US20100109673A1 - Heat-resistant lens kit - Google Patents

Heat-resistant lens kit Download PDF

Info

Publication number
US20100109673A1
US20100109673A1 US12/652,325 US65232510A US2010109673A1 US 20100109673 A1 US20100109673 A1 US 20100109673A1 US 65232510 A US65232510 A US 65232510A US 2010109673 A1 US2010109673 A1 US 2010109673A1
Authority
US
United States
Prior art keywords
heat
main body
light
lens kit
resistant lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/652,325
Inventor
Pi-Hui Tai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Yuan Electronics Co Ltd
Original Assignee
King Yuan Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Yuan Electronics Co Ltd filed Critical King Yuan Electronics Co Ltd
Priority to US12/652,325 priority Critical patent/US20100109673A1/en
Assigned to KING YUAN ELECTRONICS CO., LTD reassignment KING YUAN ELECTRONICS CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAI, PI-HUI
Publication of US20100109673A1 publication Critical patent/US20100109673A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature

Definitions

  • the present invention is related to a wafer tester for a photo sensor, and particularly to a wafer tester that includes a hear-resistant lens kit to form an enclosed room for isolating the surface of a device under test.
  • CMOS sensor It is necessary for a CMOS sensor to be tested under low-temperature environment for sure of practical work in the low-temperature environment.
  • FIG. 1 is a schematic diagram of a wafer tester 10 having a test base 11 as an upper portion and a chuck 13 for loading a device under test as a bottom portion.
  • the test base 11 includes a pogo tower 13 , a probe card 14 and a test head 16 .
  • the test head 16 is associated with a test probe 18 for touching a device under test, a room for light transmission and a probe card holder 17 for connecting the pogo tower 12 and the probe card 14 into a piece.
  • the device under test in order to maintain a device in a low-temperature state, the device under test is necessarily attached to the chuck 13 through low-temperature treatment for sure of low temperature. Meanwhile, the probe card 14 of the wafer tester 10 is close to the device under test in low-temperature state. However, the device under test is in low-temperature state on one hand. On the other hand, the probe card 14 is in room-temperature or higher-temperature state. Thus, there is vapor, also called as saturated vapor, formed on the interface of the low-temperature surface and the high-temperature surface. When light is incident continuously, light though vapor may be reflected, refracted or scattered. Thus, light incident on the device under test may be disordered and further cause incorrect measurement and short to damage the apparatus. Thus, in order to correctly and rapidly test the device under test, the vapor generation should be overcome.
  • one object of the present invention is to provide a heat-resistant lens kit to prevent from vapor generation.
  • Another one object of the present invention provides a heat-resistant lens kit having a main body with a through hole and two parallel lenses to enclose a room.
  • the main body is associated with a suction hole and an indicator to make the room vacuum.
  • the other object of the present invention provides a wafer tester of photo sensor.
  • the wafer tester includes a heat-resistant lens kit to form a vacuum room for isolating the surface of a device under test from the incident surface of light and preventing from vapor formation.
  • Another object of the present invention provides a wafer tester of photo sensor which includes a pair of lenses directly attached to the two ends of an opening on a pogo tower to form an enclosed room.
  • a vacuum pump maintains the enclosed room in vacuum state.
  • the low-temperature surface and the room-temperature surface are isolated from each other to prevent vapor formation.
  • FIG. 1 is a schematic diagram illustrating a testing apparatus according to a prior art.
  • FIG. 2A is a schematic diagram illustrating a heat-resistant lens kit according to the present invention.
  • FIG. 2B is a schematic diagram illustrating a heat-resistant lens kit according to the present invention.
  • FIG. 3 is a schematic diagram illustrating an exemplary testing apparatus according to the present invention.
  • FIG. 4 is a schematic diagram illustrating an exemplary testing apparatus according to the present invention.
  • the present invention provides a wafer tester. Following illustrations describe detailed components and steps for understanding the present invention. Obviously, the present invention is not limited to the embodiments of wafer tester, however, the preferable embodiments of the present invention are illustrated as followings. Besides, the present invention may be applied to other embodiments, not limited to ones mentioned.
  • the device under test would be maintained in a low-temperature state when attached to a low-temperature chuck 13 .
  • the room-temperature probe card 14 causes vapor formation on the interface.
  • the vapor film results in the reflection and fraction of lights and further in test error and apparatus damage.
  • One best resolution to such a problem is to isolate the interface of objects in different temperature with a room in a vacuum state.
  • one exemplary embodiment of the present invention provides a heat-resistant lens kit 20 shown as FIG. 2A including a main body 22 and two lenses 24 .
  • a through hole is set in the main body 22 and the two lenses 24 are parallel configured on the two ends of the through hole of the main body 22 .
  • the main body 22 and the two lenses 24 enclose a vacuum room.
  • the two lenses 24 are fixed on the main body 22 with built-in screws or adhesive, and so on.
  • the main body 22 may be made of low thermo-conductivity and heat resistant materials to form a heat resistant element in good quality.
  • the enclosed room between the main body 22 and two lenses 24 is kept vacuum to be configured for blocking heat conduction.
  • the main body 22 and the two lenses 24 may enclose a non-vacuum room. Gas in the non-vacuum room may be exhaust out to meet vacuum requirement for blocking heat conduction.
  • the heat-resistant lens kit 20 includes a suction hole 26 and an indicator 28 to exhaust gas out of the heat-resistant lens kit 20 by an air extractor (not shown).
  • the indicator 28 may be sucked into the heat-resistant lens kit 20 .
  • the indicator 28 may float up to remind a user of extracting gas within the heat-resistant lens kit 20 when the vacuum degree is below a threshold in the heat-resistant lens kit 20 .
  • the indicator 28 may be made of spring, elastic sheet, sponge or any suitable elastic element.
  • FIG. 3 shown in FIG. 3 is a schematic diagram illustrating the combination of the heat-resistant lens kit 20 and a wafer tester 10 in accordance with the present invention.
  • the upper portion is a test plate 11 and the lower portion is the wafer tester 10 for loading a device under test.
  • the test plate 11 includes a POGO Tower 12 , a probe card 14 , a chamber 15 and a test head 16 .
  • the fixing of the heat-resistant lens kit 20 and POGO Tower 12 may be implemented with a screw 21 , shown in FIG.
  • the heat-resistant lens kit 20 may be fixed on the POGO Tower 12 with at least one O-ring 23 on the main body 22 of the heat-resistant lens kit 20 to fix the POGO Tower 12 of the heat-resistant lens kit 20 , show in FIG. 2B .
  • the light source emits light through the chamber 15 of the wafer tester 10
  • the light is incident into the opening of the POGO Tower 12 and through the two lenses 24 of the heat-resistant lens kit 20 and the enclosed room, the probe card 14 and the aperture on the test head 16 in sequence, and then on the device under test.
  • the low temperature conducted by the device under test may be isolated and prevent the probe card 14 from vapor.
  • the two lenses 25 are directly fixed on the through hole of the chuck 13 , shown as FIG. 4 .
  • the fixation of the two lenses 25 and the two ends of the POGO Tower 12 is not limited, such as screw fixation, O-ring fixation or direct attachment as long as the fixed two lenses 25 are parallel and in vacuum state.
  • the vacuum formation is implemented by the vacuum pump 40 on the wafer tester 10 that may associate with the usage condition to maintain vacuum between the two lenses 25 and the POGO Tower 12 .
  • the low temperature conducted by the device under test may be isolated and prevent the probe card 14 from vapor.

Abstract

A heat-resistant lens kit configured within the pogo tower of the wafer tester is disclosed. The heat-resistant lens kit has two parallel lenses and a main body with a through hole. The main body and two parallel lenses enclose a vacuum room within the through hole.

Description

    Cross Reference to Related Application
  • This application is a continuation application of, and claims a priority to the U.S. patent application Ser. No. 11/819,083 filed on Jun. 25, 2007, which claims a priority to the foreign patent application in Taiwan with a serial number TW96107169, filed on Mar. 2, 2007.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is related to a wafer tester for a photo sensor, and particularly to a wafer tester that includes a hear-resistant lens kit to form an enclosed room for isolating the surface of a device under test.
  • 2. Description of the Related Art
  • It is necessary for a CMOS sensor to be tested under low-temperature environment for sure of practical work in the low-temperature environment.
  • FIG. 1 is a schematic diagram of a wafer tester 10 having a test base 11 as an upper portion and a chuck 13 for loading a device under test as a bottom portion. The test base 11 includes a pogo tower 13, a probe card 14 and a test head 16. The test head 16 is associated with a test probe 18 for touching a device under test, a room for light transmission and a probe card holder 17 for connecting the pogo tower 12 and the probe card 14 into a piece. Obviously, there is a hole individually in the pogo tower 12, probe card 14 and a test head 16 for passing light onto the device under test. Shown in FIG. 1, in order to maintain a device in a low-temperature state, the device under test is necessarily attached to the chuck 13 through low-temperature treatment for sure of low temperature. Meanwhile, the probe card 14 of the wafer tester 10 is close to the device under test in low-temperature state. However, the device under test is in low-temperature state on one hand. On the other hand, the probe card 14 is in room-temperature or higher-temperature state. Thus, there is vapor, also called as saturated vapor, formed on the interface of the low-temperature surface and the high-temperature surface. When light is incident continuously, light though vapor may be reflected, refracted or scattered. Thus, light incident on the device under test may be disordered and further cause incorrect measurement and short to damage the apparatus. Thus, in order to correctly and rapidly test the device under test, the vapor generation should be overcome.
  • SUMMARY OF THE INVENTION
  • In order to test a photo sensor in low-temperature state, one object of the present invention is to provide a heat-resistant lens kit to prevent from vapor generation.
  • Another one object of the present invention provides a heat-resistant lens kit having a main body with a through hole and two parallel lenses to enclose a room. The main body is associated with a suction hole and an indicator to make the room vacuum.
  • The other object of the present invention provides a wafer tester of photo sensor. The wafer tester includes a heat-resistant lens kit to form a vacuum room for isolating the surface of a device under test from the incident surface of light and preventing from vapor formation.
  • Another object of the present invention provides a wafer tester of photo sensor which includes a pair of lenses directly attached to the two ends of an opening on a pogo tower to form an enclosed room. A vacuum pump maintains the enclosed room in vacuum state. The low-temperature surface and the room-temperature surface are isolated from each other to prevent vapor formation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram illustrating a testing apparatus according to a prior art.
  • FIG. 2A is a schematic diagram illustrating a heat-resistant lens kit according to the present invention.
  • FIG. 2B is a schematic diagram illustrating a heat-resistant lens kit according to the present invention.
  • FIG. 3 is a schematic diagram illustrating an exemplary testing apparatus according to the present invention.
  • FIG. 4 is a schematic diagram illustrating an exemplary testing apparatus according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention provides a wafer tester. Following illustrations describe detailed components and steps for understanding the present invention. Obviously, the present invention is not limited to the embodiments of wafer tester, however, the preferable embodiments of the present invention are illustrated as followings. Besides, the present invention may be applied to other embodiments, not limited to ones mentioned.
  • In a known technology, the device under test would be maintained in a low-temperature state when attached to a low-temperature chuck 13. However, the room-temperature probe card 14 causes vapor formation on the interface. The vapor film results in the reflection and fraction of lights and further in test error and apparatus damage. One best resolution to such a problem is to isolate the interface of objects in different temperature with a room in a vacuum state.
  • Accordingly, one exemplary embodiment of the present invention provides a heat-resistant lens kit 20 shown as FIG. 2A including a main body 22 and two lenses 24. A through hole is set in the main body 22 and the two lenses 24 are parallel configured on the two ends of the through hole of the main body 22. The main body 22 and the two lenses 24 enclose a vacuum room. The two lenses 24 are fixed on the main body 22 with built-in screws or adhesive, and so on. Furthermore, the main body 22 may be made of low thermo-conductivity and heat resistant materials to form a heat resistant element in good quality.
  • In a preferred embodiment, the enclosed room between the main body 22 and two lenses 24 is kept vacuum to be configured for blocking heat conduction. However, in another embodiment, the main body 22 and the two lenses 24 may enclose a non-vacuum room. Gas in the non-vacuum room may be exhaust out to meet vacuum requirement for blocking heat conduction.
  • The method for making vacuum is not limited to in the present invention. For example, in FIG. 2A, the heat-resistant lens kit 20 includes a suction hole 26 and an indicator 28 to exhaust gas out of the heat-resistant lens kit 20 by an air extractor (not shown). When a vacuum degree is read out within the heat-resistant lens kit 20, the indicator 28 may be sucked into the heat-resistant lens kit 20. Reversely, the indicator 28 may float up to remind a user of extracting gas within the heat-resistant lens kit 20 when the vacuum degree is below a threshold in the heat-resistant lens kit 20. Accordingly, the indicator 28 may be made of spring, elastic sheet, sponge or any suitable elastic element. When a low-temperature environment, for example, room temperature down to −100° C., is configured by a chuck 13, vapor due to temperature difference does not result because the enclosed vacuum room by the heat-resistant lens kit 20 may isolate the contact surface of a device under test from incident surface of a probe card 14. Moreover, in order to maintain identical phase of light when light reaches to the element in a test, it is necessary to make the two lenses 24 parallel for fear of interference on light source in the test.
  • Next, shown in FIG. 3 is a schematic diagram illustrating the combination of the heat-resistant lens kit 20 and a wafer tester 10 in accordance with the present invention. The upper portion is a test plate 11 and the lower portion is the wafer tester 10 for loading a device under test. The test plate 11 includes a POGO Tower 12, a probe card 14, a chamber 15 and a test head 16. There are a plurality of test probes 18 for contacting the device under test and a probe card holder 17 for combining the POGO Tower 12 and the probe card 14. There is an opening within the POGO Tower 12 to load the heat-resistant lens kit 20. The fixing of the heat-resistant lens kit 20 and POGO Tower 12 may be implemented with a screw 21, shown in FIG. 2A. Moreover, the heat-resistant lens kit 20 may be fixed on the POGO Tower 12 with at least one O-ring 23 on the main body 22 of the heat-resistant lens kit 20 to fix the POGO Tower 12 of the heat-resistant lens kit 20, show in FIG. 2B. Thus, when the light source emits light through the chamber 15 of the wafer tester 10, the light is incident into the opening of the POGO Tower 12 and through the two lenses 24 of the heat-resistant lens kit 20 and the enclosed room, the probe card 14 and the aperture on the test head 16 in sequence, and then on the device under test. The low temperature conducted by the device under test may be isolated and prevent the probe card 14 from vapor.
  • In another embodiment of the present invention, the two lenses 25 are directly fixed on the through hole of the chuck 13, shown as FIG. 4. The fixation of the two lenses 25 and the two ends of the POGO Tower 12 is not limited, such as screw fixation, O-ring fixation or direct attachment as long as the fixed two lenses 25 are parallel and in vacuum state. In the embodiment, the vacuum formation is implemented by the vacuum pump 40 on the wafer tester 10 that may associate with the usage condition to maintain vacuum between the two lenses 25 and the POGO Tower 12. Thus, the low temperature conducted by the device under test may be isolated and prevent the probe card 14 from vapor.
  • Obviously, according to the illustration of embodiments aforementioned, there may be modification and differences in the present invention. Thus it is necessary to understand the addition of claims. In addition of detailed illustration aforementioned, the present invention may be broadly applied to other embodiments. Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that other modifications and variation can be made without departing the spirit and scope of the invention as hereafter claimed.

Claims (10)

1. A testing apparatus of light-sensing element, comprising:
a probe card associated with a probe head thereon, wherein there are a plurality of testing probes on the probe head;
a pogo tower connected with the probe card and having an opening;
a holder of probe card arranged between the pogo tower and the probe card and configured for connecting the pogo tower and the probe card into a piece;
a heat-resistant lens kit configured in an opening of the pogo tower, wherein the heat-resistant lens kit comprises a main body with a through hole and two parallel lenses, and a suction hole and an indicator associated on the main body and the two parallel lenses, and an enclosed room is formed between the main body and the two parallel lenses; and
a chuck for loading a device under test.
2. The testing apparatus of light-sensing element according to claim 1, wherein the heat-resistant lens kit is fixed in the opening of the pogo tower with a fixing component.
3. The testing apparatus of light-sensing element according to claim 1, wherein the heat-resistant lens kit is connected with the pogo tower with an O-ring.
4. The testing apparatus of light-sensing element according to claim 1, wherein the enclosed room is in vacuum.
5. The testing apparatus of light-sensing element according to claim 1, wherein the indicator is made of spring, elastic sheet, sponge or elastic element.
6. The testing apparatus of light-sensing element according to claim 1, wherein the chuck provides an environment below the room temperature.
7. The testing apparatus of light-sensing element according to claim 1, wherein the chuck provides an environment below negative 40 degree Celsius.
8. The testing apparatus of light-sensing element according to claim 1, wherein the main body is made of heat-resistant material.
9. A heat-resistant lens kit, comprising a main body with a through hole and two lenses configured on two corresponding ends of the through hole to form an enclosed room, the characteristic in: a suction hole and an indicator associated on the main body and the two lenses parallel.
10. The heat-resistant lens kit according to claim 9, wherein the main body is made of heat-resistant material.
US12/652,325 2007-03-02 2010-01-05 Heat-resistant lens kit Abandoned US20100109673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/652,325 US20100109673A1 (en) 2007-03-02 2010-01-05 Heat-resistant lens kit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW096107169A TWI334486B (en) 2007-03-02 2007-03-02 Test apparatus with heat-resistant lens kit
TW96107169 2007-03-02
US11/819,083 US7701233B2 (en) 2007-03-02 2007-06-25 Heat-resistant lens kit
US12/652,325 US20100109673A1 (en) 2007-03-02 2010-01-05 Heat-resistant lens kit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/819,083 Continuation US7701233B2 (en) 2007-03-02 2007-06-25 Heat-resistant lens kit

Publications (1)

Publication Number Publication Date
US20100109673A1 true US20100109673A1 (en) 2010-05-06

Family

ID=39732658

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/819,083 Expired - Fee Related US7701233B2 (en) 2007-03-02 2007-06-25 Heat-resistant lens kit
US12/652,325 Abandoned US20100109673A1 (en) 2007-03-02 2010-01-05 Heat-resistant lens kit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/819,083 Expired - Fee Related US7701233B2 (en) 2007-03-02 2007-06-25 Heat-resistant lens kit

Country Status (3)

Country Link
US (2) US7701233B2 (en)
JP (1) JP4729025B2 (en)
TW (1) TWI334486B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399547B (en) * 2009-07-22 2013-06-21 King Yuan Electronics Co Ltd Semiconductor test equipment with concentric circle pogo towers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115736A (en) * 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US6771086B2 (en) * 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
US20050237418A1 (en) * 2002-07-01 2005-10-27 Rohm Co., Ltd Image sensor module
US7102159B2 (en) * 2004-06-12 2006-09-05 Macronix International Co., Ltd. Ultra thin image sensor package structure and method for fabrication
US20060214673A1 (en) * 2003-11-28 2006-09-28 Shingo Tamai Intrument for testing solid-state imaging device
US20060245071A1 (en) * 2005-04-29 2006-11-02 Agilent Technologies Lens correction element, system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929151B2 (en) * 1981-08-03 1984-07-18 日本電子材料株式会社 Semiconductor wafer testing equipment
JPH07111995B2 (en) * 1987-09-02 1995-11-29 東京エレクトロン株式会社 Probe device
US5835997A (en) * 1995-03-28 1998-11-10 University Of South Florida Wafer shielding chamber for probe station
WO2004053451A1 (en) * 2002-12-06 2004-06-24 Inter Action Corporation Instrument for testing solid-state imaging device
JP4513059B2 (en) * 2004-08-25 2010-07-28 横河電機株式会社 IC tester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115736A (en) * 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US6771086B2 (en) * 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
US20050237418A1 (en) * 2002-07-01 2005-10-27 Rohm Co., Ltd Image sensor module
US20060214673A1 (en) * 2003-11-28 2006-09-28 Shingo Tamai Intrument for testing solid-state imaging device
US7102159B2 (en) * 2004-06-12 2006-09-05 Macronix International Co., Ltd. Ultra thin image sensor package structure and method for fabrication
US20060245071A1 (en) * 2005-04-29 2006-11-02 Agilent Technologies Lens correction element, system and method

Also Published As

Publication number Publication date
US7701233B2 (en) 2010-04-20
JP4729025B2 (en) 2011-07-20
JP2008216236A (en) 2008-09-18
US20080211527A1 (en) 2008-09-04
TW200837352A (en) 2008-09-16
TWI334486B (en) 2010-12-11

Similar Documents

Publication Publication Date Title
CN101498764B (en) Probe apparatus and detection method
JPWO2007023557A1 (en) Electronic component testing apparatus and temperature control method in electronic component testing apparatus
US10209273B2 (en) Probe position inspection apparatus, semiconductor device inspection apparatus and semiconductor device inspection method
JP6441435B1 (en) Prober apparatus and wafer chuck
JP2010151794A (en) Electronic component tester
JP2009025284A (en) Method of positioning probe card, and array equipment
US9880196B2 (en) Semiconductor device inspection apparatus and semiconductor device inspection method
CN107275244A (en) A kind of chip detection method and device
US7701233B2 (en) Heat-resistant lens kit
US20150293042A1 (en) Measurement Device and Measurement Method
JP6515819B2 (en) Evaluation device, inspection method of probe position
KR101477683B1 (en) integrated circuit probe card analyzer
JP2008227148A (en) Test method for semiconductor wafer and apparatus therefor
US20080303540A1 (en) Probe card assembly
TW202104881A (en) Calibration chucks for optical probe systems, optical probe systems including the calibration chucks, and methods of utilizing the optical probe systems
CN219496578U (en) Chip detection device
JP2000003984A (en) Bare chip carrier and method for testing bare chip using the bare chip carrier
KR101460550B1 (en) LED Socket Capable of Controlling Temperature
TWI571644B (en) Probe Device
US20060205256A1 (en) Adapter or socket device for testing semiconductor devices, and method for incorporating a semiconductor device in a socket or adapter device
CN208459236U (en) A kind of novel test camera lens dirt pits detection device
KR100442455B1 (en) Wafer fixing device for scratch tester
TWI768591B (en) Stage
JP2011179872A (en) Optical element inspection tool
US20100259291A1 (en) Device for characterizing the electro-optical performance of a semiconductor component

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING YUAN ELECTRONICS CO., LTD,TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAI, PI-HUI;REEL/FRAME:023734/0899

Effective date: 20091230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION