US20100135269A1 - Retrieving voice-based content in conjunction with wireless application protocol browsing - Google Patents

Retrieving voice-based content in conjunction with wireless application protocol browsing Download PDF

Info

Publication number
US20100135269A1
US20100135269A1 US12/621,558 US62155809A US2010135269A1 US 20100135269 A1 US20100135269 A1 US 20100135269A1 US 62155809 A US62155809 A US 62155809A US 2010135269 A1 US2010135269 A1 US 2010135269A1
Authority
US
United States
Prior art keywords
wap
voice
based content
content
server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/621,558
Inventor
Robert A. Koch
Arnold Chester McQuaide, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Intellectual Property I LP
Original Assignee
AT&T Intellectual Property I LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Intellectual Property I LP filed Critical AT&T Intellectual Property I LP
Priority to US12/621,558 priority Critical patent/US20100135269A1/en
Publication of US20100135269A1 publication Critical patent/US20100135269A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Definitions

  • the present invention generally relates to delivering content to wireless devices. More particularly, the present invention relates to delivering voice-based content over existing telephony and Internet infrastructure thereby enabling combined voice-based and visual-based content delivery to a single wireless device.
  • Wireless Application Protocol is a telecommunications industry standard that has been developed to deliver data content to cellular telephones and other wireless devices. WAP was developed in large part to promote uniform specifications for technology useful for developing applications and services that operate over wireless communication networks. WAP specifies an application framework and network protocols for wireless devices such as mobile telephones, pagers, and personal digital assistants (PDAs).
  • PDAs personal digital assistants
  • WAP-enabled devices have been used to deliver Internet content and other data services to users of wireless devices.
  • Conventional WAP-based systems have been used to deliver text-based content to users of wireless devices.
  • Examples of text-based content that has been delivered using WAP-based systems include: email, sports scores, headlines, and news stories.
  • VXML Voice Extensible Markup Language
  • VXML Voice Extensible Markup Language
  • One objective of the VXML standard is to provide speech-enabled applications over the Internet.
  • VXML might be used to deliver the XML-formatted contents of a web page in an audible format for delivery to the computer speaker of a sight-impaired user.
  • VXML is implemented in applications involving speech recognition in which spoken commands are used to access information or complete transactions. Often, information in audio form is convenient, but applications are often limited by the need for a limited vocabulary or by a requirement that the user remember arcane verbal commands. While speech recognition technology is advancing, errors frequently occur.
  • WAP-enabled devices support the use of icons and other text-based menu selection tools to access information. For example, most WAP-enabled cellular telephones can deliver content in text-format and rudimentary graphics. Because the WAP-enabled cellular telephone must remain portable, WAP cellular telephone displays must remain small. Hence, it is likely to remain difficult for such cellular telephones to provide large amounts of text-based content or sophisticated graphics.
  • the infrastructure will conform to a content format standard, such as VXML, and will enable the delivery of audible messages to a WAP-enabled wireless device and the processing of speech commands.
  • the present invention integrates components of a telephone system and existing and new Internet components to deliver voice-based content to Wireless Application Protocol (WAP) enabled wireless device, such as a cellular telephone.
  • WAP Wireless Application Protocol
  • a WAP-enabled device can request text-based and/or voice based content from a WAP Server.
  • the WAP device communicates over a conventional wireless service provider network using a base station connected to a conventional Mobile Switch.
  • the wireless service provider network provides a connection between the WAP device and a WAP Gateway.
  • the WAP Gateway operates as a gateway between the wireless service provider network and the TCP/IP-based Internet.
  • WAP data requests are sent from the WAP gateway through the Internet to the WAP Server. Requests for voice-based content can also be delivered to the WAP Server over this path.
  • the WAP Server When a request for voice-based content delivery is received by the WAP Server, the WAP Server responds by sending a TCP/IP instruction to a Voice Portal Node.
  • the Voice Portal Node acts as a gateway between the wireless service provider network and the TCP/IP-based Internet.
  • the Voice Portal Node is operative to establish a voice-based communication session with the WAP device.
  • the Voice Portal Node does this by using the out-bound dialing module to initiate a wireless telephone call to the WAP device.
  • the call initiation request is transmitted from the Voice Portal Node to a conventional AIN Central Office.
  • the Central Office routes the call from the Voice Portal Node to the MSC.
  • the MSC provides the necessary switching to connect the call between the Voice Portal Node and the WAP device.
  • the Voice Portal Node can provide a delivery authorization prompt to the WAP device. If the WAP device provides a voice-based delivery authorization to the Voice Portal Node, the Voice Portal Node will recognize the authorization by use of the speech recognition engine and will initiate the voice-based session. Once the voice session is begun, the Voice Portal Node will notify the WAP Server that the WAP device is ready for voice-based content delivery. The WAP Server will transmit voice-based content to the Voice Portal Node for delivery to the WAP device. The voice-based content is then delivered as an audible message played over the telephone connection established between the Voice Portal Node and the WAP device. Thus, voice-based content associated with the WAP-based content is delivered to the WAP device in response to a request initiated by the WAP device.
  • FIG. 1 is a block diagram depicting a conventional wireless application protocol content-delivery system.
  • FIG. 2 depicts a conventional cellular telephone Wireless Application Protocol device displaying Wireless Application Protocol information.
  • FIG. 3 depicts a conventional cellular telephone Wireless Application Protocol device displaying a page of Wireless Application Protocol content.
  • FIG. 4 depicts two cellular telephone Wireless Application Protocol devices that are exemplary embodiments of the present invention.
  • FIG. 5 depicts two cellular telephone Wireless Application Protocol devices that are exemplary embodiments of the present invention.
  • FIG. 6 depicts a voice and data content-delivery system that is an exemplary embodiment of present invention.
  • FIG. 7 is a flow chart depicting an exemplary method for providing voice and text-based content to a Wireless Application Protocol device.
  • FIG. 8 is a block diagram depicting an alternative embodiment of the present invention.
  • FIG. 1 is a block diagram depicting a conventional Wireless Application Protocol (WAP) content-delivery system.
  • WAP Wireless Application Protocol
  • a WAP device such as a cellular telephone 100
  • a user can contact a WAP Gateway 102 via a wireless service provider system 104 .
  • the cellular telephone 100 will communicate directly with a base station 106 that is connected through a Mobile Switching Center (MSC) 108 to a WAP Gateway 102 .
  • the WAP Gateway 102 will receive instructions from the cellular telephone 100 and will provide content to the cellular telephone, in response to those instructions.
  • the data link between the MSC 108 and the WAP Gateway 102 will be a data-only connection 110 . That is, instructions will be sent from the cellular telephone 100 to the WAP Gateway 102 in a data channel.
  • content will be delivered from the WAP Gateway 102 to the cellular telephone 100 over a data channel, not a voice channel.
  • the WAP Gateway 102 retrieves content from a WAP Server 112 by sending content requests over the Internet 114 .
  • the WAP data can be sent from the WAP Server 112 to the WAP Gateway 102 in various formats (e.g., Hypertext Markup Language), but would preferably be provided in Wireless Markup Language (WML).
  • the WAP Gateway 102 and the WAP Server 112 can communicate by Transmission Control Protocol/Internet Protocol (TCP/IP). Communications between the WAP Gateway 102 and the WAP Server 112 can be channeled through a firewall 118 .
  • the firewall 118 is a well-known security device for protecting a server or other network component from unauthorized access via the Internet 114 .
  • the WAP Server has a portal database 122 to which it can be connected over communications channel 116 .
  • the portal database 122 may store the content that is used by the WAP Server to provide content to the WAP Gateway 102 .
  • the WAP Server 112 can be connected to the portal database 122 over a data link 116 .
  • the data link 116 can be a TCP/IP connection, a hardwire connection, or a local area network connection.
  • the portal database could also be integrated into the WAP Server 112 .
  • the WAP Server 112 could be used to provide content to WAP devices from various WAP portals. In such a case, the WAP Server may have more than one portal database 122 .
  • the desired portal can be identified initially by the WAP device 100 in a domain name format.
  • the WAP device may submit a domain name 120 that identifies a “BellSouth” portal.
  • the domain name 120 may also include an indication that the WAP device 120 is requesting WAP content. In the example of FIG. 1 , the domain name includes this indication as “/wap”.
  • the WAP Server 112 may obtain raw content from the portal database 122 and compile the data into WML pages that are formatted specifically for a particular WAP device's display.
  • the request from the cellular telephone 100 through the WAP Gateway 102 may include a device identifier that can be used by the WAP Server 112 to determine the display capabilities of the WAP device.
  • the server Once the server has packaged the WML content, it transmits the content over the Internet 114 to the WAP Gateway 102 .
  • the WAP Gateway 102 converts the packaged WAP content into a form that can be transmitted over the infrastructure of the wireless service provider 104 and transmits that content to the WAP device 100 via MSC 108 and base station 106 .
  • the conventional WAP infrastructure depicted in FIG. 1 provides content to the WAP device 100 in a text-based format.
  • the WAP device 100 can be used to enter a portal domain name 120 to establish a WAP communication session with the WAP Server 112 .
  • the WAP device 100 can be used to traverse a menu provided by the WAP Server 112 and to request content that is identified in that menu.
  • the WAP Server 112 can provide the requested content in the form of WML pages.
  • the pages are displayed on the WAP device's display.
  • the user of the WAP device 100 can “browse” from page to page by pressing a predetermined key on the WAP device 100 .
  • Each key press may send a request to the WAP Server 112 for the next page of content.
  • the WAP device 100 may include a memory buffer that permits the storage of multiple pages of WAP content that can be browsed without requiring single page requests to be sent to the WAP Server 112 . While the conventional WAP device is ideal for menu navigation, the presentation of content is hampered by the limited ability of the WAP device to visually present content to a user.
  • FIG. 2 depicts a conventional cellular telephone WAP device 200 that has WAP information on its display 202 .
  • the WAP device 200 can be used to display a menu structure 204 .
  • a selection key 206 a user of the WAP device 200 can select menu items from the menu 204 for which the user would like to see WAP content.
  • the user can press a predefined submission button 208 to submit the request to the WAP Server (not shown).
  • the submission key 208 is labeled “OK” and corresponds to a submission message 210 on the display 202 .
  • FIG. 3 depicts a conventional cellular telephone WAP device 300 displaying a page of WAP content.
  • the display 302 of the WAP device 300 is displaying a second page of a menu structure provided by the WAP Server (not shown).
  • the menu page presented on the display 302 is provided in response to the selection of the “News” menu item from the menu page depicted in FIG. 2 .
  • the menu structure 304 provides three menu items. The selection of one of the menu items can result in the display of one or more headlines.
  • the selection button 306 and the submission button 308 of the WAP device 300 could be used to select a headline.
  • the selection of the headline would be sent back to the WAP Server (not shown) as a WAP content request.
  • the WAP Server would return the associated WAP content (i.e., the news story) to the WAP device 300 .
  • the WAP device 300 would then display the WAP content on the WAP device's display 302 .
  • FIG. 4 depicts two cellular telephone WAP devices that are exemplary embodiments of the present invention.
  • the first WAP device 400 is displaying three headlines that are provided, in response to the selection of the “U.S.” menu item, as described in connection with FIG. 3 .
  • a particular headline can be selected by use of the selection key 404 .
  • the selection of a headline would result in the delivery of WAP content to the cellular telephone.
  • the WAP device 400 of an exemplary embodiment of the present invention can receive text-based content as well as voice-based content. The voice-based content will be delivered to the WAP device 400 , in response to the selection of the “Listen” menu item 406 .
  • the “Back” menu item 408 can be selected to move back one level in the menu structure.
  • the WAP device 400 will send a request for voice-based content to the WAP Server through the WAP Gateway (not shown).
  • the display will show a “STANDBY: NOW RETRIEVING VOICE CONTENT” message as shown on the display 452 of the WAP device 450 .
  • the data session need not end in response to the commencement of the voice session.
  • An alternative embodiment of the present invention enables the simultaneous delivery of voice and data sessions. This embodiment will be described in more detail in connection with FIG. 8 .
  • FIG. 5 depicts two cellular telephone WAP devices 500 , 550 that are exemplary embodiments of the present invention.
  • the cellular telephone 500 is shown with the “Data Session Ended” message on the display 502 .
  • the cellular telephone 500 has received a voice-based communication from the WAP Server (not shown).
  • the voice-based communication is referred to as a voice session.
  • the voice-based content requested will be delivered to the cellular telephone 500 , when the cellular telephone user responds to a delivery prompt.
  • the Voice Portal Node establishes a voice-connection with the cellular telephone 500 , thereby enabling the delivery of the voice-based content.
  • the Voice Portal Node makes an out-bound call to the cellular telephone 500 using the cellular telephone's directory number that is provided by the WAP Gateway.
  • the cellular telephone 500 prompts the user by playing an audible message “to hear requested information, say ‘go’” 502 .
  • the delivery prompt could be text-based and the delivery authorization could be a key press, rather than an audible command. If the user issues the delivery authorization, the cellular telephone 550 will begin delivery of the voice-based content 552 .
  • FIG. 6 depicts a voice and data content delivery system that is an exemplary embodiment of the present invention.
  • a WAP device 600 can request text-based data from a WAP Server 612 .
  • the WAP device 600 communicates over the wireless service provider network 604 , using base station 606 which is connected to an MSC 608 .
  • the wireless service provider network 604 provides a connection between the WAP device 600 and a WAP Gateway 602 .
  • the WAP Gateway 602 acts as a gateway between the wireless service provider network and the TCP/IP-based Internet 614 .
  • WAP data requests are sent from the WAP gateway 602 through the Internet 614 to the WAP Server 612 .
  • requests for voice-based content can also be delivered to the WAP Server 612 over this path.
  • the WAP Server 612 When a request for voice-based content delivery is received by the WAP Server 612 , it responds by sending a TCP/IP instruction to a Voice Portal Node 626 over a communication link 650 .
  • the Voice Portal Node 626 acts as a gateway between the wireless service provider network and the TCP/IP-based Internet 614 .
  • An exemplary Voice Portal Node has four main components: a) a VXML interpreter; b) a text-to-speech module; c) a speech recognition engine; and d) a out-bound dialing module.
  • the Voice Portal Node 626 can establish a voice-based communication session with the WAP device 600 by using the dialing module to initiate a wireless telephone call to the WAP device 600 .
  • the WAP Gateway 602 passes a directory number of the WAP device 600 to the Voice Portal Node 626 as part of the TCP/IP instruction.
  • the call initiation request is transmitted from the Voice Portal Node 626 to a conventional Advanced Intelligent Network central office 626 .
  • the central office 628 routes the call from the Voice Portal Node 626 to the MSC 604 .
  • the MSC 608 provides the necessary switching to connect the call between the Voice Portal Node 626 and the WAP device 600 .
  • the Voice Portal Node can provide a delivery authorization prompt to the WAP device 600 . If the WAP device provides a voice-based delivery authorization to the Voice Portal Node 626 , the Voice Portal Node will initiate the voice-based session.
  • the Voice Portal Node 626 will notify the WAP Server 612 that the WAP device 600 is ready for voice-based content delivery.
  • the Voice Portal Node will request voice-based content.
  • the WAP Server will transmit voice-based content to the Voice Portal Node 626 for delivery to the WAP device 600 .
  • the voice-based content will be transmitted from the WAP Server 612 to the Voice Portal Node in Voice Extensible Markup Language (VXML).
  • VXML Voice Extensible Markup Language
  • the Voice Portal Node uses the VXML interpreter to receive the voice-based content and then uses the text-to-speech module to convert the received content to an audible message.
  • voice-based content is delivered to the WAP device 600 in response to a request initiated by the WAP device.
  • FIG. 7 is a flow chart depicting an exemplary method for providing voice and text-based content to a WAP device.
  • the method starts at step 700 and proceeds to step 702 .
  • a request for WAP data is received.
  • the method then proceeds to step 704 , wherein a WAP data request is transmitted to a WAP Gateway.
  • the WAP data request includes the telephone number (directory number) of the WAP device that has generated the data request.
  • the method proceeds from step 704 to step 706 .
  • the WAP Server is contacted and a WAP session is established.
  • the method then proceeds to step 708 .
  • a two-way transmission (data session) is established between the cellular device and the WAP Server.
  • the method proceeds from step 708 to decision block 710 .
  • decision block 710 a determination is made as to whether voice content is requested. If voice content is not requested, the method branches to decision block 740 (via connector A).
  • decision block 740 a determination is made as to whether the WAP session is terminated. For example, the WAP session may be terminated by the selection of a menu item ending the data session. If the data session is terminated, the method branches to step 736 and ends. If the data session is not terminated, the method branches to step 708 and two way data transmission is continued between the cellular device and the WAP Server.
  • step 712 a voice-based content request is sent to the WAP Gateway.
  • the method then proceeds to step 714 .
  • the voice content request is submitted to the WAP Server.
  • step 716 a call is placed to the cellular device. As discussed above in connection with FIG. 6 , this step may be performed by a Voice Portal Node using the cellular device's directory number obtained from the WAP Gateway.
  • decision block 718 a determination is made as to whether the call is accepted. If the call is not accepted, the method branches to step 720 . At step 720 , an alert is transmitted to the cellular device indicating that the voice-based content cannot be delivered. The method then branches to decision block 740 and proceeds as described above.
  • step 722 a prompt is provided for authorization to deliver voice content to the cellular device.
  • the method then proceeds to decision block 724 .
  • decision block 724 a determination is made whether a delivery authorization is received before some predefined time out period. If a determination is made that the authorization was not received, the method branches to decision block 740 and proceeds as described above. If, on the other hand, a determination is made at decision block 724 that authorization has been received, the method branches to step 726 .
  • the Voice Portal Node retrieves the voice content from the WAP server and delivers the voice content to the cellular device.
  • This step 726 may include a conversion step in which, for example, VXML-based data is translated to an audible transmission.
  • the method then proceeds to decision block 728 .
  • decision block 728 a determination is made as to whether there is a queued content request. That is, a determination is made as to whether the user of the cellular device has requested the delivery of voice content in addition to the voice content delivered in step 726 . If a queued voice content request exists, the method branches back to step 726 and that voice content is delivered. This loop can be continued as long as voice content requests are queued. If a determination is made at step 728 that no voice content requests are queued, the method branches to step 730 .
  • step 730 the wireless connection is terminated between the Voice Portal Node and the cellular device.
  • the method proceeds from step 730 to decision block 732 .
  • decision block 732 a determination is made as to whether any data content requests are queued. That is, a determination is made as to whether the cellular device user has requested the delivery of additional data content. If a determination is made that additional data content has been requested, the method branches to step 710 and proceeds as described above. If, on the other hand, a determination is made that no further data content has been requested, the method branches from decision block 732 to step 734 .
  • step 734 the connection between the cellular device and the WAP Gateway is terminated. In an alternative embodiment, step 734 may be conditioned on a determination that the user has affirmatively requested the termination of the connection between the cellular device and the WAP Gateway. The method branches from step 734 to step 736 and ends.
  • both voice-based and WAP-based content can be delivered to the WAP device simultaneously.
  • the WAP session is not ended, prior to the initiation of the voice session. Consequently, the user of the WAP device can listen to voice-based content and then navigate a WAP-based menu structure to find other voice-based content that can be delivered.
  • FIG. 8 is a block diagram depicting an alternative embodiment of the present invention.
  • the WAP device 800 can be used to request delivery of content through other means.
  • the WAP device 800 could be used to request that content be delivered to an email address.
  • the WAP Server 812 could request the entry of the email address, via the WAP device keypad.
  • the WAP Server could maintain an email address for each WAP device in an email profile 852 maintained in the portal database 822 .
  • the WAP Server could be equipped with an email server 854 that functions to route email-versions of the WAP content to one or more email addresses identified by the WAP device user or by the WAP device's email profile 852 .
  • the content could then be delivered to the entered email address.
  • the email profile 852 could maintain an address book for a WAP device user and could permit the user to email content to various email addresses.
  • An email recipient could be identified through the use of a menu on the WAP device's display or through a spoken command.

Abstract

A WAP-enabled device can request text-based and/or voice based content from a WAP Server. The WAP device communicates over a conventional wireless service provider network. This network provides a connection between the WAP device and a WAP Gateway. The WAP Gateway operates as a gateway between the wireless service provider network and the TCP/IP-based Internet. Content requests are sent from the WAP gateway to the WAP Server. When a request for voice-based content delivery is received, the WAP Server responds by sending a TCP/IP instruction to a Voice Portal Node. The Voice Portal Node is operative to establish a voice-based communication session with the WAP device. The WAP Server will transmit voice-based content to the Voice Portal Node. An audible transmission is then played over the telephone connection established between the Voice Portal Node and the WAP device in response to the request initiated by the WAP device.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/586,293, entitled “RETRIEVING VOICE-BASED CONTENT IN CONJUNCTION WITH WIRELESS APPLICATION PROTOCOL BROWSING,” filed Oct. 25, 2006 which is a continuation of U.S. patent application Ser. No. 09/894,257, entitled “RETRIEVING VOICE-BASED CONTENT IN CONJUNCTION WITH WIRELESS APPLICATION PROTOCOL BROWSING,” filed Jun. 29, 2001, Issued U.S. Pat. No. 7,151,763 on Dec. 12, 2006. The entireties of each of the foregoing applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention generally relates to delivering content to wireless devices. More particularly, the present invention relates to delivering voice-based content over existing telephony and Internet infrastructure thereby enabling combined voice-based and visual-based content delivery to a single wireless device.
  • BACKGROUND OF THE INVENTION
  • Wireless Application Protocol (WAP) is a telecommunications industry standard that has been developed to deliver data content to cellular telephones and other wireless devices. WAP was developed in large part to promote uniform specifications for technology useful for developing applications and services that operate over wireless communication networks. WAP specifies an application framework and network protocols for wireless devices such as mobile telephones, pagers, and personal digital assistants (PDAs).
  • One objective of the WAP specification is to extend mobile networking technologies (such as digital data networking standards) and Internet technologies (such as XML, URLs, scripting, and various content formats). WAP-enabled devices have been used to deliver Internet content and other data services to users of wireless devices. Conventional WAP-based systems have been used to deliver text-based content to
  • wireless devices. Examples of text-based content that has been delivered using WAP-based systems include: email, sports scores, headlines, and news stories.
  • Voice Extensible Markup Language (VXML) is another new standard directed to delivering Internet content and data so that the content and data are accessible through voice-based devices. One objective of the VXML standard is to provide speech-enabled applications over the Internet. For example, VXML might be used to deliver the XML-formatted contents of a web page in an audible format for delivery to the computer speaker of a sight-impaired user.
  • Although WAP and VXML provide new ways of accessing web-based information, each standard has its limitations. Typically, VXML is implemented in applications involving speech recognition in which spoken commands are used to access information or complete transactions. Often, information in audio form is convenient, but applications are often limited by the need for a limited vocabulary or by a requirement that the user remember arcane verbal commands. While speech recognition technology is advancing, errors frequently occur.
  • WAP-enabled devices support the use of icons and other text-based menu selection tools to access information. For example, most WAP-enabled cellular telephones can deliver content in text-format and rudimentary graphics. Because the WAP-enabled cellular telephone must remain portable, WAP cellular telephone displays must remain small. Hence, it is likely to remain difficult for such cellular telephones to provide large amounts of text-based content or sophisticated graphics.
  • Therefore, there is a need in the art for an infrastructure that can deliver voice-based content to WAP-enabled wireless device, thereby enabling the device to deliver Internet content in an audible format. Preferably, the infrastructure will conform to a content format standard, such as VXML, and will enable the delivery of audible messages to a WAP-enabled wireless device and the processing of speech commands.
  • SUMMARY OF THE INVENTION
  • The present invention integrates components of a telephone system and existing and new Internet components to deliver voice-based content to Wireless Application Protocol (WAP) enabled wireless device, such as a cellular telephone. A WAP-enabled device can request text-based and/or voice based content from a WAP Server. The WAP device communicates over a conventional wireless service provider network using a base station connected to a conventional Mobile Switch. The wireless service provider network provides a connection between the WAP device and a WAP Gateway. The WAP Gateway operates as a gateway between the wireless service provider network and the TCP/IP-based Internet. WAP data requests are sent from the WAP gateway through the Internet to the WAP Server. Requests for voice-based content can also be delivered to the WAP Server over this path.
  • When a request for voice-based content delivery is received by the WAP Server, the WAP Server responds by sending a TCP/IP instruction to a Voice Portal Node. The Voice Portal Node acts as a gateway between the wireless service provider network and the TCP/IP-based Internet.
  • The Voice Portal Node is operative to establish a voice-based communication session with the WAP device. The Voice Portal Node does this by using the out-bound dialing module to initiate a wireless telephone call to the WAP device. The call initiation request is transmitted from the Voice Portal Node to a conventional AIN Central Office. The Central Office routes the call from the Voice Portal Node to the MSC. The MSC provides the necessary switching to connect the call between the Voice Portal Node and the WAP device.
  • When a telephonic connection has been established between the Voice Portal Node and the WAP device, the Voice Portal Node can provide a delivery authorization prompt to the WAP device. If the WAP device provides a voice-based delivery authorization to the Voice Portal Node, the Voice Portal Node will recognize the authorization by use of the speech recognition engine and will initiate the voice-based session. Once the voice session is begun, the Voice Portal Node will notify the WAP Server that the WAP device is ready for voice-based content delivery. The WAP Server will transmit voice-based content to the Voice Portal Node for delivery to the WAP device. The voice-based content is then delivered as an audible message played over the telephone connection established between the Voice Portal Node and the WAP device. Thus, voice-based content associated with the WAP-based content is delivered to the WAP device in response to a request initiated by the WAP device.
  • The various aspects of the present invention may be more clearly understood and appreciated from a review of the following detailed description of the disclosed embodiments and by reference to the drawings and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram depicting a conventional wireless application protocol content-delivery system.
  • FIG. 2 depicts a conventional cellular telephone Wireless Application Protocol device displaying Wireless Application Protocol information.
  • FIG. 3 depicts a conventional cellular telephone Wireless Application Protocol device displaying a page of Wireless Application Protocol content.
  • FIG. 4 depicts two cellular telephone Wireless Application Protocol devices that are exemplary embodiments of the present invention.
  • FIG. 5 depicts two cellular telephone Wireless Application Protocol devices that are exemplary embodiments of the present invention.
  • FIG. 6 depicts a voice and data content-delivery system that is an exemplary embodiment of present invention.
  • FIG. 7 is a flow chart depicting an exemplary method for providing voice and text-based content to a Wireless Application Protocol device.
  • FIG. 8 is a block diagram depicting an alternative embodiment of the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 is a block diagram depicting a conventional Wireless Application Protocol (WAP) content-delivery system. Using a WAP device such as a cellular telephone 100, a user can contact a WAP Gateway 102 via a wireless service provider system 104. Typically, the cellular telephone 100 will communicate directly with a base station 106 that is connected through a Mobile Switching Center (MSC) 108 to a WAP Gateway 102. The WAP Gateway 102 will receive instructions from the cellular telephone 100 and will provide content to the cellular telephone, in response to those instructions. Typically, the data link between the MSC 108 and the WAP Gateway 102 will be a data-only connection 110. That is, instructions will be sent from the cellular telephone 100 to the WAP Gateway 102 in a data channel. Likewise, content will be delivered from the WAP Gateway 102 to the cellular telephone 100 over a data channel, not a voice channel.
  • The WAP Gateway 102 retrieves content from a WAP Server 112 by sending content requests over the Internet 114. The WAP data can be sent from the WAP Server 112 to the WAP Gateway 102 in various formats (e.g., Hypertext Markup Language), but would preferably be provided in Wireless Markup Language (WML). The WAP Gateway 102 and the WAP Server 112 can communicate by Transmission Control Protocol/Internet Protocol (TCP/IP). Communications between the WAP Gateway 102 and the WAP Server 112 can be channeled through a firewall 118. The firewall 118 is a well-known security device for protecting a server or other network component from unauthorized access via the Internet 114.
  • The WAP Server has a portal database 122 to which it can be connected over communications channel 116. The portal database 122 may store the content that is used by the WAP Server to provide content to the WAP Gateway 102. The WAP Server 112 can be connected to the portal database 122 over a data link 116. The data link 116 can be a TCP/IP connection, a hardwire connection, or a local area network connection. Of course, the portal database could also be integrated into the WAP Server 112. Those skilled in the art will appreciate that the WAP Server 112 could be used to provide content to WAP devices from various WAP portals. In such a case, the WAP Server may have more than one portal database 122. The desired portal can be identified initially by the WAP device 100 in a domain name format. For example, the WAP device may submit a domain name 120 that identifies a “BellSouth” portal. The domain name 120 may also include an indication that the WAP device 120 is requesting WAP content. In the example of FIG. 1, the domain name includes this indication as “/wap”.
  • The WAP Server 112 may obtain raw content from the portal database 122 and compile the data into WML pages that are formatted specifically for a particular WAP device's display. For example, the request from the cellular telephone 100 through the WAP Gateway 102 may include a device identifier that can be used by the WAP Server 112 to determine the display capabilities of the WAP device. Once the server has packaged the WML content, it transmits the content over the Internet 114 to the WAP Gateway 102. The WAP Gateway 102 converts the packaged WAP content into a form that can be transmitted over the infrastructure of the wireless service provider 104 and transmits that content to the WAP device 100 via MSC 108 and base station 106.
  • The conventional WAP infrastructure depicted in FIG. 1 provides content to the WAP device 100 in a text-based format. The WAP device 100 can be used to enter a portal domain name 120 to establish a WAP communication session with the WAP Server 112. Once the WAP session is begun, the WAP device 100 can be used to traverse a menu provided by the WAP Server 112 and to request content that is identified in that menu. Once the content has been identified by the WAP device 100, the WAP Server 112 can provide the requested content in the form of WML pages. The pages are displayed on the WAP device's display. The user of the WAP device 100 can “browse” from page to page by pressing a predetermined key on the WAP device 100. Each key press may send a request to the WAP Server 112 for the next page of content. Alternatively, the WAP device 100 may include a memory buffer that permits the storage of multiple pages of WAP content that can be browsed without requiring single page requests to be sent to the WAP Server 112. While the conventional WAP device is ideal for menu navigation, the presentation of content is hampered by the limited ability of the WAP device to visually present content to a user.
  • FIG. 2 depicts a conventional cellular telephone WAP device 200 that has WAP information on its display 202. The WAP device 200 can be used to display a menu structure 204. By using a selection key 206, a user of the WAP device 200 can select menu items from the menu 204 for which the user would like to see WAP content. Once selected, the user can press a predefined submission button 208 to submit the request to the WAP Server (not shown). In the example of FIG. 2, the submission key 208 is labeled “OK” and corresponds to a submission message 210 on the display 202.
  • FIG. 3 depicts a conventional cellular telephone WAP device 300 displaying a page of WAP content. The display 302 of the WAP device 300 is displaying a second page of a menu structure provided by the WAP Server (not shown). In the example of FIG. 3, the menu page presented on the display 302 is provided in response to the selection of the “News” menu item from the menu page depicted in FIG. 2. The menu structure 304 provides three menu items. The selection of one of the menu items can result in the display of one or more headlines. The selection button 306 and the submission button 308 of the WAP device 300 could be used to select a headline. The selection of the headline would be sent back to the WAP Server (not shown) as a WAP content request. The WAP Server would return the associated WAP content (i.e., the news story) to the WAP device 300. The WAP device 300 would then display the WAP content on the WAP device's display 302.
  • FIG. 4 depicts two cellular telephone WAP devices that are exemplary embodiments of the present invention. The first WAP device 400 is displaying three headlines that are provided, in response to the selection of the “U.S.” menu item, as described in connection with FIG. 3. A particular headline can be selected by use of the selection key 404. In the conventional WAP-enabled cellular telephone, the selection of a headline would result in the delivery of WAP content to the cellular telephone. However, the WAP device 400 of an exemplary embodiment of the present invention can receive text-based content as well as voice-based content. The voice-based content will be delivered to the WAP device 400, in response to the selection of the “Listen” menu item 406. Alternatively, the “Back” menu item 408 can be selected to move back one level in the menu structure.
  • If the Listen menu item 406 is selected, the WAP device 400 will send a request for voice-based content to the WAP Server through the WAP Gateway (not shown). When the Listen menu item is selected, the display will show a “STANDBY: NOW RETRIEVING VOICE CONTENT” message as shown on the display 452 of the WAP device 450. Those skilled in the art will appreciate that the data session need not end in response to the commencement of the voice session. An alternative embodiment of the present invention enables the simultaneous delivery of voice and data sessions. This embodiment will be described in more detail in connection with FIG. 8.
  • FIG. 5 depicts two cellular telephone WAP devices 500, 550 that are exemplary embodiments of the present invention. The cellular telephone 500 is shown with the “Data Session Ended” message on the display 502. However, the cellular telephone 500 has received a voice-based communication from the WAP Server (not shown). The voice-based communication is referred to as a voice session. The voice-based content requested will be delivered to the cellular telephone 500, when the cellular telephone user responds to a delivery prompt. As described above, the Voice Portal Node establishes a voice-connection with the cellular telephone 500, thereby enabling the delivery of the voice-based content. The Voice Portal Node makes an out-bound call to the cellular telephone 500 using the cellular telephone's directory number that is provided by the WAP Gateway.
  • In the example of FIG. 5, the cellular telephone 500 prompts the user by playing an audible message “to hear requested information, say ‘go’” 502. Those skilled in the art will appreciate that the delivery prompt could be text-based and the delivery authorization could be a key press, rather than an audible command. If the user issues the delivery authorization, the cellular telephone 550 will begin delivery of the voice-based content 552.
  • FIG. 6 depicts a voice and data content delivery system that is an exemplary embodiment of the present invention. As described in connection with FIGS. 1-5, a WAP device 600 can request text-based data from a WAP Server 612. The WAP device 600 communicates over the wireless service provider network 604, using base station 606 which is connected to an MSC 608. The wireless service provider network 604 provides a connection between the WAP device 600 and a WAP Gateway 602. The WAP Gateway 602 acts as a gateway between the wireless service provider network and the TCP/IP-based Internet 614. WAP data requests are sent from the WAP gateway 602 through the Internet 614 to the WAP Server 612. In addition, requests for voice-based content can also be delivered to the WAP Server 612 over this path.
  • When a request for voice-based content delivery is received by the WAP Server 612, it responds by sending a TCP/IP instruction to a Voice Portal Node 626 over a communication link 650. The Voice Portal Node 626 acts as a gateway between the wireless service provider network and the TCP/IP-based Internet 614. An exemplary Voice Portal Node has four main components: a) a VXML interpreter; b) a text-to-speech module; c) a speech recognition engine; and d) a out-bound dialing module. The Voice Portal Node 626 can establish a voice-based communication session with the WAP device 600 by using the dialing module to initiate a wireless telephone call to the WAP device 600. The WAP Gateway 602 passes a directory number of the WAP device 600 to the Voice Portal Node 626 as part of the TCP/IP instruction. The call initiation request is transmitted from the Voice Portal Node 626 to a conventional Advanced Intelligent Network central office 626. The central office 628 routes the call from the Voice Portal Node 626 to the MSC 604. The MSC 608 provides the necessary switching to connect the call between the Voice Portal Node 626 and the WAP device 600.
  • Once the call has been established between the Voice Portal Node 626 and the WAP device 600, the Voice Portal Node can provide a delivery authorization prompt to the WAP device 600. If the WAP device provides a voice-based delivery authorization to the Voice Portal Node 626, the Voice Portal Node will initiate the voice-based session.
  • Once the voice session is begun, the Voice Portal Node 626 will notify the WAP Server 612 that the WAP device 600 is ready for voice-based content delivery. The Voice Portal Node will request voice-based content. The WAP Server will transmit voice-based content to the Voice Portal Node 626 for delivery to the WAP device 600. In an exemplary embodiment of the present invention, the voice-based content will be transmitted from the WAP Server 612 to the Voice Portal Node in Voice Extensible Markup Language (VXML). The Voice Portal Node uses the VXML interpreter to receive the voice-based content and then uses the text-to-speech module to convert the received content to an audible message. Those skilled in the art will appreciate that virtually any data format could be used to transmit the voice content between the WAP Server 612 and the Voice Portal Node 626. The Voice Portal Node 626 converts the VXML voice data to an audible transmission. The audible transmission is then played back over the telephone connection established between the Voice Portal Node 626 and the WAP device 600. Thus, voice-based content is delivered to the WAP device 600 in response to a request initiated by the WAP device.
  • FIG. 7 is a flow chart depicting an exemplary method for providing voice and text-based content to a WAP device. The method starts at step 700 and proceeds to step 702. At step 702, a request for WAP data is received. The method then proceeds to step 704, wherein a WAP data request is transmitted to a WAP Gateway. The WAP data request includes the telephone number (directory number) of the WAP device that has generated the data request. The method proceeds from step 704 to step 706. At step 706, the WAP Server is contacted and a WAP session is established. The method then proceeds to step 708.
  • At step 708, a two-way transmission (data session) is established between the cellular device and the WAP Server. The method proceeds from step 708 to decision block 710. At decision block 710, a determination is made as to whether voice content is requested. If voice content is not requested, the method branches to decision block 740 (via connector A). At decision block 740, a determination is made as to whether the WAP session is terminated. For example, the WAP session may be terminated by the selection of a menu item ending the data session. If the data session is terminated, the method branches to step 736 and ends. If the data session is not terminated, the method branches to step 708 and two way data transmission is continued between the cellular device and the WAP Server.
  • Returning now to decision block 710, if a determination is made that voice content has been requested, the method branches to step 712. At step 712, a voice-based content request is sent to the WAP Gateway. The method then proceeds to step 714. At step 714, the voice content request is submitted to the WAP Server. The method then proceeds to step 716, wherein a call is placed to the cellular device. As discussed above in connection with FIG. 6, this step may be performed by a Voice Portal Node using the cellular device's directory number obtained from the WAP Gateway.
  • The method then proceeds to decision block 718. At decision block 718, a determination is made as to whether the call is accepted. If the call is not accepted, the method branches to step 720. At step 720, an alert is transmitted to the cellular device indicating that the voice-based content cannot be delivered. The method then branches to decision block 740 and proceeds as described above.
  • Returning now to decision block 718, if a determination is made that the call is accepted, the method branches to step 722. At step 722, a prompt is provided for authorization to deliver voice content to the cellular device. The method then proceeds to decision block 724. At decision block 724, a determination is made whether a delivery authorization is received before some predefined time out period. If a determination is made that the authorization was not received, the method branches to decision block 740 and proceeds as described above. If, on the other hand, a determination is made at decision block 724 that authorization has been received, the method branches to step 726.
  • At step 726, the Voice Portal Node retrieves the voice content from the WAP server and delivers the voice content to the cellular device. This step 726 may include a conversion step in which, for example, VXML-based data is translated to an audible transmission. The method then proceeds to decision block 728. At decision block 728, a determination is made as to whether there is a queued content request. That is, a determination is made as to whether the user of the cellular device has requested the delivery of voice content in addition to the voice content delivered in step 726. If a queued voice content request exists, the method branches back to step 726 and that voice content is delivered. This loop can be continued as long as voice content requests are queued. If a determination is made at step 728 that no voice content requests are queued, the method branches to step 730.
  • At step 730, the wireless connection is terminated between the Voice Portal Node and the cellular device. The method proceeds from step 730 to decision block 732. At decision block 732, a determination is made as to whether any data content requests are queued. That is, a determination is made as to whether the cellular device user has requested the delivery of additional data content. If a determination is made that additional data content has been requested, the method branches to step 710 and proceeds as described above. If, on the other hand, a determination is made that no further data content has been requested, the method branches from decision block 732 to step 734. At step 734, the connection between the cellular device and the WAP Gateway is terminated. In an alternative embodiment, step 734 may be conditioned on a determination that the user has affirmatively requested the termination of the connection between the cellular device and the WAP Gateway. The method branches from step 734 to step 736 and ends.
  • In an alternative embodiment of the present invention, both voice-based and WAP-based content can be delivered to the WAP device simultaneously. In this embodiment, the WAP session is not ended, prior to the initiation of the voice session. Consequently, the user of the WAP device can listen to voice-based content and then navigate a WAP-based menu structure to find other voice-based content that can be delivered.
  • FIG. 8 is a block diagram depicting an alternative embodiment of the present invention. In this embodiment, the WAP device 800 can be used to request delivery of content through other means. For example, the WAP device 800 could be used to request that content be delivered to an email address. The WAP Server 812 could request the entry of the email address, via the WAP device keypad. Alternatively, the WAP Server could maintain an email address for each WAP device in an email profile 852 maintained in the portal database 822. In either case, the WAP Server could be equipped with an email server 854 that functions to route email-versions of the WAP content to one or more email addresses identified by the WAP device user or by the WAP device's email profile 852.
  • The content could then be delivered to the entered email address. Of course, the email profile 852 could maintain an address book for a WAP device user and could permit the user to email content to various email addresses. An email recipient could be identified through the use of a menu on the WAP device's display or through a spoken command.
  • Those skilled in the art will appreciate that the same technique could be used to deliver the content to other delivery points, including, but not limited to, a physical street address.
  • Although the present invention has been described in connection with various exemplary embodiments, those of ordinary skill in the art will understand that many modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of the invention in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.

Claims (20)

1. A system for retrieving voice-based content in conjunction with Wireless Application Protocol (WAP) browsing, comprising:
a voice portal node that establishes a voice-based communication session with a WAP device to deliver voice-based content to the WAP device by establishing a telephone call with the WAP device, in response to an instruction received from a WAP gateway.
2. The system of claim 1, further comprising, an out-bound dialing module that initiates the telephone call by utilizing a directory number of the WAP device, included in the instruction.
3. The system of claim 1, further comprising, an interpreter that receives the voice-based content from a WAP server in response to a request for the voice-based content sent by the voice portal node to the WAP server.
4. The system of claim 3, wherein, the received voice-based content is in a Voice Extensible Markup Language (VXML) format.
5. The system of claim 3, further comprising, a text-to-speech module that converts the received voice-based content to an audible message, the voice portal node delivers the audible message to the WAP device during the telephone call.
6. The system of claim 1, further comprising, a speech recognition engine that receives and recognizes an audio authorization sent by the WAP device to initiate the voice-based communication session.
7. The system of claim 1, wherein the instruction is a Transmission Control Protocol/Internet Protocol (TCP/IP) instruction that includes at least a directory number associated with the WAP device.
8. A method for voice-based content delivery during Wireless Application Protocol (WAP) browsing, comprising:
establishing a telephone call to a WAP device; and
delivering voice-based content, received from a WAP server, to the WAP device as an audio message over the telephone call.
9. The method of claim 8, further comprising, receiving an instruction from a WAP gateway to initiate a voice-based content delivery session with the WAP device, the instruction includes at least a directory number of the WAP device.
10. The method of claim 9, further comprising, requesting the voice-based content from the WAP server based in part on the instruction.
11. The method of claim 8, further comprising, providing a delivery authorization prompt to the WAP device prior to delivering the voice-based content.
12. The method of claim 11, further comprising, recognizing an audio authorization sent by the WAP device based on one or more speech recognition techniques in response to the delivery authorization prompt.
13. The method of claim 8, further comprising, converting the voice-based content, received from the WAP server, into the audio message by employing a text-to-speech conversion.
14. The method of claim 13, wherein the converting includes converting Voice Extensible Markup Language (VXML) data into the audio message.
15. The method of claim 8, further comprising, determining if a queued content delivery request exists.
16. The method of claim 15, further comprising, sending disparate voice-based content, retrieved from the WAP server in response to the queued content delivery request, over the telephone call, if the queued content delivery request exists.
17. The method of claim 8, further comprising, terminating the telephone call after delivering the voice-based content to the WAP device.
18. A system that facilitates providing voice-based content to a Wireless Application Protocol (WAP) device, comprising:
means for receiving an instruction from a WAP gateway to establish a voice-based content delivery session with the WAP device;
means for retrieving voice-based content requested by the WAP device from a WAP server; and
means for converting the voice-based content, retrieved from the WAP server, into an audible message.
19. The system of claim 18, further comprising, means for initiating a wireless telephone call to the WAP device based in part on a directory number of the WAP device received in the instruction.
20. The system of claim 19, further comprising, means for delivering the audible message to the WAP device over the wireless telephone call.
US12/621,558 2001-06-29 2009-11-19 Retrieving voice-based content in conjunction with wireless application protocol browsing Abandoned US20100135269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/621,558 US20100135269A1 (en) 2001-06-29 2009-11-19 Retrieving voice-based content in conjunction with wireless application protocol browsing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/894,257 US7151763B2 (en) 2001-06-29 2001-06-29 Retrieving voice-based content in conjunction with wireless application protocol browsing
US11/586,293 US7643846B2 (en) 2001-06-29 2006-10-25 Retrieving voice-based content in conjunction with wireless application protocol browsing
US12/621,558 US20100135269A1 (en) 2001-06-29 2009-11-19 Retrieving voice-based content in conjunction with wireless application protocol browsing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/586,293 Continuation US7643846B2 (en) 2001-06-29 2006-10-25 Retrieving voice-based content in conjunction with wireless application protocol browsing

Publications (1)

Publication Number Publication Date
US20100135269A1 true US20100135269A1 (en) 2010-06-03

Family

ID=25402811

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/894,257 Expired - Lifetime US7151763B2 (en) 2001-06-29 2001-06-29 Retrieving voice-based content in conjunction with wireless application protocol browsing
US11/586,293 Expired - Lifetime US7643846B2 (en) 2001-06-29 2006-10-25 Retrieving voice-based content in conjunction with wireless application protocol browsing
US12/621,558 Abandoned US20100135269A1 (en) 2001-06-29 2009-11-19 Retrieving voice-based content in conjunction with wireless application protocol browsing

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/894,257 Expired - Lifetime US7151763B2 (en) 2001-06-29 2001-06-29 Retrieving voice-based content in conjunction with wireless application protocol browsing
US11/586,293 Expired - Lifetime US7643846B2 (en) 2001-06-29 2006-10-25 Retrieving voice-based content in conjunction with wireless application protocol browsing

Country Status (1)

Country Link
US (3) US7151763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157883A1 (en) * 2007-11-15 2010-06-24 Moses Krausz Voice over ip cell phone
US11824904B1 (en) 2022-11-18 2023-11-21 T-Mobile Usa, Inc. Verifying delivery of rich call data object to a terminating wireless device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516190B2 (en) * 2000-02-04 2009-04-07 Parus Holdings, Inc. Personal voice-based information retrieval system
US6721705B2 (en) 2000-02-04 2004-04-13 Webley Systems, Inc. Robust voice browser system and voice activated device controller
US7216179B2 (en) 2000-08-16 2007-05-08 Semandex Networks Inc. High-performance addressing and routing of data packets with semantically descriptive labels in a computer network
US20030007609A1 (en) * 2001-07-03 2003-01-09 Yuen Michael S. Method and apparatus for development, deployment, and maintenance of a voice software application for distribution to one or more consumers
US7215942B1 (en) * 2001-08-09 2007-05-08 Bellsouth Intellectual Property Corp. Architecture for managing prepaid wireless communications services
JP2003085086A (en) * 2001-09-12 2003-03-20 Sony Corp Service provision system and method
US7197537B2 (en) * 2002-03-29 2007-03-27 Bellsouth Intellectual Property Corp Remote access and retrieval of electronic files
US7539629B1 (en) * 2002-06-20 2009-05-26 At&T Intellectual Property I, L.P. System and method for replenishing a wireless terminal account
US7209890B1 (en) * 2002-06-20 2007-04-24 Bellsouth Intellectual Property Corp. System and method for replenishing a wireless terminal account
US7233786B1 (en) 2002-08-06 2007-06-19 Captaris, Inc. Providing access to information of multiple types via coordination of distinct information services
US7333809B2 (en) * 2003-03-18 2008-02-19 At&T Mobility Ii Llc Multi-standard prepaid communication services
US20050128995A1 (en) * 2003-09-29 2005-06-16 Ott Maximilian A. Method and apparatus for using wireless hotspots and semantic routing to provide broadband mobile serveices
US20060029106A1 (en) * 2004-06-14 2006-02-09 Semandex Networks, Inc. System and method for providing content-based instant messaging
US7668156B2 (en) * 2004-12-20 2010-02-23 Tp Lab, Inc. Apparatus and method for a voice portal
US7778397B2 (en) * 2005-03-10 2010-08-17 Avaya Inc. Dynamic video generation in interactive voice response systems
US7813485B2 (en) * 2005-05-26 2010-10-12 International Business Machines Corporation System and method for seamlessly integrating an interactive visual menu with an voice menu provided in an interactive voice response system
US7706792B1 (en) 2005-08-10 2010-04-27 At&T Mobility Ii Llc Intelligent customer care support
US20070177195A1 (en) 2005-10-31 2007-08-02 Treber Rebert Queue processor for document servers
WO2007053720A2 (en) * 2005-10-31 2007-05-10 Captaris, Inc. Queue processor for document servers
US7689713B2 (en) * 2006-01-23 2010-03-30 Funambol, Inc. System operator independent server alerted synchronization system and methods
AU2007281113B2 (en) 2006-08-02 2011-02-24 Open Text S.A. Configurable document server
GB2456454B (en) * 2006-11-15 2011-06-01 Ericsson Telefon Ab L M A method and arrangement for delivering electronic messages
US20090164387A1 (en) * 2007-04-17 2009-06-25 Semandex Networks Inc. Systems and methods for providing semantically enhanced financial information
US8041743B2 (en) * 2007-04-17 2011-10-18 Semandex Networks, Inc. Systems and methods for providing semantically enhanced identity management
US7958155B2 (en) 2007-04-17 2011-06-07 Semandex Networks, Inc. Systems and methods for the management of information to enable the rapid dissemination of actionable information
US9036794B2 (en) * 2007-04-25 2015-05-19 Alcatel Lucent Messaging system and method for providing information to a user device
US8090343B2 (en) * 2007-05-29 2012-01-03 At&T Mobility Ii Llc Optimized camel triggering for prepaid calling
US8130742B2 (en) * 2007-06-15 2012-03-06 Microsoft Corporation Communication protocol for a wireless device and a game console
US7983655B2 (en) * 2007-06-20 2011-07-19 At&T Mobility Ii Llc Conditional call treatment for prepaid calls
US8090344B2 (en) * 2007-07-23 2012-01-03 At&T Mobility Ii Llc Dynamic location-based rating for prepaid calls
US20090061868A1 (en) * 2007-08-28 2009-03-05 Cingular Wireless Ii, Llc Decisionmaking for dynamic local time updates in a prepaid terminating call
US20090061856A1 (en) * 2007-08-28 2009-03-05 Cingular Wireless Ii, Llc Peak off-peak rating for prepaid terminating calls
US8774798B2 (en) * 2007-08-28 2014-07-08 At&T Mobility Ii Llc Determining capability to provide dynamic local time updates in a prepaid terminating call
US8180321B2 (en) * 2007-09-26 2012-05-15 At&T Mobility Ii Llc Recovery of lost revenue in prepaid calls
US9736207B1 (en) * 2008-06-13 2017-08-15 West Corporation Passive outdial support for mobile devices via WAP push of an MVSS URL
US9432516B1 (en) 2009-03-03 2016-08-30 Alpine Audio Now, LLC System and method for communicating streaming audio to a telephone device
US7899037B1 (en) * 2009-03-06 2011-03-01 Sprint Communications Company L.P. Voice session and data session coordination in a communication device
CN105120373B (en) * 2015-09-06 2018-07-13 上海智臻智能网络科技股份有限公司 Voice transfer control method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978806A (en) * 1997-02-18 1999-11-02 Ameritech Corporation Method and apparatus for communicating information about a called party to a calling party
US6336137B1 (en) * 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US20020087596A1 (en) * 2000-12-29 2002-07-04 Steve Lewontin Compact tree representation of markup languages
US20020112081A1 (en) * 2000-05-15 2002-08-15 Armstrong Donald E. Method and system for creating pervasive computing environments
US6493558B1 (en) * 1999-10-15 2002-12-10 Nokia Mobile Phones Ltd. TD-SMS messaging gateway
US20020194388A1 (en) * 2000-12-04 2002-12-19 David Boloker Systems and methods for implementing modular DOM (Document Object Model)-based multi-modal browsers
US6788667B1 (en) * 2000-06-20 2004-09-07 Nokia Corporation Wireless access to wired network audio services using mobile voice call
US6788774B1 (en) * 2001-05-23 2004-09-07 Bellsouth Intellectual Property Corporation System and method of providing a per-use, auto-generation, personalized web page service
US6823373B1 (en) * 2000-08-11 2004-11-23 Informatica Corporation System and method for coupling remote data stores and mobile devices via an internet based server
US7093025B1 (en) * 2000-10-04 2006-08-15 International Business Machines Corporation SMTP extension for email delivery failure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978806A (en) * 1997-02-18 1999-11-02 Ameritech Corporation Method and apparatus for communicating information about a called party to a calling party
US6493558B1 (en) * 1999-10-15 2002-12-10 Nokia Mobile Phones Ltd. TD-SMS messaging gateway
US6336137B1 (en) * 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US20020112081A1 (en) * 2000-05-15 2002-08-15 Armstrong Donald E. Method and system for creating pervasive computing environments
US6788667B1 (en) * 2000-06-20 2004-09-07 Nokia Corporation Wireless access to wired network audio services using mobile voice call
US6823373B1 (en) * 2000-08-11 2004-11-23 Informatica Corporation System and method for coupling remote data stores and mobile devices via an internet based server
US7093025B1 (en) * 2000-10-04 2006-08-15 International Business Machines Corporation SMTP extension for email delivery failure
US20020194388A1 (en) * 2000-12-04 2002-12-19 David Boloker Systems and methods for implementing modular DOM (Document Object Model)-based multi-modal browsers
US20020087596A1 (en) * 2000-12-29 2002-07-04 Steve Lewontin Compact tree representation of markup languages
US6788774B1 (en) * 2001-05-23 2004-09-07 Bellsouth Intellectual Property Corporation System and method of providing a per-use, auto-generation, personalized web page service

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157883A1 (en) * 2007-11-15 2010-06-24 Moses Krausz Voice over ip cell phone
US11824904B1 (en) 2022-11-18 2023-11-21 T-Mobile Usa, Inc. Verifying delivery of rich call data object to a terminating wireless device

Also Published As

Publication number Publication date
US7151763B2 (en) 2006-12-19
US20070129073A1 (en) 2007-06-07
US20030002635A1 (en) 2003-01-02
US7643846B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
US7643846B2 (en) Retrieving voice-based content in conjunction with wireless application protocol browsing
US7382770B2 (en) Multi-modal content and automatic speech recognition in wireless telecommunication systems
US7103550B2 (en) Method of using speech recognition to initiate a wireless application protocol (WAP) session
US20050021826A1 (en) Gateway controller for a multimodal system that provides inter-communication among different data and voice servers through various mobile devices, and interface for that controller
US7054818B2 (en) Multi-modal information retrieval system
US20060168095A1 (en) Multi-modal information delivery system
US7082397B2 (en) System for and method of creating and browsing a voice web
US6813503B1 (en) Wireless communication terminal for accessing location information from a server
FI123321B (en) System and method for maintaining a simultaneous, multifaceted communication session
US6807529B2 (en) System and method for concurrent multimodal communication
US20060064499A1 (en) Information retrieval system including voice browser and data conversion server
EP1104155A2 (en) Voice recognition based user interface for wireless devices
US20070043868A1 (en) System and method for searching for network-based content in a multi-modal system using spoken keywords
WO2004064357A2 (en) Data conversion server for voice browsing system
GB2371949A (en) Enhancement of communication capabilities
US20030187944A1 (en) System and method for concurrent multimodal communication using concurrent multimodal tags
JP5652406B2 (en) Voice input system and voice input program
US7216287B2 (en) Personal voice portal service
KR100778643B1 (en) System and method for transmission and delivery of travel instructions to informational appliances
US20020069066A1 (en) Locality-dependent presentation
JP2003316803A (en) Portable terminal device and service providing system
KR100668919B1 (en) Method and device for voice process of internet service by mobile phone
KR20020073357A (en) Method of connecting wireless internet sites using ASR

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION