US20100159645A1 - Semiconductor apparatus and process of production thereof - Google Patents

Semiconductor apparatus and process of production thereof Download PDF

Info

Publication number
US20100159645A1
US20100159645A1 US12/717,472 US71747210A US2010159645A1 US 20100159645 A1 US20100159645 A1 US 20100159645A1 US 71747210 A US71747210 A US 71747210A US 2010159645 A1 US2010159645 A1 US 2010159645A1
Authority
US
United States
Prior art keywords
bumps
semiconductor
cleaning
production
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/717,472
Inventor
Toshiharu Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to US12/717,472 priority Critical patent/US20100159645A1/en
Publication of US20100159645A1 publication Critical patent/US20100159645A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02311Additive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02377Fan-in arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor apparatus mounted using solder or other metal bumps and a process of production of the same.
  • DIP Direct Inline Package
  • PGA Peripheral Component Interconnect Express
  • TDD through hole mounted devices
  • QFP Quad Flat (L-Leaded) Package
  • TCP Tape Carrier Package
  • SMD surface mounted devices
  • CSP chip size package
  • FBGA Fre-Pitch BGA
  • One of the mounting methods for mounting such a flip-chip type semiconductor device is for example the method of forming for example spherically shaped (ball shaped) solder bumps (solder ball bumps) on electrode pads comprised of aluminum (Al) etc. of a semiconductor IC and bringing the connection terminals of the semiconductor IC into contact with the solder ball bumps to directly mount the IC chip on a printed circuit board.
  • a semiconductor apparatus comprised of a CSP type semiconductor chip mounted on a mounting board will be explained with reference to the drawings.
  • FIG. 11 is a sectional view of the above semiconductor apparatus.
  • the surface of the semiconductor device (semiconductor wafer) 10 on which electrode pads 11 comprised of Al etc. are formed is covered for example by a first surface protective film 12 comprised of a silicon nitride layer and a second surface protective film 13 comprised of a polyimide layer in a state leaving only the electrode pad 11 portions open. Further, a conductive film 14 comprised of a stacked films of chrome (Cr), copper (Cu), gold (Au), etc. is formed at the openings of the electrode pad 11 portions to be connected to the electrode pads 11 .
  • the conductive film is sometimes called a BLM (Ball Limiting Metal) film.
  • solder bumps 16 b comprised of for example high melting point solder balls are formed connected to the conductive film (BLM film) 14 .
  • a CSP type semiconductor chip 1 is constituted in this way.
  • the mounting board 2 is a board 20 comprised of for example a glass epoxy-based material on the top of which are provided lands (electrodes) 21 formed at positions corresponding to the positions of formation of the solder bumps 16 b of the semiconductor chip 1 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 21 and formed on the front surface or back surface or the two surfaces of the board 20 .
  • the surface of the board 20 other than the land 21 portions is covered by a solder resist 23 .
  • the above CSP type semiconductor chip 1 is mounted on the mounting board 2 with the bumps 16 b aligned with the lands 21 .
  • the bumps 16 b and lands 21 are mechanically and electrically connected by eutectic solder layers 19 .
  • a sealing resin 3 comprised of an epoxy resin etc.
  • the method of forming the bumps at predetermined positions for example there is known the method of using electrolytic plating.
  • the thickness of the solder bumps formed is affected by the surface conditions of the layer of material forming the underlayer of the bumps or the slight variation in the electrical resistance and that the formation of uniform solder bumps of the same height in a semiconductor chip is extremely difficult.
  • electrode pads 11 comprised of an aluminum (Al) and copper (Cu) alloy etc. are formed by patterning on a semiconductor wafer 10 formed with circuit patterns of semiconductor chips by for example the sputtering method or etching etc. and a surface protective film 13 comprised of for example a silicon nitride layer or polyimide layer etc. is formed on top of it covering the entire surface.
  • the electrode pad 11 portions of the surface protective layer 13 are opened, then for example a pattern is formed by the sputtering method so as to connect a conductive layer (BLM layer) 14 comprised of a stacked film of chrome, copper, and gold to the electrode pads 11 .
  • a conductive layer (BLM layer) 14 comprised of a stacked film of chrome, copper, and gold
  • a resist film R 2 having pattern openings P is formed by patterning at the conductive film (BLM film) 14 forming areas by a photolithography step.
  • solder layers 16 are formed in the pattern openings P of the resist film R 2 by forming a solder layer over the entire surface by for example a vacuum evaporation method. At this time, solder layers 16 a are formed over the resist film R 2 as well.
  • the solder layers 16 a formed over the resist film R 2 are simultaneously removed by removing the resist film R 2 by lift-off. Due to this, it is possible to leave only the solder layers 16 formed in the pattern openings P of the resist film R 2 .
  • solder layers 16 melt are cooled and solidified in a state forming spheres due to the surface tension so as to form solder ball bumps 16 b.
  • solder ball bumps 16 b are formed in the semiconductor wafer state (that is, the state before being cut into individual semiconductor chips).
  • solder ball bumps 16 b are made to abut against the lands 21 comprised of Cu etc. formed on the board 20 of the mounting board 2 .
  • the board 20 is covered by a solder resist 23 over its entire front surface except for the lands 21 and is precoated by a eutectic solder layer 19 over the areas of the lands 21 or the surfaces of the solder ball bumps 16 b.
  • the eutectic solder 19 is melted and the melted eutectic solder enters between the solder ball bumps 16 b and lands 21 .
  • the solder ball bumps 16 b are soldered and electrically connected to the lands 21 .
  • the thermal stress becomes a major disadvantage for the reliability of the joint by the bumps after flip-chip mounting due to the differences in the coefficients of heat expansion of the semiconductor chips and the mounting board (printed circuit board).
  • the coefficient of heat expansion of silicon is 3.4 ppm/° C.
  • the coefficient of heat expansion of the generally widely used glass epoxy-based mounting board is a large about 15 ppm/° C.
  • the method is generally adopted of injecting a sealing resin 3 between the semiconductor chips 1 and mounting board 2 and relieving the thermal stress applied to the weak strength bump joints by having the stress of heat expansion received by the sealing resin as a whole.
  • the replacement of the entire mounting board 2 of the former case has the disadvantage of the cost ending up higher, while the forcibly tearing off of the semiconductor chip 1 of the latter case ends up damaging the mounting board 2 .
  • An object of the present invention is to provide a semiconductor apparatus and a process of production thereof which enable the thermal stress between a semiconductor device and mounting board to be reliably relieved without the use of a sealing resin and further which can reduce the connection resistance and can increase the strength of the joint portions.
  • a semiconductor apparatus comprising metal bumps formed so as to connect to a circuit pattern of a semiconductor device and a resin film formed on a circuit pattern forming surface of said semiconductor device so as to seal spaces between the metal bumps and become thinner than the height of the metal bumps, the surfaces of the metal bumps projecting out from the resin film being cleaned.
  • the surfaces of the metal bumps projecting out from the resin film are cleaned of components inviting a rise of a connection resistance and a drop in a joint strength at least at connection interfaces.
  • said metal bumps are solder bumps and solder layers different in composition from said solder bumps are formed at the surfaces of the solder bumps projecting out from the resin film.
  • said solder bumps are comprised of a high metal point solder and said solder layers are comprised of a eutectic solder.
  • a process of production of a semiconductor apparatus comprising a first step of forming metal bumps so as to connect to a circuit pattern of a semiconductor device, a second step of forming a resin film on a circuit pattern forming surface of the semiconductor device so as to seal spaces between the metal spaces and to become thinner than a height of the metal bumps, and a third step of cleaning the surfaces of the metal bumps projecting out from the resin film.
  • the surfaces are cleaned by removing components inviting a rise in a connection resistance and a decline in a joint strength at least at a connection interface.
  • the surfaces of the bumps are activated in parallel to the cleaning of the surfaces of the bumps.
  • the resin film components deposited on the bumps are removed.
  • oxides on the bump surfaces are removed.
  • the cleaning of the surfaces of the bumps is performed by plasma cleaning
  • the plasma cleaning is at least sputter etching by discharge plasma of an inert gas.
  • the plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of an inert gas.
  • the plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of a reducing gas.
  • the cleaning of the surfaces of the bumps is performed by irradiating a laser beam.
  • the cleaning of the surfaces of the bumps is performed under a reduced pressure atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • the cleaning of the surfaces of the bumps is performed while applying a gas jet to the bumps to peel off the unnecessary components which are then sucked away.
  • the metal bumps formed in the first step are solder bumps and, after the third step, further there is provided a fourth step of forming solder layers different in composition from the solder bumps on the surfaces of the solder bumps.
  • the solder bumps are a high melting point solder and said solder layers are comprised of a eutectic solder.
  • the eutectic solder layers are formed by a printing method, plating method, or transfer method.
  • the steps up to at least the third step are performed on a semiconductor device formed on a semiconductor substrate in a semiconductor wafer state.
  • the step of cutting the semiconductor wafer into unit semiconductor chips further there is provided a step of mounting a semiconductor chip on a mounting board from the bump forming surface side so as to connect it at the bumps.
  • the areas around the bases of the relatively weak strength metal bumps for example, the areas around the spherical solder bumps, are reinforced by a resin.
  • the thermal stress is relieved by this resin.
  • the resin film is formed before the semiconductor device is mounted on the mounting board, so there is no need to inject the sealing resin between the mounting board and semiconductor device after mounting the semiconductor device and therefore the productivity is improved.
  • the resin film is formed with a height lower than the height of the metal bumps, even if the semiconductor device is mounted on the mounting board, it will not contact the mounting board.
  • the components inviting a rise in a connection resistance and a decline in a joint strength at least at a connection interface are removed from the surfaces of the metal bumps exposed from the resin film and the exposed surfaces are cleaned.
  • the resin film components deposited on the bumps or the oxides at the surfaces of the bumps are removed. Further, the surfaces of the bumps are activated in parallel with the cleaning of the surfaces of the bumps.
  • connection resistance is reduced and the joint strength increased when joining the metal bumps to the lands of the mounting board or to the solder layers formed at the surfaces of the bumps.
  • the thermal stress is relieved when mounting the semiconductor device to the mounting board, the electrical characteristics are improved and the joint strength is increased when the semiconductor device is mounted to the mounting board, and thereby mounting defects are reduced to a large extent.
  • the plasma cleaning is at least sputter etching by a discharge plasma of inert gas
  • the sputter etching by RF discharge plasma using for example Ar or another inert gas
  • the resin remaining on the surfaces of the metal bumps is removed by the sputtering and surfaces of clean metal bumps are exposed.
  • physical ion irradiation is used to chemically activate the surface layers.
  • first oxygen plasma is used to burn off the resin remaining on the surfaces of the metal bumps by a reaction system comprised mainly of a combustion reaction of the organic matter mainly comprising the resin and then using RF discharge plasma using Ar or another inert gas for sputter etching and removal of the resin remaining on the surfaces of the metal bumps by sputtering.
  • two-stage plasma cleaning enables the residual resin to be effectively removed by use of a chemical reaction (combustion reaction).
  • the slight oxide films formed on the surfaces of the metal bumps during the cleaning by the oxygen plasma treatment are removed by the Ar ions by sputtering.
  • the above-mentioned plasma cleaning treatment is at least oxygen plasma treatment and then sputter etching by discharge plasma of a reducing gas
  • first oxygen plasma is used to burn off the resin remaining on the surfaces of the metal bumps
  • HF or another reducing gas is used for sputter etching to more thoroughly remove the resin remaining on the surfaces of the metal bumps.
  • the surfaces of the metal bumps exposed from the resin film are for example irradiated by a laser beam etc. to cause extremely rapid heat expansion at the surface layers of the bumps and peel off the sealing resin components, then a gas jet is directed there to remove the same or the energy of a laser beam is used to reduce the surface layers of the bumps and naturally remove the oxides so as to clean and activate the surfaces of the bumps.
  • gas is ejected from a gas ejection nozzle placed for example near the bumps under a reduced pressure atmosphere, inert gas atmosphere, or reducing gas atmosphere and a laser beam is irradiated to remove the resin coating components while applying suction to the areas near the bumps by the suction nozzle placed near the bumps.
  • solder bumps comprised of for example a highly elastic high melting point solder used as the metal bumps solder layers different in composition from the solder forming the solder bumps, preferably solder layers comprised of a eutectic solder to be brought into contact with the eutectic solder precoated on the connection lands of the mounting board, the thermal stress is relieved by the elastic deformation of the above high melting point solder even if thermal stress occurs caused by the difference in coefficients of heat expansion between for example the silicon chip constituting the semiconductor substrate of the semiconductor device and the mounting board.
  • solder layers by a eutectic solder, the wettability with the eutectic solder precoated on the connection lands of the mounting board becomes excellent and reliable joining by soldering is achieved.
  • connection resistance is reduced and the joint strength is increased at the joint portions of the solder bumps and the solder layers.
  • the thermal stress is relieved and the connection resistance is reduced and joint strength increased, whereby mounting defects are greatly reduced and the reliability of the joint portions by the metal bumps is improved.
  • the formation of the metal bumps and formation of the resin film and the plasma cleaning or laser beam irradiation and, in some cases, the formation of the solder layers are performed on a semiconductor device when at least three steps are performed on a semiconductor device formed on a semiconductor substrate in the semiconductor wafer state, there is no need to perform this work on the individual semiconductor devices, it is possible to perform this work on a large number of semiconductor devices at one time, and the productivity is improved more.
  • FIG. 1 is a sectional view of a semiconductor device according to an embodiment
  • FIGS. 2A to 2C give sectional views of production steps of a process of production of a semiconductor apparatus according to an embodiment, wherein FIG. 2A shows up to the step of opening the electrode pads, FIG. 2B shows up to the step of forming the conductive film (BLM film), and FIG. 2C shows up to the step of removing the conductive film on the resist film by lift-off;
  • FIG. 2A shows up to the step of opening the electrode pads
  • FIG. 2B shows up to the step of forming the conductive film (BLM film)
  • FIG. 2C shows up to the step of removing the conductive film on the resist film by lift-off;
  • FIGS. 3A to 3C show the steps after FIGS. 2A to 2C , wherein FIG. 3A shows up to the step of forming the surface protective film, FIG. 3B shows up to the step of depositing the solder layer, and FIG. 3C shows up to the step of removing the solder layer on the resist film by lift-off;
  • FIGS. 4A to 4C show the steps after FIGS. 3A to 3C , wherein FIG. 4A shows up to the step of forming the solder ball bumps by reflow, FIG. 4B shows up to the step of forming the resin coating, and FIG. 4C shows up to the step of cleaning the surfaces of the bumps;
  • FIGS. 5A and 5B show the steps after FIGS. 4A to 4C , wherein FIG. 5A shows up to the step of supplying the eutectic solder layers and FIG. 5B shows up to the step of mounting on the mounting board;
  • FIG. 6 is a schematic sectional view of a first example of the configuration of a plasma treatment device for plasma cleaning in the process of production of FIG. 1 ;
  • FIG. 7 is a schematic sectional view of a second example of the configuration of a plasma treatment device for plasma cleaning in the process of production of FIG. 1 ;
  • FIG. 8 is a view for explaining a second embodiment of the process of production of a semiconductor apparatus according to the present invention.
  • FIG. 9 is a schematic view of an excimer laser beam irradiation device according to a second embodiment
  • FIG. 10 is a schematic view of an excimer laser beam irradiation device according to a second embodiment
  • FIG. 11 is a sectional view of a semiconductor apparatus according to a prior art
  • FIGS. 12A to 12C gives sectional views of production steps of a process of production of a semiconductor apparatus according to an example of the prior art, wherein FIG. 12A shows up to the step of forming a conductive film (BLM film), FIG. 12B shows up to the step of forming a resist film, and FIG. 12C shows up to the step of depositing the solder layer; and
  • FIG. 12A shows up to the step of forming a conductive film (BLM film)
  • FIG. 12B shows up to the step of forming a resist film
  • FIG. 12C shows up to the step of depositing the solder layer
  • FIGS. 13A to 13B show the steps after FIGS. 12A to 12C , wherein FIG. 13A shows the step up to the removal of the solder layer on a resist film by lift-off and FIG. 13B shows up to the step of forming solder ball bumps by reflow.
  • FIG. 1 is a sectional view of a semiconductor apparatus produced by the process of production of a semiconductor apparatus according to the present embodiment.
  • the surface of the semiconductor chip 110 for forming the electrode pads 111 comprised of aluminum etc. is for example covered by a surface protective film 113 comprised of for example a silicon nitride layer or polyimide layer, then electrode pad 111 portions are opened.
  • a conductive film 114 comprised of a stacked film of chrome, copper, and gold etc. is formed at the openings connected to the electrode pads 111 .
  • the conductive film is sometimes called a BLM (Ball Limiting Metal) film.
  • an upper surface protective film 115 comprised of for example a polyimide is formed on the conductive film (BLM film) 114 and bump forming areas are opened.
  • bumps 116 b comprised of for example high melting point solder balls are formed connected to the conductive film (BLM film) 114 .
  • the positions of formation of the bumps 116 b are shifted in accordance with need with respect to the positions of formation of the electrode pads 111 and the conductive film (BLM film) 114 is formed by patterning so as to correspond to the same.
  • the surface of the semiconductor chip 110 (in actuality, the upper surface protective film 115 etc.) at the spaces between the bumps 116 b is sealed by a resin film 117 comprised of an epoxy resin etc.
  • the surfaces of the bumps 116 b exposed from the resin coating 117 are cleaned for example by plasma cleaning.
  • a CSP type semiconductor chip 100 is constituted in this way.
  • the mounting board 200 is a board 210 comprised of for example a glass epoxy based material on the top of which are provided lands (electrodes) 211 formed at positions corresponding to the positions of formation of the solder bumps 116 b of the semiconductor chip 100 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 211 and formed on the front surface or back surface or the two surfaces of the board 210 .
  • the surface of the board 210 other than the land 211 portions is covered by a solder resist 213 .
  • the above CSP type semiconductor chip 100 is mounted on a mounting board 200 with the bumps 116 b aligned with the lands 211 .
  • the bumps 116 b and lands 211 are mechanically and electrically connected by eutectic solder layers 119 .
  • electrode pads 111 comprised of an aluminum and copper alloy etc. are formed by patterning on a semiconductor wafer 110 formed with circuit patterns of semiconductor chips by for example the sputtering method or etching etc., a surface protective film 113 comprised of for example a silicon nitride layer or polyimide layer etc. is formed on top of it covering the entire surface, and electrode pad 111 portions of the surface protective layer 113 are opened.
  • a resist film R 1 in which are opened regions for forming a conductive film connecting the electrode pads 111 and bumps formed in a later step are formed by patterning by a photolithography step and a stacked film of chrome, copper, and gold is deposited on the entire surface by for example the sputtering method to form a conductive film (BLM film) 114 so as to connect the electrode pads 111 in the pattern openings of the resist film R 1 .
  • a conductive film 114 a is formed on top of the resist film R 1 .
  • the resist film R 1 is removed by lift-off to simultaneously remove the conductive film 114 a formed on the resist film R 1 . Due to this, it is possible to leave only the conductive film (BLM film) formed in the pattern openings of the resist film R 1 .
  • an upper surface protective film 115 comprised of for example a polyimide layer etc. is formed on the conductive film (BLM film) 114 covering the entire surface and bump forming regions of the upper surface protective film 115 .
  • a resist film R 2 having pattern openings is formed by patterning at the bump forming regions by a photolithography step.
  • solder layer is formed over the entire surface by for example a vacuum evaporation method so as to form solder layers 116 in the pattern openings of the resist film R 2 .
  • solder layers 116 a are formed over the resist film R 2 as well.
  • the solder layers 116 a formed over the resist film R 2 are simultaneously removed by removing the resist film R 2 by lift-off. Due to this, it is possible to leave only the solder layers 116 formed in the pattern openings of the resist film R 2 .
  • solder layers 116 melt are cooled and solidified in a state forming spheres due to the surface tension so as to form solder ball bumps 116 b comprised of high melting point solder balls.
  • solder a high melting point solder is used.
  • the high melting point solder is comprised of for example 97 percent or so of Pb and 3 percent or so of Sn. It has a high melting point and a relatively high elasticity.
  • an epoxy-based resin is coated by a spin coat etc. at the semiconductor wafer level, then the resin is treated to cure, for example, is heat treated by curing at about 150° C. for about 5 hours so as to cure the resin 117 .
  • a resin film 117 is formed at the bumps 116 b of the semiconductor wafer 110 at a thickness forming a surface lower than the height of the bumps 116 b while sealing the spaces between the bumps 116 b.
  • resin coating components or oxides of the solder and other insulating impurities 117 a are formed on the surfaces of the bumps 116 b depending on the process conditions of the resin coating step.
  • a thickness greater than the actual insulating impurities is shown.
  • plasma cleaning is used to remove the resin coating components or oxides of the solder and other insulating impurities 117 a from the surfaces of the bumps 116 b to clean the surfaces of the bumps 116 b projecting out from the surface of the resin film 117 .
  • the plasma cleaning is performed as explained later by the plasma treatment device shown in FIG. 6 or FIG. 7 for example.
  • the surfaces of the bumps 116 b are sputter etched and the resin coating components or oxides of the solder or other insulating impurities 117 a remaining at the surfaces are removed.
  • eutectic solder layers 118 are formed by the printing method, plating method, or transfer method connected to the bumps 116 b.
  • the height of the bumps is increased and the resistance to thermal stress is improved, the wettability with the solder at the time of mounting to the mounting board can be improved, and the reliability of the connections can be further improved.
  • the semiconductor wafer 110 is cut along the cutting positions D of the semiconductor wafer 110 by a dicing step to divide it into individual CSP type semiconductor chips 100 .
  • the above eutectic solder is comprised of for example 40 percent or so of Pb and 60 percent or so of Sn. Compared with the above-mentioned high melting point solder, it has a low melting point of for example not more than 200° C.
  • Heat treatment is applied at a temperature in a range where only the eutectic solder melts and the high melting point solder does not melt (for example, 200° C. to 250° C.), whereby the above eutectic solder film pattern melts and, as shown in FIG. 5A , forms balls and hardens by the surface tension so as to join with the cleaned surfaces of the bumps 116 b.
  • solder bumps of a stacked structure of the bumps 116 b and eutectic solder 118 are formed.
  • the CSP type semiconductor chip 100 is mounted on a mounting board 200 from the bump 116 b forming surface.
  • the mounting board 200 is a board 210 comprised of for example a glass epoxy based material on the top of which are provided lands (electrodes) 211 formed at positions corresponding to the positions of formation of the solder bumps 116 b of the semiconductor chip 100 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 211 and formed on the front surface or back surface or the two surfaces of the board 210 .
  • a precoated solder layer 212 comprised of a eutectic solder is formed on the lands 211 . Further, the surface of the board 210 other than the land 211 portions is covered by a solder resist 213 .
  • the above CSP type semiconductor chip 100 is mounted on the above mounting board 200 with the bumps 116 b aligned with the lands 211 .
  • Heat treatment of for example 200 to 250° C. is used to make the eutectic solder layer 118 or precoated solder layer 212 reflow without the bumps 116 b melting, eutectic solder layers 119 are formed at the joint positions of the bumps 116 b and lands 211 , and the CSP type semiconductor chip 100 and mounting board 200 are mechanically and electrically connected to produce the semiconductor device shown in FIG. 1 .
  • the eutectic solder 118 is comprised by a eutectic solder film, the wettability of the eutectic solder 118 and the eutectic solder film 212 prepared on the lands 211 is excellent. Therefore, the eutectic solder 118 and the lands 211 join strongly with each other due to their close affinity, so the soldering is reliable.
  • the plasma treatment device shown in FIG. 6 is used for plasma cleaning by a discharge plasma of an inert gas, for example, argon gas.
  • the plasma treatment device 300 is a so-called triode type RF plasma treatment device comprised of a sealed plasma treatment chamber 301 , a anode plate 302 provided at the top inside the plasma treatment chamber 301 , a stage 303 serving as a cathode plate provided at the bottom, a lattice electrode 304 provided between the anode plate 302 and the stage 303 , a coupling capacitor 305 through which a plasma generation power source 306 is connected to the cathode plate 302 , and a coupling capacitor 307 through which a substrate bias power source 308 is connected to the stage 303 .
  • a treated substrate that is, the semiconductor wafer 110
  • the substrate bias power source 308 in the state with for example an argon gas introduced inside as an inert gas
  • the plasma generation power source 306 is used to apply a plasma source power between the anode plate 302 and the lattice electrode 304 .
  • a discharge plasma 309 of argon gas is produced between the anode plate 302 and the lattice electrode 304 , and argon ions Ar+ fly out from the anode plate 302 toward the lattice electrode 304 , pass through the lattice electrode 304 , and strike the semiconductor wafer 110 on the stage 302 .
  • the surface of the semiconductor wafer 110 that is, the surface of the resin 117 and the projecting surfaces of the bumps 116 b are etched, whereby the resin 117 a remaining on the surfaces of the bumps 116 b is removed.
  • the operating conditions of the above plasma treatment device 300 are set as shown below for example. That is,
  • Plasma source power 700W (2 MHZ)
  • Substrate bias voltage 350V (13.56 MHZ)
  • Treatment time 120 seconds
  • the plasma treatment device shown in FIG. 7 was used for oxygen plasma treatment, then discharge plasma of a reducing gas was used for plasma cleaning.
  • the plasma treatment device 400 is an ICP (Inductively Coupled Plasma) high density plasma treatment device of a known configuration comprised of a sealed plasma treatment chamber 401 , an anode plate 402 provided at the top inside the plasma treatment chamber 401 , a vertically movable stage 403 serving as a cathode plate provided at the bottom, an inductively coupled coil 404 provided around the plasma treatment chamber 401 , a coupling capacitor 405 through which a substrate bias power source 406 is connected to the stage 403 , and an ICP power source 407 connected to the inductively coupled coil 404 .
  • ICP Inductively Coupled Plasma
  • a treated substrate that is, the semiconductor wafer 110
  • a bias voltage is applied between the stage 403 and anode electrode 402 by the substrate bias power source 406 in the state with oxygen gas introduced inside, and a high frequency induction field is produced inside the plasma treatment chamber 401 .
  • the surface of the semiconductor wafer 110 that is, the surface of the resin 117 and the projecting surfaces of the bumps 116 b, are etched, whereby the resin coating components or oxides of the solder or other insulating impurities 117 a remaining on the surfaces of the bumps 116 b are removed.
  • the operating conditions of the above plasma treatment device 400 are set as shown below for example. That is,
  • Substrate bias voltage 100V (13.56 MHZ)
  • Treatment time 20 seconds
  • the surfaces of the bumps 116 b are slightly oxidized by the oxygen plasma and an oxide film is formed.
  • plasma etching is performed by reducing gas to remove the oxide film of the bumps 116 b.
  • This reducing gas plasma etching is performed in the above plasma treatment device 400 by changing the settings of the operating conditions, introducing a mixed gas of for example hydrofluoride (HF) gas as the reducing gas and for example argon gas as the inert gas inside the plasma treatment chamber 400 , and etching the surfaces of the bumps 116 b by the plasma etching action of the reducing gas.
  • a mixed gas of for example hydrofluoride (HF) gas as the reducing gas
  • argon gas as the inert gas
  • the operating conditions of the above plasma treatment device 400 are set as shown below for example. That is,
  • Substrate bias voltage 250V (13.56 MHZ)
  • Treatment time 20 seconds
  • the oxide film formed on the surfaces of the bumps 116 b is reduced by the reaction with the HF gas and the sputtering action of the Ar+ ions causes sputter removal and cleans the surfaces of the bumps 116 b.
  • a high density plasma generation source is used by the plasma treatment device 400 and treatment in a low pressure atmosphere is enabled by this. Due to this, the ion species produced in large quantities strike the surface of the semiconductor chip 110 substantially perpendicularly without scattering and the etching by the sputtering by irradiation of Ar+ ions is performed at a high speed with good efficiency.
  • the substrate bias voltage is set low so as to reduce the damage caused by the plasma cleaning of the semiconductor chip 110 , the time required for the plasma cleaning of the surfaces of the bumps 116 b is shortened without a reduction in the etching rate.
  • the resin 117 a remaining on the surfaces of the bumps 116 b are more effectively removed by the plasma etching by the oxygen plasma and the plasma etching by the reducing gas and the surfaces are cleaned more.
  • hydrofluoride gas HF was used as the reducing gas, but the invention is not limited to this.
  • hydrogen gas H 2 or hydrochloride gas HCl or another reducing gas it is clear that it is also possible to use for example hydrogen gas H 2 or hydrochloride gas HCl or another reducing gas.
  • a liquid form of HF or HCl etc. for example bubbling using helium He or another carrier gas, heating aeration, ultrasonic aeration, or another suitable means is used to introduce it into the plasma treatment chamber 301 , 401 .
  • a triode-type RF plasma treatment device 300 or ICP high density plasma treatment device 400 was used for the plasma cleaning of the surfaces of the bumps 116 , but the invention is not limited to this.
  • a parallel plate type RF plasma treatment device or a so-called TCP, ECR, helicon wave plasma, or other type of high density plasma treatment device it is clear that it is also possible to use a parallel plate type RF plasma treatment device or a so-called TCP, ECR, helicon wave plasma, or other type of high density plasma treatment device.
  • the bases of the bumps are reinforced by a resin film sealing the spaces between the bumps, it is possible to increase the resistance to heat expansion stress and improve the connection reliability even without completely sealing the area between the semiconductor chips and the mounting board by a resin, the detachment of a CSP type semiconductor chip from the mounting board is easy, and it is possible to simply replace defective components (rework).
  • the bumps 116 b are secured and held by the resin film 117 . Even if thermal stress occurs between the semiconductor substrate and the mounting board due to changes in temperature of the surroundings etc. after mounting, since the solder bumps are secured by the resin film 117 and the bumps 116 b have elasticity, the resin film 117 as a whole receives the thermal stress and the bumps 116 b elastically deform so the thermal stress is relieved. Due to this, breakage of the joint portions of the solder bumps 23 by thermal stress is prevented and the reliability of the solder bumps is improved.
  • the resin film 117 is formed on the surface of the electrode pad 111 side of the semiconductor chip 100 before mounting to the mounting board 200 , the resin film 117 never contacts the surface of the mounting board 200 .
  • the bumps 116 b are surrounded by the resin film 117 , then the exposed surfaces projecting out from the resin film 117 are cleaned by plasma cleaning Further, a eutectic solder 118 is formed on the cleaned surfaces, so the connection resistance at the interface of the bumps 116 b and the eutectic solder 118 is reduced and the joint strength is increased.
  • bumps are comprised with lower resistances and higher joint strengths and the occurrence of mounting defects is reduced more.
  • the electrical characteristics and the bonding strength at the interfaces are improved, whereby the reliability and durability of the semiconductor chip 100 and the various equipment in which it is installed are greatly improved.
  • the bumps 116 b are covered by a film by vacuum evaporation and a pattern formed by lift-off of the photoresist, but the invention is not limited to this. It is clear that electroplating etc. may also be used to form it.
  • solder of a high melting point solder comprised of for example 97 percent or so of Pb (lead) and 3 percent or so of Sn or a eutectic solder comprised of for example 40 percent or so of Pb and 60 percent or so of Sn, but of course it is also possible to use another solder not containing Pb, for example, a solder comprised of 96.5 percent of tin and 3.5 percent of silver, a solder comprised of 99.3 percent of tin and 0.7 percent or copper, etc.
  • FIG. 8 is a view for explaining a second embodiment of the process of production of a semiconductor apparatus according to the present invention.
  • the point of difference of the second embodiment from the first embodiment explained above is that the cleaning of the surfaces of the bumps 116 b exposed from the resin film 117 is performed by removing the resin film and other unnecessary components by irradiation of a laser beam L as shown in FIG. 8 instead of plasma cleaning.
  • step shown in FIG. 8 is performed instead of the step of FIG. 4C in the process of production explained with relation to FIGS. 2A , 2 B, and 2 C, FIGS. 3A , 3 B, and 3 C, FIGS. 4A , 4 B, and 4 C, and FIGS. 5A and 5B .
  • a resin film 117 is formed on the surface of the semiconductor wafer 110 for forming the bumps 116 b to a thickness for forming a surface lower than the height of the bumps 116 b, then, as shown in FIG. 8 , an excimer laser beam L is irradiated on the surface of the semiconductor wafer 110 forming the bumps 116 b to remove from the surfaces of the bumps 116 b the resin film components or oxides of the solder or other insulating impurities 117 a and clean the surfaces of the bumps 116 b projecting out from the surface of the resin film 117 .
  • the laser beam may be irradiated from a laser beam irradiation device such as shown in the schematic view of FIG. 9 for example.
  • the laser beam irradiation device 500 is provided with a wafer stage 501 , a not shown light source for irradiating an excimer laser beam L, a gas ejection nozzle 504 for ejecting a gas 505 , and a suction nozzle 506 .
  • the semiconductor wafer 502 for processing is placed on and secured to the wafer stage 501 with the bump forming surface facing upward and a KrF excimer laser beam L with for example a wavelength of 248 nm, an energy density of 400 mJ/cm 2 , and a pulse oscillation of 30 Hz is irradiated on the bump forming surface of the semiconductor wafer to sweep it at a speed of 50 mm/sec.
  • a KrF excimer laser beam L with for example a wavelength of 248 nm, an energy density of 400 mJ/cm 2 , and a pulse oscillation of 30 Hz is irradiated on the bump forming surface of the semiconductor wafer to sweep it at a speed of 50 mm/sec.
  • the nitrogen gas or other gas 505 is ejected from the gas ejection nozzle 504 provided at the laser beam irradiation device to the bump forming surface at a flow rate of 20 l/sec to peel off the sealing resin components and other insulating impurities 117 a which are then sucked away by the suction nozzle 506 .
  • the movement of the wafer stage 501 and laser pulses are synchronized and a laser beam irradiated at a constant overlap.
  • the amount of irradiation of the laser beam is controlled to be uniform in the plane of the semiconductor wafer.
  • the sealing resin components deposited on the surfaces of the bumps 116 b are peeled off, and a gas jet is applied to remove them so as to clean the surfaces of the bumps.
  • the energy of the laser beam may be used to reduce the surface portions of the bumps and remove the natural oxides and activate the surfaces of the bumps.
  • the laser beam may be irradiated by a laser beam irradiation device such as shown in the schematic view of FIG. 10 for example.
  • the laser beam irradiation device 500 A is provided with a wafer cassette 508 in which untreated wafers 502 are housed, a reaction treatment chamber 507 , and a load-lock chamber 510 in which treated wafers 502 are housed.
  • the wafer cassette 508 and reaction treatment chamber 507 and the reaction treatment chamber 507 and load-lock chamber 500 are connected by gate valves 509 .
  • the laser beam irradiation device 500 A is provided with a wafer stage 501 , a not shown light source for irradiating the excimer laser beam L, a gas ejection nozzle 504 for ejecting a gas 505 , and a suction nozzle 506 .
  • reaction treatment chamber 507 is provided with a gas exhaust port 512 connecting the gas introduction port 511 to a not shown suction pump.
  • the inside of the reaction treatment chamber 507 can be made a reduced pressure atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • the air is exhausted from the gas exhaust port 512 to reduce the pressure, a nitrogen gas is introduced from the gas introduction port 511 , and a not shown wafer operating mechanism is used to take out a semiconductor wafer to be treated from the wafer cassette in the reaction treatment chamber 507 controlled to a 1 Torr nitrogen atmosphere and to place and secure the bump forming surface on the wafer stage 501 facing upward.
  • a KrF excimer laser beam L with for example a wavelength of 248 nm, an energy density of 400 mJ/cm 2 , and a pulse oscillation of 30 Hz is irradiated on the bump forming surface of the semiconductor wafer to sweep it at a speed of 50 mm/sec.
  • the nitrogen gas or other gas 505 is ejected from the gas ejection nozzle 504 provided at the laser beam irradiation device to the bump forming surface at a flow rate of 20 l/sec to peel off the sealing resin components and other insulating impurities 117 a which are then sucked away by the suction nozzle 506 .
  • the treated semiconductor wafer 502 is housed in the load-lock chamber 510 by a not shown wafer operating mechanism.
  • the movement of the wafer stage 501 and laser pulses are synchronized and a laser beam irradiated at a constant overlap.
  • the amount of irradiation of the laser beam is controlled to be uniform in the plane of the semiconductor wafer.
  • the sealing resin components deposited on the surfaces of the bumps 116 b are peeled off and a gas jet is applied to remove them so as to clean the surfaces of the bumps. Further, it is possible to remove the natural oxides on the surfaces of the bumps and activate the surfaces of the bumps.
  • the oxygen is removed from the reaction treatment chamber 507 .
  • the chamber becomes a high temperature by the cleaning by irradiation of a laser beam and the progress of natural oxidation of the activated surfaces of the bumps can be suppressed.
  • a eutectic solder layer 118 is formed connected to the bumps 116 a by the printing method, plating method, or transfer method, then the semiconductor wafer 110 is cut along the cutting positions D of the semiconductor wafer 110 by a dicing step to divide it into individual CSP type semiconductor chips 100 .
  • a CSP type semiconductor chip 100 is mounted on the mounting board 200 from the bump 116 b forming surface.
  • the bases of the bumps are reinforced by the resin film sealing the spaces between the bumps. Even if the area between the semiconductor chips and the mounting board is not completely sealed by the resin, it is possible to increase the resistance to heat expansion stress and improve the connection reliability, the removal of a CSP type semiconductor chip from the mounting board is easy, and the work of replacement of defective components (rework) is simple.
  • irradiation by a laser beam etc. is used to cause extremely sharp heat expansion at the surface portions of the bumps to peel off the sealing resin components which are then removed by a gas jet or the energy of the laser beam is used to reduce the surface layer portions of the bumps and remove the natural oxides so as to clean and activate the surfaces of the bumps before mounting, so a rise in the electrical resistance and a decline in the joint strength at the bump joint interfaces are suppressed and the connection reliability can be improved.
  • any of a MOS transistor type semiconductor apparatus, bipolar type semiconductor apparatus, BiCMOS type semiconductor apparatus, semiconductor apparatus carrying logics and memories, and other semiconductor apparatuses may be applied.
  • the configuration of the laser beam treatment device, conditions of the processes, structure of the wafer, etc. are not limited to the details explained in the above embodiments.
  • the bumps may be formed on the wafer by use of transfer of the solder balls and other various methods.
  • the present invention when using the process of reinforcing the bases of the bumps by a resin film sealing the spaces between bumps, it is possible to suppress the rise of the electrical resistance and decline of the joint strength at the bump joint interfaces and improve the connection reliability.

Abstract

A method of producing a semiconductor apparatus, the method including forming metal ball bumps in direct contact with a circuit pattern of a semiconductor device, forming a resin film to seal spaces between the metal ball bumps, cleaning the surfaces of the metal ball bumps projecting out from the resin film using plasma cleaning by removing components inviting a rise in a connection resistance and a decline in a joint strength, forming eutectic solder layers different in composition from the metal ball bumps on the surfaces of the metal ball bumps, cutting the semiconductor substrate into unit semiconductor chips, and mounting at least one of the chips on a mounting board from a bump forming surface side of the chip so as to connect the eutectic solder layers to the mounting board with the resin film directly contacting the chip and not directly contacting the mounting board.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/385,959 filed on Aug. 30, 1999, the entirety of which is incorporated herein by reference to the extent permitted by law. The present application claims the benefit of priority to Japanese Patent Application No. 10-247393 filed in the Japanese Patent Office on Sep. 1, 1998 and Japanese Patent Application No. 11-146942 filed in the Japanese Patent office on May 26, 1999. The entire contents both of which are incorporated herein by reference to the extent permitted by law.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor apparatus mounted using solder or other metal bumps and a process of production of the same.
  • 2. Description of the Related Art
  • In recent years, digital video cameras, digital cellular phones, notebook-type personal computers, and other portable electronic equipment have spread widely. There are mounting demands for reducing the size, reducing the thickness, and reducing the weight of these portable electronic equipment.
  • To realize this reduction in size, reduction in thickness, and reduction in weight of portable electronic equipment, the most important issue is the improvement of the mounting density of the components.
  • In particular, even in semiconductor ICs and other semiconductor devices, high density mounting technology using flip-chip-type semiconductor devices instead of the package-type semiconductor devices of the related art is being developed and put into practical use.
  • In the past, as the form of packaging of semiconductor apparatuses, use DIP (Dual Inline Package) or PGA (Pin Grid Array) have been used as well as other through hole mounted devices (THD) mounted to printed circuit boards by inserting leads through holes provided there and QFP (Quad Flat (L-Leaded) Package) or TCP (Tape Carrier Package) or other surface mounted devices (SMD) mounted by soldering leads to the surfaces of the boards.
  • To further reduce sizes, attention has focused on the method of mounting a semiconductor chip with its pad opening surface facing the mounting board by a package called a chip size package (CSP, also called a FBGA (Fine-Pitch BGA)) for realizing further smaller sizes and higher densities to bring the package size extremely close to the size of the semiconductor chip (flip-chip mounting). Active research has been conducted up until now and numerous proposals have been made.
  • One of the mounting methods for mounting such a flip-chip type semiconductor device (flip-chip mounting) is for example the method of forming for example spherically shaped (ball shaped) solder bumps (solder ball bumps) on electrode pads comprised of aluminum (Al) etc. of a semiconductor IC and bringing the connection terminals of the semiconductor IC into contact with the solder ball bumps to directly mount the IC chip on a printed circuit board.
  • A semiconductor apparatus comprised of a CSP type semiconductor chip mounted on a mounting board will be explained with reference to the drawings.
  • FIG. 11 is a sectional view of the above semiconductor apparatus.
  • The surface of the semiconductor device (semiconductor wafer) 10 on which electrode pads 11 comprised of Al etc. are formed is covered for example by a first surface protective film 12 comprised of a silicon nitride layer and a second surface protective film 13 comprised of a polyimide layer in a state leaving only the electrode pad 11 portions open. Further, a conductive film 14 comprised of a stacked films of chrome (Cr), copper (Cu), gold (Au), etc. is formed at the openings of the electrode pad 11 portions to be connected to the electrode pads 11. The conductive film is sometimes called a BLM (Ball Limiting Metal) film.
  • Further, solder bumps 16 b comprised of for example high melting point solder balls are formed connected to the conductive film (BLM film) 14.
  • A CSP type semiconductor chip 1 is constituted in this way.
  • On the other hand, the mounting board 2 is a board 20 comprised of for example a glass epoxy-based material on the top of which are provided lands (electrodes) 21 formed at positions corresponding to the positions of formation of the solder bumps 16 b of the semiconductor chip 1 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 21 and formed on the front surface or back surface or the two surfaces of the board 20. The surface of the board 20 other than the land 21 portions is covered by a solder resist 23.
  • The above CSP type semiconductor chip 1 is mounted on the mounting board 2 with the bumps 16 b aligned with the lands 21. The bumps 16 b and lands 21 are mechanically and electrically connected by eutectic solder layers 19.
  • Further, the space between the CSP type semiconductor chip 1 and mounting board 2 is sealed by a sealing resin 3 comprised of an epoxy resin etc.
  • In the above semiconductor apparatus, as the method of forming the bumps at predetermined positions, for example there is known the method of using electrolytic plating. In this case, there is the disadvantage that the thickness of the solder bumps formed is affected by the surface conditions of the layer of material forming the underlayer of the bumps or the slight variation in the electrical resistance and that the formation of uniform solder bumps of the same height in a semiconductor chip is extremely difficult.
  • Therefore, a method is being developed for formation of solder ball bumps with a uniform height using formation of a solder film by vacuum deposition and lift-off of the photoresist layer.
  • This method will be explained below with reference to the drawings.
  • First, as shown in FIG. 12A, electrode pads 11 comprised of an aluminum (Al) and copper (Cu) alloy etc. are formed by patterning on a semiconductor wafer 10 formed with circuit patterns of semiconductor chips by for example the sputtering method or etching etc. and a surface protective film 13 comprised of for example a silicon nitride layer or polyimide layer etc. is formed on top of it covering the entire surface.
  • The electrode pad 11 portions of the surface protective layer 13 are opened, then for example a pattern is formed by the sputtering method so as to connect a conductive layer (BLM layer) 14 comprised of a stacked film of chrome, copper, and gold to the electrode pads 11.
  • Next, as shown in FIG. 12B, a resist film R2 having pattern openings P is formed by patterning at the conductive film (BLM film) 14 forming areas by a photolithography step.
  • Next, as shown in FIG. 12C, solder layers 16 are formed in the pattern openings P of the resist film R2 by forming a solder layer over the entire surface by for example a vacuum evaporation method. At this time, solder layers 16 a are formed over the resist film R2 as well.
  • Next, as shown in FIG. 13A, the solder layers 16 a formed over the resist film R2 are simultaneously removed by removing the resist film R2 by lift-off. Due to this, it is possible to leave only the solder layers 16 formed in the pattern openings P of the resist film R2.
  • Next, as shown in FIG. 13B, heat treatment is performed to make the solder layers 16 melt. These are cooled and solidified in a state forming spheres due to the surface tension so as to form solder ball bumps 16 b.
  • As explained above, the solder ball bumps 16 b are formed in the semiconductor wafer state (that is, the state before being cut into individual semiconductor chips).
  • The semiconductor wafer formed with the solder ball bumps 16 b in this way is cut by dicing etc. into individual semiconductor chips, then as shown in FIG. 11, the solder ball bumps 16 b are made to abut against the lands 21 comprised of Cu etc. formed on the board 20 of the mounting board 2.
  • Here, the board 20 is covered by a solder resist 23 over its entire front surface except for the lands 21 and is precoated by a eutectic solder layer 19 over the areas of the lands 21 or the surfaces of the solder ball bumps 16 b.
  • Therefore, using a reflow step, the eutectic solder 19 is melted and the melted eutectic solder enters between the solder ball bumps 16 b and lands 21. By cooling and hardening it, the solder ball bumps 16 b are soldered and electrically connected to the lands 21.
  • The thermal stress becomes a major disadvantage for the reliability of the joint by the bumps after flip-chip mounting due to the differences in the coefficients of heat expansion of the semiconductor chips and the mounting board (printed circuit board).
  • While the coefficient of heat expansion of silicon is 3.4 ppm/° C., the coefficient of heat expansion of the generally widely used glass epoxy-based mounting board is a large about 15 ppm/° C. When thermal stress is repeatedly applied to bump joints by the temperature difference caused by the on/off operation of a chip, cracks are caused in the joints and breakage or malfunctions are caused in some cases.
  • To deal with the above disadvantage, as shown in FIG. 11, the method is generally adopted of injecting a sealing resin 3 between the semiconductor chips 1 and mounting board 2 and relieving the thermal stress applied to the weak strength bump joints by having the stress of heat expansion received by the sealing resin as a whole.
  • In the above flip-chip mounting method of the related art, however, since the semiconductor chips and the mounting board are secured by a sealing resin, when a defect occurs in a device chip, the only method was to discard the entire mounting board 2 on which that semiconductor chip 1 was mounted or apply a chemical or mechanical external force to forcibly tear off that semiconductor chip.
  • Here, the replacement of the entire mounting board 2 of the former case has the disadvantage of the cost ending up higher, while the forcibly tearing off of the semiconductor chip 1 of the latter case ends up damaging the mounting board 2.
  • Therefore, the work of replacing a defective component in the case of a defect occurring in a semiconductor chip 1, that is, the so-called rework, is difficult. This has become one factor behind the failure of flip-chip mounting from spreading widely.
  • Further, along with the reduction of pitch accompanying the reduction of size of semiconductor devices, at the time of injection of the sealing resin, the circulation of the sealing resin 3 becomes poor and full injection of the sealing resin 3 can no longer be achieved, so there is also the disadvantage that the thermal stress cannot be sufficiently relieved.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a semiconductor apparatus and a process of production thereof which enable the thermal stress between a semiconductor device and mounting board to be reliably relieved without the use of a sealing resin and further which can reduce the connection resistance and can increase the strength of the joint portions.
  • According to a first aspect of the present invention, there is provided a semiconductor apparatus comprising metal bumps formed so as to connect to a circuit pattern of a semiconductor device and a resin film formed on a circuit pattern forming surface of said semiconductor device so as to seal spaces between the metal bumps and become thinner than the height of the metal bumps, the surfaces of the metal bumps projecting out from the resin film being cleaned.
  • Further, in the first aspect of the present invention, the surfaces of the metal bumps projecting out from the resin film are cleaned of components inviting a rise of a connection resistance and a drop in a joint strength at least at connection interfaces.
  • Further, in the first aspect of the present invention, said metal bumps are solder bumps and solder layers different in composition from said solder bumps are formed at the surfaces of the solder bumps projecting out from the resin film.
  • Further, in the first aspect of present invention, said solder bumps are comprised of a high metal point solder and said solder layers are comprised of a eutectic solder.
  • According to a second aspect of the present invention, there is provided a process of production of a semiconductor apparatus comprising a first step of forming metal bumps so as to connect to a circuit pattern of a semiconductor device, a second step of forming a resin film on a circuit pattern forming surface of the semiconductor device so as to seal spaces between the metal spaces and to become thinner than a height of the metal bumps, and a third step of cleaning the surfaces of the metal bumps projecting out from the resin film.
  • Further, in the second aspect of the present invention, in said third step, the surfaces are cleaned by removing components inviting a rise in a connection resistance and a decline in a joint strength at least at a connection interface.
  • Further, in the second aspect of the present invention, in the third step, the surfaces of the bumps are activated in parallel to the cleaning of the surfaces of the bumps.
  • Further, in the second aspect of the present invention, in the third step, the resin film components deposited on the bumps are removed.
  • Further, in the second aspect of the present invention, in the third step, oxides on the bump surfaces are removed.
  • Further, in the second aspect of the present invention, in the third step, the cleaning of the surfaces of the bumps is performed by plasma cleaning
  • Further, in the second aspect of the present invention, the plasma cleaning is at least sputter etching by discharge plasma of an inert gas. Preferably, the plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of an inert gas.
  • Preferably, the plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of a reducing gas.
  • Further, in the second aspect of the present invention, in said third step, the cleaning of the surfaces of the bumps is performed by irradiating a laser beam.
  • Further, in the second aspect of the present invention, in the third step, the cleaning of the surfaces of the bumps is performed under a reduced pressure atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • Further, in the second aspect of the present invention, in the third step, the cleaning of the surfaces of the bumps is performed while applying a gas jet to the bumps to peel off the unnecessary components which are then sucked away.
  • Further, in the second aspect of the present invention, preferably the metal bumps formed in the first step are solder bumps and, after the third step, further there is provided a fourth step of forming solder layers different in composition from the solder bumps on the surfaces of the solder bumps.
  • Further, preferably, the solder bumps are a high melting point solder and said solder layers are comprised of a eutectic solder.
  • Further, preferably, in the fourth step, the eutectic solder layers are formed by a printing method, plating method, or transfer method.
  • Further, in the second aspect of the present invention, the steps up to at least the third step are performed on a semiconductor device formed on a semiconductor substrate in a semiconductor wafer state.
  • Further, in the second aspect of the present invention, after the third step, further there is provided a fourth step of cutting the semiconductor wafer into unit semiconductor chips.
  • Further, in the second aspect of the present invention, after the step of cutting the semiconductor wafer into unit semiconductor chips, further there is provided a step of mounting a semiconductor chip on a mounting board from the bump forming surface side so as to connect it at the bumps.
  • According to the present invention, the areas around the bases of the relatively weak strength metal bumps, for example, the areas around the spherical solder bumps, are reinforced by a resin. The thermal stress is relieved by this resin.
  • Further, since the resin film is formed before the semiconductor device is mounted on the mounting board, so there is no need to inject the sealing resin between the mounting board and semiconductor device after mounting the semiconductor device and therefore the productivity is improved.
  • Further, since the resin film is formed with a height lower than the height of the metal bumps, even if the semiconductor device is mounted on the mounting board, it will not contact the mounting board.
  • As a result, even if a defect occurs in a semiconductor device after mounting, it becomes possible to easily remove the semiconductor device from the mounting board.
  • Further, according to the present invention, the components inviting a rise in a connection resistance and a decline in a joint strength at least at a connection interface are removed from the surfaces of the metal bumps exposed from the resin film and the exposed surfaces are cleaned.
  • In this cleaning, for example, the resin film components deposited on the bumps or the oxides at the surfaces of the bumps are removed. Further, the surfaces of the bumps are activated in parallel with the cleaning of the surfaces of the bumps.
  • Further, the surfaces of the metal bumps exposed from the resin film are cleaned by plasma cleaning. Therefore, the connection resistance is reduced and the joint strength increased when joining the metal bumps to the lands of the mounting board or to the solder layers formed at the surfaces of the bumps.
  • As a result, the thermal stress is relieved when mounting the semiconductor device to the mounting board, the electrical characteristics are improved and the joint strength is increased when the semiconductor device is mounted to the mounting board, and thereby mounting defects are reduced to a large extent.
  • Further, when the plasma cleaning is at least sputter etching by a discharge plasma of inert gas, by performing the sputter etching by RF discharge plasma using for example Ar or another inert gas, the resin remaining on the surfaces of the metal bumps is removed by the sputtering and surfaces of clean metal bumps are exposed. Further, physical ion irradiation is used to chemically activate the surface layers.
  • By this, the surfaces of the metal bumps are cleaned, the connection resistance at the time of joining them is reduced, and the joint strength is increased, so the electrical characteristics when mounting a semiconductor device are improved.
  • Further, when the above-mentioned plasma cleaning is at least oxygen plasma treatment followed by sputter etching by discharge plasma of an inert gas, first oxygen plasma is used to burn off the resin remaining on the surfaces of the metal bumps by a reaction system comprised mainly of a combustion reaction of the organic matter mainly comprising the resin and then using RF discharge plasma using Ar or another inert gas for sputter etching and removal of the resin remaining on the surfaces of the metal bumps by sputtering.
  • In this case, compared with cleaning by only discharge plasma of an inert gas, two-stage plasma cleaning enables the residual resin to be effectively removed by use of a chemical reaction (combustion reaction).
  • Further, the slight oxide films formed on the surfaces of the metal bumps during the cleaning by the oxygen plasma treatment are removed by the Ar ions by sputtering.
  • Due to this, by cleaning the surfaces of the metal bumps more, the connection resistance at the time of joining is reduced more and the joint strength is increased more.
  • Further, when the above-mentioned plasma cleaning treatment is at least oxygen plasma treatment and then sputter etching by discharge plasma of a reducing gas, first oxygen plasma is used to burn off the resin remaining on the surfaces of the metal bumps, then HF or another reducing gas is used for sputter etching to more thoroughly remove the resin remaining on the surfaces of the metal bumps.
  • Due to this, the surfaces of the metal bumps are cleaned more, the connection resistance at the time of joining is reduced more, and the joint strength is increased more.
  • Therefore, compared with the case of plasma cleaning by only discharge plasma of an inert gas or by discharge plasma by oxygen plasma and inert gas, the electrical characteristics at the time of mounting of the semiconductor device are improved more.
  • Further, according to the present invention, the surfaces of the metal bumps exposed from the resin film are for example irradiated by a laser beam etc. to cause extremely rapid heat expansion at the surface layers of the bumps and peel off the sealing resin components, then a gas jet is directed there to remove the same or the energy of a laser beam is used to reduce the surface layers of the bumps and naturally remove the oxides so as to clean and activate the surfaces of the bumps.
  • Further, by cleaning the surfaces of the bumps under a reducing atmosphere, an inert gas atmosphere, or a reducing gas atmosphere, it is possible to suppress the progress of natural oxidation after the cleaning
  • Further, preferably, in the step of cleaning the surfaces of the bumps, gas is ejected from a gas ejection nozzle placed for example near the bumps under a reduced pressure atmosphere, inert gas atmosphere, or reducing gas atmosphere and a laser beam is irradiated to remove the resin coating components while applying suction to the areas near the bumps by the suction nozzle placed near the bumps.
  • Further, according to the present invention, by forming on the solder bumps comprised of for example a highly elastic high melting point solder used as the metal bumps solder layers different in composition from the solder forming the solder bumps, preferably solder layers comprised of a eutectic solder to be brought into contact with the eutectic solder precoated on the connection lands of the mounting board, the thermal stress is relieved by the elastic deformation of the above high melting point solder even if thermal stress occurs caused by the difference in coefficients of heat expansion between for example the silicon chip constituting the semiconductor substrate of the semiconductor device and the mounting board.
  • Further, by forming the solder layers by a eutectic solder, the wettability with the eutectic solder precoated on the connection lands of the mounting board becomes excellent and reliable joining by soldering is achieved.
  • Further, since the surfaces of the solder bumps are cleaned by the plasma cleaning, the connection resistance is reduced and the joint strength is increased at the joint portions of the solder bumps and the solder layers.
  • Therefore, in the mounting of a semiconductor device to the mounting board, the thermal stress is relieved and the connection resistance is reduced and joint strength increased, whereby mounting defects are greatly reduced and the reliability of the joint portions by the metal bumps is improved.
  • Further, since the formation of the metal bumps and formation of the resin film and the plasma cleaning or laser beam irradiation and, in some cases, the formation of the solder layers are performed on a semiconductor device when at least three steps are performed on a semiconductor device formed on a semiconductor substrate in the semiconductor wafer state, there is no need to perform this work on the individual semiconductor devices, it is possible to perform this work on a large number of semiconductor devices at one time, and the productivity is improved more.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and features of the present invention will become clearer from the following description of the preferred embodiments given with reference to the accompanying drawings, in which:
  • FIG. 1 is a sectional view of a semiconductor device according to an embodiment;
  • FIGS. 2A to 2C give sectional views of production steps of a process of production of a semiconductor apparatus according to an embodiment, wherein FIG. 2A shows up to the step of opening the electrode pads, FIG. 2B shows up to the step of forming the conductive film (BLM film), and FIG. 2C shows up to the step of removing the conductive film on the resist film by lift-off;
  • FIGS. 3A to 3C show the steps after FIGS. 2A to 2C, wherein FIG. 3A shows up to the step of forming the surface protective film, FIG. 3B shows up to the step of depositing the solder layer, and FIG. 3C shows up to the step of removing the solder layer on the resist film by lift-off;
  • FIGS. 4A to 4C show the steps after FIGS. 3A to 3C, wherein FIG. 4A shows up to the step of forming the solder ball bumps by reflow, FIG. 4B shows up to the step of forming the resin coating, and FIG. 4C shows up to the step of cleaning the surfaces of the bumps;
  • FIGS. 5A and 5B show the steps after FIGS. 4A to 4C, wherein FIG. 5A shows up to the step of supplying the eutectic solder layers and FIG. 5B shows up to the step of mounting on the mounting board;
  • FIG. 6 is a schematic sectional view of a first example of the configuration of a plasma treatment device for plasma cleaning in the process of production of FIG. 1;
  • FIG. 7 is a schematic sectional view of a second example of the configuration of a plasma treatment device for plasma cleaning in the process of production of FIG. 1;
  • FIG. 8 is a view for explaining a second embodiment of the process of production of a semiconductor apparatus according to the present invention;
  • FIG. 9 is a schematic view of an excimer laser beam irradiation device according to a second embodiment;
  • FIG. 10 is a schematic view of an excimer laser beam irradiation device according to a second embodiment;
  • FIG. 11 is a sectional view of a semiconductor apparatus according to a prior art;
  • FIGS. 12A to 12C gives sectional views of production steps of a process of production of a semiconductor apparatus according to an example of the prior art, wherein FIG. 12A shows up to the step of forming a conductive film (BLM film), FIG. 12B shows up to the step of forming a resist film, and FIG. 12C shows up to the step of depositing the solder layer; and
  • FIGS. 13A to 13B show the steps after FIGS. 12A to 12C, wherein FIG. 13A shows the step up to the removal of the solder layer on a resist film by lift-off and FIG. 13B shows up to the step of forming solder ball bumps by reflow.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Below, preferred embodiments of the present invention will be explained in detail with reference to the drawings.
  • Note that the embodiments given below are preferred specific examples of the present invention, so technically preferable limitations are applied to them, but the scope of the present invention is not limited so long as there is no particular express limitation of the present invention in the following description. The invention is not limited to these embodiments.
  • First Embodiment
  • FIG. 1 is a sectional view of a semiconductor apparatus produced by the process of production of a semiconductor apparatus according to the present embodiment.
  • The surface of the semiconductor chip 110 for forming the electrode pads 111 comprised of aluminum etc. is for example covered by a surface protective film 113 comprised of for example a silicon nitride layer or polyimide layer, then electrode pad 111 portions are opened.
  • A conductive film 114 comprised of a stacked film of chrome, copper, and gold etc. is formed at the openings connected to the electrode pads 111. The conductive film is sometimes called a BLM (Ball Limiting Metal) film. Further, an upper surface protective film 115 comprised of for example a polyimide is formed on the conductive film (BLM film) 114 and bump forming areas are opened.
  • In the above bump forming regions, bumps 116 b comprised of for example high melting point solder balls are formed connected to the conductive film (BLM film) 114. Here, to avoid contact with the adjoining bumps etc., the positions of formation of the bumps 116 b are shifted in accordance with need with respect to the positions of formation of the electrode pads 111 and the conductive film (BLM film) 114 is formed by patterning so as to correspond to the same.
  • The surface of the semiconductor chip 110 (in actuality, the upper surface protective film 115 etc.) at the spaces between the bumps 116 b is sealed by a resin film 117 comprised of an epoxy resin etc.
  • Further, the surfaces of the bumps 116 b exposed from the resin coating 117 are cleaned for example by plasma cleaning.
  • A CSP type semiconductor chip 100 is constituted in this way.
  • On the other hand, the mounting board 200 is a board 210 comprised of for example a glass epoxy based material on the top of which are provided lands (electrodes) 211 formed at positions corresponding to the positions of formation of the solder bumps 116 b of the semiconductor chip 100 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 211 and formed on the front surface or back surface or the two surfaces of the board 210. The surface of the board 210 other than the land 211 portions is covered by a solder resist 213.
  • The above CSP type semiconductor chip 100 is mounted on a mounting board 200 with the bumps 116 b aligned with the lands 211. The bumps 116 b and lands 211 are mechanically and electrically connected by eutectic solder layers 119.
  • The process of production of the above semiconductor apparatus will be explained next with reference to the drawings.
  • First, as shown in FIG. 2A, electrode pads 111 comprised of an aluminum and copper alloy etc. are formed by patterning on a semiconductor wafer 110 formed with circuit patterns of semiconductor chips by for example the sputtering method or etching etc., a surface protective film 113 comprised of for example a silicon nitride layer or polyimide layer etc. is formed on top of it covering the entire surface, and electrode pad 111 portions of the surface protective layer 113 are opened.
  • Next, as shown in FIG. 2B, a resist film R1 in which are opened regions for forming a conductive film connecting the electrode pads 111 and bumps formed in a later step are formed by patterning by a photolithography step and a stacked film of chrome, copper, and gold is deposited on the entire surface by for example the sputtering method to form a conductive film (BLM film) 114 so as to connect the electrode pads 111 in the pattern openings of the resist film R1. At this time, a conductive film 114 a is formed on top of the resist film R1.
  • Next, as shown in FIG. 2C, the resist film R1 is removed by lift-off to simultaneously remove the conductive film 114 a formed on the resist film R1. Due to this, it is possible to leave only the conductive film (BLM film) formed in the pattern openings of the resist film R1.
  • Next, as shown in FIG. 3A, an upper surface protective film 115 comprised of for example a polyimide layer etc. is formed on the conductive film (BLM film) 114 covering the entire surface and bump forming regions of the upper surface protective film 115.
  • Next, as shown in FIG. 3B, a resist film R2 having pattern openings is formed by patterning at the bump forming regions by a photolithography step.
  • Next, a solder layer is formed over the entire surface by for example a vacuum evaporation method so as to form solder layers 116 in the pattern openings of the resist film R2. At this time, solder layers 116 a are formed over the resist film R2 as well.
  • Next, as shown in FIG. 3C, the solder layers 116 a formed over the resist film R2 are simultaneously removed by removing the resist film R2 by lift-off. Due to this, it is possible to leave only the solder layers 116 formed in the pattern openings of the resist film R2.
  • Next, as shown in FIG. 4A, heat treatment is performed to make the solder layers 116 melt. These are cooled and solidified in a state forming spheres due to the surface tension so as to form solder ball bumps 116 b comprised of high melting point solder balls.
  • Note that as the solder, a high melting point solder is used.
  • The high melting point solder is comprised of for example 97 percent or so of Pb and 3 percent or so of Sn. It has a high melting point and a relatively high elasticity.
  • Next, as shown in FIG. 4B, an epoxy-based resin is coated by a spin coat etc. at the semiconductor wafer level, then the resin is treated to cure, for example, is heat treated by curing at about 150° C. for about 5 hours so as to cure the resin 117.
  • Due to this, a resin film 117 is formed at the bumps 116 b of the semiconductor wafer 110 at a thickness forming a surface lower than the height of the bumps 116 b while sealing the spaces between the bumps 116 b.
  • At this time, resin coating components or oxides of the solder and other insulating impurities 117 a are formed on the surfaces of the bumps 116 b depending on the process conditions of the resin coating step. In the drawings, for convenience, a thickness greater than the actual insulating impurities is shown.
  • Next, as shown in FIG. 4C, plasma cleaning is used to remove the resin coating components or oxides of the solder and other insulating impurities 117 a from the surfaces of the bumps 116 b to clean the surfaces of the bumps 116 b projecting out from the surface of the resin film 117.
  • Here, the plasma cleaning is performed as explained later by the plasma treatment device shown in FIG. 6 or FIG. 7 for example. By this, the surfaces of the bumps 116 b are sputter etched and the resin coating components or oxides of the solder or other insulating impurities 117 a remaining at the surfaces are removed.
  • Next, as shown in FIG. 5A, eutectic solder layers 118 are formed by the printing method, plating method, or transfer method connected to the bumps 116 b. By forming the eutectic solder layers 118, the height of the bumps is increased and the resistance to thermal stress is improved, the wettability with the solder at the time of mounting to the mounting board can be improved, and the reliability of the connections can be further improved.
  • Next, the semiconductor wafer 110 is cut along the cutting positions D of the semiconductor wafer 110 by a dicing step to divide it into individual CSP type semiconductor chips 100.
  • Note that the above eutectic solder is comprised of for example 40 percent or so of Pb and 60 percent or so of Sn. Compared with the above-mentioned high melting point solder, it has a low melting point of for example not more than 200° C.
  • Heat treatment is applied at a temperature in a range where only the eutectic solder melts and the high melting point solder does not melt (for example, 200° C. to 250° C.), whereby the above eutectic solder film pattern melts and, as shown in FIG. 5A, forms balls and hardens by the surface tension so as to join with the cleaned surfaces of the bumps 116 b.
  • Due to this, solder bumps of a stacked structure of the bumps 116 b and eutectic solder 118 are formed.
  • Next, as shown in FIG. 5B, the CSP type semiconductor chip 100 is mounted on a mounting board 200 from the bump 116 b forming surface.
  • The mounting board 200 is a board 210 comprised of for example a glass epoxy based material on the top of which are provided lands (electrodes) 211 formed at positions corresponding to the positions of formation of the solder bumps 116 b of the semiconductor chip 100 to be mounted and comprised of copper etc. and a not shown printed circuit connected to the lands 211 and formed on the front surface or back surface or the two surfaces of the board 210.
  • A precoated solder layer 212 comprised of a eutectic solder is formed on the lands 211. Further, the surface of the board 210 other than the land 211 portions is covered by a solder resist 213.
  • The above CSP type semiconductor chip 100 is mounted on the above mounting board 200 with the bumps 116 b aligned with the lands 211. Heat treatment of for example 200 to 250° C. is used to make the eutectic solder layer 118 or precoated solder layer 212 reflow without the bumps 116 b melting, eutectic solder layers 119 are formed at the joint positions of the bumps 116 b and lands 211, and the CSP type semiconductor chip 100 and mounting board 200 are mechanically and electrically connected to produce the semiconductor device shown in FIG. 1.
  • In this case, since the eutectic solder 118 is comprised by a eutectic solder film, the wettability of the eutectic solder 118 and the eutectic solder film 212 prepared on the lands 211 is excellent. Therefore, the eutectic solder 118 and the lands 211 join strongly with each other due to their close affinity, so the soldering is reliable.
  • Next, two examples of the above-mentioned plasma cleaning will be explained with reference to FIG. 6 and FIG. 7.
  • First, in a first embodiment of the plasma cleaning, the plasma treatment device shown in FIG. 6 is used for plasma cleaning by a discharge plasma of an inert gas, for example, argon gas.
  • In FIG. 6, the plasma treatment device 300 is a so-called triode type RF plasma treatment device comprised of a sealed plasma treatment chamber 301, a anode plate 302 provided at the top inside the plasma treatment chamber 301, a stage 303 serving as a cathode plate provided at the bottom, a lattice electrode 304 provided between the anode plate 302 and the stage 303, a coupling capacitor 305 through which a plasma generation power source 306 is connected to the cathode plate 302, and a coupling capacitor 307 through which a substrate bias power source 308 is connected to the stage 303.
  • According to the plasma treatment device 300 of this configuration, a treated substrate, that is, the semiconductor wafer 110, is placed on the stage 303, a bias voltage is applied between the stage 303 and lattice electrode 304 by the substrate bias power source 308 in the state with for example an argon gas introduced inside as an inert gas, and the plasma generation power source 306 is used to apply a plasma source power between the anode plate 302 and the lattice electrode 304.
  • Due to this, a discharge plasma 309 of argon gas is produced between the anode plate 302 and the lattice electrode 304, and argon ions Ar+ fly out from the anode plate 302 toward the lattice electrode 304, pass through the lattice electrode 304, and strike the semiconductor wafer 110 on the stage 302.
  • Therefore, due to the sputtering action, the surface of the semiconductor wafer 110, that is, the surface of the resin 117 and the projecting surfaces of the bumps 116 b are etched, whereby the resin 117 a remaining on the surfaces of the bumps 116 b is removed.
  • In this case, the operating conditions of the above plasma treatment device 300 are set as shown below for example. That is,
  • Flow rate of argon gas: 25 sccm
  • Temperature of stage 303: Room temperature
  • Plasma source power: 700W (2 MHZ)
  • Substrate bias voltage: 350V (13.56 MHZ)
  • Treatment time: 120 seconds
  • When the plasma cleaning of the semiconductor wafer 110 was performed by these operating conditions, due to the sputtering action of the Ar+ ions, the resin 117 a remaining on the surfaces of the bumps 116 b was effectively removed and the surfaces of the bumps 116 b were cleaned.
  • Next, an explanation will be made of a second example of the plasma cleaning.
  • In the second example, the plasma treatment device shown in FIG. 7 was used for oxygen plasma treatment, then discharge plasma of a reducing gas was used for plasma cleaning.
  • In FIG. 7, the plasma treatment device 400 is an ICP (Inductively Coupled Plasma) high density plasma treatment device of a known configuration comprised of a sealed plasma treatment chamber 401, an anode plate 402 provided at the top inside the plasma treatment chamber 401, a vertically movable stage 403 serving as a cathode plate provided at the bottom, an inductively coupled coil 404 provided around the plasma treatment chamber 401, a coupling capacitor 405 through which a substrate bias power source 406 is connected to the stage 403, and an ICP power source 407 connected to the inductively coupled coil 404.
  • According to the plasma treatment device 400 of this configuration, a treated substrate, that is, the semiconductor wafer 110, is placed on the stage 403, a bias voltage is applied between the stage 403 and anode electrode 402 by the substrate bias power source 406 in the state with oxygen gas introduced inside, and a high frequency induction field is produced inside the plasma treatment chamber 401.
  • Due to this, the electrons inside the plasma treatment chamber 401 are accelerated, a high density oxygen plasma 408 is produced, and oxygen ions strike the semiconductor wafer 110 on the stage 403.
  • Therefore, due to the plasma ashing action, the surface of the semiconductor wafer 110, that is, the surface of the resin 117 and the projecting surfaces of the bumps 116 b, are etched, whereby the resin coating components or oxides of the solder or other insulating impurities 117 a remaining on the surfaces of the bumps 116 b are removed.
  • In this case, the operating conditions of the above plasma treatment device 400 are set as shown below for example. That is,
  • Flow rate of oxygen gas: 50 sccm
  • Pressure: 0.3 Pa
  • Temperature of stage 403: 90° C.
  • Power of ICP power source: 1000W (450 kHz)
  • Substrate bias voltage: 100V (13.56 MHZ)
  • Treatment time: 20 seconds
  • When the plasma cleaning of the semiconductor wafer 110 is performed by these operating conditions, due to the ashing action of the oxygen plasma, the resin 117 a remaining on the surfaces of the bumps 116 b is effectively removed.
  • Note that in this case, the surfaces of the bumps 116 b are slightly oxidized by the oxygen plasma and an oxide film is formed.
  • Next, plasma etching is performed by reducing gas to remove the oxide film of the bumps 116 b.
  • This reducing gas plasma etching is performed in the above plasma treatment device 400 by changing the settings of the operating conditions, introducing a mixed gas of for example hydrofluoride (HF) gas as the reducing gas and for example argon gas as the inert gas inside the plasma treatment chamber 400, and etching the surfaces of the bumps 116 b by the plasma etching action of the reducing gas.
  • In this case, the operating conditions of the above plasma treatment device 400 are set as shown below for example. That is,
  • Flow rate of HF gas: 25 sccm
  • Flow rate of argon gas: 25 sccm
  • Pressure: 0.13 Pa
  • Temperature of stage 403: 90° C.
  • Power of ICP power source: 1000W (450 kHz)
  • Substrate bias voltage: 250V (13.56 MHZ)
  • Treatment time: 20 seconds
  • When the plasma cleaning of the semiconductor wafer 110 is performed by these operating conditions, the oxide film formed on the surfaces of the bumps 116 b is reduced by the reaction with the HF gas and the sputtering action of the Ar+ ions causes sputter removal and cleans the surfaces of the bumps 116 b.
  • A high density plasma generation source is used by the plasma treatment device 400 and treatment in a low pressure atmosphere is enabled by this. Due to this, the ion species produced in large quantities strike the surface of the semiconductor chip 110 substantially perpendicularly without scattering and the etching by the sputtering by irradiation of Ar+ ions is performed at a high speed with good efficiency.
  • Therefore, even if the substrate bias voltage is set low so as to reduce the damage caused by the plasma cleaning of the semiconductor chip 110, the time required for the plasma cleaning of the surfaces of the bumps 116 b is shortened without a reduction in the etching rate.
  • Therefore, the resin 117 a remaining on the surfaces of the bumps 116 b are more effectively removed by the plasma etching by the oxygen plasma and the plasma etching by the reducing gas and the surfaces are cleaned more.
  • Further, in the above example, hydrofluoride gas HF was used as the reducing gas, but the invention is not limited to this. For example, it is clear that it is also possible to use for example hydrogen gas H2 or hydrochloride gas HCl or another reducing gas.
  • Here, when a liquid form of HF or HCl etc., for example bubbling using helium He or another carrier gas, heating aeration, ultrasonic aeration, or another suitable means is used to introduce it into the plasma treatment chamber 301, 401.
  • Further, in the above examples, a triode-type RF plasma treatment device 300 or ICP high density plasma treatment device 400 was used for the plasma cleaning of the surfaces of the bumps 116, but the invention is not limited to this. For example, it is clear that it is also possible to use a parallel plate type RF plasma treatment device or a so-called TCP, ECR, helicon wave plasma, or other type of high density plasma treatment device.
  • As explained above, according to the first embodiment, the bases of the bumps are reinforced by a resin film sealing the spaces between the bumps, it is possible to increase the resistance to heat expansion stress and improve the connection reliability even without completely sealing the area between the semiconductor chips and the mounting board by a resin, the detachment of a CSP type semiconductor chip from the mounting board is easy, and it is possible to simply replace defective components (rework).
  • Further, the bumps 116 b are secured and held by the resin film 117. Even if thermal stress occurs between the semiconductor substrate and the mounting board due to changes in temperature of the surroundings etc. after mounting, since the solder bumps are secured by the resin film 117 and the bumps 116 b have elasticity, the resin film 117 as a whole receives the thermal stress and the bumps 116 b elastically deform so the thermal stress is relieved. Due to this, breakage of the joint portions of the solder bumps 23 by thermal stress is prevented and the reliability of the solder bumps is improved.
  • Further, since the resin film 117 is formed on the surface of the electrode pad 111 side of the semiconductor chip 100 before mounting to the mounting board 200, the resin film 117 never contacts the surface of the mounting board 200.
  • Therefore, there is no need to inject resin between the semiconductor chips 100 and the mounting board 200 as in the past, so even when reducing the pitch of semiconductor chips 100, since the sealing resin 117 reliably covers the entire surface of the semiconductor wafer, the thermal stress is reliably relieved and the durability with respect to thermal stress is improved.
  • Further, the bumps 116 b are surrounded by the resin film 117, then the exposed surfaces projecting out from the resin film 117 are cleaned by plasma cleaning Further, a eutectic solder 118 is formed on the cleaned surfaces, so the connection resistance at the interface of the bumps 116 b and the eutectic solder 118 is reduced and the joint strength is increased.
  • Therefore, bumps are comprised with lower resistances and higher joint strengths and the occurrence of mounting defects is reduced more.
  • Therefore, according to the present embodiment, the electrical characteristics and the bonding strength at the interfaces are improved, whereby the reliability and durability of the semiconductor chip 100 and the various equipment in which it is installed are greatly improved.
  • In the above embodiments, the bumps 116 b are covered by a film by vacuum evaporation and a pattern formed by lift-off of the photoresist, but the invention is not limited to this. It is clear that electroplating etc. may also be used to form it.
  • Further, in the above-mentioned embodiment, the explanation was given of the case of forming solder bumps with respect to the electrode pads 111 of a semiconductor device, but the invention is not limited to this. It is clear that the present invention may also be applied to the case of forming solder bumps with respect to other types of semiconductor devices.
  • Further, in the embodiment explained above, the explanation was given of the example of use, as a solder, of a high melting point solder comprised of for example 97 percent or so of Pb (lead) and 3 percent or so of Sn or a eutectic solder comprised of for example 40 percent or so of Pb and 60 percent or so of Sn, but of course it is also possible to use another solder not containing Pb, for example, a solder comprised of 96.5 percent of tin and 3.5 percent of silver, a solder comprised of 99.3 percent of tin and 0.7 percent or copper, etc.
  • Further, in the above embodiment, the explanation was given of the example of ball-shaped bumps comprised of solder as the bumps, but the present invention is not limited to this. For example, of course, it is also possible to use copper ball bumps, nickel ball bumps, or other types of metal bumps.
  • Second Embodiment
  • FIG. 8 is a view for explaining a second embodiment of the process of production of a semiconductor apparatus according to the present invention.
  • The point of difference of the second embodiment from the first embodiment explained above is that the cleaning of the surfaces of the bumps 116 b exposed from the resin film 117 is performed by removing the resin film and other unnecessary components by irradiation of a laser beam L as shown in FIG. 8 instead of plasma cleaning.
  • The processing of the rest of the steps is performed in the same way as the first embodiment. That is, in the second embodiment, the step shown in FIG. 8 is performed instead of the step of FIG. 4C in the process of production explained with relation to FIGS. 2A, 2B, and 2C, FIGS. 3A, 3B, and 3C, FIGS. 4A, 4B, and 4C, and FIGS. 5A and 5B.
  • Further, since a semiconductor apparatus similar to the semiconductor apparatus shown in FIG. 1 is obtained by this process of production, a detailed explanation will be given below of the cleaning by this irradiation of a laser beam.
  • Specifically, a resin film 117 is formed on the surface of the semiconductor wafer 110 for forming the bumps 116 b to a thickness for forming a surface lower than the height of the bumps 116 b, then, as shown in FIG. 8, an excimer laser beam L is irradiated on the surface of the semiconductor wafer 110 forming the bumps 116 b to remove from the surfaces of the bumps 116 b the resin film components or oxides of the solder or other insulating impurities 117 a and clean the surfaces of the bumps 116 b projecting out from the surface of the resin film 117.
  • Here, the laser beam may be irradiated from a laser beam irradiation device such as shown in the schematic view of FIG. 9 for example.
  • The laser beam irradiation device 500 is provided with a wafer stage 501, a not shown light source for irradiating an excimer laser beam L, a gas ejection nozzle 504 for ejecting a gas 505, and a suction nozzle 506.
  • In the laser beam irradiation device 500, the semiconductor wafer 502 for processing is placed on and secured to the wafer stage 501 with the bump forming surface facing upward and a KrF excimer laser beam L with for example a wavelength of 248 nm, an energy density of 400 mJ/cm2, and a pulse oscillation of 30 Hz is irradiated on the bump forming surface of the semiconductor wafer to sweep it at a speed of 50 mm/sec.
  • At this time, the nitrogen gas or other gas 505 is ejected from the gas ejection nozzle 504 provided at the laser beam irradiation device to the bump forming surface at a flow rate of 20 l/sec to peel off the sealing resin components and other insulating impurities 117 a which are then sucked away by the suction nozzle 506.
  • Note that the movement of the wafer stage 501 and laser pulses are synchronized and a laser beam irradiated at a constant overlap. The amount of irradiation of the laser beam is controlled to be uniform in the plane of the semiconductor wafer.
  • Due to the above irradiation of a laser beam, extremely sharp heat expansion is caused at the surface portions of the bumps 116 b, the sealing resin components deposited on the surfaces of the bumps 116 b are peeled off, and a gas jet is applied to remove them so as to clean the surfaces of the bumps. Further, the energy of the laser beam may be used to reduce the surface portions of the bumps and remove the natural oxides and activate the surfaces of the bumps.
  • Further, the laser beam may be irradiated by a laser beam irradiation device such as shown in the schematic view of FIG. 10 for example.
  • The laser beam irradiation device 500A is provided with a wafer cassette 508 in which untreated wafers 502 are housed, a reaction treatment chamber 507, and a load-lock chamber 510 in which treated wafers 502 are housed. The wafer cassette 508 and reaction treatment chamber 507 and the reaction treatment chamber 507 and load-lock chamber 500 are connected by gate valves 509.
  • In the reaction treatment chamber 507, the laser beam irradiation device 500A is provided with a wafer stage 501, a not shown light source for irradiating the excimer laser beam L, a gas ejection nozzle 504 for ejecting a gas 505, and a suction nozzle 506.
  • Further, the reaction treatment chamber 507 is provided with a gas exhaust port 512 connecting the gas introduction port 511 to a not shown suction pump. The inside of the reaction treatment chamber 507 can be made a reduced pressure atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • In the above laser beam irradiation device 500A, the air is exhausted from the gas exhaust port 512 to reduce the pressure, a nitrogen gas is introduced from the gas introduction port 511, and a not shown wafer operating mechanism is used to take out a semiconductor wafer to be treated from the wafer cassette in the reaction treatment chamber 507 controlled to a 1 Torr nitrogen atmosphere and to place and secure the bump forming surface on the wafer stage 501 facing upward.
  • A KrF excimer laser beam L with for example a wavelength of 248 nm, an energy density of 400 mJ/cm2, and a pulse oscillation of 30 Hz is irradiated on the bump forming surface of the semiconductor wafer to sweep it at a speed of 50 mm/sec.
  • At this time, the nitrogen gas or other gas 505 is ejected from the gas ejection nozzle 504 provided at the laser beam irradiation device to the bump forming surface at a flow rate of 20 l/sec to peel off the sealing resin components and other insulating impurities 117 a which are then sucked away by the suction nozzle 506.
  • The treated semiconductor wafer 502 is housed in the load-lock chamber 510 by a not shown wafer operating mechanism.
  • Note that the movement of the wafer stage 501 and laser pulses are synchronized and a laser beam irradiated at a constant overlap. The amount of irradiation of the laser beam is controlled to be uniform in the plane of the semiconductor wafer.
  • Due to the above irradiation of a laser beam, the sealing resin components deposited on the surfaces of the bumps 116 b are peeled off and a gas jet is applied to remove them so as to clean the surfaces of the bumps. Further, it is possible to remove the natural oxides on the surfaces of the bumps and activate the surfaces of the bumps.
  • Further, by performing the above treatment in a reduced pressure atmosphere, inert gas atmosphere, or reducing gas atmosphere, the oxygen is removed from the reaction treatment chamber 507. The chamber becomes a high temperature by the cleaning by irradiation of a laser beam and the progress of natural oxidation of the activated surfaces of the bumps can be suppressed.
  • Next, as shown in FIG. 5A, a eutectic solder layer 118 is formed connected to the bumps 116 a by the printing method, plating method, or transfer method, then the semiconductor wafer 110 is cut along the cutting positions D of the semiconductor wafer 110 by a dicing step to divide it into individual CSP type semiconductor chips 100.
  • Further, as shown in FIG. 5B, a CSP type semiconductor chip 100 is mounted on the mounting board 200 from the bump 116 b forming surface.
  • In the second embodiment, in the same way as the semiconductor apparatus according to the first embodiment explained above, the bases of the bumps are reinforced by the resin film sealing the spaces between the bumps. Even if the area between the semiconductor chips and the mounting board is not completely sealed by the resin, it is possible to increase the resistance to heat expansion stress and improve the connection reliability, the removal of a CSP type semiconductor chip from the mounting board is easy, and the work of replacement of defective components (rework) is simple.
  • Further, according to the process of production of a semiconductor apparatus of the present embodiment, irradiation by a laser beam etc. is used to cause extremely sharp heat expansion at the surface portions of the bumps to peel off the sealing resin components which are then removed by a gas jet or the energy of the laser beam is used to reduce the surface layer portions of the bumps and remove the natural oxides so as to clean and activate the surfaces of the bumps before mounting, so a rise in the electrical resistance and a decline in the joint strength at the bump joint interfaces are suppressed and the connection reliability can be improved.
  • Further, in the same way as the above first embodiment, as the semiconductor apparatus produced by the second embodiment, any of a MOS transistor type semiconductor apparatus, bipolar type semiconductor apparatus, BiCMOS type semiconductor apparatus, semiconductor apparatus carrying logics and memories, and other semiconductor apparatuses may be applied.
  • Further, the process of production of a semiconductor apparatus is not limited to the above second embodiment.
  • For example, the configuration of the laser beam treatment device, conditions of the processes, structure of the wafer, etc. are not limited to the details explained in the above embodiments.
  • Further, the bumps may be formed on the wafer by use of transfer of the solder balls and other various methods.
  • In addition, various changes may be made within the scope of the gist of the present invention.
  • As explained above, according to the present invention, it is possible to reliably relieve the thermal stress between a semiconductor device and mounting base without the use of a sealing resin and possible to reduce the connection resistance and increase the strength of the joint portion.
  • Further, according to the present invention, when using the process of reinforcing the bases of the bumps by a resin film sealing the spaces between bumps, it is possible to suppress the rise of the electrical resistance and decline of the joint strength at the bump joint interfaces and improve the connection reliability.
  • While the invention has been described with reference to specific embodiment chosen for purpose of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.

Claims (13)

1. A method of producing a semiconductor apparatus, the method comprising the steps of:
forming metal ball bumps in direct contact with a circuit pattern of a semiconductor device formed on a semiconductor substrate in a semiconductor wafer state;
forming a resin film on a circuit pattern forming surface of said semiconductor device so as to seal spaces between said metal ball bumps and to become thinner than a height of the metal ball bumps;
cleaning the surfaces of the metal ball bumps projecting out from the resin film using plasma cleaning such that the surfaces are cleaned by removing components inviting a rise in a connection resistance and a decline in a joint strength at least at a connection interface;
after the cleaning step, forming eutectic solder layers different in composition from the metal ball bumps on the surfaces of the metal ball bumps;
after the forming solder layers step, cutting the semiconductor substrate into unit semiconductor chips, each semiconductor chip having at least one of said semiconductor device; and
after the cutting step, mounting at least one of the semiconductor chips on a mounting board from a bump forming surface side of the semiconductor chip so as to connect the eutectic solder layers of the semiconductor chip to the mounting board with the resin film directly contacting the semiconductor chip and not directly contacting the mounting board.
2. A process of production of the semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, any resin film components deposited on said bumps are removed.
3. A process of production of a semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, oxides on said bump surfaces are removed.
4. A process of production of a semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, the cleaning of the surfaces of the bumps is performed by plasma cleaning.
5. A process of production of a semiconductor apparatus as set forth in claim 4, wherein said plasma cleaning is at least sputter etching by discharge plasma of an inert gas.
6. A process of production of a semiconductor apparatus as set forth in claim 4, wherein said plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of an inert gas.
7. A process of production of a semiconductor apparatus as set forth in claim 4, wherein said plasma cleaning is at least oxygen plasma treatment and then sputter etching by discharge plasma of a reducing gas.
8. A process of production of a semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, the cleaning of the surfaces of the bumps is performed by irradiating a laser beam.
9. A process of production of a semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, the cleaning of the surfaces of the bumps is performed under a reduced pressure atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
10. A process of production of a semiconductor apparatus as set forth in claim 1, wherein, in said cleaning step, the cleaning of the surfaces of the bumps is performed while applying a gas jet to the bumps to peel off the unnecessary components which are then sucked away.
11. A process of production of a semiconductor apparatus as set forth in claim 1, wherein
the metal ball bumps formed in the first step are solder bumps.
12. A process of production of a semiconductor apparatus as set forth in claim 11, wherein said solder bumps have a melting point higher than a melting point of said eutectic solder layers and said eutectic solder layers are comprised of a eutectic solder.
13. A process of production of a semiconductor apparatus as set forth in claim 12, wherein, in said forming solder layers step, the eutectic solder layers are formed by a printing method, plating method, or transfer method.
US12/717,472 1998-09-01 2010-03-04 Semiconductor apparatus and process of production thereof Abandoned US20100159645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/717,472 US20100159645A1 (en) 1998-09-01 2010-03-04 Semiconductor apparatus and process of production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP24739398 1998-09-01
JP11-146942 1999-05-26
JP14694299 1999-05-26
JP10-247393 1999-05-26
US38595999A 1999-08-30 1999-08-30
US12/717,472 US20100159645A1 (en) 1998-09-01 2010-03-04 Semiconductor apparatus and process of production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US38595999A Continuation 1998-09-01 1999-08-30

Publications (1)

Publication Number Publication Date
US20100159645A1 true US20100159645A1 (en) 2010-06-24

Family

ID=26477638

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/915,160 Expired - Fee Related US7078820B2 (en) 1998-09-01 2001-07-25 Semiconductor apparatus and process of production thereof
US12/717,472 Abandoned US20100159645A1 (en) 1998-09-01 2010-03-04 Semiconductor apparatus and process of production thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/915,160 Expired - Fee Related US7078820B2 (en) 1998-09-01 2001-07-25 Semiconductor apparatus and process of production thereof

Country Status (3)

Country Link
US (2) US7078820B2 (en)
JP (1) JP4239310B2 (en)
KR (1) KR100681985B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055846A1 (en) * 2007-06-12 2010-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package structures
US20110309490A1 (en) * 2010-06-18 2011-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma Treatment for Semiconductor Devices
DE102010040063A1 (en) * 2010-08-31 2012-03-01 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg A process for producing lead-free solder balls having a stable oxide layer based on a plasma process
US20140264230A1 (en) * 2013-03-14 2014-09-18 Northrop Grumman Systems Corporation Phase change material switch and method of making the same
US20170125375A1 (en) * 2015-10-29 2017-05-04 Semtech Corporation Semiconductor Device and Method of Forming DCALGA Package Using Semiconductor Die with Micro Pillars
US20190371229A1 (en) * 2018-05-31 2019-12-05 Invensas Corporation Formation of a Light-Emitting Diode Display
US10700270B2 (en) 2016-06-21 2020-06-30 Northrop Grumman Systems Corporation PCM switch and method of making the same
US11546010B2 (en) 2021-02-16 2023-01-03 Northrop Grumman Systems Corporation Hybrid high-speed and high-performance switch system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854054B2 (en) * 2000-10-10 2006-12-06 株式会社東芝 Semiconductor device
JP3922882B2 (en) * 2000-12-28 2007-05-30 東レエンジニアリング株式会社 Chip mounting method
JP2003318217A (en) * 2001-06-20 2003-11-07 Toray Eng Co Ltd Method and device for mounting
TWI245402B (en) 2002-01-07 2005-12-11 Megic Corp Rod soldering structure and manufacturing process thereof
US6806118B2 (en) * 2002-02-07 2004-10-19 Fujitsu Limited Electrode connection method, electrode surface activation apparatus, electrode connection apparatus, connection method of electronic components and connected structure
US6712260B1 (en) * 2002-04-18 2004-03-30 Taiwan Semiconductor Manufacturing Company Bump reflow method by inert gas plasma
JP2004235420A (en) * 2003-01-30 2004-08-19 Seiko Epson Corp Electronic device, manufacturing method thereof, circuit board, manufacturing method thereof, electronic device, and manufacturing method thereof
DE10320472A1 (en) * 2003-05-08 2004-12-02 Kolektor D.O.O. Plasma treatment for cleaning copper or nickel
JP4687066B2 (en) * 2004-10-25 2011-05-25 株式会社デンソー Power IC
EP1732127B1 (en) * 2005-06-08 2016-12-14 Imec Method for bonding and device manufactured according to such method
JP4691417B2 (en) 2005-08-22 2011-06-01 日立化成デュポンマイクロシステムズ株式会社 CIRCUIT CONNECTION STRUCTURE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR SUBSTRATE FOR CIRCUIT CONNECTION STRUCTURE
JP4892209B2 (en) 2005-08-22 2012-03-07 日立化成デュポンマイクロシステムズ株式会社 Manufacturing method of semiconductor device
US20070152321A1 (en) * 2005-12-29 2007-07-05 Wei Shi Fluxless heat spreader bonding with cold form solder
US7534715B2 (en) * 2005-12-29 2009-05-19 Intel Corporation Methods including fluxless chip attach processes
SG135074A1 (en) * 2006-02-28 2007-09-28 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
TWI455263B (en) * 2009-02-16 2014-10-01 Ind Tech Res Inst Chip package structure and chip package method
US9257276B2 (en) 2011-12-31 2016-02-09 Intel Corporation Organic thin film passivation of metal interconnections
WO2013101243A1 (en) 2011-12-31 2013-07-04 Intel Corporation High density package interconnects
JP6021386B2 (en) * 2012-03-30 2016-11-09 オリンパス株式会社 Wiring substrate manufacturing method and semiconductor device manufacturing method
JP2013070101A (en) * 2013-01-10 2013-04-18 Renesas Electronics Corp Semiconductor device
US9105710B2 (en) * 2013-08-30 2015-08-11 Applied Materials, Inc. Wafer dicing method for improving die packaging quality
CN105424240B (en) * 2015-11-12 2017-11-28 上海信适智能科技有限公司 A kind of observation comparative approach of IC plastic packagings residual stress
JP6754938B2 (en) * 2016-03-11 2020-09-16 パナソニックIpマネジメント株式会社 Electrode bonding method
US9916989B2 (en) * 2016-04-15 2018-03-13 Amkor Technology, Inc. System and method for laser assisted bonding of semiconductor die
US10923449B2 (en) 2016-10-06 2021-02-16 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
US10103095B2 (en) * 2016-10-06 2018-10-16 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
US11069606B2 (en) 2016-10-06 2021-07-20 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
KR20210100794A (en) * 2020-02-06 2021-08-18 삼성디스플레이 주식회사 Display module manufacturing apparatus and display module manufacturing method
GB202020022D0 (en) * 2020-12-17 2021-02-03 Spts Technologies Ltd Method and apparatus

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719981A (en) * 1971-11-24 1973-03-13 Rca Corp Method of joining solder balls to solder bumps
US3811183A (en) * 1971-02-05 1974-05-21 Philips Corp Method of manufacturing a semiconductor device and semiconductor device manufactured by the method
US4376505A (en) * 1981-01-05 1983-03-15 Western Electric Co., Inc. Methods for applying solder to an article
US4807021A (en) * 1986-03-10 1989-02-21 Kabushiki Kaisha Toshiba Semiconductor device having stacking structure
US5060844A (en) * 1990-07-18 1991-10-29 International Business Machines Corporation Interconnection structure and test method
US5068040A (en) * 1989-04-03 1991-11-26 Hughes Aircraft Company Dense phase gas photochemical process for substrate treatment
US5147084A (en) * 1990-07-18 1992-09-15 International Business Machines Corporation Interconnection structure and test method
US5193738A (en) * 1992-09-18 1993-03-16 Microfab Technologies, Inc. Methods and apparatus for soldering without using flux
US5229016A (en) * 1991-08-08 1993-07-20 Microfab Technologies, Inc. Method and apparatus for dispensing spherical-shaped quantities of liquid solder
US5377902A (en) * 1994-01-14 1995-01-03 Microfab Technologies, Inc. Method of making solder interconnection arrays
US5409157A (en) * 1993-02-26 1995-04-25 Nagesh; Voddarahalli K. Composite transversely plastic interconnect for microchip carrier
US5411602A (en) * 1994-02-17 1995-05-02 Microfab Technologies, Inc. Solder compositions and methods of making same
US5415679A (en) * 1994-06-20 1995-05-16 Microfab Technologies, Inc. Methods and apparatus for forming microdroplets of liquids at elevated temperatures
US5492266A (en) * 1994-08-31 1996-02-20 International Business Machines Corporation Fine pitch solder deposits on printed circuit board process and product
JPH08111581A (en) * 1994-10-07 1996-04-30 Nippon Avionics Co Ltd Method of soldering ball grid array printed wiring board
US5542601A (en) * 1995-02-24 1996-08-06 International Business Machines Corporation Rework process for semiconductor chips mounted in a flip chip configuration on an organic substrate
US5545465A (en) * 1993-12-21 1996-08-13 International Business Machines Corporation Circuit board having a defined volume of solder or conductive adhesive deposited at interconnection sites for electrical circuits
US5579573A (en) * 1994-10-11 1996-12-03 Ford Motor Company Method for fabricating an undercoated chip electrically interconnected to a substrate
US5591941A (en) * 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
US5633533A (en) * 1995-07-26 1997-05-27 International Business Machines Corporation Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
JPH09162317A (en) * 1995-12-05 1997-06-20 Toshiba Corp Semiconductor package
US5656863A (en) * 1993-02-18 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Resin seal semiconductor package
US5672913A (en) * 1995-02-23 1997-09-30 Lucent Technologies Inc. Semiconductor device having a layer of gallium amalgam on bump leads
JPH09270444A (en) * 1996-03-29 1997-10-14 Sumitomo Kinzoku Electro Device:Kk Inter-board connection structure
JPH09270477A (en) * 1996-03-29 1997-10-14 Sumitomo Kinzoku Electro Device:Kk Ceramic board
US5681757A (en) * 1996-04-29 1997-10-28 Microfab Technologies, Inc. Process for dispensing semiconductor die-bond adhesive using a printhead having a microjet array and the product produced by the process
US5729896A (en) * 1996-10-31 1998-03-24 International Business Machines Corporation Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US5736074A (en) * 1995-06-30 1998-04-07 Micro Fab Technologies, Inc. Manufacture of coated spheres
US5824569A (en) * 1992-07-15 1998-10-20 Micron Technology, Inc. Semiconductor device having ball-bonded pads
US5834340A (en) * 1993-06-01 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Plastic molded semiconductor package and method of manufacturing the same
US5862588A (en) * 1995-08-14 1999-01-26 International Business Machines Corporation Method for restraining circuit board warp during area array rework
US5878943A (en) * 1990-02-19 1999-03-09 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US5892273A (en) * 1994-10-03 1999-04-06 Kabushiki Kaisha Toshiba Semiconductor package integral with semiconductor chip
US5908317A (en) * 1996-03-11 1999-06-01 Anam Semiconductor Inc. Method of forming chip bumps of bump chip scale semiconductor package
US5925934A (en) * 1995-10-28 1999-07-20 Institute Of Microelectronics Low cost and highly reliable chip-sized package
JPH11243156A (en) * 1998-02-25 1999-09-07 Toshiba Corp Semiconductor device
US5985694A (en) * 1997-09-29 1999-11-16 Motorola, Inc. Semiconductor die bumping method utilizing vacuum stencil
US6015083A (en) * 1995-12-29 2000-01-18 Microfab Technologies, Inc. Direct solder bumping of hard to solder substrate
US6050481A (en) * 1997-06-25 2000-04-18 International Business Machines Corporation Method of making a high melting point solder ball coated with a low melting point solder
US6059172A (en) * 1997-06-25 2000-05-09 International Business Machines Corporation Method for establishing electrical communication between a first object having a solder ball and a second object
US6101708A (en) * 1993-07-27 2000-08-15 Citizen Watch Co., Ltd. Method for electrically connecting terminals to each other
US6114187A (en) * 1997-01-11 2000-09-05 Microfab Technologies, Inc. Method for preparing a chip scale package and product produced by the method
US6153940A (en) * 1994-11-17 2000-11-28 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Core metal soldering knob flip-chip technology
US6165885A (en) * 1995-08-02 2000-12-26 International Business Machines Corporation Method of making components with solder balls
US6168972B1 (en) * 1998-12-22 2001-01-02 Fujitsu Limited Flip chip pre-assembly underfill process
US6187682B1 (en) * 1998-05-26 2001-02-13 Motorola Inc. Inert plasma gas surface cleaning process performed insitu with physical vapor deposition (PVD) of a layer of material
US6199273B1 (en) * 1995-12-19 2001-03-13 Sumitomo Metal Industries, Ltd. Method of forming connector structure for a ball-grid array
US6227436B1 (en) * 1990-02-19 2001-05-08 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US6235996B1 (en) * 1998-01-28 2001-05-22 International Business Machines Corporation Interconnection structure and process module assembly and rework
US6260264B1 (en) * 1997-12-08 2001-07-17 3M Innovative Properties Company Methods for making z-axis electrical connections
US6330967B1 (en) * 1997-03-13 2001-12-18 International Business Machines Corporation Process to produce a high temperature interconnection
US6333206B1 (en) * 1996-12-24 2001-12-25 Nitto Denko Corporation Process for the production of semiconductor device
US6362530B1 (en) * 1998-04-06 2002-03-26 National Semiconductor Corporation Manufacturing methods and construction for integrated circuit packages
US20020106832A1 (en) * 1996-11-26 2002-08-08 Gregory B. Hotchkiss Method and apparatus for attaching solder members to a substrate
US6458622B1 (en) * 1999-07-06 2002-10-01 Motorola, Inc. Stress compensation composition and semiconductor component formed using the stress compensation composition
US6469393B2 (en) * 1998-04-16 2002-10-22 Sony Corporation Semiconductor package and mount board
US20040126927A1 (en) * 2001-03-05 2004-07-01 Shih-Hsiung Lin Method of assembling chips
US7268303B2 (en) * 2002-10-11 2007-09-11 Seiko Epson Corporation Circuit board, mounting structure of ball grid array, electro-optic device and electronic device
US7786001B2 (en) * 2007-04-11 2010-08-31 International Business Machines Corporation Electrical interconnect structure and method
US7868457B2 (en) * 2007-09-14 2011-01-11 International Business Machines Corporation Thermo-compression bonded electrical interconnect structure and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355251B2 (en) * 1993-11-02 2002-12-09 株式会社日立製作所 Electronic device manufacturing method
JP2861965B2 (en) * 1996-09-20 1999-02-24 日本電気株式会社 Method of forming bump electrodes

Patent Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811183A (en) * 1971-02-05 1974-05-21 Philips Corp Method of manufacturing a semiconductor device and semiconductor device manufactured by the method
US3719981A (en) * 1971-11-24 1973-03-13 Rca Corp Method of joining solder balls to solder bumps
US4376505A (en) * 1981-01-05 1983-03-15 Western Electric Co., Inc. Methods for applying solder to an article
US4807021A (en) * 1986-03-10 1989-02-21 Kabushiki Kaisha Toshiba Semiconductor device having stacking structure
US5068040A (en) * 1989-04-03 1991-11-26 Hughes Aircraft Company Dense phase gas photochemical process for substrate treatment
US5878943A (en) * 1990-02-19 1999-03-09 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US6227436B1 (en) * 1990-02-19 2001-05-08 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US5060844A (en) * 1990-07-18 1991-10-29 International Business Machines Corporation Interconnection structure and test method
US5147084A (en) * 1990-07-18 1992-09-15 International Business Machines Corporation Interconnection structure and test method
US5229016A (en) * 1991-08-08 1993-07-20 Microfab Technologies, Inc. Method and apparatus for dispensing spherical-shaped quantities of liquid solder
US5824569A (en) * 1992-07-15 1998-10-20 Micron Technology, Inc. Semiconductor device having ball-bonded pads
US5193738A (en) * 1992-09-18 1993-03-16 Microfab Technologies, Inc. Methods and apparatus for soldering without using flux
US5656863A (en) * 1993-02-18 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Resin seal semiconductor package
US5409157A (en) * 1993-02-26 1995-04-25 Nagesh; Voddarahalli K. Composite transversely plastic interconnect for microchip carrier
US5834340A (en) * 1993-06-01 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Plastic molded semiconductor package and method of manufacturing the same
US6101708A (en) * 1993-07-27 2000-08-15 Citizen Watch Co., Ltd. Method for electrically connecting terminals to each other
US5591941A (en) * 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
US6504105B1 (en) * 1993-10-28 2003-01-07 International Business Machines Corporation Solder ball connections and assembly process
US5545465A (en) * 1993-12-21 1996-08-13 International Business Machines Corporation Circuit board having a defined volume of solder or conductive adhesive deposited at interconnection sites for electrical circuits
US5377902A (en) * 1994-01-14 1995-01-03 Microfab Technologies, Inc. Method of making solder interconnection arrays
US5411602A (en) * 1994-02-17 1995-05-02 Microfab Technologies, Inc. Solder compositions and methods of making same
US5415679A (en) * 1994-06-20 1995-05-16 Microfab Technologies, Inc. Methods and apparatus for forming microdroplets of liquids at elevated temperatures
US5492266A (en) * 1994-08-31 1996-02-20 International Business Machines Corporation Fine pitch solder deposits on printed circuit board process and product
US5825629A (en) * 1994-08-31 1998-10-20 International Business Machines Corporation Print circuit board product with stencil controlled fine pitch solder formation for fine and coarse pitch component attachment
US5892273A (en) * 1994-10-03 1999-04-06 Kabushiki Kaisha Toshiba Semiconductor package integral with semiconductor chip
JPH08111581A (en) * 1994-10-07 1996-04-30 Nippon Avionics Co Ltd Method of soldering ball grid array printed wiring board
US5579573A (en) * 1994-10-11 1996-12-03 Ford Motor Company Method for fabricating an undercoated chip electrically interconnected to a substrate
US6153940A (en) * 1994-11-17 2000-11-28 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Core metal soldering knob flip-chip technology
US5672913A (en) * 1995-02-23 1997-09-30 Lucent Technologies Inc. Semiconductor device having a layer of gallium amalgam on bump leads
US5542601A (en) * 1995-02-24 1996-08-06 International Business Machines Corporation Rework process for semiconductor chips mounted in a flip chip configuration on an organic substrate
US6077380A (en) * 1995-06-30 2000-06-20 Microfab Technologies, Inc. Method of forming an adhesive connection
US5736074A (en) * 1995-06-30 1998-04-07 Micro Fab Technologies, Inc. Manufacture of coated spheres
US5633533A (en) * 1995-07-26 1997-05-27 International Business Machines Corporation Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
US6165885A (en) * 1995-08-02 2000-12-26 International Business Machines Corporation Method of making components with solder balls
US5862588A (en) * 1995-08-14 1999-01-26 International Business Machines Corporation Method for restraining circuit board warp during area array rework
US5925934A (en) * 1995-10-28 1999-07-20 Institute Of Microelectronics Low cost and highly reliable chip-sized package
JPH09162317A (en) * 1995-12-05 1997-06-20 Toshiba Corp Semiconductor package
US6199273B1 (en) * 1995-12-19 2001-03-13 Sumitomo Metal Industries, Ltd. Method of forming connector structure for a ball-grid array
US6015083A (en) * 1995-12-29 2000-01-18 Microfab Technologies, Inc. Direct solder bumping of hard to solder substrate
US5908317A (en) * 1996-03-11 1999-06-01 Anam Semiconductor Inc. Method of forming chip bumps of bump chip scale semiconductor package
JPH09270444A (en) * 1996-03-29 1997-10-14 Sumitomo Kinzoku Electro Device:Kk Inter-board connection structure
JPH09270477A (en) * 1996-03-29 1997-10-14 Sumitomo Kinzoku Electro Device:Kk Ceramic board
US5681757A (en) * 1996-04-29 1997-10-28 Microfab Technologies, Inc. Process for dispensing semiconductor die-bond adhesive using a printhead having a microjet array and the product produced by the process
US5729896A (en) * 1996-10-31 1998-03-24 International Business Machines Corporation Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US20020106832A1 (en) * 1996-11-26 2002-08-08 Gregory B. Hotchkiss Method and apparatus for attaching solder members to a substrate
US6333206B1 (en) * 1996-12-24 2001-12-25 Nitto Denko Corporation Process for the production of semiconductor device
US6114187A (en) * 1997-01-11 2000-09-05 Microfab Technologies, Inc. Method for preparing a chip scale package and product produced by the method
US6330967B1 (en) * 1997-03-13 2001-12-18 International Business Machines Corporation Process to produce a high temperature interconnection
US6050481A (en) * 1997-06-25 2000-04-18 International Business Machines Corporation Method of making a high melting point solder ball coated with a low melting point solder
US6059172A (en) * 1997-06-25 2000-05-09 International Business Machines Corporation Method for establishing electrical communication between a first object having a solder ball and a second object
US5985694A (en) * 1997-09-29 1999-11-16 Motorola, Inc. Semiconductor die bumping method utilizing vacuum stencil
US6260264B1 (en) * 1997-12-08 2001-07-17 3M Innovative Properties Company Methods for making z-axis electrical connections
US6235996B1 (en) * 1998-01-28 2001-05-22 International Business Machines Corporation Interconnection structure and process module assembly and rework
JPH11243156A (en) * 1998-02-25 1999-09-07 Toshiba Corp Semiconductor device
US6362530B1 (en) * 1998-04-06 2002-03-26 National Semiconductor Corporation Manufacturing methods and construction for integrated circuit packages
US6469393B2 (en) * 1998-04-16 2002-10-22 Sony Corporation Semiconductor package and mount board
US6187682B1 (en) * 1998-05-26 2001-02-13 Motorola Inc. Inert plasma gas surface cleaning process performed insitu with physical vapor deposition (PVD) of a layer of material
US6168972B1 (en) * 1998-12-22 2001-01-02 Fujitsu Limited Flip chip pre-assembly underfill process
US6458622B1 (en) * 1999-07-06 2002-10-01 Motorola, Inc. Stress compensation composition and semiconductor component formed using the stress compensation composition
US20040126927A1 (en) * 2001-03-05 2004-07-01 Shih-Hsiung Lin Method of assembling chips
US7268303B2 (en) * 2002-10-11 2007-09-11 Seiko Epson Corporation Circuit board, mounting structure of ball grid array, electro-optic device and electronic device
US7786001B2 (en) * 2007-04-11 2010-08-31 International Business Machines Corporation Electrical interconnect structure and method
US20100230474A1 (en) * 2007-04-11 2010-09-16 International Business Machines Corporation Electrical interconnect forming method
US20100230143A1 (en) * 2007-04-11 2010-09-16 International Business Machines Corporation Electrical interconnect structure
US8541299B2 (en) * 2007-04-11 2013-09-24 Ultratech, Inc. Electrical interconnect forming method
US7868457B2 (en) * 2007-09-14 2011-01-11 International Business Machines Corporation Thermo-compression bonded electrical interconnect structure and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English translation Iikubo, JP09162317. 6pgs. 1997. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524595B2 (en) * 2007-06-12 2013-09-03 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package structures
US20100055846A1 (en) * 2007-06-12 2010-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package structures
US9418955B2 (en) * 2010-06-18 2016-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma treatment for semiconductor devices
US20110309490A1 (en) * 2010-06-18 2011-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma Treatment for Semiconductor Devices
US8629053B2 (en) * 2010-06-18 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma treatment for semiconductor devices
US20140131861A1 (en) * 2010-06-18 2014-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma Treatment for Semiconductor Devices
DE102010040063A1 (en) * 2010-08-31 2012-03-01 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg A process for producing lead-free solder balls having a stable oxide layer based on a plasma process
US20140264230A1 (en) * 2013-03-14 2014-09-18 Northrop Grumman Systems Corporation Phase change material switch and method of making the same
US9257647B2 (en) * 2013-03-14 2016-02-09 Northrop Grumman Systems Corporation Phase change material switch and method of making the same
US20170125375A1 (en) * 2015-10-29 2017-05-04 Semtech Corporation Semiconductor Device and Method of Forming DCALGA Package Using Semiconductor Die with Micro Pillars
US9875988B2 (en) * 2015-10-29 2018-01-23 Semtech Corporation Semiconductor device and method of forming DCALGA package using semiconductor die with micro pillars
US10700270B2 (en) 2016-06-21 2020-06-30 Northrop Grumman Systems Corporation PCM switch and method of making the same
US20190371229A1 (en) * 2018-05-31 2019-12-05 Invensas Corporation Formation of a Light-Emitting Diode Display
US11024220B2 (en) * 2018-05-31 2021-06-01 Invensas Corporation Formation of a light-emitting diode display
US11546010B2 (en) 2021-02-16 2023-01-03 Northrop Grumman Systems Corporation Hybrid high-speed and high-performance switch system

Also Published As

Publication number Publication date
US20010042923A1 (en) 2001-11-22
KR100681985B1 (en) 2007-02-15
JP4239310B2 (en) 2009-03-18
JP2001044233A (en) 2001-02-16
US7078820B2 (en) 2006-07-18
KR20000022830A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US7078820B2 (en) Semiconductor apparatus and process of production thereof
KR100908747B1 (en) Adhesion Improvement Method by Plasma Treatment on Semiconductor Chip Surface
US6689639B2 (en) Method of making semiconductor device
KR100521081B1 (en) Fabrication and installation method of flip chip
JP3553300B2 (en) Semiconductor device manufacturing method and semiconductor device mounting method
JPH088278B2 (en) Method for forming semiconductor chip package and chip bonding tape therefor
JP2004146731A (en) Manufacturing method of multilayer wiring substrate
KR100473432B1 (en) Bump forming method, soldering preprocessing method, soldering method, soldering preprocessing apparatus and soldering apparatus
JP4130706B2 (en) Bump manufacturing method and semiconductor device manufacturing method
JP4321980B2 (en) Manufacturing method of multilayer printed wiring board
JP2000138260A (en) Manufacture of semiconductor device
KR100411144B1 (en) Reflow Method of fluxless solder bump using Ar-H2 Plasma
JP4182611B2 (en) Manufacturing method of semiconductor device
JPH11163018A (en) Manufacture of semiconductor device and multi-layer wiring substrate and manufacture of the same
JP3296344B2 (en) Semiconductor device and manufacturing method thereof
JP3896701B2 (en) Method for producing solder bump electrode
JPH10224029A (en) Production of bump
JP3381454B2 (en) Vapor deposition apparatus and ball bump forming method
JPH09306918A (en) Barrier metal forming method in forming process of solder ball bump
JP2003007970A (en) Method and structure for mounting semiconductor device, cleaning device for use in mounting method, method for manufacturing semiconductor device and semiconductor device, and cleaning device for use in manufacturing method
JP2000340593A (en) Manufacture of semiconductor device
JPH11145120A (en) Plasma treating device for electronic parts and manufacture of electronic parts
JPH09321050A (en) Forming barrier metal in solder ball bump forming process
JPH06232209A (en) Manufacture of semiconductor device
JPH11330122A (en) Production of bump

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION