B2 (en) 2006-11-27 2018-01-09 Davol, Inc. (a C.R. Bard Company) Device especially useful for hernia repair surgeries and methods thereof
US9918708B2 (en) 2012-03-29 2018-03-20 Lapspace Medical Ltd. Tissue retractor
US10034736B2 (en) 2014-03-06 2018-07-31 C. R. Bard, Inc. Hernia repair patch
US10172700B2 (en) 2014-12-01 2019-01-08 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US10182899B2 (en) 2015-12-28 2019-01-22 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US10898310B2 (en) 2017-07-06 2021-01-26 Park Surgical Innovations, Llc Device for delivering grafts at a surgical site and method
US11090145B2 (en) 2017-07-06 2021-08-17 Park Surgical Innovations, Llc Device for delivering grafts at a surgical site and method
US11826228B2 (en) 2011-10-18 2023-11-28 Stryker European Operations Limited Prosthetic devices
US11918414B2 (en) 2010-01-07 2024-03-05 Bioprotect Ltd. Controlled tissue dissection systems and methods

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
AU2009215269B2 (en) 2008-02-18 2013-01-31 Covidien Lp A device and method for deploying and attaching a patch to a biological tissue
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US8753361B2 (en) 2008-02-18 2014-06-17 Covidien Lp Biocompatible sleeve for mesh insertion instrument
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
EP2792307B1 (en) 2008-10-20 2017-10-04 Covidien LP A device for attaching a patch to a biological tissue
WO2011021083A1 (en) 2009-08-17 2011-02-24 PolyTouch Medical, Inc. Articulating patch deployment device and method of use
EP3508144B1 (en) 2009-08-17 2021-04-07 Covidien LP Patch deployment device
FR2953709B1 (en) * 2009-12-16 2012-08-10 Sofradim Production Reinforced trellis by a ring
US20140142620A1 (en) * 2012-11-19 2014-05-22 Cook Medical Technologies Llc Degradable balloon device and method for closure of openings in a tissue wall
US20170354273A1 (en) * 2016-06-08 2017-12-14 David Wilke Balloon display structure
WO2018064402A1 (en) * 2016-09-30 2018-04-05 Boston Scientific Scimed, Inc. Pouch forming catheter

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857395A (en) * 1974-01-28 1974-12-31 Kimberly Clark Co Conformable absorbent tampon and inserter device therefor
US4685447A (en) * 1985-03-25 1987-08-11 Pmt Corporation Tissue expander system
US4769038A (en) * 1986-03-18 1988-09-06 C. R. Bard, Inc. Prostheses and techniques and repair of inguinal and femoral hernias
US4823815A (en) * 1986-09-19 1989-04-25 Mentor Corporation Tissue expanding device and method of making same
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5263969A (en) * 1992-04-17 1993-11-23 Phillips Edward H Tool for the laparoscopic introduction of a mesh prosthesis
US5350388A (en) * 1989-03-07 1994-09-27 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5366460A (en) * 1990-10-11 1994-11-22 Cook Incorporated Apparatus and method for laparoscope hernia repair
US5370650A (en) * 1992-02-24 1994-12-06 United States Surgical Corporation Articulating mesh deployment apparatus
US5395383A (en) * 1991-10-18 1995-03-07 Ethicon, Inc. Adhesion barrier applicator
US5397332A (en) * 1993-09-02 1995-03-14 Ethicon, Inc. Surgical mesh applicator
US5575759A (en) * 1991-05-29 1996-11-19 Origin Medsystems, Inc. Methods of using inflatable retraction devices in laparoscopic surgery
US5607443A (en) * 1992-06-02 1997-03-04 General Surgical Innovations, Inc. Expansible tunneling apparatus for creating an anatomic working space with laparoscopic observation
US5702416A (en) * 1992-06-02 1997-12-30 Genral Surgical Innovations, Inc. Apparatus for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
US5769864A (en) * 1994-09-29 1998-06-23 Surgical Sense, Inc. Hernia mesh patch
US5824082A (en) * 1997-07-14 1998-10-20 Brown; Roderick B. Patch for endoscopic repair of hernias
US6171318B1 (en) * 1994-09-29 2001-01-09 Bard Asdi Inc. Hernia mesh patch with stiffening layer
US6174320B1 (en) * 1994-09-29 2001-01-16 Bard Asdi Inc. Hernia mesh patch with slit
US6176863B1 (en) * 1994-09-29 2001-01-23 Bard Asdi Inc. Hernia mesh patch with I-shaped filament
US6224616B1 (en) * 1994-09-29 2001-05-01 Bard Asdi Inc. Hernia mesh patch
US6258113B1 (en) * 1998-10-20 2001-07-10 Boston Scientific Corporation Needle herniorrhaphy devices
US6302897B1 (en) * 1999-11-19 2001-10-16 Ethicon, Inc. Device for deploying medical textiles
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6488653B1 (en) * 1999-08-12 2002-12-03 Wilson-Cook Medical Incorporated Dilation balloon having multiple diameters
US20030004581A1 (en) * 2001-06-27 2003-01-02 Rousseau Robert A. Implantable prosthetic mesh system
US20040073257A1 (en) * 2002-10-09 2004-04-15 Spitz Gregory A. Methods and apparatus for the repair of hernias
US20040097792A1 (en) * 1991-05-29 2004-05-20 Moll Frederic H. Endoscopic inflatable retraction device, method of using, and method of making
US6755868B2 (en) * 2002-03-22 2004-06-29 Ethicon, Inc. Hernia repair device
US20040167557A1 (en) * 1992-06-02 2004-08-26 Kieturakis Maciej J. Apparatus and method for dissecting tissue layers
US20050033318A1 (en) * 2000-09-01 2005-02-10 Arnold Miller Vascular bypass grafting instrument and method
US6913614B2 (en) * 2003-05-08 2005-07-05 Cardia, Inc. Delivery system with safety tether
US7048698B2 (en) * 2001-06-22 2006-05-23 Abbeymoor Medical, Inc. Urethral profiling device and methodology
US7101381B2 (en) * 2002-08-02 2006-09-05 C.R. Bard, Inc. Implantable prosthesis
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US20070066980A1 (en) * 2003-04-22 2007-03-22 Patrick Leahy Device for use in parietal surgery
US20070100369A1 (en) * 2005-10-31 2007-05-03 Cragg Andrew H Intragastric space filler
US20080033461A1 (en) * 2004-04-26 2008-02-07 Ferdinand Koeckerling Tow-Dimensional Mesh Implant For Hernia Care
US20080065229A1 (en) * 2006-09-12 2008-03-13 Adams Jason P Inflatable hernia patch
US7780683B2 (en) * 1999-09-20 2010-08-24 Roue Chad C Method of closing an opening in a wall of the heart

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460940A (en) 1891-10-13 Surgical instrument
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3863639A (en) * 1974-04-04 1975-02-04 Richard N Kleaveland Disposable visceral retainer
FR2306671A1 (en) 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
US5011481A (en) 1989-07-17 1991-04-30 Medtronic, Inc. Holder for annuloplasty ring
US5514153A (en) * 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5116357A (en) * 1990-10-11 1992-05-26 Eberbach Mark A Hernia plug and introducer apparatus
US5836871A (en) * 1991-05-29 1998-11-17 Origin Medsystems, Inc. Method for lifting a body wall using an inflatable lifting apparatus
US5370134A (en) * 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US7744617B2 (en) * 1991-05-29 2010-06-29 Covidien Ag Method and inflatable chamber apparatus for separating layers of tissue
AU2185192A (en) 1991-05-29 1993-01-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5527264A (en) 1991-05-29 1996-06-18 Origin Medsystem, Inc. Methods of using endoscopic inflatable retraction devices
US6361543B1 (en) * 1991-05-29 2002-03-26 Sherwood Services Ag Inflatable devices for separating layers of tissue, and methods of using
US5308327A (en) * 1991-11-25 1994-05-03 Advanced Surgical Inc. Self-deployed inflatable retractor
CA2089999A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
US5333624A (en) 1992-02-24 1994-08-02 United States Surgical Corporation Surgical attaching apparatus
US5772680A (en) 1992-06-02 1998-06-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5540711A (en) 1992-06-02 1996-07-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
ES2287635T3 (en) * 1994-01-26 2007-12-16 Kyphon Inc. IMPROVED FLAMMABLE DEVICE FOR USE IN SURGICAL METHODS RELATED TO BONE FIXATION.
WO1995030374A1 (en) * 1994-05-06 1995-11-16 Origin Medsystems, Inc. Apparatus and method for delivering a patch
US5634931A (en) 1994-09-29 1997-06-03 Surgical Sense, Inc. Hernia mesh patches and methods of their use
US5695498A (en) * 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US6015421A (en) * 1997-05-15 2000-01-18 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures
US5957939A (en) 1997-07-31 1999-09-28 Imagyn Medical Technologies, Inc. Medical device for deploying surgical fabrics
US6551241B1 (en) * 1999-12-17 2003-04-22 Leonard S. Schultz Instruments and methods for performing percutaneous surgery
US6368328B1 (en) 1999-09-16 2002-04-09 Scimed Life Systems, Inc. Laser-resistant medical retrieval device
US20050171569A1 (en) 2000-04-25 2005-08-04 Impres Medical, Inc. Method and apparatus for creating intrauterine adhesions
US6702827B1 (en) 2000-10-06 2004-03-09 American Medical Systems Sling adjustment and tensioning accessory
US6551356B2 (en) 2001-03-19 2003-04-22 Ethicon, Inc. Pocketed hernia repair
GB0108088D0 (en) 2001-03-30 2001-05-23 Browning Healthcare Ltd Surgical implant
US6575988B2 (en) 2001-05-15 2003-06-10 Ethicon, Inc. Deployment apparatus for supple surgical materials
FR2835737B1 (en) * 2002-02-13 2004-12-10 Cousin Biotech HERMAL PLATE WITH NON-PERMANENT DEPLOYMENT MEMBER
WO2004012603A2 (en) 2002-07-31 2004-02-12 Abbott Laboratories Vascular Enterprises, Limited Apparatus for sealing surgical punctures
FR2843012B1 (en) 2002-08-01 2005-05-13 Younes Boudjemline DEVICE FOR CLOSING SEGMENTED DEFECTS BY NON-SURGICAL METHOD
US20040092970A1 (en) 2002-10-18 2004-05-13 Xavier Alfredo F. Prosthetic mesh anchor device
GB0300785D0 (en) 2003-01-14 2003-02-12 Barker Stephen G E Umbilical or paraumbilical hernia repair prosthesis
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20070185506A1 (en) 2003-08-04 2007-08-09 Kelly Jackson Medical instruments and methods for using the same
US7021316B2 (en) 2003-08-07 2006-04-04 Tools For Surgery, Llc Device and method for tacking a prosthetic screen
US7235042B2 (en) 2003-09-16 2007-06-26 Acorn Cardiovascular, Inc. Apparatus and method for applying cardiac support device
CA2545282A1 (en) 2003-11-17 2005-05-26 Prolapse Inc. Pelvic implant with anchoring frame
US8764646B2 (en) * 2004-04-29 2014-07-01 Umc Utrecht Holding B.V. Surgical expansion device
IL164591A0 (en) * 2004-10-14 2005-12-18 Hernia repair device
US7651528B2 (en) 2004-11-18 2010-01-26 Cayenne Medical, Inc. Devices, systems and methods for material fixation
US20070078477A1 (en) * 2005-02-04 2007-04-05 Heneveld Scott H Sr Anatomical spacer and method to deploy
US20060270911A1 (en) 2005-04-08 2006-11-30 Voegele James W Tissue retraction device
WO2007030676A2 (en) 2005-09-09 2007-03-15 University Of South Florida Laparoscopic hernia mesh spreader
WO2007115110A2 (en) * 2006-03-29 2007-10-11 The Catheter Exchange, Inc. Method and device for cavity obliteration
JP2007275203A (en) 2006-04-04 2007-10-25 Shinya Naganuma Strap retainer for cellular phone
WO2008045635A2 (en) 2006-10-12 2008-04-17 The Catheter Exchange, Inc. Method and device for attaching a patch
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
EP2099385B1 (en) 2006-11-27 2021-02-24 Davol Inc. A device especially useful for hernia repair surgeries
US8795384B2 (en) 2007-01-10 2014-08-05 Cook Biotech Incorporated Implantable devices useful for reinforcing a surgically created stoma
US7947054B2 (en) 2007-02-14 2011-05-24 EasyLab Ltd. Mesh deployment apparatus
US20100137999A1 (en) * 2007-03-15 2010-06-03 Bioprotect Led. Soft tissue fixation devices
US9956067B2 (en) * 2007-07-06 2018-05-01 Claude Tihon Partial cuff
US8500759B2 (en) 2007-09-26 2013-08-06 Ethicon, Inc. Hernia mesh support device
EP2752169B1 (en) 2007-10-17 2015-10-14 Davol, Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries
US8043381B2 (en) 2007-10-29 2011-10-25 Zimmer Spine, Inc. Minimally invasive interbody device and method
US8016851B2 (en) 2007-12-27 2011-09-13 Cook Medical Technologies Llc Delivery system and method of delivery for treating obesity
US7993395B2 (en) 2008-01-25 2011-08-09 Medtronic, Inc. Set of annuloplasty devices with varying anterior-posterior ratios and related methods
JP2011520481A (en) 2008-05-07 2011-07-21 デボル,インコーポレイテッド Hernia repair method and apparatus therefor
US8764630B2 (en) 2008-05-19 2014-07-01 Olympus Medical Systems Corp. Endoscopic surgical procedure and surgical apparatus
EP2792307B1 (en) 2008-10-20 2017-10-04 Covidien LP A device for attaching a patch to a biological tissue
US20110295283A1 (en) 2008-11-21 2011-12-01 C.R. Bard, Inc. Soft tissue repair prosthesis, expandable device, and method of soft tissue repair
EP2241284B1 (en) * 2009-04-15 2012-09-19 National University of Ireland, Galway Intravasculature devices and balloons for use therewith
US20110306992A1 (en) 2010-06-09 2011-12-15 C.R. Bard, Inc. Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing
CA2813581A1 (en) 2010-10-05 2012-04-12 C. R. Bard, Inc. Soft tissue repair prosthesis and expandable device

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857395A (en) * 1974-01-28 1974-12-31 Kimberly Clark Co Conformable absorbent tampon and inserter device therefor
US4685447A (en) * 1985-03-25 1987-08-11 Pmt Corporation Tissue expander system
US4769038A (en) * 1986-03-18 1988-09-06 C. R. Bard, Inc. Prostheses and techniques and repair of inguinal and femoral hernias
US4823815A (en) * 1986-09-19 1989-04-25 Mentor Corporation Tissue expanding device and method of making same
US5350388A (en) * 1989-03-07 1994-09-27 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5366460A (en) * 1990-10-11 1994-11-22 Cook Incorporated Apparatus and method for laparoscope hernia repair
US20040097792A1 (en) * 1991-05-29 2004-05-20 Moll Frederic H. Endoscopic inflatable retraction device, method of using, and method of making
US5575759A (en) * 1991-05-29 1996-11-19 Origin Medsystems, Inc. Methods of using inflatable retraction devices in laparoscopic surgery
US5395383A (en) * 1991-10-18 1995-03-07 Ethicon, Inc. Adhesion barrier applicator
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5370650A (en) * 1992-02-24 1994-12-06 United States Surgical Corporation Articulating mesh deployment apparatus
US5263969A (en) * 1992-04-17 1993-11-23 Phillips Edward H Tool for the laparoscopic introduction of a mesh prosthesis
US20040167557A1 (en) * 1992-06-02 2004-08-26 Kieturakis Maciej J. Apparatus and method for dissecting tissue layers
US5702416A (en) * 1992-06-02 1997-12-30 Genral Surgical Innovations, Inc. Apparatus for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
US5607443A (en) * 1992-06-02 1997-03-04 General Surgical Innovations, Inc. Expansible tunneling apparatus for creating an anatomic working space with laparoscopic observation
US6312442B1 (en) * 1992-06-02 2001-11-06 General Surgical Innovations, Inc. Method for developing an anatomic space for laparoscopic hernia repair
US5836961A (en) * 1992-06-02 1998-11-17 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
US6679900B2 (en) * 1992-06-02 2004-01-20 General Surgical Innovations, Inc. Apparatus and methods for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
US6565590B2 (en) * 1992-06-02 2003-05-20 General Surgical Innovations, Inc. Apparatus and methods for developing an anatomic space
US20040236363A1 (en) * 1992-06-02 2004-11-25 Kieturakis Maciej J. Apparatus and methods for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
US6866676B2 (en) * 1992-06-02 2005-03-15 General Surgical Innovations, Inc. Apparatus and method for dissecting tissue layers
US5397332A (en) * 1993-09-02 1995-03-14 Ethicon, Inc. Surgical mesh applicator
US5769864A (en) * 1994-09-29 1998-06-23 Surgical Sense, Inc. Hernia mesh patch
US6224616B1 (en) * 1994-09-29 2001-05-01 Bard Asdi Inc. Hernia mesh patch
US6176863B1 (en) * 1994-09-29 2001-01-23 Bard Asdi Inc. Hernia mesh patch with I-shaped filament
US6174320B1 (en) * 1994-09-29 2001-01-16 Bard Asdi Inc. Hernia mesh patch with slit
US6171318B1 (en) * 1994-09-29 2001-01-09 Bard Asdi Inc. Hernia mesh patch with stiffening layer
US5824082A (en) * 1997-07-14 1998-10-20 Brown; Roderick B. Patch for endoscopic repair of hernias
US6258113B1 (en) * 1998-10-20 2001-07-10 Boston Scientific Corporation Needle herniorrhaphy devices
US6638292B2 (en) * 1998-10-20 2003-10-28 Boston Scientific Corporation Needle herniorrhaphy devices
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6488653B1 (en) * 1999-08-12 2002-12-03 Wilson-Cook Medical Incorporated Dilation balloon having multiple diameters
US7780683B2 (en) * 1999-09-20 2010-08-24 Roue Chad C Method of closing an opening in a wall of the heart
US6302897B1 (en) * 1999-11-19 2001-10-16 Ethicon, Inc. Device for deploying medical textiles
US6685714B2 (en) * 1999-11-19 2004-02-03 Ethicon, Inc. Method for deploying medical textiles
US20050033318A1 (en) * 2000-09-01 2005-02-10 Arnold Miller Vascular bypass grafting instrument and method
US7048698B2 (en) * 2001-06-22 2006-05-23 Abbeymoor Medical, Inc. Urethral profiling device and methodology
US20030004581A1 (en) * 2001-06-27 2003-01-02 Rousseau Robert A. Implantable prosthetic mesh system
US6755868B2 (en) * 2002-03-22 2004-06-29 Ethicon, Inc. Hernia repair device
US7101381B2 (en) * 2002-08-02 2006-09-05 C.R. Bard, Inc. Implantable prosthesis
US20040073257A1 (en) * 2002-10-09 2004-04-15 Spitz Gregory A. Methods and apparatus for the repair of hernias
US20070066980A1 (en) * 2003-04-22 2007-03-22 Patrick Leahy Device for use in parietal surgery
US6913614B2 (en) * 2003-05-08 2005-07-05 Cardia, Inc. Delivery system with safety tether
US20080033461A1 (en) * 2004-04-26 2008-02-07 Ferdinand Koeckerling Tow-Dimensional Mesh Implant For Hernia Care
US20070100369A1 (en) * 2005-10-31 2007-05-03 Cragg Andrew H Intragastric space filler
US20080065229A1 (en) * 2006-09-12 2008-03-13 Adams Jason P Inflatable hernia patch
US7544213B2 (en) * 2006-09-12 2009-06-09 Adams Jason P Inflatable hernia patch

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221442B2 (en) 2004-06-23 2012-07-17 Bioprotect Ltd. Device system and method for tissue displacement or separation
US20080033471A1 (en) * 2004-06-23 2008-02-07 Bioprotect Ltd. Device System And Method For Tissue Displacement Or Separation
US9314944B2 (en) 2004-06-23 2016-04-19 Bioprotect Ltd. Method of forming a seamless bladder
US11759979B2 (en) 2004-06-23 2023-09-19 Bioprotect Ltd. Device system and method for tissue displacement or separation
US9687332B2 (en) 2004-10-14 2017-06-27 Davol, Inc. Hernia repair device
US20070260179A1 (en) * 2004-10-14 2007-11-08 Mordehai Sholev Hernia Repair Device
US8920370B2 (en) 2004-10-14 2014-12-30 Davol, Inc. (a C.R. Bard Company) Hernia repair device
US9993324B2 (en) 2005-10-09 2018-06-12 Davol Inc. Method and apparatus for repairing a hernia
US10898309B2 (en) 2006-11-27 2021-01-26 Davol Inc. Device especially useful for hernia repair surgeries and methods thereof
US9861462B2 (en) 2006-11-27 2018-01-09 Davol, Inc. (a C.R. Bard Company) Device especially useful for hernia repair surgeries and methods thereof
US11033398B2 (en) 2007-03-15 2021-06-15 Ortho-Space Ltd. Shoulder implant for simulating a bursa
US8753390B2 (en) 2007-03-15 2014-06-17 OrthoSpace Ltd. Methods for implanting a prosthesis in a human shoulder
US20100137999A1 (en) * 2007-03-15 2010-06-03 Bioprotect Led. Soft tissue fixation devices
US20100023127A1 (en) * 2007-03-15 2010-01-28 Ortho-Space Ltd. Prosthetic devices and methods for using same
US8480647B2 (en) 2007-05-14 2013-07-09 Bioprotect Ltd. Delivery device for delivering bioactive agents to internal tissue in a body
US20110118706A1 (en) * 2007-08-30 2011-05-19 Proxy Biomedical Limited Device Suitable for Use During Deployment of a Medical Device
US8500762B2 (en) 2007-10-17 2013-08-06 Davol, Inc. (a C.R. Bard Company) Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US20100292718A1 (en) * 2007-10-17 2010-11-18 Davol, Inc Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US20210045862A1 (en) * 2007-10-17 2021-02-18 Davol Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US9642689B2 (en) 2007-10-17 2017-05-09 Davol, Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US10751156B2 (en) 2007-10-17 2020-08-25 Davol Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US11806223B2 (en) * 2007-10-17 2023-11-07 Davol Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US10864068B2 (en) 2008-05-07 2020-12-15 Davol Inc. Method and apparatus for repairing a hernia
US20180368962A1 (en) * 2008-05-07 2018-12-27 Davol Inc. Method and apparatus for repairing a hernia
US20110112560A1 (en) * 2008-05-07 2011-05-12 Mordehai Sholev Method and apparatus for repairing a hernia
US8920445B2 (en) 2008-05-07 2014-12-30 Davol, Inc. Method and apparatus for repairing a hernia
US10548703B2 (en) 2008-11-21 2020-02-04 C.R. Bard, Inc. Soft tissue repair prosthesis, expandable device, and method of soft tissue repair
US9504548B2 (en) 2008-11-21 2016-11-29 C.R. Bard, Inc. Soft tissue repair prosthesis, expandable device, and method of soft tissue repair
US20110082479A1 (en) * 2009-10-07 2011-04-07 Jack Friedlander Apparatus, method and system for the deployment of surgical mesh
US11918414B2 (en) 2010-01-07 2024-03-05 Bioprotect Ltd. Controlled tissue dissection systems and methods
US8894713B2 (en) 2010-08-04 2014-11-25 Ortho-Space Ltd. Shoulder implant
US9808331B2 (en) * 2010-10-05 2017-11-07 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
US20130231526A1 (en) * 2010-10-05 2013-09-05 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
US10905537B2 (en) 2010-10-05 2021-02-02 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
US10166093B2 (en) 2010-10-05 2019-01-01 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
JP2014507202A (en) * 2011-01-04 2014-03-27 ザ・ジョンズ・ホプキンス・ユニバーシティ Minimally invasive laparoscopic retractor
US9445800B2 (en) 2011-01-04 2016-09-20 The Johns Hopkins University Minimally invasive laparoscopic retractor
US10925638B2 (en) 2011-07-07 2021-02-23 Park Surgical Innovations, Llc Device and method for delivering grafts
US9339365B2 (en) 2011-07-07 2016-05-17 David D. Park Device and method for delivering grafts
US9861349B2 (en) 2011-09-29 2018-01-09 Proa Medical, Inc. Speculum for obstetrical and gynecological exams and related procedures
US9907544B2 (en) * 2011-09-29 2018-03-06 Proa Medical, Inc. Minimally obstructive retractor for vaginal repairs
US20140364698A1 (en) * 2011-09-29 2014-12-11 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern Californ Minimally obstructive retractor for vaginal repairs
US11826228B2 (en) 2011-10-18 2023-11-28 Stryker European Operations Limited Prosthetic devices
US9918708B2 (en) 2012-03-29 2018-03-20 Lapspace Medical Ltd. Tissue retractor
US9820840B2 (en) * 2012-09-27 2017-11-21 Ethicon, Inc. Temporary aids for deployment and fixation of tissue repair implants
US20150173882A1 (en) * 2012-09-27 2015-06-25 Ethicon, Inc. Temporary Aids for Deployment and Fixation of Tissue Repair Implants
US10034736B2 (en) 2014-03-06 2018-07-31 C. R. Bard, Inc. Hernia repair patch
US10722337B2 (en) 2014-03-06 2020-07-28 C.R. Bard, Inc. Hernia repair patch
US20150366547A1 (en) * 2014-06-18 2015-12-24 President And Fellows Of Harvard College Soft retractors
AU2015315793B2 (en) * 2014-06-18 2019-09-12 President And Fellows Of Harvard College Soft retractors
WO2016039833A3 (en) * 2014-06-18 2016-06-16 President And Fellows Of Harvard College Soft retractors
US9907545B2 (en) * 2014-06-18 2018-03-06 President And Fellows Of Harvard College Soft retractors
US10349927B2 (en) 2014-06-18 2019-07-16 President And Fellows Of Harvard College Soft retractors
US10172700B2 (en) 2014-12-01 2019-01-08 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US11147660B2 (en) 2014-12-01 2021-10-19 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US20180235656A1 (en) * 2015-10-08 2018-08-23 Karl Storz Se & Co. Kg Access System For Endoscopic Operations
US10959754B2 (en) * 2015-10-08 2021-03-30 Karl Storz Se & Co. Kg Access system for endoscopic operations
US20170100160A1 (en) * 2015-10-08 2017-04-13 Karl Storz Gmbh & Co. Kg Access system for endoscopic operations
US10016214B2 (en) * 2015-10-08 2018-07-10 Karl Storz Se & Co. Kg Access system for endoscopic operations
US11141256B2 (en) 2015-12-28 2021-10-12 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US10182899B2 (en) 2015-12-28 2019-01-22 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US10842605B2 (en) 2015-12-28 2020-11-24 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US10350046B2 (en) 2015-12-28 2019-07-16 C.R. Bard, Inc. Prothesis for repairing a hernia defect
US10335258B2 (en) 2015-12-28 2019-07-02 C.R. Bard, Inc. Prosthesis for repairing a hernia defect
US20170189197A1 (en) * 2015-12-30 2017-07-06 Wasas, Llc. System and method for non-binding allograft subtalar joint implant
US9943414B2 (en) * 2015-12-30 2018-04-17 Wasas, Llc. System and method for non-binding allograft subtalar joint implant
US11090145B2 (en) 2017-07-06 2021-08-17 Park Surgical Innovations, Llc Device for delivering grafts at a surgical site and method
US10898310B2 (en) 2017-07-06 2021-01-26 Park Surgical Innovations, Llc Device for delivering grafts at a surgical site and method

Also Published As

Publication number Publication date
US20130218179A1 (en) 2013-08-22
CA2670673C (en) 2015-11-24
US9861462B2 (en) 2018-01-09
WO2008065653A1 (en) 2008-06-05
EP2099385B1 (en) 2021-02-24
US10898309B2 (en) 2021-01-26
US20210169628A1 (en) 2021-06-10
US20180147040A1 (en) 2018-05-31
EP2099385A1 (en) 2009-09-16
CA2670673A1 (en) 2008-06-05
ES2869849T3 (en) 2021-10-26
IL198937A0 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
US20210169628A1 (en) Device especially useful for hernia repair surgeries and methods thereof
US11806223B2 (en) Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
EP2247245B1 (en) A device for deploying and attaching a patch to a biological tissue
US6302897B1 (en) Device for deploying medical textiles

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURGICAL STRUCTURE LTD.,ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOLEV, MORDEHAI;SZOLD, AMIR;MATTER, IBRAHIM;AND OTHERS;SIGNING DATES FROM 20090518 TO 20090525;REEL/FRAME:022743/0414

AS Assignment

Owner name: DAVOL, INC.,RHODE ISLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURGICAL STRUCTURES, LTD.;REEL/FRAME:024112/0155

Effective date: 20091221

Owner name: DAVOL, INC., RHODE ISLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURGICAL STRUCTURES, LTD.;REEL/FRAME:024112/0155

Effective date: 20091221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION