US20100164479A1 - Portable Electronic Device Having Self-Calibrating Proximity Sensors - Google Patents

Portable Electronic Device Having Self-Calibrating Proximity Sensors Download PDF

Info

Publication number
US20100164479A1
US20100164479A1 US12/344,760 US34476008A US2010164479A1 US 20100164479 A1 US20100164479 A1 US 20100164479A1 US 34476008 A US34476008 A US 34476008A US 2010164479 A1 US2010164479 A1 US 2010164479A1
Authority
US
United States
Prior art keywords
proximity sensor
background measurement
sensor
electronic device
portable electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/344,760
Other versions
US8030914B2 (en
Inventor
Rachid M. Alameh
Aaron L. Dietrich
Kenneth Allen Paitl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google Technology Holdings LLC
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US12/344,760 priority Critical patent/US8030914B2/en
Assigned to MOTOROLA, INC. reassignment MOTOROLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALAMEH, RACHID M, DIETRICH, AARON L, PAITL, KENNETH ALLEN
Priority to KR1020117015063A priority patent/KR101237603B1/en
Priority to PCT/US2009/066555 priority patent/WO2010077550A2/en
Priority to EP09836656.0A priority patent/EP2382838B1/en
Priority to CN200980153010.6A priority patent/CN102440063B/en
Publication of US20100164479A1 publication Critical patent/US20100164479A1/en
Assigned to Motorola Mobility, Inc reassignment Motorola Mobility, Inc ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOTOROLA, INC
Publication of US8030914B2 publication Critical patent/US8030914B2/en
Application granted granted Critical
Assigned to MOTOROLA MOBILITY LLC reassignment MOTOROLA MOBILITY LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MOTOROLA MOBILITY, INC.
Assigned to Google Technology Holdings LLC reassignment Google Technology Holdings LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOTOROLA MOBILITY LLC
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/002Automatic recalibration
    • G01D18/006Intermittent recalibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/9401Calibration techniques
    • H03K2217/94031Calibration involving digital processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates generally to the field of electronic devices having one or more proximity sensors. More particularly, the present invention relates to a wireless communication device having one or more proximity sensors with self-calibrating capabilities.
  • Proximity sensors are capable of detecting the presence of nearby objects without any physical contact.
  • a proximity sensor emits an electromagnetic or electrostatic field, and observes changes in the field. In doing so, the proximity sensor detects any position changes of nearby objects based on changes to the electromagnetic or electrostatic field caused by the objects' presence.
  • Wireless communication devices may utilize proximity sensors to manage the user experience and power consumption of its audio and video output components when adjacent to a user's ear.
  • these devices may reduce speaker volume when the device's earpiece is positioned near the user's ear to avoid discomfort to the user's eardrums.
  • the proximity sensor may turn off the device display when the device is positioned near the user's ear to save power.
  • these types of wireless communication device dynamically adjust the operation of audio and video output components when these components are positioned very close to, i.e., adjacent to, a user's ear.
  • FIG. 1 is a general representation of an example environmental condition where the present invention may be utilized.
  • FIG. 2 is a perspective view of an embodiment in accordance with the present invention.
  • FIG. 3 a block diagram representing example components that may be used for an embodiment in accordance with the present invention.
  • FIGS. 4A , 4 B and 4 C are flow diagrams representing operations of an embodiment in accordance with the present invention.
  • FIG. 5 is a graphical representation illustrating the results of an example operation of an embodiment in accordance with the present invention.
  • FIG. 6 is a block diagram representing an example circuit for minimizing the impact of background noise in accordance with the present invention.
  • each proximity sensor of the device is capable of dynamically deriving a detection threshold as a portion of received background conditions.
  • the sensors of the self-calibrating device dynamically adjust its own power consumption based on the environment conditions surrounding the device, resulting to minimized power consumption.
  • the sensors of the self-calibrating, low power device are capable of monitoring a broad range of environmental conditions, i.e., far away as well as nearby, surrounding the device due to its ultra-sensitivity, resulting in optimized functionality.
  • the ultra-sensitivity of the sensors is accomplished by detecting near noise level or, more particularly, by setting the detection threshold just above the noise level as a portion of the received signal, allowing for detection of miniscule disturbances.
  • the proximity sensors of the portable electronic device in accordance with the present invention may operate in multiple, different modes. These modes are context driven and the area of coverage, such as, range, angle, and active sensors, may be adaptively set and adjusted based on input from other sensors of the device. Context information may be used to set the range and/or coverage of each proximity sensor to achieve the desired functionality while keeping power consumption to a minimum. For example, if the portable electronic device is positioned near the user's head, the set range of the proximity sensor may be minimized and applications may be disabled, such as operations of an input component, to conserve power.
  • the sensors may detect which hand of the user is supporting the back of the device, estimate the device location relative to the user, disable select sensors, increase the range of select sensors, and the like. If the portable electronic device is placed on a horizontal surface, such as a table, the proximity sensors may be adjusted to operate at maximum range and monitor to detect any disturbances which may indicate user presence. Also, the proximity sensors may be used to determine which side of the device the user is walking near and, in response, deactivate the remaining proximity sensors, i.e, those sensors directed away from the user. If portable electronic device is face down on a horizontal surface, i.e., a user interface is not visible to proximate users, the proximity sensors directed upward relate to the surface may be active and the remaining sensors may be disabled.
  • a portable electronic device 101 in accordance with the present invention may be carried by a user or, as shown in FIG. 1 , placed remote from the user.
  • the portable electronic device 101 may be placed on another object, such as a horizontal surface 103 .
  • the portable electronic device 101 may use its proximity sensors to detect conditions in an environment 105 when the device is carried by the user or placed remote from the user, the device is particularly useful when it is stationary.
  • Proximity sensors of the portable electronic device 101 are capable of detecting the presence of nearby objects, particularly when the objects change position relative to the device.
  • the proximity sensors are capable of detecting the slightest activity or movement of people 107 , 109 locating within the environment 105 in the proximity of the device 101 . Some people 107 may be nearby the device 101 , whereas others may be distal from the device.
  • the embodiment may be any type of portable electronic device 201 having one or more proximity sensors and capability of performing self-calibration functions of the proximity sensor(s) in accordance with the present invention.
  • portable electronic device 201 include, but are not limited to, cellular-based mobile phones, WLAN-based mobile phones, notebook or laptop computing devices, personal digital assistants, personal navigation device, touch screen input device, pen-based input devices, portable video and/or audio players, and the like.
  • the portable electronic device 201 has a housing comprising a front surface 203 which includes a visible display 205 which may include touch screen capabilities.
  • the portable electronic device 201 may include a plurality of input keys in conjunction with the display 205 .
  • the portable electronic device 201 may comprise apertures 207 , 209 for audio output and input at the front surface 203 . It is to be understood that the portable electronic device 201 may include a variety of different combination of displays and interfaces.
  • the housing of the portable electronic device 201 may also include a top surface 211 , a bottom surface 213 , side surfaces 215 , 217 , and a back surface 219 .
  • the top surface 211 , the bottom surface 213 , the side surfaces 215 , 217 of the housing of the portable electronic device 201 are not required to have any particular shape or configuration relative to the front and back surfaces 203 and 219 .
  • the front surface 203 , the top surface 211 , the bottom surface 213 , the side surfaces 215 , 217 , and the back surface 219 of the housing may support one or more proximity sensors. Although some proximity sensors may be exposed at a surface of the housing, it is recognized that some types of proximity sensors may function while concealed behind a surface of the housing. If the portable electronic device 201 includes two or more proximity sensors, then proximity sensors may be positioned at opposing surfaces of the housing, so that sensor is directed in a first direction and another sensor is directed in a second direction substantially opposite the first direction, in order to maximize the broadest detection coverage of the conditions about the environment 105 .
  • the example embodiment includes one or more wireless transceivers 301 , a processor 303 , a memory 305 , one or more output components 307 , and one or more input components 309 .
  • Each embodiment may include a user interface that comprises one or more output components 307 and one or more input components 309 .
  • Each wireless transceiver 301 may utilize wireless technology for communication, such as, but are not limited to, cellular-based communications such as analog communications (using AMPS), digital communications (using CDMA, TDMA, GSM, iDEN, GPRS, or EDGE), and next generation communications (using UMTS, WCDMA, LTE or IEEE 802 . 16 ) and their variants, as represented by cellular transceiver 311 .
  • cellular-based communications such as analog communications (using AMPS), digital communications (using CDMA, TDMA, GSM, iDEN, GPRS, or EDGE), and next generation communications (using UMTS, WCDMA, LTE or IEEE 802 . 16 ) and their variants, as represented by cellular transceiver 311 .
  • Each wireless transceiver 301 may also utilize wireless technology for communication, such as, but are not limited to, peer-to-peer or ad hoc communications such as HomeRF, Bluetooth and IEEE 802.11 (a, b, g or n); and other forms of wireless communication such as infrared technology, as represented by WLAN transceiver 313 .
  • each transceiver 201 may be a receiver, a transmitter or both.
  • the processor 303 may generate commands based on information received from one or more input components 309 and one or more sensors 315 .
  • the processor 303 may process the received information alone or in combination with other data, such as the information stored in the memory 305 .
  • the memory 305 of the internal components 300 may be used by the processor 303 to store and retrieve data.
  • the data that may be stored by the memory 305 include, but is not limited to, operating systems, applications, and data.
  • Each operating system includes executable code that controls basic functions of the portable electronic device, such as interaction among the components of the internal components 300 , communication with external devices via each transceiver 301 and/or the device interface (see below), and storage and retrieval of applications and data to and from the memory 305 .
  • Each application includes executable code utilizes an operating system to provide more specific functionality for the portable electronic device.
  • Data is non-executable code or information that may be referenced and/or manipulated by an operating system or application for performing functions of the portable electronic device.
  • the processor 303 may retrieve information the memory 305 to calibrate the sensitivity of the sensors 315 .
  • the input components 309 of the internal components 300 may include a video input component such as an optical sensor (for example, a camera), an audio input component such as a microphone, and a mechanical input component such as button or key selection sensors, touch pad sensor, touch screen sensor, capacitive sensor, motion sensor, and switch.
  • the output components 307 of the internal components 300 may include a variety of video, audio and/or mechanical outputs.
  • the output components 307 may include a video output component such as a cathode ray tube, liquid crystal display, plasma display, incandescent light, fluorescent light, front or rear projection display, and light emitting diode indicator.
  • Other examples of output components 307 include an audio output component such as a speaker, alarm and/or buzzer, and/or a mechanical output component such as vibrating or motion-based mechanisms.
  • the sensors 315 are similar to the input components 309 , but are particularly identified separately in FIG. 3 due to their importance for the present invention.
  • the portable electronic device 100 may include at least one proximity sensor 315 to detect the presence of nearby objects.
  • the sensors 315 may include one or more proximity sensors 317 such as, but not limited to, capacitive, magnetic, inductive, optical/photoelectric, laser, acoustic/sonic, radar-based, Doppler-based, thermal, and radiation-based proximity sensors.
  • the proximity sensor 317 may be an infrared proximity sensor that transmits a beam of infrared (IR) light, and then computes the distance to any nearby objects from characteristics of the returned, reflected signal.
  • the returned signal may be detected using an IR photodiode to detect reflected light emitting diode (LED) light, responding to modulated IR signals, and/or triangulation.
  • the sensors 315 may also include one or more other sensors 319 . Examples of these other sensors 319 include, but are not limited to, accelerometers, touch sensors, surface/housing capacitive sensors, and video sensors (such as a camera).
  • an accelerometer may be embedded in the electronic circuitry of the portable electronic device 201 to show vertical orientation, constant tilt and/or whether the device is stationary.
  • Touch sensors may used to indicate whether the device is being touched at the side surfaces 215 , 217 , thus indicating whether or not certain orientations or activities/movements are intentional by the user.
  • the internal components 300 may further include a device interface 321 to provide a direct connection to auxiliary components or accessories for additional or enhanced functionality.
  • the internal components 300 preferably include a power source 323 , such as a portable battery, for providing power to the other internal components and allow portability of the portable electronic device 101 .
  • FIG. 3 is provided for illustrative purposes only and for illustrating components of a portable electronic device in accordance with the present invention, and is not intended to be a complete schematic diagram of the various components required for a portable electronic device. Therefore, a portable electronic device may include various other components not shown in FIG. 3 , or may include a combination of two or more components or a division of a particular component into two or more separate components, and still be within the scope of the present invention.
  • the portable electronic device 101 obtains a background measurement each time before one or more proximity sensors are activated.
  • one or more proximity sensors 317 of the portable electronic device 101 obtain a background measurement.
  • a background measurement may be taken before each magnitude measurement for the detection threshold.
  • a background measurement is a measurement of the received signal when no signal is being transmitted by the proximity sensor(s) 317 .
  • statistics of the background may be accumulated and used to determine an appropriate threshold for the magnitude measurement. The accumulated statistic includes at least one of mean, standard deviation, maximum signal level, or minimum signal level.
  • the threshold can then adaptively change as the environment changes and, thus, is reflected in the background measurements. If a random noise spike does occur during a magnitude measurement that exceeds the threshold, the processor 303 or proximity sensor 317 may obtain additional information from other sensor 319 to determine if the magnitude measurement was corrupted.
  • the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 403 .
  • the portable electronic device 101 may update the detection threshold every time a background measurement is obtained, but adjustment of the detection threshold may only be necessary when the background measurement indicates a change.
  • the portable electronic device 101 may also decide to adjust the detection threshold by identifying the background measurement as exceeding a predetermined noise threshold. Further, as stated above, the portable electronic device 101 may distinguish activity or movement from nearby objects from random noise spikes or corrupt measurements to avoid adjusting the detection threshold unnecessarily or inappropriately.
  • the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 405 .
  • the detection threshold is associated with a sensitivity of the proximity sensor 317 to environmental conditions, which may be detected by sensors 319 other than the proximity sensor(s) 317 . Also, the same detection threshold may be used for multiple proximity sensors 317 , or separate detections thresholds for different proximity sensors.
  • the portable electronic device 101 may determine an appropriate detection threshold based on information from a sensor 319 other than the proximity sensor in conjunction with the background measurement by the proximity sensor(s) 317 . Examples of sensors 319 other than the proximity sensor(s) 317 includes, but at not limited to, a touch sensor, a light sensor or an accelerometer.
  • the portable electronic device 101 may also determine an appropriate detection threshold based on date information, time information, or both, in conjunction with the background measurement by the proximity sensor(s) 317 .
  • the portable electronic device 101 may adjust the detection threshold based on a predetermined fraction, percentage, ratio or other calculation based on the background measurement.
  • the portable electronic device 101 may also dynamically adjust the detection threshold lower for even better detection results based on information received from other sensors 319 , such as, but not limited to, time of day, use habits, environment, in use status showing receiver output was unchanged for a long time, time of day prediction if a user is expected to be asleep, etc.
  • the first operation 400 continues by emitting a source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor at step 407 , and receiving a return signal by the proximity sensor corresponding to the source signal at step 409 .
  • the portable electronic device 101 may perform one or more functions based on the return signal at step 411 .
  • the device 101 may activate an output component 307 , such as an audio, visual and/or mechanical indicator, in order to attract the attention of a nearby person.
  • the device 101 activate or keep active one or more functions if activity or movement of a nearby object is detected, or otherwise deactivate functions to conserve energy if no activity or movement is detected. Thereafter, the portable electronic device 101 may obtain another background measurement at step 401 or wait a predetermined time period at step 413 before obtaining another background measurement.
  • FIG. 4B there is shown another flow diagram representing a second operation 420 of an embodiment in accordance with the present invention.
  • the portable electronic device 101 obtains a background measurement independent of when one or more proximity sensors are activated.
  • Each proximity sensor 317 may emit a source signal at step 421 , and receive a return signal corresponding to the source signal at step 423 .
  • the device 101 may continue to emit the source signal and receive the return signal repeatedly. Similar to the first operation 400 above, the portable electronic device 101 may perform one or more functions based on the return signal after step 423 .
  • the portable electronic device 101 may obtain a background measurement by the proximity sensor on a periodic basis. After obtaining the background measurement at step 427 , the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 429 . If the adjustment is warranted at step 429 , then the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 431 . For this second operation 420 , the emission/receiving process would have a link 435 to the detection threshold adjustment process, so that the adjusted detection threshold may be utilized the next time the source signal is emitted at step 421 . Finally, the detection threshold adjustment process may include a delay of time at step 422 before obtaining the next background measurement at step 427 .
  • FIG. 4C there is shown yet another flow diagram representing a third operation 440 of an embodiment in accordance with the present invention.
  • the portable electronic device 101 obtains a background measurement after a predetermined number of times when one or more proximity sensors are activated, or in response to detecting a change in the environmental conditions.
  • the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 443 . If the adjustment is warranted, then the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 445 . Regardless of whether or not the detection threshold of the proximity sensor(s) 317 is adjusted, the third operation 440 continues by emitting a source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor at step 447 , and receiving a return signal by the proximity sensor corresponding to the source signal at step 449 . Similar to the first and second operations 400 , 420 above, the portable electronic device 101 may perform one or more functions based on the return signal after step 449 .
  • the portable electronic device 101 may determine whether another background measurement should be obtained at step 451 .
  • the device 101 may include a counter, so that the device may obtain a background measurement after a certain number of source signals have been emitted and a certain number of return signals have been received.
  • the device 101 initiate a background measure only if a sensor 319 other than the proximity sensor(s) 317 provide information indicating a change in the environmental conditions about the device.
  • the third operation 440 continues at step 441 if a background check is desired, and the third operation continues at step 447 if a background check is not needed.
  • the portable electronic device 101 may wait a predetermined time period at step 453 or step 455 before obtaining another background measurement or emitting another source signal.
  • the example operation may be represented by the following possible scenario.
  • a user may place the portable electronic device 101 on a table, and leave it there as she or he moves away from it.
  • the device detects, at a lower power mode, user presence and which side user is approaching.
  • the portable electronic device 101 detects being stationary on a horizontal surface 103 and detect its orientation.
  • an accelerometer for example may not detect change and may indicate whether the device is upside down or right side up, and touch sensors may detect contact or lack thereof.
  • the device 101 then initiates bursts at the proximity sensors at maximum power or a predetermined high-power level. If the device 101 includes more that two proximity sensors, then the proximity sensors to activate or keep active are selected based on the orientation of the device.
  • the maximum or high-level power bursts may be enabled, since the device 101 is expected to be far from the user for this scenario.
  • the bursting may be initiated right away, i.e., as soon as device 101 is placed down or after certain time delay to increase the chance that the receivers of the proximity sensors start to measure quiescent/background returns.
  • FIG. 5 there is shown a graphical representation illustrating the results of an example operation 500 of an embodiment in accordance with the present invention.
  • the horizontal axis 501 of this graphical representation represents time, in seconds
  • the vertical axis 503 of this graphical representation represents output, in volts.
  • the operation of the portable electronic device 101 is context driven, where the device is positioned on a horizontal surface 103 .
  • the portable electronic device 101 includes a proximity sensor 317 at opposing sides, such as a first proximity sensor 505 at the first side 215 and a second proximity sensor 507 at the second side 217 opposite the first side.
  • the first proximity sensor 505 and the first side 215 is identified as “Left RX”
  • the second proximity sensor 507 at the second side 217 is identified as “Right RX”.
  • the processor 303 read the receiver outputs of both proximity sensors 505 , 507 , and continues to take readings periodically. The processor 303 then observes the values that are similar for each of the outputs. These readings correspond to circuit bias, background interference/lighting, and/or user presence. A reading of “ 1 ” is mostly constant in this operation 500 and should represent the situation where the user (or anyone else) is away from the portable electronic device 101 . The processor 303 then sets a user detection threshold as a percentage of “1”, i.e., self-calibrates itself. The processor 303 also detects which side the user is detected by the device 101 . For example, the determination of the side of detection may be used to direct audio or rotate an image toward the user when she or he comes near. This is down by looking at receiver outputs of both proximity sensors 505 , 507 .
  • the processor 303 may use the same detection threshold for multiple proximity sensors, or separate detections thresholds for different proximity sensors.
  • the right side detection threshold for the first proximity sensor 505 may be 1.00 volts+delta.
  • the delta by way of example, is predetermined at 1/10 or 10%
  • the right side detection threshold may be set at 1.1 volts of output.
  • the left side detection threshold for the second proximity sensor 507 may be 1.20 volts+delta.
  • the delta is, again, predetermined at 1/10 or 10%
  • the left side detection threshold may be set at 1.32 volts of output.
  • the processor 303 measures, for the first three seconds of operation, a voltage reading 509 of 1.00 volt at the first proximity sensor 505 and a voltage reading 511 of 1.20 volts at the second proximity sensor 507 .
  • the non-varying characteristic of these first and second voltage readings 509 , 511 indicate that activity or movement by objects in the environment 105 surrounding the device 101 is not detected by the proximity sensors 505 , 507 .
  • the user 107 may have been away from portable electronic device 101 for first three seconds.
  • the voltage readings 513 , 515 at the first proximity sensor 505 increases to, and levels-off at, 1.30 volts, thus indicating that the first proximity sensor detects significant activity or movement for that two second period of time.
  • the voltage reading 517 at the second proximity sensor 507 increases slightly to 1.22 volts and then another voltage reading 519 at the second proximity sensor decreases even more slightly to 1.21 volts.
  • the slight detection at the second proximity sensor 507 when considered by itself, would not necessarily indicate any type of detection of an object, i.e., user, in proximity of the sensor.
  • these two readings indicate that activity or movement is detected by both proximity sensors, in which the location of the detected object relative to the device 101 may be determined based on the sensor detecting the greater percentage change.
  • the user 107 may walk by the right side 217 of the portable electronic device 101 for two seconds, which may have been detected by the proximity sensor at the right side 217 .
  • the activity or movement by the right side 217 of the user 107 may have also caused a minor disturbance, which may have been detected by the proximity sensor at the left side 215 .
  • the voltage readings 521 , 523 at the first proximity sensor 505 decreases back down to, and levels-off at, the previous voltage level, i.e., to 1.00 volts, thus indicating that the first proximity sensor no longer detects activity or movement for that two second period of time.
  • the voltage readings 525 , 527 at the second proximity sensor 507 increases substantially to, and levels-off at, 2.00 volts.
  • the substantial increase in signal detection by the second proximity sensor 507 indicates higher energy motion or motion by multiple objects at the second side 217 of the portable electronic device 101 .
  • the detection by the second proximity sensor and the lack of detection by the first proximity sensor indicates that all detection motion is at the second side 217 of the device 101 .
  • the user 107 may further walk by the left side 215 of the portable electronic device 101 for two seconds.
  • the voltage readings of the first proximity sensor 505 remain unchanged and the voltage readings 529 and 531 of the second proximity sensor 507 decreases back down to, and level-off at, the previous, initial voltage level, i.e., to 1.2 volts. Accordingly, the receiver outputs of both proximity sensors 505 , 507 indicate that the proximity sensors no longer detect activity or movement for that two second period of time. For example, the user 107 may have further moved away from the portable electronic device 101 .
  • a background measurement may be taken before each magnitude measurement for the detection threshold.
  • a background measurement is a measurement of the received signal when no signal is being transmitted. The background measurement provides a measure of the noise. Statistics of the background are accumulated (e.g. average, standard deviation, max, min, etc.) and used to determine an appropriate threshold for the magnitude measurement. The threshold can then adaptively change as the environment changes and is reflected in the background measurements. If a random noise spike does occur during a magnitude measurement that exceeds the threshold, coding will provide additional information to know if the magnitude measurement was corrupted.
  • a coding circuit 600 may be implemented to minimize the impact of background noise. Coding by the circuit 600 is performed by transmitting multiple coding pulses, in which the receiver knows the timing of the coding pulses, and checking for whether a particular signal is present or not present in the returning or received signal 601 at the appropriate time. For example, a proximity sensor may send four coding pulses, and the coding circuit may determining the validity of the returning signal 601 corresponding to these four coding pulses based on the timing of the coding pulses of the returning signal. If the pulses of the received signal 601 are received properly, the magnitude measurement 603 is considered to be valid; otherwise, the magnitude measurement may be corrupt.
  • an optical proximity sensor may be corrupted by extraneous light sources in the environment, such as light flashes from another device. If the magnitude measurement 603 is valid, then it may be used to determine the detection threshold as described above. The detection threshold of the proximity sensor may be adjusted based on the magnitude measurement in response to determining that the return signal meets or exceeds a predetermined criterion, as described below.
  • a sample and hold circuit 605 is used to sample the magnitude of the received signal when one of the pulses is transmitted.
  • a peak detector may be used as a sample and hold circuit.
  • the output of the sample and hold circuit 605 may be input to an analog-to-digital (“A-to-D”) converter 607 .
  • A-to-D analog-to-digital
  • the sample and hold circuit 605 may be separate from the A-to-D converter 607 as shown in FIG. 6 , or the circuit may integrated in the A-to-D converter.
  • the sample and hold circuit 605 may be used to reduce the timing requirements of the A-to-D converter 607 .
  • the width of the transmitted coding pulses may be minimized, since the sample and hold circuit 605 is aware of the timing when the pulses are transmitted which, in turn, saves current drain of components that consume a significant amount of current, such as the transmitter.
  • the coding circuit 600 may also check signal validity 609 as well as the magnitude measurement 603 .
  • the coding circuit 600 determines whether the return signal meets or exceeds a predetermined criterion based on timing of the multiple pulses. For example, as illustrated in FIG. 6 , the signal validity 609 may be checked in parallel with the magnitude measurement 603 , and both checks may be based on the received signal 601 .
  • the received signal 601 may be input to a comparator 611 , and converted to a digital signal that is input to a GPIO line of a microprocessor 613 .
  • the microprocessor 613 then reads the GPIO line at the appropriate time to determine if the coding pulses are present.
  • a comparator 611 to identify the coding pulses (instead of, for example, the A-to-D converter 607 ) maximizes the speed in performing the complete measurement, thus saving current drain.
  • the microprocessor 613 may optionally avoid using code at low received signal levels in order to further maximize performance and minimize current drain.
  • the coding circuit 600 performs two functions.
  • the multiple transmitted coding pulses are connected together as a single wide pulse via a sample and hold circuit 605 and used to measure received signal strength, i.e., magnitude measurement 603 .
  • the resulting wide pulse amplitude changes with signal strength and is used to assess user distance from the portable electronic device.
  • the multiple pulses are applied to a comparator 611 whose output is digital signal.
  • the digital signal may show multiple digital pulses indicating that it is valid signal, since the microprocessor 613 counts the multiple pulses within a set interval instead of random noise edges. Accordingly, falsing is minimized, while processing and detection speed are improved and power drain is minimized.

Abstract

A method of a portable electronic device for self-calibration of a proximity sensor. A background measurement is obtained by the proximity sensor and a detection threshold of the proximity sensor is adjusted based on the background measurement. The background measurement is a measure of a received signal when no signal is transmitted by the proximity sensor, and the detection threshold is associated with a sensitivity of the proximity sensor to environmental conditions. A source signal is emitted by the proximity sensor based on the adjusted detection threshold of the proximity sensor, and a return signal is received by the proximity sensor corresponding to the source signal. A function of the portable electronic device may be performed base don the received return signal.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to the field of electronic devices having one or more proximity sensors. More particularly, the present invention relates to a wireless communication device having one or more proximity sensors with self-calibrating capabilities.
  • BACKGROUND OF THE INVENTION
  • Proximity sensors are capable of detecting the presence of nearby objects without any physical contact. In particular, a proximity sensor emits an electromagnetic or electrostatic field, and observes changes in the field. In doing so, the proximity sensor detects any position changes of nearby objects based on changes to the electromagnetic or electrostatic field caused by the objects' presence.
  • Wireless communication devices may utilize proximity sensors to manage the user experience and power consumption of its audio and video output components when adjacent to a user's ear. In particular, these devices may reduce speaker volume when the device's earpiece is positioned near the user's ear to avoid discomfort to the user's eardrums. As another example, the proximity sensor may turn off the device display when the device is positioned near the user's ear to save power. Thus, these types of wireless communication device dynamically adjust the operation of audio and video output components when these components are positioned very close to, i.e., adjacent to, a user's ear.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a general representation of an example environmental condition where the present invention may be utilized.
  • FIG. 2 is a perspective view of an embodiment in accordance with the present invention.
  • FIG. 3 a block diagram representing example components that may be used for an embodiment in accordance with the present invention.
  • FIGS. 4A, 4B and 4C are flow diagrams representing operations of an embodiment in accordance with the present invention.
  • FIG. 5 is a graphical representation illustrating the results of an example operation of an embodiment in accordance with the present invention.
  • FIG. 6 is a block diagram representing an example circuit for minimizing the impact of background noise in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • There is described portable electronic device having one or more sensors with self-calibration capabilities. In particular, each proximity sensor of the device is capable of dynamically deriving a detection threshold as a portion of received background conditions. The sensors of the self-calibrating device dynamically adjust its own power consumption based on the environment conditions surrounding the device, resulting to minimized power consumption. In addition, the sensors of the self-calibrating, low power device are capable of monitoring a broad range of environmental conditions, i.e., far away as well as nearby, surrounding the device due to its ultra-sensitivity, resulting in optimized functionality. The ultra-sensitivity of the sensors is accomplished by detecting near noise level or, more particularly, by setting the detection threshold just above the noise level as a portion of the received signal, allowing for detection of miniscule disturbances.
  • The proximity sensors of the portable electronic device in accordance with the present invention may operate in multiple, different modes. These modes are context driven and the area of coverage, such as, range, angle, and active sensors, may be adaptively set and adjusted based on input from other sensors of the device. Context information may be used to set the range and/or coverage of each proximity sensor to achieve the desired functionality while keeping power consumption to a minimum. For example, if the portable electronic device is positioned near the user's head, the set range of the proximity sensor may be minimized and applications may be disabled, such as operations of an input component, to conserve power. If the portable communication device is operating in a two-handed user mode, the sensors may detect which hand of the user is supporting the back of the device, estimate the device location relative to the user, disable select sensors, increase the range of select sensors, and the like. If the portable electronic device is placed on a horizontal surface, such as a table, the proximity sensors may be adjusted to operate at maximum range and monitor to detect any disturbances which may indicate user presence. Also, the proximity sensors may be used to determine which side of the device the user is walking near and, in response, deactivate the remaining proximity sensors, i.e, those sensors directed away from the user. If portable electronic device is face down on a horizontal surface, i.e., a user interface is not visible to proximate users, the proximity sensors directed upward relate to the surface may be active and the remaining sensors may be disabled.
  • Referring to FIG. 1, there is shown a general representation of an example environmental condition where the present invention may be utilized. A portable electronic device 101 in accordance with the present invention may be carried by a user or, as shown in FIG. 1, placed remote from the user. For example, the portable electronic device 101 may be placed on another object, such as a horizontal surface 103. The portable electronic device 101 may use its proximity sensors to detect conditions in an environment 105 when the device is carried by the user or placed remote from the user, the device is particularly useful when it is stationary. Proximity sensors of the portable electronic device 101 are capable of detecting the presence of nearby objects, particularly when the objects change position relative to the device. For example, the proximity sensors are capable of detecting the slightest activity or movement of people 107, 109 locating within the environment 105 in the proximity of the device 101. Some people 107 may be nearby the device 101, whereas others may be distal from the device.
  • Referring to FIG. 2, there is illustrated a perspective view of an embodiment in accordance with the present invention. The embodiment may be any type of portable electronic device 201 having one or more proximity sensors and capability of performing self-calibration functions of the proximity sensor(s) in accordance with the present invention. Examples of the portable electronic device 201 include, but are not limited to, cellular-based mobile phones, WLAN-based mobile phones, notebook or laptop computing devices, personal digital assistants, personal navigation device, touch screen input device, pen-based input devices, portable video and/or audio players, and the like.
  • For one embodiment, the portable electronic device 201 has a housing comprising a front surface 203 which includes a visible display 205 which may include touch screen capabilities. For another embodiment, the portable electronic device 201 may include a plurality of input keys in conjunction with the display 205. For yet another embodiment, the portable electronic device 201 may comprise apertures 207, 209 for audio output and input at the front surface 203. It is to be understood that the portable electronic device 201 may include a variety of different combination of displays and interfaces.
  • In addition to the front surface 203, the housing of the portable electronic device 201 may also include a top surface 211, a bottom surface 213, side surfaces 215, 217, and a back surface 219. The top surface 211, the bottom surface 213, the side surfaces 215, 217 of the housing of the portable electronic device 201 are not required to have any particular shape or configuration relative to the front and back surfaces 203 and 219.
  • The front surface 203, the top surface 211, the bottom surface 213, the side surfaces 215, 217, and the back surface 219 of the housing may support one or more proximity sensors. Although some proximity sensors may be exposed at a surface of the housing, it is recognized that some types of proximity sensors may function while concealed behind a surface of the housing. If the portable electronic device 201 includes two or more proximity sensors, then proximity sensors may be positioned at opposing surfaces of the housing, so that sensor is directed in a first direction and another sensor is directed in a second direction substantially opposite the first direction, in order to maximize the broadest detection coverage of the conditions about the environment 105.
  • Referring to FIG. 3, there is shown a block diagram representing example components that may be used for an embodiment in accordance with the present invention. The example embodiment includes one or more wireless transceivers 301, a processor 303, a memory 305, one or more output components 307, and one or more input components 309. Each embodiment may include a user interface that comprises one or more output components 307 and one or more input components 309. Each wireless transceiver 301 may utilize wireless technology for communication, such as, but are not limited to, cellular-based communications such as analog communications (using AMPS), digital communications (using CDMA, TDMA, GSM, iDEN, GPRS, or EDGE), and next generation communications (using UMTS, WCDMA, LTE or IEEE 802.16) and their variants, as represented by cellular transceiver 311. Each wireless transceiver 301 may also utilize wireless technology for communication, such as, but are not limited to, peer-to-peer or ad hoc communications such as HomeRF, Bluetooth and IEEE 802.11 (a, b, g or n); and other forms of wireless communication such as infrared technology, as represented by WLAN transceiver 313. Also, each transceiver 201 may be a receiver, a transmitter or both.
  • The processor 303 may generate commands based on information received from one or more input components 309 and one or more sensors 315. The processor 303 may process the received information alone or in combination with other data, such as the information stored in the memory 305. Thus, the memory 305 of the internal components 300 may be used by the processor 303 to store and retrieve data. The data that may be stored by the memory 305 include, but is not limited to, operating systems, applications, and data. Each operating system includes executable code that controls basic functions of the portable electronic device, such as interaction among the components of the internal components 300, communication with external devices via each transceiver 301 and/or the device interface (see below), and storage and retrieval of applications and data to and from the memory 305. Each application includes executable code utilizes an operating system to provide more specific functionality for the portable electronic device. Data is non-executable code or information that may be referenced and/or manipulated by an operating system or application for performing functions of the portable electronic device. For example, the processor 303 may retrieve information the memory 305 to calibrate the sensitivity of the sensors 315.
  • The input components 309 of the internal components 300 may include a video input component such as an optical sensor (for example, a camera), an audio input component such as a microphone, and a mechanical input component such as button or key selection sensors, touch pad sensor, touch screen sensor, capacitive sensor, motion sensor, and switch. Likewise, the output components 307 of the internal components 300 may include a variety of video, audio and/or mechanical outputs. For example, the output components 307 may include a video output component such as a cathode ray tube, liquid crystal display, plasma display, incandescent light, fluorescent light, front or rear projection display, and light emitting diode indicator. Other examples of output components 307 include an audio output component such as a speaker, alarm and/or buzzer, and/or a mechanical output component such as vibrating or motion-based mechanisms.
  • The sensors 315 are similar to the input components 309, but are particularly identified separately in FIG. 3 due to their importance for the present invention. The portable electronic device 100, in accordance with the present invention, may include at least one proximity sensor 315 to detect the presence of nearby objects. For example, as illustrated by FIG. 2, the sensors 315 may include one or more proximity sensors 317 such as, but not limited to, capacitive, magnetic, inductive, optical/photoelectric, laser, acoustic/sonic, radar-based, Doppler-based, thermal, and radiation-based proximity sensors. For example, the proximity sensor 317 may be an infrared proximity sensor that transmits a beam of infrared (IR) light, and then computes the distance to any nearby objects from characteristics of the returned, reflected signal. The returned signal may be detected using an IR photodiode to detect reflected light emitting diode (LED) light, responding to modulated IR signals, and/or triangulation. The sensors 315 may also include one or more other sensors 319. Examples of these other sensors 319 include, but are not limited to, accelerometers, touch sensors, surface/housing capacitive sensors, and video sensors (such as a camera). For example, an accelerometer may be embedded in the electronic circuitry of the portable electronic device 201 to show vertical orientation, constant tilt and/or whether the device is stationary. Touch sensors may used to indicate whether the device is being touched at the side surfaces 215, 217, thus indicating whether or not certain orientations or activities/movements are intentional by the user.
  • The internal components 300 may further include a device interface 321 to provide a direct connection to auxiliary components or accessories for additional or enhanced functionality. In addition, the internal components 300 preferably include a power source 323, such as a portable battery, for providing power to the other internal components and allow portability of the portable electronic device 101.
  • It is to be understood that FIG. 3 is provided for illustrative purposes only and for illustrating components of a portable electronic device in accordance with the present invention, and is not intended to be a complete schematic diagram of the various components required for a portable electronic device. Therefore, a portable electronic device may include various other components not shown in FIG. 3, or may include a combination of two or more components or a division of a particular component into two or more separate components, and still be within the scope of the present invention.
  • Referring to FIG. 4A, there is shown a flow diagram representing a first operation 400 of an embodiment in accordance with the present invention. For this first operation 400, the portable electronic device 101 obtains a background measurement each time before one or more proximity sensors are activated. At step 401, one or more proximity sensors 317 of the portable electronic device 101 obtain a background measurement. As shown in FIG. 4A, a background measurement may be taken before each magnitude measurement for the detection threshold. A background measurement is a measurement of the received signal when no signal is being transmitted by the proximity sensor(s) 317. For another embodiment, statistics of the background may be accumulated and used to determine an appropriate threshold for the magnitude measurement. The accumulated statistic includes at least one of mean, standard deviation, maximum signal level, or minimum signal level. The threshold can then adaptively change as the environment changes and, thus, is reflected in the background measurements. If a random noise spike does occur during a magnitude measurement that exceeds the threshold, the processor 303 or proximity sensor 317 may obtain additional information from other sensor 319 to determine if the magnitude measurement was corrupted.
  • After obtaining the background measurement at step 401, the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 403. The portable electronic device 101 may update the detection threshold every time a background measurement is obtained, but adjustment of the detection threshold may only be necessary when the background measurement indicates a change. The portable electronic device 101 may also decide to adjust the detection threshold by identifying the background measurement as exceeding a predetermined noise threshold. Further, as stated above, the portable electronic device 101 may distinguish activity or movement from nearby objects from random noise spikes or corrupt measurements to avoid adjusting the detection threshold unnecessarily or inappropriately.
  • If the adjustment is warranted, then the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 405. The detection threshold is associated with a sensitivity of the proximity sensor 317 to environmental conditions, which may be detected by sensors 319 other than the proximity sensor(s) 317. Also, the same detection threshold may be used for multiple proximity sensors 317, or separate detections thresholds for different proximity sensors. The portable electronic device 101 may determine an appropriate detection threshold based on information from a sensor 319 other than the proximity sensor in conjunction with the background measurement by the proximity sensor(s) 317. Examples of sensors 319 other than the proximity sensor(s) 317 includes, but at not limited to, a touch sensor, a light sensor or an accelerometer. The portable electronic device 101 may also determine an appropriate detection threshold based on date information, time information, or both, in conjunction with the background measurement by the proximity sensor(s) 317.
  • The portable electronic device 101 may adjust the detection threshold based on a predetermined fraction, percentage, ratio or other calculation based on the background measurement. The portable electronic device 101 may also dynamically adjust the detection threshold lower for even better detection results based on information received from other sensors 319, such as, but not limited to, time of day, use habits, environment, in use status showing receiver output was unchanged for a long time, time of day prediction if a user is expected to be asleep, etc.
  • Regardless of whether or not the detection threshold of the proximity sensor(s) 317 is adjusted, the first operation 400 continues by emitting a source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor at step 407, and receiving a return signal by the proximity sensor corresponding to the source signal at step 409. The portable electronic device 101 may perform one or more functions based on the return signal at step 411. For example, the device 101 may activate an output component 307, such as an audio, visual and/or mechanical indicator, in order to attract the attention of a nearby person. As another example, the device 101 activate or keep active one or more functions if activity or movement of a nearby object is detected, or otherwise deactivate functions to conserve energy if no activity or movement is detected. Thereafter, the portable electronic device 101 may obtain another background measurement at step 401 or wait a predetermined time period at step 413 before obtaining another background measurement.
  • Referring to FIG. 4B, there is shown another flow diagram representing a second operation 420 of an embodiment in accordance with the present invention. For this second operation 420, the portable electronic device 101 obtains a background measurement independent of when one or more proximity sensors are activated. Each proximity sensor 317 may emit a source signal at step 421, and receive a return signal corresponding to the source signal at step 423. After a predetermined time period at step 425, the device 101 may continue to emit the source signal and receive the return signal repeatedly. Similar to the first operation 400 above, the portable electronic device 101 may perform one or more functions based on the return signal after step 423.
  • Separately, the portable electronic device 101 may obtain a background measurement by the proximity sensor on a periodic basis. After obtaining the background measurement at step 427, the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 429. If the adjustment is warranted at step 429, then the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 431. For this second operation 420, the emission/receiving process would have a link 435 to the detection threshold adjustment process, so that the adjusted detection threshold may be utilized the next time the source signal is emitted at step 421. Finally, the detection threshold adjustment process may include a delay of time at step 422 before obtaining the next background measurement at step 427.
  • Referring to FIG. 4C, there is shown yet another flow diagram representing a third operation 440 of an embodiment in accordance with the present invention. For this third operation 440, the portable electronic device 101 obtains a background measurement after a predetermined number of times when one or more proximity sensors are activated, or in response to detecting a change in the environmental conditions.
  • After obtaining the background measurement at step 441, the portable electronic device 101 may determine whether the background measurements warrant an adjustment to the detection threshold of one or more proximity sensor 317 at step 443. If the adjustment is warranted, then the portable electronic device 101 may adjust the detection threshold of one or more proximity sensors 317 based on the background measurement at step 445. Regardless of whether or not the detection threshold of the proximity sensor(s) 317 is adjusted, the third operation 440 continues by emitting a source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor at step 447, and receiving a return signal by the proximity sensor corresponding to the source signal at step 449. Similar to the first and second operations 400, 420 above, the portable electronic device 101 may perform one or more functions based on the return signal after step 449.
  • Thereafter, the portable electronic device 101 may determine whether another background measurement should be obtained at step 451. For example, the device 101 may include a counter, so that the device may obtain a background measurement after a certain number of source signals have been emitted and a certain number of return signals have been received. For another example, the device 101 initiate a background measure only if a sensor 319 other than the proximity sensor(s) 317 provide information indicating a change in the environmental conditions about the device. The third operation 440 continues at step 441 if a background check is desired, and the third operation continues at step 447 if a background check is not needed. Also, the portable electronic device 101 may wait a predetermined time period at step 453 or step 455 before obtaining another background measurement or emitting another source signal.
  • The example operation may be represented by the following possible scenario. A user may place the portable electronic device 101 on a table, and leave it there as she or he moves away from it. When the user 107 approaches the device 101, the device detects, at a lower power mode, user presence and which side user is approaching. The portable electronic device 101 detects being stationary on a horizontal surface 103 and detect its orientation. Regarding the orientation, an accelerometer for example may not detect change and may indicate whether the device is upside down or right side up, and touch sensors may detect contact or lack thereof. The device 101 then initiates bursts at the proximity sensors at maximum power or a predetermined high-power level. If the device 101 includes more that two proximity sensors, then the proximity sensors to activate or keep active are selected based on the orientation of the device. The maximum or high-level power bursts may be enabled, since the device 101 is expected to be far from the user for this scenario. The bursting may be initiated right away, i.e., as soon as device 101 is placed down or after certain time delay to increase the chance that the receivers of the proximity sensors start to measure quiescent/background returns.
  • Referring to FIG. 5, there is shown a graphical representation illustrating the results of an example operation 500 of an embodiment in accordance with the present invention. The horizontal axis 501 of this graphical representation represents time, in seconds, and the vertical axis 503 of this graphical representation represents output, in volts. For this operation 500, the operation of the portable electronic device 101 is context driven, where the device is positioned on a horizontal surface 103. Also, for this operation 500, the portable electronic device 101 includes a proximity sensor 317 at opposing sides, such as a first proximity sensor 505 at the first side 215 and a second proximity sensor 507 at the second side 217 opposite the first side. In FIG. 5, the first proximity sensor 505 and the first side 215 is identified as “Left RX”, and the second proximity sensor 507 at the second side 217 is identified as “Right RX”.
  • The processor 303 read the receiver outputs of both proximity sensors 505, 507, and continues to take readings periodically. The processor 303 then observes the values that are similar for each of the outputs. These readings correspond to circuit bias, background interference/lighting, and/or user presence. A reading of “1” is mostly constant in this operation 500 and should represent the situation where the user (or anyone else) is away from the portable electronic device 101. The processor 303 then sets a user detection threshold as a percentage of “1”, i.e., self-calibrates itself. The processor 303 also detects which side the user is detected by the device 101. For example, the determination of the side of detection may be used to direct audio or rotate an image toward the user when she or he comes near. This is down by looking at receiver outputs of both proximity sensors 505, 507.
  • The processor 303 may use the same detection threshold for multiple proximity sensors, or separate detections thresholds for different proximity sensors. For example, the right side detection threshold for the first proximity sensor 505 may be 1.00 volts+delta. Thus, if the delta, by way of example, is predetermined at 1/10 or 10%, then the right side detection threshold may be set at 1.1 volts of output. For another example, the left side detection threshold for the second proximity sensor 507 may be 1.20 volts+delta. Thus, if the delta is, again, predetermined at 1/10 or 10%, then the left side detection threshold may be set at 1.32 volts of output.
  • For the embodiment represented by FIG. 5, the processor 303 measures, for the first three seconds of operation, a voltage reading 509 of 1.00 volt at the first proximity sensor 505 and a voltage reading 511 of 1.20 volts at the second proximity sensor 507. The non-varying characteristic of these first and second voltage readings 509, 511 indicate that activity or movement by objects in the environment 105 surrounding the device 101 is not detected by the proximity sensors 505, 507. For example, the user 107 may have been away from portable electronic device 101 for first three seconds.
  • For the next two seconds of operation, i.e., the 4th and 5th seconds, the voltage readings 513, 515 at the first proximity sensor 505 increases to, and levels-off at, 1.30 volts, thus indicating that the first proximity sensor detects significant activity or movement for that two second period of time. During that same time period, the voltage reading 517 at the second proximity sensor 507 increases slightly to 1.22 volts and then another voltage reading 519 at the second proximity sensor decreases even more slightly to 1.21 volts. The slight detection at the second proximity sensor 507, when considered by itself, would not necessarily indicate any type of detection of an object, i.e., user, in proximity of the sensor. However, when this slight detection of the second proximity sensor 507 is considered in conjunction with the detection at the first proximity sensor 505, these two readings indicate that activity or movement is detected by both proximity sensors, in which the location of the detected object relative to the device 101 may be determined based on the sensor detecting the greater percentage change. For example, the user 107 may walk by the right side 217 of the portable electronic device 101 for two seconds, which may have been detected by the proximity sensor at the right side 217. The activity or movement by the right side 217 of the user 107 may have also caused a minor disturbance, which may have been detected by the proximity sensor at the left side 215.
  • For the following two seconds of operation, i.e., the 6th and 7th seconds, the voltage readings 521, 523 at the first proximity sensor 505 decreases back down to, and levels-off at, the previous voltage level, i.e., to 1.00 volts, thus indicating that the first proximity sensor no longer detects activity or movement for that two second period of time. During that same time period, the voltage readings 525, 527 at the second proximity sensor 507 increases substantially to, and levels-off at, 2.00 volts. The substantial increase in signal detection by the second proximity sensor 507 indicates higher energy motion or motion by multiple objects at the second side 217 of the portable electronic device 101. Also, in contrast to the previous time period where changes were detected by both proximity sensors 505, 507, the detection by the second proximity sensor and the lack of detection by the first proximity sensor indicates that all detection motion is at the second side 217 of the device 101. For example, the user 107 may further walk by the left side 215 of the portable electronic device 101 for two seconds.
  • For the last two seconds of operation, i.e., the 8th and 9th seconds, the voltage readings of the first proximity sensor 505 remain unchanged and the voltage readings 529 and 531 of the second proximity sensor 507 decreases back down to, and level-off at, the previous, initial voltage level, i.e., to 1.2 volts. Accordingly, the receiver outputs of both proximity sensors 505, 507 indicate that the proximity sensors no longer detect activity or movement for that two second period of time. For example, the user 107 may have further moved away from the portable electronic device 101.
  • A background measurement may be taken before each magnitude measurement for the detection threshold. A background measurement is a measurement of the received signal when no signal is being transmitted. The background measurement provides a measure of the noise. Statistics of the background are accumulated (e.g. average, standard deviation, max, min, etc.) and used to determine an appropriate threshold for the magnitude measurement. The threshold can then adaptively change as the environment changes and is reflected in the background measurements. If a random noise spike does occur during a magnitude measurement that exceeds the threshold, coding will provide additional information to know if the magnitude measurement was corrupted.
  • Referring to FIG. 6, a coding circuit 600 may be implemented to minimize the impact of background noise. Coding by the circuit 600 is performed by transmitting multiple coding pulses, in which the receiver knows the timing of the coding pulses, and checking for whether a particular signal is present or not present in the returning or received signal 601 at the appropriate time. For example, a proximity sensor may send four coding pulses, and the coding circuit may determining the validity of the returning signal 601 corresponding to these four coding pulses based on the timing of the coding pulses of the returning signal. If the pulses of the received signal 601 are received properly, the magnitude measurement 603 is considered to be valid; otherwise, the magnitude measurement may be corrupt. For example, an optical proximity sensor may be corrupted by extraneous light sources in the environment, such as light flashes from another device. If the magnitude measurement 603 is valid, then it may be used to determine the detection threshold as described above. The detection threshold of the proximity sensor may be adjusted based on the magnitude measurement in response to determining that the return signal meets or exceeds a predetermined criterion, as described below.
  • The magnitude measurement 603 is taken soon after the coding pulses are transmitted. A sample and hold circuit 605 is used to sample the magnitude of the received signal when one of the pulses is transmitted. For example, a peak detector may be used as a sample and hold circuit. The output of the sample and hold circuit 605 may be input to an analog-to-digital (“A-to-D”) converter 607. It should be noted that the sample and hold circuit 605 may be separate from the A-to-D converter 607 as shown in FIG. 6, or the circuit may integrated in the A-to-D converter. The sample and hold circuit 605 may be used to reduce the timing requirements of the A-to-D converter 607. The width of the transmitted coding pulses may be minimized, since the sample and hold circuit 605 is aware of the timing when the pulses are transmitted which, in turn, saves current drain of components that consume a significant amount of current, such as the transmitter.
  • The coding circuit 600 may also check signal validity 609 as well as the magnitude measurement 603. The coding circuit 600 determines whether the return signal meets or exceeds a predetermined criterion based on timing of the multiple pulses. For example, as illustrated in FIG. 6, the signal validity 609 may be checked in parallel with the magnitude measurement 603, and both checks may be based on the received signal 601. To receive the coding pulses, the received signal 601 may be input to a comparator 611, and converted to a digital signal that is input to a GPIO line of a microprocessor 613. The microprocessor 613 then reads the GPIO line at the appropriate time to determine if the coding pulses are present. Using a comparator 611 to identify the coding pulses (instead of, for example, the A-to-D converter 607) maximizes the speed in performing the complete measurement, thus saving current drain. The microprocessor 613 may optionally avoid using code at low received signal levels in order to further maximize performance and minimize current drain.
  • In accordance with the above, the coding circuit 600 performs two functions. For one, the multiple transmitted coding pulses are connected together as a single wide pulse via a sample and hold circuit 605 and used to measure received signal strength, i.e., magnitude measurement 603. The resulting wide pulse amplitude changes with signal strength and is used to assess user distance from the portable electronic device. For the other, the multiple pulses are applied to a comparator 611 whose output is digital signal. The digital signal may show multiple digital pulses indicating that it is valid signal, since the microprocessor 613 counts the multiple pulses within a set interval instead of random noise edges. Accordingly, falsing is minimized, while processing and detection speed are improved and power drain is minimized.
  • While the preferred embodiments of the invention have been illustrated and described, it is to be understood that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

1. A method of a portable electronic device for self-calibration of a proximity sensor, the method comprising:
obtaining a background measurement by the proximity sensor, wherein the background measurement is a measure of a received signal when no signal is transmitted by the proximity sensor;
adjusting a detection threshold of the proximity sensor based on the background measurement, the detection threshold associated with a sensitivity of the proximity sensor to environmental conditions;
emitting a source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor; and
receiving a return signal by the proximity sensor corresponding to the source signal.
2. The method of claim 1, wherein:
emitting a source signal by the proximity sensor occurs multiple times: and
obtaining a background measurement by the proximity sensor occurs before each occurrence of emitting the source signal by the proximity sensor.
3. The method of claim 1, wherein obtaining a background measurement by the proximity sensor includes obtaining the background measurement by the proximity sensor on a periodic basis.
4. The method of claim 1, further comprising:
detecting a change in the environmental conditions,
wherein obtaining a background measurement by the proximity sensor includes obtaining the background measurement in response to detecting a change in the environmental conditions.
5. The method of claim 4, wherein detecting a change in the environmental conditions includes detecting the change in environmental conditions based on information received from another proximity sensor or a sensor other than the proximity sensor.
6. The method of claim 1, further comprising:
emitting a second source signal; and
receiving a second return signal corresponding to the second source signal,
wherein obtaining a background measurement by the proximity sensor includes obtaining the background measurement subsequent to receiving the second return signal.
7. The method of claim 1, wherein adjusting a detection threshold of the proximity sensor based on the background measurement comprises identifying the background measurement as exceeding a predetermined noise threshold.
8. The method of claim 1, wherein adjusting a detection threshold of the proximity sensor based on the background measurement comprises determining an appropriate detection threshold based on information from another proximity sensor or a sensor other than the proximity sensor in conjunction with the background measurement by the proximity sensor.
9. The method of claim 8, wherein the sensor other than the proximity sensor includes at least a touch sensor, a light sensor or an accelerometer.
10. The method of claim 1, wherein adjusting a detection threshold of the proximity sensor based on the background measurement comprises determining an appropriate detection threshold based on at least date or time information in conjunction with the background measurement by the proximity sensor.
11. The method of claim 1, wherein adjusting a detection threshold of the proximity sensor based on the background measurement comprises:
accumulating a statistic of ambient background noise; and
determining an appropriate detection threshold based on the accumulated statistic.
12. The method of claim 11, wherein the accumulated statistic includes at least one of mean, standard deviation, maximum signal level, or minimum signal level.
13. The method of claim 1, further comprising performing a function of the portable electronic device based on the received return signal.
14. A portable electronic device having one or more sensors with self-calibration capabilities comprising:
a proximity sensor including an emitter and a detector, the emitter capable of emitting a source signal and a detector capable of detecting a return signal corresponding to the source signal, the detector further capable of detecting a background measurement, wherein the background measurement is a measure of a received signal when no signal is transmitted by the proximity sensor; and
a processor capable of adjusting a detection threshold of the proximity sensor based on the background measurement, the detection threshold associated with a sensitivity of the proximity sensor to environmental conditions.
15. The portable electronic device of claim 14, wherein the proximity sensor is one of a light sensor, capacitive sensor, magnetic sensor, inductive sensor, acoustic sensor, thermal sensor or a radiation sensor.
16. The portable electronic device of claim 14, wherein the proximity sensor is a first proximity sensor directed in a first direction, the portable electronic device further comprising:
a second proximity sensor directed in a second direction substantially opposite to the first direction, wherein the processor determines a direction of activity based on information received from the first and second proximity sensors.
17. The portable electronic device of claim 14, wherein the proximity sensor detects a background measurement before each occurrence of emitting the source signal.
18. The portable electronic device of claim 14, wherein the proximity sensor detects a background measurement on a periodic basis.
19. The portable electronic device of claim 14, further comprising a second sensor, different from the proximity sensor, capable of detecting a change in the environmental conditions, wherein the proximity sensor obtains the background measurement in response to detecting a change in the environmental conditions by the second sensor.
20. A method of a portable electronic device for self-calibration of a proximity sensor, the method comprising:
emitting a first source signal by the proximity sensor, the first source signal including a plurality of pulses;
receiving a first return signal by the proximity sensor corresponding to the first source signal;
determining whether the first return signal meets or exceeds a predetermined criterion based on timing of the plurality of pulses;
determining a magnitude measurement of the first return signal based on signal strength of the plurality of pulses;
adjusting a detection threshold of the proximity sensor based on the magnitude measurement in response to determining that the first return signal meets or exceeds the predetermined criterion;
emitting a first source signal by the proximity sensor based on the adjusted detection threshold of the proximity sensor; and
receiving a second return signal by the proximity sensor corresponding to the second source signal.
US12/344,760 2008-12-29 2008-12-29 Portable electronic device having self-calibrating proximity sensors Expired - Fee Related US8030914B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/344,760 US8030914B2 (en) 2008-12-29 2008-12-29 Portable electronic device having self-calibrating proximity sensors
CN200980153010.6A CN102440063B (en) 2008-12-29 2009-12-03 Portable electronic device having self-calibrating proximity sensors
PCT/US2009/066555 WO2010077550A2 (en) 2008-12-29 2009-12-03 Portable electronic device having self-calibrating proximity sensors
EP09836656.0A EP2382838B1 (en) 2008-12-29 2009-12-03 Portable electronic device having self-calibrating proximity sensors
KR1020117015063A KR101237603B1 (en) 2008-12-29 2009-12-03 Portable electronic device having self-calibrating proximity sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/344,760 US8030914B2 (en) 2008-12-29 2008-12-29 Portable electronic device having self-calibrating proximity sensors

Publications (2)

Publication Number Publication Date
US20100164479A1 true US20100164479A1 (en) 2010-07-01
US8030914B2 US8030914B2 (en) 2011-10-04

Family

ID=42284059

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/344,760 Expired - Fee Related US8030914B2 (en) 2008-12-29 2008-12-29 Portable electronic device having self-calibrating proximity sensors

Country Status (5)

Country Link
US (1) US8030914B2 (en)
EP (1) EP2382838B1 (en)
KR (1) KR101237603B1 (en)
CN (1) CN102440063B (en)
WO (1) WO2010077550A2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100271312A1 (en) * 2009-04-22 2010-10-28 Rachid Alameh Menu Configuration System and Method for Display on an Electronic Device
US20100271331A1 (en) * 2009-04-22 2010-10-28 Rachid Alameh Touch-Screen and Method for an Electronic Device
US20110115711A1 (en) * 2009-11-19 2011-05-19 Suwinto Gunawan Method and Apparatus for Replicating Physical Key Function with Soft Keys in an Electronic Device
US20110148752A1 (en) * 2009-05-22 2011-06-23 Rachid Alameh Mobile Device with User Interaction Capability and Method of Operating Same
CN102271177A (en) * 2011-07-18 2011-12-07 惠州Tcl移动通信有限公司 Method and system for calibrating proximity sensor of mobile phone
US20120050189A1 (en) * 2010-08-31 2012-03-01 Research In Motion Limited System And Method To Integrate Ambient Light Sensor Data Into Infrared Proximity Detector Settings
CN102376295A (en) * 2010-08-10 2012-03-14 联想(新加坡)私人有限公司 Assisted zoom
CN102411425A (en) * 2011-07-22 2012-04-11 华为终端有限公司 Method and device for controlling function of touch screen
EP2447667A1 (en) * 2010-10-26 2012-05-02 Research In Motion Limited System and method for calibrating a magnetometer according to a quality threshold
CN102520869A (en) * 2011-12-23 2012-06-27 广东威创视讯科技股份有限公司 Automatic parameter adjusting method for imaging touch screen of camera
WO2012097357A1 (en) * 2011-01-14 2012-07-19 Qualcomm Incorporated Dynamic dc-offset determination for proximity sensing
US20120196530A1 (en) * 2011-01-31 2012-08-02 Research In Motion Limited Mobile device having enhanced in-holster power saving features and related methods
US20120200531A1 (en) * 2010-02-17 2012-08-09 Mikio Araki Touch panel device
US20120246374A1 (en) * 2011-03-25 2012-09-27 Apple Inc. Device orientation based docking functions
WO2013063122A1 (en) * 2011-10-28 2013-05-02 Qualcomm Incorporated Dead reckoning using proximity sensors
CN103123394A (en) * 2011-11-21 2013-05-29 比亚迪股份有限公司 Method and system for setting threshold value of proximity sensor
WO2013166803A1 (en) * 2012-05-08 2013-11-14 广东欧珀移动通信有限公司 Detection algorithm for touchscreen mobile phone infrared proximity sensor
CN103581394A (en) * 2012-08-02 2014-02-12 希姆通信息技术(上海)有限公司 Device and method for testing proximity sensor of mobile terminal
WO2014035557A1 (en) * 2012-08-30 2014-03-06 Apple Inc. Electronic device with adaptive proximity sensor threshold
EP2713586A2 (en) * 2011-06-24 2014-04-02 Huawei Device Co., Ltd. Method and device for adjusting detecting threshold of infrared proximity sensor
US8744418B2 (en) * 2012-08-31 2014-06-03 Analog Devices, Inc. Environment detection for mobile devices
EP2770638A1 (en) * 2013-02-20 2014-08-27 Aito Interactive Oy Piezoelectric sensor, and an electrical appliance, an installation or a gadget comprising at least one piezoelectric sensor
US20140240259A1 (en) * 2013-02-25 2014-08-28 Samsung Electronics Co., Ltd. Method for detecting touch and electronic device thereof
WO2014153259A2 (en) * 2013-03-14 2014-09-25 Aliphcom Intelligent device connection for wireless media ecosystem
US20140368464A1 (en) * 2011-10-25 2014-12-18 Ams Ag Touch sensing system and method for operating a touch sensing system
WO2015066560A1 (en) * 2013-11-01 2015-05-07 InvenSense, Incorporated Systems and methods for optical sensor navigation
CN104702790A (en) * 2015-03-16 2015-06-10 上海与德通讯技术有限公司 Threshold value calibration method of distance sensor and mobile terminal
US20150237183A1 (en) * 2012-08-31 2015-08-20 Analog Devices, Inc. Grip detection and capacitive gesture system for mobile devices
US20150253858A1 (en) * 2014-03-04 2015-09-10 Microsoft Corporation Proximity sensor-based interactions
CN104954001A (en) * 2014-03-27 2015-09-30 福特全球技术公司 Proximity switch assembly and tuning method thereof
US20160066148A1 (en) * 2014-08-27 2016-03-03 Qualcomm Incorporated Determining a context-dependent virtual distance using measurements of stigmergic interference
FR3029039A1 (en) * 2014-11-21 2016-05-27 Continental Automotive France METHOD FOR CALIBRATING A SLEEP DURATION OF AN APPROACH DETECTION SENSOR AND ASSOCIATED SENSOR
CN105741413A (en) * 2015-08-05 2016-07-06 深圳怡化电脑股份有限公司 Depositing and withdrawing device, dynamic correction sensor thereof, correction method and device
GB2535850A (en) * 2015-01-13 2016-08-31 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
EP2695071A4 (en) * 2011-03-17 2016-09-07 Patrick Campbell On-shelf tracking (ost) system
CN106502819A (en) * 2016-11-08 2017-03-15 广东欧珀移动通信有限公司 A kind of based on the control method of proximity transducer, device and mobile terminal
US9727838B2 (en) 2011-03-17 2017-08-08 Triangle Strategy Group, LLC On-shelf tracking system
US9829375B2 (en) 2012-12-26 2017-11-28 Koninklijke Philips N.V. Light sensing system, and method for calibrating a light sensing device
US20170357373A1 (en) * 2014-09-30 2017-12-14 Hewlett-Packard Development Company, L.P. Unintended touch rejection
EP3239825A4 (en) * 2015-01-20 2018-01-24 Huawei Technologies Co., Ltd. Multimedia information presentation method and terminal
US10057231B2 (en) * 2013-11-06 2018-08-21 Arm Ip Limited Calibrating proximity detection for a wearable processing device
EP3404515A1 (en) * 2017-05-19 2018-11-21 HTC Corporation Electronic system and proximity sensing method
US10139869B2 (en) 2014-07-23 2018-11-27 Analog Devices, Inc. Capacitive sensors for grip sensing and finger tracking
CN108965594A (en) * 2018-07-09 2018-12-07 珠海市魅族科技有限公司 Adjusting method, system and the storage medium of terminal device
US20180372499A1 (en) * 2017-06-25 2018-12-27 Invensense, Inc. Method and apparatus for characterizing platform motion
CN109186657A (en) * 2018-09-26 2019-01-11 Oppo广东移动通信有限公司 Proximity sensor parameter calibrating method, device, terminal device and storage medium
US20190098353A1 (en) * 2012-11-08 2019-03-28 Time Warner Cable Enterprises Llc System and Method for Delivering Media Based on Viewer Behavior
US10561386B2 (en) * 2017-05-18 2020-02-18 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus
US10823589B2 (en) 2017-06-02 2020-11-03 Samsung Electronics Co., Ltd. Electronic device and method for controlling sensitivity of sensor on basis of window attributes
WO2021195280A1 (en) * 2020-03-24 2021-09-30 Qualcomm Incorporated Calibration of open space for an antenna array module
US11445058B2 (en) * 2019-10-24 2022-09-13 Samsung Electronics Co., Ltd Electronic device and method for controlling display operation thereof
US11508332B2 (en) 2018-03-09 2022-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Optical sensor and electronic device

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963845B2 (en) 2010-05-05 2015-02-24 Google Technology Holdings LLC Mobile device with temperature sensing capability and method of operating same
US9103732B2 (en) 2010-05-25 2015-08-11 Google Technology Holdings LLC User computer device with temperature sensing capabilities and method of operating same
US8751056B2 (en) 2010-05-25 2014-06-10 Motorola Mobility Llc User computer device with temperature sensing capabilities and method of operating same
US8249512B2 (en) * 2010-06-18 2012-08-21 At&T Mobility Ii Llc Assessing interference environment for wireless communication devices
US9304591B2 (en) 2010-08-10 2016-04-05 Lenovo (Singapore) Pte. Ltd. Gesture control
US9007871B2 (en) 2011-04-18 2015-04-14 Apple Inc. Passive proximity detection
US9729685B2 (en) 2011-09-28 2017-08-08 Apple Inc. Cover for a tablet device
US8879761B2 (en) 2011-11-22 2014-11-04 Apple Inc. Orientation-based audio
US9063591B2 (en) 2011-11-30 2015-06-23 Google Technology Holdings LLC Active styluses for interacting with a mobile device
US8963885B2 (en) 2011-11-30 2015-02-24 Google Technology Holdings LLC Mobile device for interacting with an active stylus
US8831295B2 (en) 2012-03-21 2014-09-09 Authentec, Inc. Electronic device configured to apply facial recognition based upon reflected infrared illumination and related methods
US8847979B2 (en) 2012-06-08 2014-09-30 Samuel G. Smith Peek mode and graphical user interface (GUI) experience
US9225307B2 (en) 2012-06-28 2015-12-29 Sonos, Inc. Modification of audio responsive to proximity detection
TWI512313B (en) * 2012-11-09 2015-12-11 Upi Semiconductor Corp Proximity sensor and operating method thereof
US9198003B2 (en) 2013-01-31 2015-11-24 Apple Inc. Survey techniques for generating location fingerprint data
KR102050229B1 (en) * 2013-06-17 2020-01-08 삼성전자주식회사 Apparatus and method for proximity sensing
US9285886B2 (en) 2013-06-24 2016-03-15 Sonos, Inc. Intelligent amplifier activation
US9645721B2 (en) 2013-07-19 2017-05-09 Apple Inc. Device input modes with corresponding cover configurations
US9912978B2 (en) 2013-07-29 2018-03-06 Apple Inc. Systems, methods, and computer-readable media for transitioning media playback between multiple electronic devices
CN104422473A (en) * 2013-08-22 2015-03-18 联想移动通信科技有限公司 Sensor calibration method, device and handheld electronic equipment
CN104461311A (en) * 2013-09-16 2015-03-25 联想(北京)有限公司 Information processing method and electronic equipment
US9122451B2 (en) 2013-09-30 2015-09-01 Sonos, Inc. Capacitive proximity sensor configuration including a speaker grille
US9323404B2 (en) 2013-09-30 2016-04-26 Sonos, Inc. Capacitive proximity sensor configuration including an antenna ground plane
US9223353B2 (en) 2013-09-30 2015-12-29 Sonos, Inc. Ambient light proximity sensing configuration
CN104570144B (en) * 2013-10-24 2018-01-26 展讯通信(上海)有限公司 A kind of adaptive sensing adjusting thresholds system and method for proximity transducer
US20150229751A1 (en) * 2014-02-07 2015-08-13 Microsoft Corporation Securely determining the location of a user
CN103837910B (en) * 2014-03-20 2017-09-26 深圳市金立通信设备有限公司 Method and terminal that a kind of proximity transducer threshold value is determined
US9977521B2 (en) * 2014-03-24 2018-05-22 Htc Corporation Method for controlling an electronic device equipped with sensing components, and associated apparatus
CN103941310B (en) * 2014-04-09 2017-02-15 苏州佳世达电通有限公司 Correcting method and system of proximity sensor
US9766302B2 (en) * 2014-11-26 2017-09-19 Samsung Electronics Co., Ltd. Methods and apparatus for calibrating sensors under disruptive conditions
CN104407399B (en) * 2014-12-02 2017-01-04 三星半导体(中国)研究开发有限公司 For the method at portable terminal alignment proximity transducer
US9903753B2 (en) * 2015-01-13 2018-02-27 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
CN105939153B (en) * 2015-03-02 2022-04-22 福特全球技术公司 Proximity switch with false touch adaptive learning and method
CN106023349A (en) * 2015-03-30 2016-10-12 福特全球技术公司 Key fob transmission compensation
US9858948B2 (en) 2015-09-29 2018-01-02 Apple Inc. Electronic equipment with ambient noise sensing input circuitry
CN106979794B (en) * 2016-01-18 2021-03-02 中兴通讯股份有限公司 Sensor testing method and device
CN106019260A (en) * 2016-04-29 2016-10-12 乐视控股(北京)有限公司 Distance sensor anti-fouling method and system on mobile terminal
CN105895057B (en) * 2016-06-16 2018-11-20 广东欧珀移动通信有限公司 A kind of backlight adjusting method, device and terminal device
CN106500751B (en) * 2016-10-20 2019-01-15 Oppo广东移动通信有限公司 The calibration method and mobile terminal of proximity sensor
EP3402073B1 (en) * 2017-05-12 2021-02-03 Semtech Corporation Drift suppression filter proximity detector and method
CN107765232B (en) * 2017-09-27 2023-10-24 歌尔科技有限公司 Calibration method and device of proximity sensor
WO2019195483A1 (en) 2018-04-03 2019-10-10 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
CN108759892B (en) * 2018-06-08 2021-01-29 Oppo(重庆)智能科技有限公司 Sensor calibration method, electronic device and computer-readable storage medium
CN109738004B (en) * 2019-01-24 2021-02-26 Oppo广东移动通信有限公司 Method and device for calibrating proximity sensor, electronic equipment and storage medium
JP7375038B2 (en) 2019-03-21 2023-11-07 シャークニンジャ オペレーティング エルエルシー Adaptive sensor array system and method
CN111722546B (en) * 2020-06-30 2022-12-06 广东美的厨房电器制造有限公司 Control method and control device of sensor and cooking equipment
CN114937439B (en) * 2022-06-02 2023-10-24 歌尔股份有限公司 Control method, system and device for optical sensor

Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179369A (en) * 1989-12-06 1993-01-12 Dale Electronics, Inc. Touch panel and method for controlling same
US5684294A (en) * 1996-10-17 1997-11-04 Northern Telecom Ltd Proximity and ambient light monitor
US5781662A (en) * 1994-06-21 1998-07-14 Canon Kabushiki Kaisha Information processing apparatus and method therefor
US5821521A (en) * 1990-05-08 1998-10-13 Symbol Technologies, Inc. Optical scanning assembly with flexible diaphragm
US6107994A (en) * 1992-12-24 2000-08-22 Canon Kabushiki Kaisha Character input method and apparatus arrangement
US6184538B1 (en) * 1997-10-16 2001-02-06 California Institute Of Technology Dual-band quantum-well infrared sensing array having commonly biased contact layers
US6246862B1 (en) * 1999-02-03 2001-06-12 Motorola, Inc. Sensor controlled user interface for portable communication device
US20010019338A1 (en) * 1997-01-21 2001-09-06 Roth Steven William Menu management mechanism that displays menu items based on multiple heuristic factors
US6292674B1 (en) * 1998-08-05 2001-09-18 Ericsson, Inc. One-handed control for wireless telephone
US6330457B1 (en) * 1998-07-31 2001-12-11 Lg Information & Communications, Ltd. Telephone call service by sensing hand-held state of cellular telephone
US20020122072A1 (en) * 1999-04-09 2002-09-05 Edwin J. Selker Pie menu graphical user interface
US6525854B1 (en) * 1997-12-24 2003-02-25 Fujitsu Limited Portable radio terminal with infrared communication function, infrared emission power controlling method between portable radio terminal and apparatus with infrared communication function
US20030063128A1 (en) * 2001-09-28 2003-04-03 Marja Salmimaa Multilevel sorting and displaying of contextual objects
US20030222917A1 (en) * 2002-05-30 2003-12-04 Intel Corporation Mobile virtual desktop
US6804012B2 (en) * 2001-11-30 2004-10-12 3D Connection Gmbh Arrangement for the detection for relative movements or relative position of two objects
US6816154B2 (en) * 2001-05-30 2004-11-09 Palmone, Inc. Optical sensor based user interface for a portable electronic device
US20050104860A1 (en) * 2002-03-27 2005-05-19 Nellcor Puritan Bennett Incorporated Infrared touchframe system
US20050150697A1 (en) * 2002-04-15 2005-07-14 Nathan Altman Method and system for obtaining positioning data
US20050232447A1 (en) * 2004-04-16 2005-10-20 Kabushiki Kaisha Audio-Technica Microphone
US20050289182A1 (en) * 2004-06-15 2005-12-29 Sand Hill Systems Inc. Document management system with enhanced intelligent document recognition capabilities
US20060010400A1 (en) * 2004-06-28 2006-01-12 Microsoft Corporation Recognizing gestures and using gestures for interacting with software applications
US20060031786A1 (en) * 2004-08-06 2006-02-09 Hillis W D Method and apparatus continuing action of user gestures performed upon a touch sensitive interactive display in simulation of inertia
US20060028453A1 (en) * 2004-08-03 2006-02-09 Hisashi Kawabe Display control system, operation input apparatus, and display control method
US20060125799A1 (en) * 2004-08-06 2006-06-15 Hillis W D Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
US20060132456A1 (en) * 2004-12-21 2006-06-22 Microsoft Corporation Hard tap
US20060161870A1 (en) * 2004-07-30 2006-07-20 Apple Computer, Inc. Proximity detector in handheld device
US20060161871A1 (en) * 2004-07-30 2006-07-20 Apple Computer, Inc. Proximity detector in handheld device
US7134092B2 (en) * 2000-11-13 2006-11-07 James Nolen Graphical user interface method and apparatus
US20060256074A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Sensor-initiated exchange of information between devices
US7212835B2 (en) * 1999-12-17 2007-05-01 Nokia Corporation Controlling a terminal of a communication system
US20070137462A1 (en) * 2005-12-16 2007-06-21 Motorola, Inc. Wireless communications device with audio-visual effect generator
US20070180392A1 (en) * 2006-01-27 2007-08-02 Microsoft Corporation Area frequency radial menus
US20070177803A1 (en) * 2006-01-30 2007-08-02 Apple Computer, Inc Multi-touch gesture dictionary
US20070220437A1 (en) * 2006-03-15 2007-09-20 Navisense, Llc. Visual toolkit for a virtual user interface
US20070247643A1 (en) * 2006-04-20 2007-10-25 Kabushiki Kaisha Toshiba Display control apparatus, image processing apparatus, and display control method
US20080005703A1 (en) * 2006-06-28 2008-01-03 Nokia Corporation Apparatus, Methods and computer program products providing finger-based and hand-based gesture commands for portable electronic device applications
US20080006762A1 (en) * 2005-09-30 2008-01-10 Fadell Anthony M Integrated proximity sensor and light sensor
US20080024454A1 (en) * 2006-07-31 2008-01-31 Paul Everest Three-dimensional touch pad input device
US20080052643A1 (en) * 2006-08-25 2008-02-28 Kabushiki Kaisha Toshiba Interface apparatus and interface method
US7340077B2 (en) * 2002-02-15 2008-03-04 Canesta, Inc. Gesture recognition system using depth perceptive sensors
US20080079902A1 (en) * 2006-09-28 2008-04-03 Yair Mandelstam-Manor Apparatus and method for monitoring the position of a subject's hand
US7368703B2 (en) * 2003-01-28 2008-05-06 Koninklijke Philips Electronics, N.V. Optoelectronic input device, method for production of such a device, and method for measuring the movement of an object with the help of such a device
US20080122803A1 (en) * 2006-11-27 2008-05-29 Microsoft Corporation Touch Sensing Using Shadow and Reflective Modes
US20080129688A1 (en) * 2005-12-06 2008-06-05 Naturalpoint, Inc. System and Methods for Using a Movable Object to Control a Computer
US20080161870A1 (en) * 2007-01-03 2008-07-03 Gunderson Bruce D Method and apparatus for identifying cardiac and non-cardiac oversensing using intracardiac electrograms
US20080165140A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Detecting gestures on multi-event sensitive devices
US20080195735A1 (en) * 2007-01-25 2008-08-14 Microsoft Corporation Motion Triggered Data Transfer
US20080192005A1 (en) * 2004-10-20 2008-08-14 Jocelyn Elgoyhen Automated Gesture Recognition
US20080204427A1 (en) * 2004-08-02 2008-08-28 Koninklijke Philips Electronics, N.V. Touch Screen with Pressure-Dependent Visual Feedback
US20080211771A1 (en) * 2007-03-02 2008-09-04 Naturalpoint, Inc. Approach for Merging Scaled Input of Movable Objects to Control Presentation of Aspects of a Shared Virtual Environment
US20080219672A1 (en) * 2007-03-09 2008-09-11 John Tam Integrated infrared receiver and emitter for multiple functionalities
US20080225041A1 (en) * 2007-02-08 2008-09-18 Edge 3 Technologies Llc Method and System for Vision-Based Interaction in a Virtual Environment
US20080240568A1 (en) * 2007-03-29 2008-10-02 Kabushiki Kaisha Toshiba Handwriting determination apparatus and method and program
US20080256494A1 (en) * 2007-04-16 2008-10-16 Greenfield Mfg Co Inc Touchless hand gesture device controller
US20080252595A1 (en) * 2007-04-11 2008-10-16 Marc Boillot Method and Device for Virtual Navigation and Voice Processing
US20080266083A1 (en) * 2007-04-30 2008-10-30 Sony Ericsson Mobile Communications Ab Method and algorithm for detecting movement of an object
US20080297487A1 (en) * 2007-01-03 2008-12-04 Apple Inc. Display integrated photodiode matrix
US20080303681A1 (en) * 2007-06-08 2008-12-11 Apple Inc. Methods and systems for providing sensory information to devices and peripherals
US7468689B2 (en) * 2004-06-28 2008-12-23 Sony Corporation System and method for determining position of radar apparatus based on reflected signals
US20090031258A1 (en) * 2007-07-26 2009-01-29 Nokia Corporation Gesture activated close-proximity communication
US7486386B1 (en) * 2007-09-21 2009-02-03 Silison Laboratories Inc. Optical reflectance proximity sensor
US7489297B2 (en) * 2004-05-11 2009-02-10 Hitachi, Ltd. Method for displaying information and information display system
US20090061823A1 (en) * 2007-08-31 2009-03-05 Samsung Electronics Co., Ltd. Mobile terminal and method of selecting lock function
US20090092284A1 (en) * 1995-06-07 2009-04-09 Automotive Technologies International, Inc. Light Modulation Techniques for Imaging Objects in or around a Vehicle
US7532196B2 (en) * 2003-10-30 2009-05-12 Microsoft Corporation Distributed sensing techniques for mobile devices
US7534988B2 (en) * 2005-11-08 2009-05-19 Microsoft Corporation Method and system for optical tracking of a pointing object
US20090158203A1 (en) * 2007-12-14 2009-06-18 Apple Inc. Scrolling displayed objects using a 3D remote controller in a media system
US20090299633A1 (en) * 2008-05-29 2009-12-03 Delphi Technologies, Inc. Vehicle Pre-Impact Sensing System Having Terrain Normalization
US7630716B2 (en) * 1997-04-24 2009-12-08 Ntt Docomo, Inc. Method and system for mobile communications
US20100167783A1 (en) * 2008-12-31 2010-07-01 Motorola, Inc. Portable Electronic Device Having Directional Proximity Sensors Based on Device Orientation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280427A (en) 1989-04-21 1990-11-16 Canon Inc Infrared ray output device
DE69411954T2 (en) 1994-04-18 1999-03-25 Ibm WIRELESS OPTICAL TRANSMISSION SYSTEM WITH ADAPTIVE DATA TRANSFER SPEED
US6002427A (en) 1997-09-15 1999-12-14 Kipust; Alan J. Security system with proximity sensing for an electronic device
SI20774A (en) 2000-11-20 2002-06-30 Janez Stare 3D sensitive board
DE10294159D2 (en) 2001-09-07 2004-07-22 Me In Gmbh operating device
US6941161B1 (en) 2001-09-13 2005-09-06 Plantronics, Inc Microphone position and speech level sensor
US6703599B1 (en) 2002-01-30 2004-03-09 Microsoft Corporation Proximity sensor with adaptive threshold
DE10211307A1 (en) 2002-03-13 2003-11-20 Mechaless Systems Gmbh Device and method for optoelectronic detection of the movement and / or position of an object
EP1445922A1 (en) 2003-02-06 2004-08-11 Dialog Semiconductor GmbH Monolithic optical read-out circuit
US8639819B2 (en) 2004-02-05 2014-01-28 Nokia Corporation Ad-hoc connection between electronic devices
US20050219228A1 (en) 2004-03-31 2005-10-06 Motorola, Inc. Intuitive user interface and method
JP4416557B2 (en) 2004-04-02 2010-02-17 アルパイン株式会社 Spatial input system
US7623028B2 (en) 2004-05-27 2009-11-24 Lawrence Kates System and method for high-sensitivity sensor
JP2006010489A (en) 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Information device, information input method, and program
DE102004054322B3 (en) 2004-11-10 2006-06-29 Cherry Gmbh Method and arrangement for setting on a service line
JP2007042020A (en) 2005-08-05 2007-02-15 Nec Corp Portable terminal and program
KR100814395B1 (en) 2005-08-30 2008-03-18 삼성전자주식회사 Apparatus and Method for Controlling User Interface Using Jog Shuttle and Navigation Key
US9081445B2 (en) 2006-12-08 2015-07-14 Johnson Controls Technology Company Display and user interface
JP2008305174A (en) 2007-06-07 2008-12-18 Sony Corp Information processor, information processing method, and program
JP5010451B2 (en) 2007-09-11 2012-08-29 アルプス電気株式会社 Input device
JP5469803B2 (en) 2007-09-28 2014-04-16 スタンレー電気株式会社 Two-dimensional position detector

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179369A (en) * 1989-12-06 1993-01-12 Dale Electronics, Inc. Touch panel and method for controlling same
US5821521A (en) * 1990-05-08 1998-10-13 Symbol Technologies, Inc. Optical scanning assembly with flexible diaphragm
US6107994A (en) * 1992-12-24 2000-08-22 Canon Kabushiki Kaisha Character input method and apparatus arrangement
US5781662A (en) * 1994-06-21 1998-07-14 Canon Kabushiki Kaisha Information processing apparatus and method therefor
US20090092284A1 (en) * 1995-06-07 2009-04-09 Automotive Technologies International, Inc. Light Modulation Techniques for Imaging Objects in or around a Vehicle
US5684294A (en) * 1996-10-17 1997-11-04 Northern Telecom Ltd Proximity and ambient light monitor
US20010019338A1 (en) * 1997-01-21 2001-09-06 Roth Steven William Menu management mechanism that displays menu items based on multiple heuristic factors
US7630716B2 (en) * 1997-04-24 2009-12-08 Ntt Docomo, Inc. Method and system for mobile communications
US6184538B1 (en) * 1997-10-16 2001-02-06 California Institute Of Technology Dual-band quantum-well infrared sensing array having commonly biased contact layers
US6525854B1 (en) * 1997-12-24 2003-02-25 Fujitsu Limited Portable radio terminal with infrared communication function, infrared emission power controlling method between portable radio terminal and apparatus with infrared communication function
US6330457B1 (en) * 1998-07-31 2001-12-11 Lg Information & Communications, Ltd. Telephone call service by sensing hand-held state of cellular telephone
US6292674B1 (en) * 1998-08-05 2001-09-18 Ericsson, Inc. One-handed control for wireless telephone
US6246862B1 (en) * 1999-02-03 2001-06-12 Motorola, Inc. Sensor controlled user interface for portable communication device
US20020122072A1 (en) * 1999-04-09 2002-09-05 Edwin J. Selker Pie menu graphical user interface
US7212835B2 (en) * 1999-12-17 2007-05-01 Nokia Corporation Controlling a terminal of a communication system
US7134092B2 (en) * 2000-11-13 2006-11-07 James Nolen Graphical user interface method and apparatus
US6816154B2 (en) * 2001-05-30 2004-11-09 Palmone, Inc. Optical sensor based user interface for a portable electronic device
US20030063128A1 (en) * 2001-09-28 2003-04-03 Marja Salmimaa Multilevel sorting and displaying of contextual objects
US6804012B2 (en) * 2001-11-30 2004-10-12 3D Connection Gmbh Arrangement for the detection for relative movements or relative position of two objects
US7340077B2 (en) * 2002-02-15 2008-03-04 Canesta, Inc. Gesture recognition system using depth perceptive sensors
US20050104860A1 (en) * 2002-03-27 2005-05-19 Nellcor Puritan Bennett Incorporated Infrared touchframe system
US20050150697A1 (en) * 2002-04-15 2005-07-14 Nathan Altman Method and system for obtaining positioning data
US7519918B2 (en) * 2002-05-30 2009-04-14 Intel Corporation Mobile virtual desktop
US20030222917A1 (en) * 2002-05-30 2003-12-04 Intel Corporation Mobile virtual desktop
US7368703B2 (en) * 2003-01-28 2008-05-06 Koninklijke Philips Electronics, N.V. Optoelectronic input device, method for production of such a device, and method for measuring the movement of an object with the help of such a device
US7532196B2 (en) * 2003-10-30 2009-05-12 Microsoft Corporation Distributed sensing techniques for mobile devices
US20050232447A1 (en) * 2004-04-16 2005-10-20 Kabushiki Kaisha Audio-Technica Microphone
US7489297B2 (en) * 2004-05-11 2009-02-10 Hitachi, Ltd. Method for displaying information and information display system
US20050289182A1 (en) * 2004-06-15 2005-12-29 Sand Hill Systems Inc. Document management system with enhanced intelligent document recognition capabilities
US7468689B2 (en) * 2004-06-28 2008-12-23 Sony Corporation System and method for determining position of radar apparatus based on reflected signals
US20060010400A1 (en) * 2004-06-28 2006-01-12 Microsoft Corporation Recognizing gestures and using gestures for interacting with software applications
US20060161870A1 (en) * 2004-07-30 2006-07-20 Apple Computer, Inc. Proximity detector in handheld device
US20060161871A1 (en) * 2004-07-30 2006-07-20 Apple Computer, Inc. Proximity detector in handheld device
US20080204427A1 (en) * 2004-08-02 2008-08-28 Koninklijke Philips Electronics, N.V. Touch Screen with Pressure-Dependent Visual Feedback
US20060028453A1 (en) * 2004-08-03 2006-02-09 Hisashi Kawabe Display control system, operation input apparatus, and display control method
US20060125799A1 (en) * 2004-08-06 2006-06-15 Hillis W D Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
US20060031786A1 (en) * 2004-08-06 2006-02-09 Hillis W D Method and apparatus continuing action of user gestures performed upon a touch sensitive interactive display in simulation of inertia
US20080192005A1 (en) * 2004-10-20 2008-08-14 Jocelyn Elgoyhen Automated Gesture Recognition
US20060132456A1 (en) * 2004-12-21 2006-06-22 Microsoft Corporation Hard tap
US20060256074A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Sensor-initiated exchange of information between devices
US20080006762A1 (en) * 2005-09-30 2008-01-10 Fadell Anthony M Integrated proximity sensor and light sensor
US7534988B2 (en) * 2005-11-08 2009-05-19 Microsoft Corporation Method and system for optical tracking of a pointing object
US20080129688A1 (en) * 2005-12-06 2008-06-05 Naturalpoint, Inc. System and Methods for Using a Movable Object to Control a Computer
US20070137462A1 (en) * 2005-12-16 2007-06-21 Motorola, Inc. Wireless communications device with audio-visual effect generator
US20070180392A1 (en) * 2006-01-27 2007-08-02 Microsoft Corporation Area frequency radial menus
US20070177803A1 (en) * 2006-01-30 2007-08-02 Apple Computer, Inc Multi-touch gesture dictionary
US20070220437A1 (en) * 2006-03-15 2007-09-20 Navisense, Llc. Visual toolkit for a virtual user interface
US20070247643A1 (en) * 2006-04-20 2007-10-25 Kabushiki Kaisha Toshiba Display control apparatus, image processing apparatus, and display control method
US20080005703A1 (en) * 2006-06-28 2008-01-03 Nokia Corporation Apparatus, Methods and computer program products providing finger-based and hand-based gesture commands for portable electronic device applications
US20080024454A1 (en) * 2006-07-31 2008-01-31 Paul Everest Three-dimensional touch pad input device
US20080052643A1 (en) * 2006-08-25 2008-02-28 Kabushiki Kaisha Toshiba Interface apparatus and interface method
US20080079902A1 (en) * 2006-09-28 2008-04-03 Yair Mandelstam-Manor Apparatus and method for monitoring the position of a subject's hand
US20080122803A1 (en) * 2006-11-27 2008-05-29 Microsoft Corporation Touch Sensing Using Shadow and Reflective Modes
US20080297487A1 (en) * 2007-01-03 2008-12-04 Apple Inc. Display integrated photodiode matrix
US20080161870A1 (en) * 2007-01-03 2008-07-03 Gunderson Bruce D Method and apparatus for identifying cardiac and non-cardiac oversensing using intracardiac electrograms
US20080165140A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Detecting gestures on multi-event sensitive devices
US20080195735A1 (en) * 2007-01-25 2008-08-14 Microsoft Corporation Motion Triggered Data Transfer
US20080225041A1 (en) * 2007-02-08 2008-09-18 Edge 3 Technologies Llc Method and System for Vision-Based Interaction in a Virtual Environment
US20080211771A1 (en) * 2007-03-02 2008-09-04 Naturalpoint, Inc. Approach for Merging Scaled Input of Movable Objects to Control Presentation of Aspects of a Shared Virtual Environment
US20080219672A1 (en) * 2007-03-09 2008-09-11 John Tam Integrated infrared receiver and emitter for multiple functionalities
US20080240568A1 (en) * 2007-03-29 2008-10-02 Kabushiki Kaisha Toshiba Handwriting determination apparatus and method and program
US20080252595A1 (en) * 2007-04-11 2008-10-16 Marc Boillot Method and Device for Virtual Navigation and Voice Processing
US20080256494A1 (en) * 2007-04-16 2008-10-16 Greenfield Mfg Co Inc Touchless hand gesture device controller
US20080266083A1 (en) * 2007-04-30 2008-10-30 Sony Ericsson Mobile Communications Ab Method and algorithm for detecting movement of an object
US20080303681A1 (en) * 2007-06-08 2008-12-11 Apple Inc. Methods and systems for providing sensory information to devices and peripherals
US20090031258A1 (en) * 2007-07-26 2009-01-29 Nokia Corporation Gesture activated close-proximity communication
US20090061823A1 (en) * 2007-08-31 2009-03-05 Samsung Electronics Co., Ltd. Mobile terminal and method of selecting lock function
US7486386B1 (en) * 2007-09-21 2009-02-03 Silison Laboratories Inc. Optical reflectance proximity sensor
US20090158203A1 (en) * 2007-12-14 2009-06-18 Apple Inc. Scrolling displayed objects using a 3D remote controller in a media system
US20090299633A1 (en) * 2008-05-29 2009-12-03 Delphi Technologies, Inc. Vehicle Pre-Impact Sensing System Having Terrain Normalization
US20100167783A1 (en) * 2008-12-31 2010-07-01 Motorola, Inc. Portable Electronic Device Having Directional Proximity Sensors Based on Device Orientation

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100271331A1 (en) * 2009-04-22 2010-10-28 Rachid Alameh Touch-Screen and Method for an Electronic Device
US20100271312A1 (en) * 2009-04-22 2010-10-28 Rachid Alameh Menu Configuration System and Method for Display on an Electronic Device
US20110148752A1 (en) * 2009-05-22 2011-06-23 Rachid Alameh Mobile Device with User Interaction Capability and Method of Operating Same
US8970486B2 (en) 2009-05-22 2015-03-03 Google Technology Holdings LLC Mobile device with user interaction capability and method of operating same
US8542186B2 (en) * 2009-05-22 2013-09-24 Motorola Mobility Llc Mobile device with user interaction capability and method of operating same
US8665227B2 (en) 2009-11-19 2014-03-04 Motorola Mobility Llc Method and apparatus for replicating physical key function with soft keys in an electronic device
US20110115711A1 (en) * 2009-11-19 2011-05-19 Suwinto Gunawan Method and Apparatus for Replicating Physical Key Function with Soft Keys in an Electronic Device
US20120200531A1 (en) * 2010-02-17 2012-08-09 Mikio Araki Touch panel device
CN102376295A (en) * 2010-08-10 2012-03-14 联想(新加坡)私人有限公司 Assisted zoom
US20120050189A1 (en) * 2010-08-31 2012-03-01 Research In Motion Limited System And Method To Integrate Ambient Light Sensor Data Into Infrared Proximity Detector Settings
US8922198B2 (en) 2010-10-26 2014-12-30 Blackberry Limited System and method for calibrating a magnetometer according to a quality threshold
EP2447667A1 (en) * 2010-10-26 2012-05-02 Research In Motion Limited System and method for calibrating a magnetometer according to a quality threshold
KR101566600B1 (en) * 2011-01-14 2015-11-05 퀄컴 인코포레이티드 Dynamic dc-offset determination for proximity sensing
US9995773B2 (en) 2011-01-14 2018-06-12 Qualcomm Incorporated Dynamic DC-offset determination for proximity sensing
WO2012097357A1 (en) * 2011-01-14 2012-07-19 Qualcomm Incorporated Dynamic dc-offset determination for proximity sensing
US8620239B2 (en) 2011-01-14 2013-12-31 Qualcomm Incorporated Dynamic DC-offset determination for proximity sensing
JP2014505433A (en) * 2011-01-14 2014-02-27 クアルコム,インコーポレイテッド Dynamic DC offset determination for proximity sensing
CN103329065A (en) * 2011-01-14 2013-09-25 高通股份有限公司 Dynamic DC-offset determination for proximity sensing
US20120196530A1 (en) * 2011-01-31 2012-08-02 Research In Motion Limited Mobile device having enhanced in-holster power saving features and related methods
US8831509B2 (en) * 2011-01-31 2014-09-09 Blackberry Limited Mobile device having enhanced in-holster power saving features using NFC and related methods
US9727838B2 (en) 2011-03-17 2017-08-08 Triangle Strategy Group, LLC On-shelf tracking system
EP2695071A4 (en) * 2011-03-17 2016-09-07 Patrick Campbell On-shelf tracking (ost) system
US8645604B2 (en) * 2011-03-25 2014-02-04 Apple Inc. Device orientation based docking functions
US20120246374A1 (en) * 2011-03-25 2012-09-27 Apple Inc. Device orientation based docking functions
EP2713586A2 (en) * 2011-06-24 2014-04-02 Huawei Device Co., Ltd. Method and device for adjusting detecting threshold of infrared proximity sensor
US20140110583A1 (en) * 2011-06-24 2014-04-24 Huawei Device Co., Ltd. Method and apparatus for adjusting sensing threshold of infrared proximity sensor
EP2713586A4 (en) * 2011-06-24 2014-06-25 Huawei Device Co Ltd Method and device for adjusting detecting threshold of infrared proximity sensor
US9063010B2 (en) * 2011-06-24 2015-06-23 Huawei Device Co., Ltd. Method and apparatus for adjusting sensing threshold of infrared proximity sensor
CN102271177A (en) * 2011-07-18 2011-12-07 惠州Tcl移动通信有限公司 Method and system for calibrating proximity sensor of mobile phone
CN102411425A (en) * 2011-07-22 2012-04-11 华为终端有限公司 Method and device for controlling function of touch screen
US9304644B2 (en) * 2011-10-25 2016-04-05 Ams Ag Touch sensing system and method for operating a touch sensing system
US20140368464A1 (en) * 2011-10-25 2014-12-18 Ams Ag Touch sensing system and method for operating a touch sensing system
CN103930846A (en) * 2011-10-28 2014-07-16 高通股份有限公司 Dead reckoning using proximity sensors
US9736701B2 (en) 2011-10-28 2017-08-15 Qualcomm Incorporated Dead reckoning using proximity sensors
WO2013063122A1 (en) * 2011-10-28 2013-05-02 Qualcomm Incorporated Dead reckoning using proximity sensors
CN103123394A (en) * 2011-11-21 2013-05-29 比亚迪股份有限公司 Method and system for setting threshold value of proximity sensor
CN102520869A (en) * 2011-12-23 2012-06-27 广东威创视讯科技股份有限公司 Automatic parameter adjusting method for imaging touch screen of camera
WO2013166803A1 (en) * 2012-05-08 2013-11-14 广东欧珀移动通信有限公司 Detection algorithm for touchscreen mobile phone infrared proximity sensor
CN103581394A (en) * 2012-08-02 2014-02-12 希姆通信息技术(上海)有限公司 Device and method for testing proximity sensor of mobile terminal
US9411048B2 (en) 2012-08-30 2016-08-09 Apple Inc. Electronic device with adaptive proximity sensor threshold
WO2014035557A1 (en) * 2012-08-30 2014-03-06 Apple Inc. Electronic device with adaptive proximity sensor threshold
US10382614B2 (en) * 2012-08-31 2019-08-13 Analog Devices, Inc. Capacitive gesture detection system and methods thereof
US20150237183A1 (en) * 2012-08-31 2015-08-20 Analog Devices, Inc. Grip detection and capacitive gesture system for mobile devices
US9692875B2 (en) * 2012-08-31 2017-06-27 Analog Devices, Inc. Grip detection and capacitive gesture system for mobile devices
US8744418B2 (en) * 2012-08-31 2014-06-03 Analog Devices, Inc. Environment detection for mobile devices
US20190098353A1 (en) * 2012-11-08 2019-03-28 Time Warner Cable Enterprises Llc System and Method for Delivering Media Based on Viewer Behavior
US11115699B2 (en) 2012-11-08 2021-09-07 Time Warner Cable Enterprises Llc System and method for delivering media based on viewer behavior
US10531144B2 (en) * 2012-11-08 2020-01-07 Time Warner Cable Enterprises Llc System and method for delivering media based on viewer behavior
US11490150B2 (en) 2012-11-08 2022-11-01 Time Warner Cable Enterprises Llc System and method for delivering media based on viewer behavior
US9829375B2 (en) 2012-12-26 2017-11-28 Koninklijke Philips N.V. Light sensing system, and method for calibrating a light sensing device
US20150378514A1 (en) * 2013-02-20 2015-12-31 Aito Interactive Oy Piezoelectric Sensor, And An Electrical Appliance, An Installation Or A Gadget Comprising At Least One Piezoelectric Sensor
EP2770638A1 (en) * 2013-02-20 2014-08-27 Aito Interactive Oy Piezoelectric sensor, and an electrical appliance, an installation or a gadget comprising at least one piezoelectric sensor
US9880663B2 (en) * 2013-02-20 2018-01-30 Aito Interactive Oy Piezoelectric sensor, and an electrical appliance, an installation or a gadget comprising at least one piezoelectric sensor
US20140240259A1 (en) * 2013-02-25 2014-08-28 Samsung Electronics Co., Ltd. Method for detecting touch and electronic device thereof
WO2014153259A2 (en) * 2013-03-14 2014-09-25 Aliphcom Intelligent device connection for wireless media ecosystem
WO2014153259A3 (en) * 2013-03-14 2014-11-20 Aliphcom Intelligent device connection for wireless media ecosystem
US10670402B2 (en) 2013-11-01 2020-06-02 Invensense, Inc. Systems and methods for optical sensor navigation
WO2015066560A1 (en) * 2013-11-01 2015-05-07 InvenSense, Incorporated Systems and methods for optical sensor navigation
US10057231B2 (en) * 2013-11-06 2018-08-21 Arm Ip Limited Calibrating proximity detection for a wearable processing device
US10642366B2 (en) 2014-03-04 2020-05-05 Microsoft Technology Licensing, Llc Proximity sensor-based interactions
US9652044B2 (en) * 2014-03-04 2017-05-16 Microsoft Technology Licensing, Llc Proximity sensor-based interactions
US20150253858A1 (en) * 2014-03-04 2015-09-10 Microsoft Corporation Proximity sensor-based interactions
CN104954001A (en) * 2014-03-27 2015-09-30 福特全球技术公司 Proximity switch assembly and tuning method thereof
US10139869B2 (en) 2014-07-23 2018-11-27 Analog Devices, Inc. Capacitive sensors for grip sensing and finger tracking
CN106664519A (en) * 2014-08-27 2017-05-10 高通股份有限公司 Determining a context-dependent virtual distance using measurements of stigmergic interference
US20160066148A1 (en) * 2014-08-27 2016-03-03 Qualcomm Incorporated Determining a context-dependent virtual distance using measurements of stigmergic interference
US9949078B2 (en) * 2014-08-27 2018-04-17 Qualcomm Incorporated Determining a context-dependent virtual distance using measurements of stigmergic interference
US20170357373A1 (en) * 2014-09-30 2017-12-14 Hewlett-Packard Development Company, L.P. Unintended touch rejection
US10877597B2 (en) * 2014-09-30 2020-12-29 Hewlett-Packard Development Company, L.P. Unintended touch rejection
FR3029039A1 (en) * 2014-11-21 2016-05-27 Continental Automotive France METHOD FOR CALIBRATING A SLEEP DURATION OF AN APPROACH DETECTION SENSOR AND ASSOCIATED SENSOR
US9988829B2 (en) 2014-11-21 2018-06-05 Continental Automotive France Method of calibrating a standby duration of a proximity detection sensor and associated sensor
GB2535850B (en) * 2015-01-13 2018-04-18 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
GB2535850A (en) * 2015-01-13 2016-08-31 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
US10504361B2 (en) 2015-01-13 2019-12-10 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
US10255801B2 (en) 2015-01-13 2019-04-09 Motorola Mobility Llc Portable electronic device with dual, diagonal proximity sensors and mode switching functionality
EP3239825A4 (en) * 2015-01-20 2018-01-24 Huawei Technologies Co., Ltd. Multimedia information presentation method and terminal
JP2018504707A (en) * 2015-01-20 2018-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. Multimedia information presentation method and terminal
US20180025698A1 (en) * 2015-01-20 2018-01-25 Huawei Technologies Co., Ltd. Multimedia information presentation method and terminal
CN104702790A (en) * 2015-03-16 2015-06-10 上海与德通讯技术有限公司 Threshold value calibration method of distance sensor and mobile terminal
CN105741413A (en) * 2015-08-05 2016-07-06 深圳怡化电脑股份有限公司 Depositing and withdrawing device, dynamic correction sensor thereof, correction method and device
CN106502819A (en) * 2016-11-08 2017-03-15 广东欧珀移动通信有限公司 A kind of based on the control method of proximity transducer, device and mobile terminal
US10952690B2 (en) * 2017-05-18 2021-03-23 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus
US11523786B2 (en) * 2017-05-18 2022-12-13 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus
US10561386B2 (en) * 2017-05-18 2020-02-18 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus
US10459544B2 (en) 2017-05-19 2019-10-29 Htc Corporation Electronic system and proximity sensing method
EP3404515A1 (en) * 2017-05-19 2018-11-21 HTC Corporation Electronic system and proximity sensing method
US10823589B2 (en) 2017-06-02 2020-11-03 Samsung Electronics Co., Ltd. Electronic device and method for controlling sensitivity of sensor on basis of window attributes
US10663298B2 (en) * 2017-06-25 2020-05-26 Invensense, Inc. Method and apparatus for characterizing platform motion
US20180372499A1 (en) * 2017-06-25 2018-12-27 Invensense, Inc. Method and apparatus for characterizing platform motion
EP3537171B1 (en) * 2018-03-09 2023-08-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Optical sensor and electronic device
US11508332B2 (en) 2018-03-09 2022-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Optical sensor and electronic device
CN108965594A (en) * 2018-07-09 2018-12-07 珠海市魅族科技有限公司 Adjusting method, system and the storage medium of terminal device
CN109186657A (en) * 2018-09-26 2019-01-11 Oppo广东移动通信有限公司 Proximity sensor parameter calibrating method, device, terminal device and storage medium
US11445058B2 (en) * 2019-10-24 2022-09-13 Samsung Electronics Co., Ltd Electronic device and method for controlling display operation thereof
US20210306022A1 (en) * 2020-03-24 2021-09-30 Qualcomm Incorporated Calibration of open space for an antenna array module
WO2021195280A1 (en) * 2020-03-24 2021-09-30 Qualcomm Incorporated Calibration of open space for an antenna array module
US11784674B2 (en) * 2020-03-24 2023-10-10 Qualcomm Incorporated Calibration of open space for an antenna array module

Also Published As

Publication number Publication date
EP2382838B1 (en) 2018-02-14
EP2382838A2 (en) 2011-11-02
WO2010077550A2 (en) 2010-07-08
CN102440063B (en) 2015-01-07
KR101237603B1 (en) 2013-02-26
CN102440063A (en) 2012-05-02
KR20110094201A (en) 2011-08-22
EP2382838A4 (en) 2014-05-07
WO2010077550A3 (en) 2010-09-10
US8030914B2 (en) 2011-10-04

Similar Documents

Publication Publication Date Title
US8030914B2 (en) Portable electronic device having self-calibrating proximity sensors
US8346302B2 (en) Portable electronic device having directional proximity sensors based on device orientation
US8319170B2 (en) Method for adapting a pulse power mode of a proximity sensor
US9788277B2 (en) Power saving mechanism for in-pocket detection
US9995773B2 (en) Dynamic DC-offset determination for proximity sensing
US10237666B2 (en) Portable electronic device with acoustic and/or proximity sensors and methods therefor
CN105592401A (en) Position information obtaining method and apparatus of terminal equipment
JP2013118565A (en) Portable terminal and proximity sensor
CA2820608C (en) Estimating a baseline of a proximity sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOTOROLA, INC.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALAMEH, RACHID M;DIETRICH, AARON L;PAITL, KENNETH ALLEN;REEL/FRAME:022212/0677

Effective date: 20090205

Owner name: MOTOROLA, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALAMEH, RACHID M;DIETRICH, AARON L;PAITL, KENNETH ALLEN;REEL/FRAME:022212/0677

Effective date: 20090205

AS Assignment

Owner name: MOTOROLA MOBILITY, INC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:025673/0558

Effective date: 20100731

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MOTOROLA MOBILITY LLC, ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:MOTOROLA MOBILITY, INC.;REEL/FRAME:029216/0282

Effective date: 20120622

AS Assignment

Owner name: GOOGLE TECHNOLOGY HOLDINGS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY LLC;REEL/FRAME:034625/0001

Effective date: 20141028

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20231004