US20100116080A1 - Robotic linkage - Google Patents

Robotic linkage Download PDF

Info

Publication number
US20100116080A1
US20100116080A1 US12/615,897 US61589709A US2010116080A1 US 20100116080 A1 US20100116080 A1 US 20100116080A1 US 61589709 A US61589709 A US 61589709A US 2010116080 A1 US2010116080 A1 US 2010116080A1
Authority
US
United States
Prior art keywords
link
robotic
links
wall surface
hinge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/615,897
Inventor
Christoph Matthias Pistor
Joshua T. Oen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Inc filed Critical Intuitive Surgical Inc
Priority to US12/615,897 priority Critical patent/US20100116080A1/en
Priority to US12/615,941 priority patent/US9687986B2/en
Assigned to INTUITIVE SURGICAL, INC. reassignment INTUITIVE SURGICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OEN, JOSHUA T., PISTOR, CHRISTOPH MATTHIAS
Publication of US20100116080A1 publication Critical patent/US20100116080A1/en
Priority to US15/172,127 priority patent/US9737199B2/en
Assigned to Intuitive Surgical Operations, Inc. reassignment Intuitive Surgical Operations, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTUITIVE SURGICAL, INC.
Priority to US15/662,645 priority patent/US10433716B2/en
Priority to US16/577,366 priority patent/US11154185B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/055Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances having rod-lens arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0012Constructional details, e.g. manipulator supports, bases making use of synthetic construction materials, e.g. plastics, composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements

Definitions

  • the present invention relates generally to elongate robotic instruments and elongate surgical robots, such as robotic endoscopes. More particularly, it relates to methods and apparatuses for manufacturing and forming elongate robotic instruments.
  • elongate robotic instruments vary widely, but many elongate robotic instruments share the features of a mechanical, movable structure under some form of control.
  • the mechanical structure or kinematic chain (analogous to the human skeleton) of an elongate robotic instrument can be formed from several links (analogous to human bones), actuators (analogous to human muscle) and joints between the links, permitting one or more degrees of freedom of motion of the links.
  • a continuum or multi-segment elongate robotic instrument can be a continuously curving device, like an elephant trunk for example.
  • An example of a continuum or multi-segment elongate robotic instrument is a snake-like endoscopic device.
  • Snake-like endoscopic devices can transfer forces from an actuator to particular sections of links in the snake-like device to effect articulation of that section or link. During articulation, these links are subjected to large stresses that can result in breakage or failure of the link and thus, failure of the endoscopic device. These failures typically occur at the weak point between links, such as at the joints.
  • a typical robotic link is made from a metal or alloy, such as aluminum or stainless steel.
  • the links can be manufactured by laser cutting tubes, by laser sintering, by metal injection molding, or other processes as known in the art.
  • a snake-like endoscopic device can often include several types of links, such as distal and proximal links for attachment to actuators, and passive links therebetween.
  • manufacturing elongate robotic devices with these materials, as well as needing several different types of links for each device can be expensive and add to the cost of an elongate robotic instrument.
  • An elongate robotic instrument and more particularly a link that is used to make up the elongate robotic instrument, is therefore needed that can be manufactured efficiently and inexpensively while still being able to withstand the stresses imposed upon it during normal use.
  • a robotic link comprising a link having an outer wall surface and an inner wall surface, a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear, and a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
  • the robotic link comprises a polymer.
  • the robotic link can comprise PEEK, for example.
  • each of the pair of outer hinge portions are diametrically opposed across the link. In another embodiment, each of the pair of inner hinge portions are diametrically opposed across the link. In some embodiments, an axis of rotation of the outer hinge portions are substantially perpendicular to an axis of rotation of the inner hinge portions.
  • the robotic link can further comprise a guide block positioned along each inner and outer hinge portion.
  • a tendon guide is positioned integrally within the link along each inner and outer hinge portion.
  • the robotic link can also comprise an integrated pulley and tendon guide positioned integrally within the link along each outer hinge portion.
  • the robotic link comprises an integrated pulley and tendon guide positioned integrally within the link along each inner and outer hinge portion.
  • the robotic link has an outer diameter of less than or equal to 0.75 inches.
  • a flexible robotic instrument comprising a first link and a second link each having an outer wall surface and an inner wall surface, a pair of outer hinge portions disposed on a first end of each link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear of each link, and a pair of inner hinge portions on a second end of each link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear of each link, wherein the outer bearing surface of the first link is configured to slidably support the outer ear of the second link, and wherein the inner bearing surface of the second link is configured to slidably support the inner ear of the first link.
  • the first and second links comprise a polymer.
  • the first and second links can comprise PEEK, for example.
  • an interior volume of the instrument is sized to accommodate at least two working channels.
  • each of the pair of outer hinge portions are diametrically opposed across the first and second links.
  • each of the pair of inner hinge portions can be diametrically opposed across first and second links.
  • the outer hinge portions are substantially perpendicular to the inner hinge portions.
  • the flexible robotic instrument can further comprise a guide block positioned along each inner and outer hinge portion.
  • a tendon guide is positioned integrally within the first and second links along each inner and outer hinge portion.
  • the flexible robotic instrument can comprise an integrated pulley and tendon guide positioned integrally within the first and second links along each inner and/or outer hinge portion.
  • the flexible robotic instrument has an outer diameter of less than or equal to 0.75 inches.
  • the flexible robotic instrument can further comprise a plurality of actuation tendons.
  • the first and second link of the flexible robotic instrument can articulate up to approximately 30 degrees.
  • a method of manufacturing a robotic link comprising introducing a polymer into a mold, and recovering from the mold a link having an outer wall surface and an inner wall surface, a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear, the link also having a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
  • FIG. 1 is a cross sectional view of a robotic link.
  • FIG. 2 is an illustration of an elongate robotic instrument.
  • FIGS. 3 a - 3 c are illustrations of a robotic link.
  • FIGS. 4 a - 4 b are illustrations of a robotic link.
  • FIG. 5 is a schematic illustration of various robotic links used in an elongate robotic instrument.
  • FIGS. 6 a - 6 b illustrate a double knee joint in a robotic link.
  • FIGS. 7 a - 7 b are schematic illustrations of various robotic links used in an elongate robotic instrument.
  • FIG. 8 is a schematic illustration of various robotic links used in an elongate robotic instrument.
  • FIG. 9 shows a factor of safety for different link designs.
  • FIG. 10 shows a factor of safety for aluminum and victrex link designs.
  • FIG. 11 is a bar graph illustrating predicted link strength vs. testing.
  • FIG. 12 is an illustration of a pair of joined robotic links.
  • FIG. 13 is an illustration of a pair of joined robotic links.
  • FIG. 14 is a schematic illustration showing the effect of guide blocks within a link and vertebra diameter on dead space.
  • FIG. 15 is a cross sectional view of a link with a guide block.
  • FIG. 16 is a cross sectional view of a link without a guide block.
  • FIG. 17 illustrates the location of eyelets in a link without a guide block.
  • FIG. 18 illustrates the eyelet distance vs. articulation angle in an elongate robotic instrument.
  • FIGS. 19 a - 19 b illustrates embodiments of a robotic link without a guide block.
  • FIG. 20 shows data from a shape sensor in a 120 degree sweep of an elongate robotic instrument in the x-plane.
  • FIG. 21 shows data from a shape sensor in a sweep of an elongate robotic instrument in the x, y, and z-planes.
  • FIG. 22 shows data from a shape sensor in a 120 degree sweep of an elongate robotic instrument.
  • FIG. 23 illustrates a robotic link without a guide block.
  • FIG. 24 illustrates a robotic link without a guide block and including a pulley feature.
  • aspects of various embodiments include: Dimensioning and design of the part to make it mass-manufacturable by injection molding while still withstanding the high compressive loading that occurs inside robotic endoscopes; Double knee-joint to resolve compressive loading during articulation; integrated static pulley; Flat pulley surface to reduce friction; Integrated design of cable routing features that allows the same part to be used as a segment boundary and passive link.
  • the NOTES Vertebra development had the following design goals: Provide a max 150 degrees of articulation/seg; 4 active segments; Min 48 cm active length; 20 mm outside diameter (with skin); implement 2:1 purchase.
  • FIGS. 3 a - 3 c Termination of the actuation coil pipes and the implementation of the 2:1 purchase is shown in FIGS. 3 a - 3 c.
  • Routing of the sense wire was chosen to be at an angle of 45 deg from the actuation cables. See FIGS. 4 a - 4 b.
  • Load bearing knee joint See FIGS. 6 a - 6 b .
  • the compressive strength of unreinforced PEEK is 20,000 psi and 30% carbon reinforced PEEK it is 29,000 psi.
  • the safety factor to compressive failure of the ears is therefore 6.5 and 9.4 respectively.
  • the double knee-joint design was possible due to the fact that the link was now an injection molded component.
  • cost savings was realized by integrating the features of the three different boundary links (front, middle, and back) into a single boundary link.
  • the initial design for the molded passive link and boundary link of the BOM COGS PHASE in comparison to the links of the BETA PHASE is shown in FIG. 7 a - 7 b.
  • the main idea is to thread the out-of-plane PE tendons within the outer circumference of the vertebrae instead of bringing them into the inner lumen.
  • This design would have the following advantages: Increase available lumen space (could be used for extra/larger payload, could lead to a total diameter reduction of the backbone); Allowing the helix to propagate during assembly more easily; Avoiding restriction of local slack of the helix during articulation; Simplifying assembly by giving assemblers access to all the eyelets from the outside of the backbone; Saving cost by reducing the assembly part count by two parts (guide block removed from BOM and long rivet replaced by existing short rivet).
  • FIGS. 17-18 show the geometry and the results of the analysis.
  • the results show that the average value of the sum of the EarEyelet distance is 0.231192′′ with a standard deviation of 0.002441′′ over the complete range of articulation from ⁇ 30 to +30 degrees.
  • the average value of the sum of the ActEyelet distance is 0.494157′′ with a standard deviation of 0.005252′′.
  • FIGS. 20 through 22 and Table 1 show the Ascension sensor readings of the distal ascension sensor during such articulations. In this case, several sweeps from the ⁇ x hard stops to +x hard stops (total of 120 degree).
  • the Ascension data shows a total range of about 12 mm in the z-coordinate. Some of this variation can be attributed to noise.
  • the main advantages of this design are: Lower tooling cost, only one link is needed therefore only one tool needs to be made;
  • the pulley has been integrated and there is no bonding necessary of the pulley to the link;
  • the pulley has a flat surface instead of a groove which substantially reduces friction (even in all the previous designs the pulley was implemented as a static pulley);
  • the pulley diameter has been increased which again lowers cable friction;
  • the pulley has been implemented in such a way that derailing of the cable is impossible, due to the fact that the cable takes the shortest distance between eyelets; Even under compression/slack of the cables, the cables do not derail since they are guided and aligned by the eyelets; All of the features have been implemented in such a way that the link can be manufactured by injection molding which reduces the manufacturing cost substantially.

Abstract

Methods and apparatus for manufacturing and controlling an elongate robotic instrument, or robotic endoscope, are provided which may include any number of features. One feature is a robotic link that can be easily manufactured and can withstand the forces related to use within a robotic instrument. Another feature is a joint on the link that increases compressive strength and minimizes stress between links. Yet another feature is an elongate robotic instrument that is constructed from a single type of link.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/113,453, filed Nov. 11, 2008, titled “ROBOTIC LINKAGE”, which is herein incorporated by reference in its entirety.
  • INCORPORATION BY REFERENCE
  • All publications, including patents and patent applications, mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
  • FIELD OF INVENTION
  • The present invention relates generally to elongate robotic instruments and elongate surgical robots, such as robotic endoscopes. More particularly, it relates to methods and apparatuses for manufacturing and forming elongate robotic instruments.
  • BACKGROUND
  • The forms of elongate robotic instruments vary widely, but many elongate robotic instruments share the features of a mechanical, movable structure under some form of control. The mechanical structure or kinematic chain (analogous to the human skeleton) of an elongate robotic instrument can be formed from several links (analogous to human bones), actuators (analogous to human muscle) and joints between the links, permitting one or more degrees of freedom of motion of the links. A continuum or multi-segment elongate robotic instrument can be a continuously curving device, like an elephant trunk for example. An example of a continuum or multi-segment elongate robotic instrument is a snake-like endoscopic device.
  • Snake-like endoscopic devices can transfer forces from an actuator to particular sections of links in the snake-like device to effect articulation of that section or link. During articulation, these links are subjected to large stresses that can result in breakage or failure of the link and thus, failure of the endoscopic device. These failures typically occur at the weak point between links, such as at the joints.
  • A typical robotic link is made from a metal or alloy, such as aluminum or stainless steel. The links can be manufactured by laser cutting tubes, by laser sintering, by metal injection molding, or other processes as known in the art. Furthermore, a snake-like endoscopic device can often include several types of links, such as distal and proximal links for attachment to actuators, and passive links therebetween. However, manufacturing elongate robotic devices with these materials, as well as needing several different types of links for each device can be expensive and add to the cost of an elongate robotic instrument.
  • An elongate robotic instrument, and more particularly a link that is used to make up the elongate robotic instrument, is therefore needed that can be manufactured efficiently and inexpensively while still being able to withstand the stresses imposed upon it during normal use.
  • SUMMARY
  • In one embodiment, a robotic link is provided comprising a link having an outer wall surface and an inner wall surface, a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear, and a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
  • In some embodiments, the robotic link comprises a polymer. The robotic link can comprise PEEK, for example.
  • In one embodiment, each of the pair of outer hinge portions are diametrically opposed across the link. In another embodiment, each of the pair of inner hinge portions are diametrically opposed across the link. In some embodiments, an axis of rotation of the outer hinge portions are substantially perpendicular to an axis of rotation of the inner hinge portions.
  • The robotic link can further comprise a guide block positioned along each inner and outer hinge portion. In some embodiments, a tendon guide is positioned integrally within the link along each inner and outer hinge portion. The robotic link can also comprise an integrated pulley and tendon guide positioned integrally within the link along each outer hinge portion. In some embodiments, the robotic link comprises an integrated pulley and tendon guide positioned integrally within the link along each inner and outer hinge portion.
  • In one embodiment, the robotic link has an outer diameter of less than or equal to 0.75 inches.
  • A flexible robotic instrument is provided, comprising a first link and a second link each having an outer wall surface and an inner wall surface, a pair of outer hinge portions disposed on a first end of each link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear of each link, and a pair of inner hinge portions on a second end of each link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear of each link, wherein the outer bearing surface of the first link is configured to slidably support the outer ear of the second link, and wherein the inner bearing surface of the second link is configured to slidably support the inner ear of the first link.
  • In some embodiments, the first and second links comprise a polymer. The first and second links can comprise PEEK, for example.
  • In one embodiment, an interior volume of the instrument is sized to accommodate at least two working channels.
  • In some embodiments, each of the pair of outer hinge portions are diametrically opposed across the first and second links. Similarly, each of the pair of inner hinge portions can be diametrically opposed across first and second links. In one embodiment, the outer hinge portions are substantially perpendicular to the inner hinge portions.
  • The flexible robotic instrument can further comprise a guide block positioned along each inner and outer hinge portion. In some embodiments, a tendon guide is positioned integrally within the first and second links along each inner and outer hinge portion. In other embodiments, the flexible robotic instrument can comprise an integrated pulley and tendon guide positioned integrally within the first and second links along each inner and/or outer hinge portion.
  • In one embodiment, the flexible robotic instrument has an outer diameter of less than or equal to 0.75 inches.
  • The flexible robotic instrument can further comprise a plurality of actuation tendons.
  • In one embodiment, the first and second link of the flexible robotic instrument can articulate up to approximately 30 degrees.
  • A method of manufacturing a robotic link is provided, comprising introducing a polymer into a mold, and recovering from the mold a link having an outer wall surface and an inner wall surface, a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear, the link also having a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of a robotic link.
  • FIG. 2 is an illustration of an elongate robotic instrument.
  • FIGS. 3 a-3 c are illustrations of a robotic link.
  • FIGS. 4 a-4 b are illustrations of a robotic link.
  • FIG. 5 is a schematic illustration of various robotic links used in an elongate robotic instrument.
  • FIGS. 6 a-6 b illustrate a double knee joint in a robotic link.
  • FIGS. 7 a-7 b are schematic illustrations of various robotic links used in an elongate robotic instrument.
  • FIG. 8 is a schematic illustration of various robotic links used in an elongate robotic instrument.
  • FIG. 9 shows a factor of safety for different link designs.
  • FIG. 10 shows a factor of safety for aluminum and victrex link designs.
  • FIG. 11 is a bar graph illustrating predicted link strength vs. testing.
  • FIG. 12 is an illustration of a pair of joined robotic links.
  • FIG. 13 is an illustration of a pair of joined robotic links.
  • FIG. 14 is a schematic illustration showing the effect of guide blocks within a link and vertebra diameter on dead space.
  • FIG. 15 is a cross sectional view of a link with a guide block.
  • FIG. 16 is a cross sectional view of a link without a guide block.
  • FIG. 17 illustrates the location of eyelets in a link without a guide block.
  • FIG. 18 illustrates the eyelet distance vs. articulation angle in an elongate robotic instrument.
  • FIGS. 19 a-19 b illustrates embodiments of a robotic link without a guide block.
  • FIG. 20 shows data from a shape sensor in a 120 degree sweep of an elongate robotic instrument in the x-plane.
  • FIG. 21 shows data from a shape sensor in a sweep of an elongate robotic instrument in the x, y, and z-planes.
  • FIG. 22 shows data from a shape sensor in a 120 degree sweep of an elongate robotic instrument.
  • FIG. 23 illustrates a robotic link without a guide block.
  • FIG. 24 illustrates a robotic link without a guide block and including a pulley feature.
  • DETAILED DESCRIPTION
  • Aspects of various embodiments include: Dimensioning and design of the part to make it mass-manufacturable by injection molding while still withstanding the high compressive loading that occurs inside robotic endoscopes; Double knee-joint to resolve compressive loading during articulation; integrated static pulley; Flat pulley surface to reduce friction; Integrated design of cable routing features that allows the same part to be used as a segment boundary and passive link.
  • The NOTES Vertebra development had the following design goals: Provide a max 150 degrees of articulation/seg; 4 active segments; Min 48 cm active length; 20 mm outside diameter (with skin); implement 2:1 purchase.
  • These goals resulted in the following design constraints and requirements: Provide room for two lumens; 16 coil tubes; Air/Water; Light bundle; Camera cable; Eight sense cable; Four ascension sensors; Maintain vertebrae OD of 0.75 inches; Use current alternating X-Y config; Use PE for actuation tendons; Capable to do straight or helix payload. See FIG. 1.
  • Based on this the following segment geometry was chosen: Links limited 30 degrees bend; X-Y pair length 1.12 inch; 150 degrees=5 paired links; Segment length=5.6 inches; Articulated length=5.6″/seg×4 seg=22.4″ (57 cm). See FIG. 2.
  • Termination of the actuation coil pipes and the implementation of the 2:1 purchase is shown in FIGS. 3 a-3 c.
  • Routing of the sense wire was chosen to be at an angle of 45 deg from the actuation cables. See FIGS. 4 a-4 b.
  • Major characteristics of this implementation of the NOTES (BETA PHASE) vertebra are: Machined aluminum (AL 7075 T6) links with nickel plating; Three different (Front, Middle, and Back) boundary links; Implements sense wire routing; PEEK inserts in all Cable eyelets; Glued two piece rivet to attach links; Decoupling of cables using swiveling guide block for out-of-plane cable routing. See FIG. 5.
  • After successful testing of the BETA PHASE vertebrae in a single link compression, in segment compression and in full scope assemblies the BOM COGS PHASE of NOTES vertebra was developed in which the focus was in cost reduction. The main emphasis was to reduce cost by using injection molding instead of machining. Injection molding requires the use of plastic resin, so the first exercise was to develop a design that would withstand the anticipated compressive load.
  • After estimating the expected compressive loading the following concept was presented: Load bearing knee joint. See FIGS. 6 a-6 b. To minimize stress, the knee joint should include the inner ear. Design provides a total of 4×0.00406 in2=0.0162 in2 projected area. Maximum compressive loading is therefore 3081.96 psi. The compressive strength of unreinforced PEEK is 20,000 psi and 30% carbon reinforced PEEK it is 29,000 psi. The safety factor to compressive failure of the ears is therefore 6.5 and 9.4 respectively.
  • The double knee-joint design was possible due to the fact that the link was now an injection molded component. In addition to molding the link components, cost savings was realized by integrating the features of the three different boundary links (front, middle, and back) into a single boundary link. The initial design for the molded passive link and boundary link of the BOM COGS PHASE in comparison to the links of the BETA PHASE is shown in FIG. 7 a-7 b.
  • The notion of the Front Middle and Back link for the segment boundary still exists in the BOM COGS design, however these links are now built up using the same base part and adding the features with the necessary inserts. An overview of the arrangement of inserts and link components for the BOM COGS master segment is shown in FIG. 8.
  • To ensure that this new design will fulfill the load bearing requirements of the NOTES scope application, several Finite Element studies were performed. The following figures show the results from these studies. First a comparison of the different designs is shown assuming all links are made from Aluminum. See FIG. 9. Second the factor of safety for the molded link design in Al is shown to the factor of safety of the molded link design in Victrex 90HMF40 is shown in FIG. 10.
  • An overview of the link strength prediction via FEA vs the actual results from Instron testing after the links had been molded is shown in FIG. 11.
  • After successful link compression, and full scope testing of the BOM COGS PHASE NOTES vertebra design, a new NOTES design phase was initiated. For this phase a different vertebra design that eliminates the need for a PE guide block has been suggested and is shown in FIGS. 12-13 in comparison to the previous design.
  • The main idea is to thread the out-of-plane PE tendons within the outer circumference of the vertebrae instead of bringing them into the inner lumen. This design would have the following advantages: Increase available lumen space (could be used for extra/larger payload, could lead to a total diameter reduction of the backbone); Allowing the helix to propagate during assembly more easily; Avoiding restriction of local slack of the helix during articulation; Simplifying assembly by giving assemblers access to all the eyelets from the outside of the backbone; Saving cost by reducing the assembly part count by two parts (guide block removed from BOM and long rivet replaced by existing short rivet).
  • The potential risks/disadvantages of such a design are: Control issues due to coupling between out-of-plane and in-plane cable motion; Increased articulation forces; Reduced strength of the vertebrae due to material removal at the ear base.
  • To show the effect of the no-guide block link design on the available dead space inside the endoscope, a packing study has been performed that shows that eliminating the guide blocks results in the possibility of reducing the vertebra diameter from 0.75″ to 0.7″ while conserving the same amount of dead space. See FIGS. 14-16.
  • Based on the link geometry a kinematic analysis was performed to determine the distance between the out-of-plane PE eyelets (EarEyelets) and the in-plane eyelets (ActEyelets).
  • FIGS. 17-18 show the geometry and the results of the analysis. The results show that the average value of the sum of the EarEyelet distance is 0.231192″ with a standard deviation of 0.002441″ over the complete range of articulation from −30 to +30 degrees. The average value of the sum of the ActEyelet distance is 0.494157″ with a standard deviation of 0.005252″.
  • Finite Element Analysis showed that the new design has a Factor of safety that is comparable with the one of the current design when loaded in compression at 50 lbs. See FIGS. 19 a-19 b.
  • Five no-guide-block design links were prototyped via PolyJet and built into a segment using standard segment boundary links. The segment was built using standard coil-pipes and 50 lbs Power Pro cable for actuation. The segment was outfitted with two ascension sensors, one in the proximal middle link and the other one in the distal middle link.
  • Initial tests showed that single line actuation of the segment results in a coupled articulation in the x and y-plane. By first applying tension to all cables and then applying slightly more tension in the desired actuation direction, while slightly releasing tension on the opposing cable, in-plane articulation was achieved.
  • FIGS. 20 through 22 and Table 1 show the Ascension sensor readings of the distal ascension sensor during such articulations. In this case, several sweeps from the −x hard stops to +x hard stops (total of 120 degree).
  • TABLE 1
    Stddev 1.963595 mm
    Average −275.013 mm
    Min −281.955 mm
    Max −269.677 mm
    Range −12.278 mm
  • The Ascension data shows a total range of about 12 mm in the z-coordinate. Some of this variation can be attributed to noise.
  • Due to the fact that the PolyJet prototype material has a relatively low modulus, the links started to bend (“potato chip”) when the tension in the cables was increased. Therefore, a second no-guide-block segment was built. For this second segment, injection molded passive links were modified with holes from next to the ears into the actuation cable slots. See FIG. 23.
  • Another no-guide-block link with straight slots to reduce cable friction has been designed and it is suggested to prototype this link in a stronger material to build up a third test segment.
  • Before testing of the design of FIG. 23 was completed, a new fully integrated design was suggested. This design was named Universal Link since it integrates all the features that are necessary for passive links and all the features that are needed in boundary links are combined into a single link. See FIG. 24. The main advantages of this design are: Lower tooling cost, only one link is needed therefore only one tool needs to be made; The pulley has been integrated and there is no bonding necessary of the pulley to the link; The pulley has a flat surface instead of a groove which substantially reduces friction (even in all the previous designs the pulley was implemented as a static pulley); The pulley diameter has been increased which again lowers cable friction; The pulley has been implemented in such a way that derailing of the cable is impossible, due to the fact that the cable takes the shortest distance between eyelets; Even under compression/slack of the cables, the cables do not derail since they are guided and aligned by the eyelets; All of the features have been implemented in such a way that the link can be manufactured by injection molding which reduces the manufacturing cost substantially.
  • As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims (20)

1. A robotic link, comprising:
a link having an outer wall surface and an inner wall surface;
a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear; and
a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
2. The robotic link of claim 1 wherein the robotic link comprises a polymer.
3. The robotic link of claim 1 wherein each of the pair of outer hinge portions are diametrically opposed across the link.
4. The robotic link of claim 1 wherein each of the pair of inner hinge portions are diametrically opposed across the link.
5. The robotic link of claim 1 wherein an axis of rotation of the outer hinge portions are substantially perpendicular to an axis of rotation of the inner hinge portions.
6. The robotic link of claim 1 further comprising a guide block positioned along each inner and outer hinge portion.
7. The robotic link of claim 1 further comprising a tendon guide positioned integrally within the link along each inner and outer hinge portion.
8. The robotic link of claim 1 further comprising an integrated pulley and tendon guide positioned integrally within the link along each outer hinge portion.
9. The robotic link of claim 1 further comprising an integrated pulley and tendon guide positioned integrally within the link along each inner and outer hinge portion.
10. A flexible robotic instrument, comprising:
a first link and a second link each having an outer wall surface and an inner wall surface;
a pair of outer hinge portions disposed on a first end of each link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear of each link; and
a pair of inner hinge portions on a second end of each link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear of each link;
wherein the outer bearing surface of the first link is configured to slidably support the outer ear of the second link, and wherein the inner bearing surface of the second link is configured to slidably support the inner ear of the first link.
11. The flexible robotic instrument of claim 10 wherein the first and second links comprise a polymer.
12. The flexible robotic instrument of claim 10 wherein each of the pair of outer hinge portions are diametrically opposed across the first and second links.
13. The flexible robotic instrument of claim 10 wherein each of the pair of inner hinge portions are diametrically opposed across first and second links.
14. The flexible robotic instrument of claim 10 wherein the outer hinge portions are substantially perpendicular to the inner hinge portions.
15. The flexible robotic instrument of claim 10 further comprising a guide block positioned along each inner and outer hinge portion.
16. The flexible robotic instrument of claim 10 further comprising a tendon guide positioned integrally within the first and second links along each inner and outer hinge portion.
17. The flexible robotic instrument of claim 10 further comprising an integrated pulley and tendon guide positioned integrally within the first and second links along each outer hinge portion.
18. The flexible robotic instrument of claim 10 further comprising an integrated pulley and tendon guide positioned integrally within the first and second links along each inner and outer hinge portion.
19. The flexible robotic instrument of claim 10 wherein the first and second links can articulate up to approximately 30 degrees.
20. A method of manufacturing a robotic link comprising:
introducing a polymer into a mold; and
recovering from the mold a link having an outer wall surface and an inner wall surface, a pair of outer hinge portions on a first end of the link, each outer hinge portion having an inner bearing surface positioned between the inner wall surface and an outer ear, the link also having a pair of inner hinge portions on a second end of the link, each inner hinge portion having an outer bearing surface positioned between the outer wall surface and an inner ear.
US12/615,897 2008-11-11 2009-11-10 Robotic linkage Abandoned US20100116080A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/615,897 US20100116080A1 (en) 2008-11-11 2009-11-10 Robotic linkage
US12/615,941 US9687986B2 (en) 2008-11-11 2009-11-10 Robotic linkage
US15/172,127 US9737199B2 (en) 2008-11-11 2016-06-02 Robotic linkage
US15/662,645 US10433716B2 (en) 2008-11-11 2017-07-28 Robotic linkage
US16/577,366 US11154185B2 (en) 2008-11-11 2019-09-20 Robotic linkage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11345308P 2008-11-11 2008-11-11
US12/615,897 US20100116080A1 (en) 2008-11-11 2009-11-10 Robotic linkage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/615,941 Continuation-In-Part US9687986B2 (en) 2008-11-11 2009-11-10 Robotic linkage

Publications (1)

Publication Number Publication Date
US20100116080A1 true US20100116080A1 (en) 2010-05-13

Family

ID=42163979

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/615,897 Abandoned US20100116080A1 (en) 2008-11-11 2009-11-10 Robotic linkage
US12/615,941 Active 2032-06-09 US9687986B2 (en) 2008-11-11 2009-11-10 Robotic linkage
US15/172,127 Active US9737199B2 (en) 2008-11-11 2016-06-02 Robotic linkage
US15/662,645 Active 2030-07-10 US10433716B2 (en) 2008-11-11 2017-07-28 Robotic linkage
US16/577,366 Active 2030-04-06 US11154185B2 (en) 2008-11-11 2019-09-20 Robotic linkage

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12/615,941 Active 2032-06-09 US9687986B2 (en) 2008-11-11 2009-11-10 Robotic linkage
US15/172,127 Active US9737199B2 (en) 2008-11-11 2016-06-02 Robotic linkage
US15/662,645 Active 2030-07-10 US10433716B2 (en) 2008-11-11 2017-07-28 Robotic linkage
US16/577,366 Active 2030-04-06 US11154185B2 (en) 2008-11-11 2019-09-20 Robotic linkage

Country Status (1)

Country Link
US (5) US20100116080A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100116081A1 (en) * 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage
US20110054687A1 (en) * 2007-12-21 2011-03-03 Robert Oliver Buckingham Robotic Arm
US20110152879A1 (en) * 2009-12-22 2011-06-23 Williams Matthew R Instrument wrist with cycloidal surfaces
CN103292634A (en) * 2012-12-27 2013-09-11 天津森宇科技发展有限公司 Household heating pipeline descaling device based on ultrasonic
US8578810B2 (en) 2011-02-14 2013-11-12 Intuitive Surgical Operations, Inc. Jointed link structures exhibiting preferential bending, and related methods
CN105014689A (en) * 2015-07-28 2015-11-04 上海交通大学 Motion-decoupled rope-driven non-individual body mechanical arm and robot
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
WO2017060734A1 (en) * 2015-10-09 2017-04-13 Automata Technologies Limited Robot arm
US20170144298A1 (en) * 2015-11-25 2017-05-25 Tata Consultancy Services Limited Robotic snake
WO2019179092A1 (en) * 2018-03-19 2019-09-26 华南理工大学 Multistable compliant mechanism and stability state analysis method thereof
CN110864187A (en) * 2019-06-17 2020-03-06 北京建筑大学 Pipeline detection snake-shaped robot and control device thereof
WO2020135364A1 (en) * 2018-12-25 2020-07-02 深圳市先赞科技有限公司 Bending part of endoscope and endoscope
CN112890737A (en) * 2020-11-20 2021-06-04 瑞惜康(苏州)医疗科技有限公司 Firm in connection's anticreep snake bone

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461948B1 (en) * 2009-08-04 2013-10-09 Majatronic GmbH Parallel robot
ES2536308T3 (en) * 2010-12-01 2015-05-22 Abb Ag Robot manipulator system
KR101911810B1 (en) * 2011-12-23 2018-10-26 삼성전자주식회사 Bending module provided in endoscope and fabricating method thereof
CN102837307A (en) * 2012-09-13 2012-12-26 南京航空航天大学 Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units
CN103203742B (en) * 2013-04-24 2015-04-15 武汉大学 Snakelike robot
CN103625573A (en) * 2013-09-16 2014-03-12 华南理工大学 Snake-like robot based on orthogonal joints and spiral climbing movement controlling method for snake-like robot
CN110074844B (en) 2013-12-11 2023-02-17 柯惠Lp公司 Wrist assembly and jaw assembly for robotic surgical system
CN103751924B (en) * 2014-01-10 2016-11-23 湘潭大学 A kind of multi-joint easily splits easy reconstruct formula and searches and rescues bar
CN103879469B (en) * 2014-03-19 2016-08-03 苏州大学 A kind of snakelike search and rescue robot joint module
CN103991089A (en) * 2014-05-22 2014-08-20 电子科技大学 Body segment unit for multi-body-segment S-shaped robot
CN104690725B (en) * 2015-01-06 2016-04-27 泰华宏业(天津)机器人技术研究院有限责任公司 The attitude control method of snake-shaped robot
CN104691649A (en) * 2015-01-06 2015-06-10 泰华宏业(天津)机器人技术研究院有限责任公司 Attitude control method for snake-like robot on rough pavement
US10695142B2 (en) 2015-02-19 2020-06-30 Covidien Lp Repositioning method of input device for robotic surgical system
CA2977413A1 (en) 2015-03-10 2016-09-15 Covidien Lp Measuring health of a connector member of a robotic surgical system
CN104787141B (en) * 2015-04-28 2018-03-06 上海大学 A kind of snake-shaped robot
WO2016196238A1 (en) 2015-06-03 2016-12-08 Covidien Lp Offset instrument drive unit
US10507068B2 (en) 2015-06-16 2019-12-17 Covidien Lp Robotic surgical system torque transduction sensing
JP6719487B2 (en) 2015-06-23 2020-07-08 コヴィディエン リミテッド パートナーシップ Robotic surgery assembly
WO2017053363A1 (en) 2015-09-25 2017-03-30 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
EP3878396A1 (en) 2015-10-23 2021-09-15 Covidien LP Surgical system for detecting gradual changes in perfusion
WO2017087439A1 (en) 2015-11-19 2017-05-26 Covidien Lp Optical force sensor for robotic surgical system
CN113303917A (en) * 2016-02-05 2021-08-27 得克萨斯系统大学董事会 Surgical device
KR20180113512A (en) * 2016-02-26 2018-10-16 씽크 써지컬, 인크. METHOD AND SYSTEM FOR GUIDANCE OF USER POSITIONING OF A ROBOT
WO2017173524A1 (en) 2016-04-07 2017-10-12 Titan Medical Inc. Camera positioning method and apparatus for capturing images during a medical procedure
CN105729498B (en) * 2016-04-27 2019-02-22 上海交通大学 Modularization cotton rope drives non-individual body mechanical arm
AU2017269262B2 (en) 2016-05-26 2021-09-09 Covidien Lp Robotic surgical assemblies
AU2017269374B2 (en) 2016-05-26 2021-07-08 Covidien Lp Instrument drive units
CN109152612A (en) 2016-06-03 2019-01-04 柯惠Lp公司 Robotic surgical system with embedded imaging instrument
EP3463162A4 (en) 2016-06-03 2020-06-24 Covidien LP Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator
WO2017210074A1 (en) 2016-06-03 2017-12-07 Covidien Lp Passive axis system for robotic surgical systems
CN113180835A (en) 2016-06-03 2021-07-30 柯惠Lp公司 Control arm for robotic surgical system
CN106313028B (en) * 2016-09-23 2018-09-25 天津理工大学 Software module robot cell's module
US11104011B2 (en) * 2016-11-10 2021-08-31 Robert Chisena Mechanical robot arm assembly
CN108309208A (en) * 2017-01-16 2018-07-24 深圳市先赞科技有限公司 Endoscope equipped with summary snake bone component
CA3048039A1 (en) 2017-02-15 2018-08-23 Covidien Lp System and apparatus for crush prevention for medical robot applications
USD867589S1 (en) * 2017-03-23 2019-11-19 Pioneer Medical Instrument Co., Ltd. Steerable structure for endoscope
US11717361B2 (en) 2017-05-24 2023-08-08 Covidien Lp Electrosurgical robotic system having tool presence detection
JP7130003B2 (en) 2017-05-25 2022-09-02 コヴィディエン リミテッド パートナーシップ Systems and methods for detection of objects within the field of view of an image capture device
CN110662507A (en) 2017-05-25 2020-01-07 柯惠Lp公司 Robotic surgical system with automatic guidance
CN110621255B (en) 2017-05-25 2023-03-07 柯惠Lp公司 Robotic surgical system and drape for covering components of robotic surgical system
EP3678572A4 (en) 2017-09-05 2021-09-29 Covidien LP Collision handling algorithms for robotic surgical systems
EP3678573A4 (en) 2017-09-06 2021-06-02 Covidien LP Boundary scaling of surgical robots
CN108113636A (en) * 2017-12-04 2018-06-05 楚善斌 A kind of snakelike arm Multifunction anal colonoscopy system
AU2019205201B2 (en) 2018-01-04 2020-11-05 Covidien Lp Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough
US11189379B2 (en) 2018-03-06 2021-11-30 Digital Surgery Limited Methods and systems for using multiple data structures to process surgical data
WO2019173056A1 (en) 2018-03-08 2019-09-12 Covidien Lp Surgical robotic systems
CN111989065A (en) 2018-04-20 2020-11-24 柯惠Lp公司 Compensation of observer movement in a robotic surgical system with a stereoscopic display
IL259807B (en) * 2018-06-04 2020-02-27 Valuebiotech Israel Ltd Articulation arm link
US11576739B2 (en) 2018-07-03 2023-02-14 Covidien Lp Systems, methods, and computer-readable media for detecting image degradation during surgical procedures
US11109746B2 (en) 2018-10-10 2021-09-07 Titan Medical Inc. Instrument insertion system, method, and apparatus for performing medical procedures
US11586106B2 (en) 2018-12-28 2023-02-21 Titan Medical Inc. Imaging apparatus having configurable stereoscopic perspective
US11717355B2 (en) 2019-01-29 2023-08-08 Covidien Lp Drive mechanisms for surgical instruments such as for use in robotic surgical systems
US11576733B2 (en) 2019-02-06 2023-02-14 Covidien Lp Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies
US11484372B2 (en) 2019-02-15 2022-11-01 Covidien Lp Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
CN110367911B (en) * 2019-06-18 2021-07-09 珠海视新医用科技有限公司 Snake bone and preparation method thereof
DE102019121037A1 (en) * 2019-08-05 2021-02-11 Karl Storz Se & Co. Kg Endoscopic device
CN110575256A (en) * 2019-08-28 2019-12-17 哈尔滨理工大学 Robot for operation of endoscope in cavity of cavity
CN110584571B (en) * 2019-10-21 2022-04-26 苏州中科先进技术研究院有限公司 Double-helix snake bone and endoscope
CN211749473U (en) * 2019-12-31 2020-10-27 湖南省华芯医疗器械有限公司 Flexible bending coil pipe for endoscope
WO2021142556A1 (en) * 2020-01-17 2021-07-22 南京溧航仿生产业研究院有限公司 Bionic robot for terrain surveying
CN111568552B (en) * 2020-04-14 2021-04-13 山东大学 Endoscope operation robot through natural cavity
USD963851S1 (en) 2020-07-10 2022-09-13 Covidien Lp Port apparatus
CN111878503B (en) * 2020-07-28 2022-05-06 Oppo广东移动通信有限公司 Bending structure, wrist strap and wearable equipment
CN112027068B (en) * 2020-11-04 2021-02-26 南京航空航天大学 Bionic trunk mechanism, sensing arresting device for aircraft carrier and using method of sensing arresting device
CN112545584B (en) * 2020-12-08 2022-02-18 中国人民解放军空军军医大学 Bending device and surgical operation instrument
CN114654455A (en) * 2022-04-10 2022-06-24 北京航空航天大学 Gear tooth rolling unit and snake-shaped arm structure with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557780A (en) * 1967-04-20 1971-01-26 Olympus Optical Co Mechanism for controlling flexure of endoscope
US4686963A (en) * 1986-03-05 1987-08-18 Circon Corporation Torsion resistant vertebrated probe of simple construction
US4834069A (en) * 1987-09-03 1989-05-30 Kabushiki Kaisha Machida Seisakusho Endoscope with improved inserting portion
US5178129A (en) * 1989-12-28 1993-01-12 Kabushiki Kaisha Machida Seisakusho Method of producing bending device
US5448989A (en) * 1993-02-22 1995-09-12 Richard Wolf Gmbh Medical instrument shaft capable of positive and non-positive linking of segments
US20050197536A1 (en) * 2003-04-01 2005-09-08 Banik Michael S. Video endoscope
US20050250990A1 (en) * 2004-05-10 2005-11-10 Usgi Medical Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20090099420A1 (en) * 2007-10-11 2009-04-16 Neoguide Systems, Inc. System for managing bowden cables in articulating instruments

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US616672A (en) 1898-12-27 kelling
US2510198A (en) 1947-10-17 1950-06-06 Earl B Tesmer Flexible positioner
US3060972A (en) 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US3190286A (en) 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US3270641A (en) 1963-07-01 1966-09-06 Iota Cam Corp Remote inspection device and threaded member used therein
CH445959A (en) 1965-12-22 1967-10-31 Gebendinger Mario Mechanical joint to obtain a rigid connection and a flexible connection
US3497083A (en) 1968-05-10 1970-02-24 Us Navy Tensor arm manipulator
JPS5644701U (en) 1979-09-17 1981-04-22
JPH03218723A (en) 1990-01-24 1991-09-26 Toshiba Corp Endoscope
US5624380A (en) 1992-03-12 1997-04-29 Olympus Optical Co., Ltd. Multi-degree of freedom manipulator
US7637905B2 (en) * 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
US6817974B2 (en) * 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US8182418B2 (en) 2008-02-25 2012-05-22 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
US20100116080A1 (en) * 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557780A (en) * 1967-04-20 1971-01-26 Olympus Optical Co Mechanism for controlling flexure of endoscope
US4686963A (en) * 1986-03-05 1987-08-18 Circon Corporation Torsion resistant vertebrated probe of simple construction
US4834069A (en) * 1987-09-03 1989-05-30 Kabushiki Kaisha Machida Seisakusho Endoscope with improved inserting portion
US5178129A (en) * 1989-12-28 1993-01-12 Kabushiki Kaisha Machida Seisakusho Method of producing bending device
US5448989A (en) * 1993-02-22 1995-09-12 Richard Wolf Gmbh Medical instrument shaft capable of positive and non-positive linking of segments
US20050197536A1 (en) * 2003-04-01 2005-09-08 Banik Michael S. Video endoscope
US20050250990A1 (en) * 2004-05-10 2005-11-10 Usgi Medical Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20090099420A1 (en) * 2007-10-11 2009-04-16 Neoguide Systems, Inc. System for managing bowden cables in articulating instruments

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054687A1 (en) * 2007-12-21 2011-03-03 Robert Oliver Buckingham Robotic Arm
US8374722B2 (en) * 2007-12-21 2013-02-12 Oliver Crispin Robotics Limited Robotic arm
US20100116081A1 (en) * 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage
US9737199B2 (en) 2008-11-11 2017-08-22 Intuitive Surgical Operations, Inc. Robotic linkage
US9687986B2 (en) * 2008-11-11 2017-06-27 Intuitive Surgical Operations, Inc. Robotic linkage
US11154185B2 (en) 2008-11-11 2021-10-26 Intuitive Surgical Operations, Inc. Robotic linkage
US10433716B2 (en) 2008-11-11 2019-10-08 Intuitive Surgical Operations, Inc. Robotic linkage
US8887595B2 (en) 2009-12-22 2014-11-18 Intuitive Surgical Operations, Inc. Instrument wrist with cycloidal surfaces
US20110152879A1 (en) * 2009-12-22 2011-06-23 Williams Matthew R Instrument wrist with cycloidal surfaces
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
US9393000B2 (en) 2011-02-14 2016-07-19 Intuitive Surgical Operations, Inc. Jointed link structures exhibiting preferential bending, and related methods
US8578810B2 (en) 2011-02-14 2013-11-12 Intuitive Surgical Operations, Inc. Jointed link structures exhibiting preferential bending, and related methods
CN103292634A (en) * 2012-12-27 2013-09-11 天津森宇科技发展有限公司 Household heating pipeline descaling device based on ultrasonic
CN105014689A (en) * 2015-07-28 2015-11-04 上海交通大学 Motion-decoupled rope-driven non-individual body mechanical arm and robot
WO2017060734A1 (en) * 2015-10-09 2017-04-13 Automata Technologies Limited Robot arm
US9796081B2 (en) * 2015-11-25 2017-10-24 Tata Consultancy Services Limited Robotic snake
US20170144298A1 (en) * 2015-11-25 2017-05-25 Tata Consultancy Services Limited Robotic snake
WO2019179092A1 (en) * 2018-03-19 2019-09-26 华南理工大学 Multistable compliant mechanism and stability state analysis method thereof
US11649925B2 (en) 2018-03-19 2023-05-16 South China University Of Technology Multistable compliant mechanism and a steady-state analysis method thereof
WO2020135364A1 (en) * 2018-12-25 2020-07-02 深圳市先赞科技有限公司 Bending part of endoscope and endoscope
CN110864187A (en) * 2019-06-17 2020-03-06 北京建筑大学 Pipeline detection snake-shaped robot and control device thereof
CN112890737A (en) * 2020-11-20 2021-06-04 瑞惜康(苏州)医疗科技有限公司 Firm in connection's anticreep snake bone

Also Published As

Publication number Publication date
US9687986B2 (en) 2017-06-27
US20170000315A1 (en) 2017-01-05
US11154185B2 (en) 2021-10-26
US20100116081A1 (en) 2010-05-13
US20180008125A1 (en) 2018-01-11
US20200015658A1 (en) 2020-01-16
US9737199B2 (en) 2017-08-22
US10433716B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
US20100116080A1 (en) Robotic linkage
US10449010B2 (en) Steerable tube
US20240082539A1 (en) Multiple-pull-wire robotic instrument articulation
Suh et al. Design considerations for a hyper-redundant pulleyless rolling joint with elastic fixtures
US9775678B2 (en) Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument
JP4962750B2 (en) In particular a bending deformation device for endoscopy and / or minimally invasive surgical instruments
US8182418B2 (en) Systems and methods for articulating an elongate body
CN111956328B (en) Continuum robot for minimally invasive surgery
Moses et al. A continuum manipulator made of interlocking fibers
CN106923890A (en) Medicine equipment with soft pawl and/or performance on compliant wrist mechanism
US20220287699A1 (en) Surgical instrument with flexible shaft and actuation element guide
Decroly et al. A soft pneumatic two-degree-of-freedom actuator for endoscopy
Chitalia et al. Modeling Telescoping Tendon-Actuated Continuum Robots
US20230263375A1 (en) Endoscope Comprising a Bending Section Having Displaced Steering Wire Lumens
Li et al. Design and prototyping of a concentric wire-driven manipulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTUITIVE SURGICAL, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PISTOR, CHRISTOPH MATTHIAS;OEN, JOSHUA T.;REEL/FRAME:023630/0610

Effective date: 20091119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INTUITIVE SURGICAL OPERATIONS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTUITIVE SURGICAL, INC.;REEL/FRAME:042831/0209

Effective date: 20100219