US20100179897A1 - Asset tracking system - Google Patents

Asset tracking system Download PDF

Info

Publication number
US20100179897A1
US20100179897A1 US12/351,070 US35107009A US2010179897A1 US 20100179897 A1 US20100179897 A1 US 20100179897A1 US 35107009 A US35107009 A US 35107009A US 2010179897 A1 US2010179897 A1 US 2010179897A1
Authority
US
United States
Prior art keywords
asset
ignition
recited
vehicle
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/351,070
Inventor
Thomas E. Gafford
Manish J. Desai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GPSI LLC
Geometris LP
Original Assignee
GPSI LLC
Geometris LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GPSI LLC, Geometris LP filed Critical GPSI LLC
Priority to US12/351,070 priority Critical patent/US20100179897A1/en
Assigned to GPSI, LLC reassignment GPSI, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAFFORD, THOMAS E.
Assigned to GEOMETRIS LP reassignment GEOMETRIS LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESAI, MANISH J.
Publication of US20100179897A1 publication Critical patent/US20100179897A1/en
Priority to US13/443,314 priority patent/US8660739B2/en
Priority to US14/180,040 priority patent/US20140164191A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes

Definitions

  • the present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle which obviates the need to access the vehicle ignition switch circuit; the asset tracking system optionally including a loan obligation management system that is integrated with the asset recovery system which provides notifications of loan obligations for the asset upon which the loan obligation is based and can even disable the vehicle from a remote location.
  • OnStar 1 in-vehicle security, communications, and diagnostics systems and LoJack 2 vehicle recovery systems are also known which can locate and track the position of a vehicle and facilitate recovery of stolen vehicles.
  • OnStar is a registered trademark of General Motors Corporation 2
  • LoJack is a registered trademark of LoJack Corporation
  • asset recovery systems 20 are generally configured as illustrated in FIG. 1 normally include four (4) relatively autonomous subsystems.
  • the four (4) subsystems consist of an application subsystem 22 , a communications subsystem 24 , a global positioning system (GPS) subsystem 26 and a power and input/output (I/O) subsystem 28 .
  • GPS global positioning system
  • I/O input/output
  • One problem with known vehicle recovery systems relates to the level of duplication of hardware components among the subsystems 22 , 24 , 26 and 28 . Such duplication increases the complexity and cost of such vehicle recovery systems as well as the size of the device.
  • the Application Subsystem 22 includes a CPU (computer processing unit) 30 , peripherals 32 , random access memory (RAM), flash memory 36 for storing the main software application 40 and power source 38 .
  • CPU computer processing unit
  • peripherals 32 peripherals 32
  • RAM random access memory
  • flash memory 36 for storing the main software application 40 and power source 38 .
  • the GPS Subsystem 26 includes another CPU 42 , peripherals 44 , GPS Correlators 46 , RAM 48 , Flash Memory 50 , Communications hardware 52 for communicating the GPS information to the Communications Subsystem 24 , a GPS Antenna 52 , a GPS RF Receiver 54 for receiving position information from GPS satellites (not shown), and LDO Regulators 56 .
  • a low drop out (LDO) regulator is a linear voltage regulator that operates even when the input voltage barely exceeds the desired output voltage.
  • LDO regulators are known to be used with systems that are driven by battery power sources, such as a vehicle.
  • FIG. 4 is a block diagram of the Communications Subsystem 24 .
  • the Communications Subsystem 24 includes a CPU 58 , peripherals 60 , a power amplifier 62 , RAM 64 , and Flash Memory 66 , Communications hardware 68 for communicating with the GPS Subsystem 26 , an antenna 70 , an RF Transceiver 72 and LDO Regulators 74 .
  • FIG. 5 illustrates a block diagram of the Power and I/O Subsystem 28 .
  • the Power and I/O Subsystem 28 includes power regulators 76 , battery charger 80 , ESD (Electrostatic discharge) and Surge Protection 84 .
  • the Power and I/O Subsystem 28 also includes software configured as I/O drivers 78 , battery charge protection 82 and over-current protection 86 that is stored in the Application Subsystem Flash memory 36 ( FIG. 2 ).
  • FIG. 6 illustrates the duplicated hardware and duplicated functionality that exists among the application subsystem 22 , the communications subsystem 24 , the GPS subsystem 26 and a power and I/O subsystem 28 in known asset tracking systems.
  • the duplicated hardware and functionality includes:
  • asset recovery systems need the operational state of the ignition system to operate properly.
  • vehicle ignition system In some vehicles, such as motorcycles, scooters, all terrain vehicles, and watercraft, access to the vehicle ignition system is either unavailable or inaccessible.
  • asset recovery systems are generally unavailable for such vehicles.
  • Another problem with known asset recovery systems is a lack of optimization of system resources, for example, for loan obligation management.
  • the present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle while obviating the need to access the ignition switch circuit; the asset tracking system optionally including a loan obligation management system that is integrated with the asset recovery system which provides audible notifications of loan obligations for the asset upon which the loan obligation is based and can even disable the vehicle from a remote location.
  • FIG. 1 is a high level block diagram of a known asset recovery system.
  • FIG. 2 is a block diagram of a known application subsystem that forms a part of the asset recovery system illustrated in FIG. 1 .
  • FIG. 3 is a block diagram of a known GPS subsystem that forms a part of the asset recovery system illustrated in FIG. 1 .
  • FIG. 4 is a block diagram of a known communication subsystem that forms a part of the asset recovery system illustrated in FIG. 1 .
  • FIG. 5 is a block diagram of a known power and I/ 0 subsystem that forms a part of the asset recovery system illustrated in FIG. 1 .
  • FIG. 6 illustrates the overlap of the hardware components of the asset recovery system illustrated in FIG. 1 .
  • FIG. 7 is a block diagram of the integrated asset recovery system in accordance with the present invention.
  • FIG. 8 is a schematic diagram of the integrated asset in accordance with the present invention.
  • FIG. 9 is a software flow diagram for determining the whether to use a hard-wired ignition state or an “inferred” ignition state.
  • FIG. 10 is a software flow diagram for determining the state of the ignition system.
  • FIG. 11 is a software flow diagram for managing an ultra-low power sleep mode.
  • FIG. 12 is a software flow diagram illustrating the GPS position calculation.
  • FIG. 13 is a software flow diagram of the main application state machine.
  • FIG. 14 is a software flow diagram of the loan obligation management system in accordance with one aspect of the present invention.
  • the present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle with two (2) wires over one or more sample periods that obviates the need to access the vehicle ignition switch circuit.
  • FIGS. 7-13 illustrate the integrated asset recovery system in accordance with the present invention.
  • FIG. 14 illustrates an optional loan obligation management system for use with the asset recovery system in accordance with another aspect of the invention.
  • the asset recovery system in accordance with the invention reduces complexity relative to known asset recovery systems in several ways by:
  • the asset recovery system 100 includes a single CPU 102 , for example, a Reduced Instruction Set Computer (RISC), Model ARM7 or ARM9, CPU.
  • RISC Reduced Instruction Set Computer
  • the memory is consolidated with a single RAM memory 104 and a single Flash memory 106 .
  • the software applications such as the main Application 105 and the GPS Correlators 107 , on the same memory device, namely, the Flash memory 106 .
  • communications ports ports for inter-communication between different subsystems have been eliminated. With the integrated system in accordance with the present invention, only two (2) communication ports are necessary.
  • a Simple Sensor Interface (SSI) 108 is required for interfacing an RF transceiver 109 , which forms part of a cellular subsystem, generally identified with the reference numeral 110 ( FIG. 8 ) with the CPU 102 ( FIG. 7 ).
  • the SSI port 108 may be on-board the CPU 102 .
  • the cellular subsystem also includes a cellular antenna 120 for receiving and transmitting data between the asset recovery system 100 and a remote device (not shown).
  • the SSI protocol is a simple communications protocol designed for data transfer between computers or user terminals and smart sensors.
  • Another port, a universal asynchronous receiver/transmitter (UART) 112 is used to interface a GPS receiver 114 with the CPU 102 .
  • the UART 112 may be on board the CPU 102 .
  • the GPS receiver 114 and a GPS antenna 116 form a GPS subsystem, generally identified with the reference numeral 118 . Since only a single CPU 102 is required, the number of associated CPU peripherals is reduced. For example, only a single peripheral 122 is required which includes peripheral devices and applications, such as an analog to digital converter (ADC) and a watchdog timer.
  • ADC analog to digital converter
  • the integrated asset recovery system 100 also minimizes the power supply requirements of the system and only requires a single power amplifier 124 and a single LDO regulator 126 .
  • FIG. 8 A schematic of the asset recovery system 100 is illustrated in FIG. 8 .
  • An important aspect of the invention relates to the consolidation of hardware components, such as the CPU.
  • the CPU 102 may be a RISC processor, for example, an ARM 9 RISC processor, or may be a Model WMP100 wireless microprocessor, chip set, as manufactured by WaveCom SA.
  • the CPU 102 may include on-board UART 112 and SSI 108 ports for interfacing the GPS Subsystem 118 and the cellular subsystem 110 , respectively, with the CPU 112 .
  • the CPU 102 may also have on-board ADC 126 , as well as on-board static RAM 128 and ROM 130 .
  • the CPU 102 may also have an on-board real time clock (RTC) 132 and a digitally controlled crystal oscillator (DCXO) 134 , controlled by external crystals 136 and 138 , respectively.
  • the crystal 136 is used to generate the clock speed of the CPU 102 .
  • the crystal 138 is used for development of a real time clock signal.
  • the CPU 102 may also include a power management unit (PMU) 136 , an interrupt controller 138 , a direct memory access (DMA) controller 140 , internal debug software 142 , internal timers 144 , a digital signal processor (DSP) accelerator 146 , general purpose input/output ports GPIO 148 in addition to the core processor, identified with the reference numeral 150 .
  • PMU power management unit
  • DMA direct memory access
  • DSP digital signal processor
  • the asset recover system 100 may include various motion inputs from motion devices that are used to control the power management of the asset recovery system 100 .
  • an accelerometer 152 may couple to the power management unit (PMU) 136 , on-board the CPU 102 .
  • PMU power management unit
  • An additional motion sensor 154 for example, a vibration sensor, may additionally be used to control the power management of the asset recovery system 100 . As shown, the motion sensor 154 is interfaced to the CPU 102 by way of the on-board ADC 126 .
  • a cellular subsystem 110 may be used for two way wireless communication between the asset recovery system 100 and a remote device, such as remote base station.
  • a remote device such as remote base station.
  • Other communication systems, such as RF and satellite communication systems can also be used.
  • the cellular subsystem 110 includes a cellular receiver 109 and a cellular transmitter 1 11 , which may included as a part of the WMP100, wireless microprocessor chip set, mentioned above.
  • the cellular subsystem 110 may be a multi-band system operable on various cellular frequencies. As shown, a GSM (Global System for Mobile communications) cellular subsystem is illustrated which is operable on four (4) frequency bands: 850 MHz, 900 MHz, 1800 MHz and 1900 MHz. Other multi-band and single band systems are also suitable.
  • GSM Global System for Mobile communications
  • the cellular subsystem 110 also includes a cellular antenna 156 that is coupled to both the cellular receiver 109 and the cellular transmitter for receiving and transmitting data with respect to a remote device.
  • An RF switch 158 is used to interface the cellular antenna to the cellular receiver 109 and allows the various frequency bands to be selected.
  • the RF switch may, for example, may be included as a part of the WMP100, wireless microprocessor chip set, mentioned above
  • the power amplifier 124 is used to boost the signal from the cellular transmitter 111 before it is directed to the cellular antenna.
  • the power amplifier 124 may be, for example, may included as a part of the WMP100, wireless microprocessor, mentioned above Both the cellular transmitter 111 and the cellular receiver 109 are interfaced to the CPU 102 by way of the on-board SSI 108 .
  • the global position system (GPS) subsystem 118 includes a GPS antenna 160 and the GPS receiver 114 .
  • the GPS antenna 160 and GPS receiver 114 are configured to receive satellite signals from GPS satellites.
  • the GPS receiver 114 may be, for example, Model GNS-7560 chip set, as manufactured by NXP Semiconductors.
  • the GPS Search and Track Correlator Engine 107 correlates received signals with specific satellites so that the signals can be used to triangulate the position of the asset. GPS Search and Track Correlator Engine 107 is part of the GPS receiver 114 .
  • the GPS subsystem is interfaced with the CPU 102 by way of the UART 112 , on-board the CPU 102 .
  • Electrical power for the asset recovery system 100 may be derived from the vehicle power system, for example, the 12 volt DC power system.
  • a conventional power connector may be used to connect the asset recover system 100 .
  • the vehicle power may be regulated by a voltage regulator 126 and applied to the PMU 136 .
  • a battery charger 164 and a lithium ion back up battery 166 are provided.
  • the back-up lithium ion battery 166 provides power to the asset recovery system 100 when the vehicle power supply is unavailable.
  • the battery charger 164 is used to charge the lithium ion back-up battery 166 .
  • the battery charger 164 is configured to enable electrical power from the coaxial cable jack 162 to pass directly to the PMU, on-board the CPU 102 .
  • the inputs to the CPU 102 include a signal from the vehicle ignition wire, which will either be high or low depending on the state of the ignition system.
  • Other inputs may optionally include an input from a panic button and a temperature input.
  • the panic button enables the user to signal the base station in the event of a medical emergency or other emergency situation.
  • An optional temperature input may be used to monitor the temperature of the CPU 102 .
  • the asset recovery system 100 may provide one or more output signals.
  • the system 100 may provide a horn signal that can be used to sound the vehicle horn as well as an LED signal that can be used to illuminate an LED in the vehicle in certain conditions.
  • the asset recovery system 100 may also provide a starter disable signal that can be used to disable the vehicle starter (not shown).
  • SIM Subscriber Identity Module
  • the SIM 172 is also used to store user level configuration data and may be used to store loan account data for systems equipped with an optional loan obligation management system.
  • Vehicle tracking is a very common asset tracking application whereby the location of the vehicle is determined, recorded, and transmitted to a remote system.
  • vehicle's utilization rate % of time in operation
  • instantaneous operating state at rest, moving, idling, marginal operation.
  • the asset tracking device might wish to enter a low power consumption mode or even switch itself off in the event that the power supply it is connected to (the vehicle battery) is being depleted. When the vehicle resumes operation, the device can then jump to a more power intensive operation.
  • a signal representative of the state of the ignition system is directly available from the vehicle ignition switch.
  • signals representative of the ignition states; “Ignition On”; “Ignition Off” are readily available from the vehicle ignition switch.
  • an ignition input is not readily available or at all present in some vehicles to facilitate switching between different operating modes. Examples are such vehicles include motorcycles, scooters, all terrain vehicles, and watercraft. As such, asset recovery systems are heretofore not known to be available for such systems.
  • the asset recovery system 100 in accordance with the present invention overcomes the challenge of two-wire installations by utilizing a dedicated low-power circuit that monitors the voltage of the vehicle battery to provide a signal representative of the instantaneous operating state of the ignition.
  • the positive rail of the vehicle battery is normally higher when the vehicle ignition is off.
  • the battery voltage is typically 12.5 volts dc when the ignition is OFF and drops down to around 12.0 volts DC when the ignition is ON.
  • Vehicles with other nominal battery voltages experience similar hysteresis of the battery voltage from the ignition OFF state to the ignition ON state.
  • the status of the ignition system can easily be determined with a two-wire circuit without the need to access the vehicle ignition system.
  • vehicles with inaccessible ignition circuits such as motorcycles, scooters, all terrain vehicles, and watercraft, can now be equipped with an asset recovery systems.
  • the ignition status information is used to enter and exit various operating modes as well as lower the overall impact of the device on the power supply of the vehicle thereby extending the life of the battery. In these cases, the device continues to operate in a higher power mode.
  • FIGS. 9-13 illustrate exemplary software diagrams for the asset recovery system 100 , illustrated in FIGS. 1-8 .
  • FIG. 14 illustrates an optional loan obligation management system for use with the asset recovery system in accordance with another aspect of the invention.
  • one asset recovery system 100 can be utilized for both the hard-wired system, i.e. hard-wired to the ignition switch (not shown) and a system in which the ignition state is automatically determined by periodically sampling the voltage across the primary winding of the ignition coil.
  • the asset recovery system 1001 automatically detects which installation type was used on the vehicle.
  • the ignition switch For vehicles in which access to the ignition switch (not shown) is available, the ignition switch, generally identified with the reference numeral 168 ( FIG. 8 ), is coupled to a GP I/O port 148 .
  • vehicle ignition switches have two (2) operating states: “Ignition On” and “Ignition Off”. As such, with vehicles with access to the vehicle ignition system, the ignition states are readily available. In other vehicles, as mentioned above, in which the vehicle ignition circuit is inaccessible, the voltage applied to the ignition coil is monitored and used to provide a signal representative of the ignition state.
  • a two (2) wire installation is used for both ignition state installation types.
  • the two (2) wires are connected to the ignition switch.
  • the two (2) wires are connected across the vehicle battery.
  • only two (2) wires are provided for external connection.
  • the two (2) wires used to detect the ignition state can be connected to either the ignition switch or the vehicle battery.
  • the asset recovery system 100 automatically determines the installation type. By providing only two (2) wires for external connection, the possibility of incorrect connections is eliminated.
  • the system automatically detects whether the two (2) wires are connected to an ignition switch or across the vehicle battery.
  • This part of the system identified with the reference numeral 200 , has two (2) operating modes: a hardwire ignition mode and a voltage hysteresis mode.
  • the system samples the voltage available across the battery; for example, by way of a GP I/O port 148 over a plurality of consecutive sample periods. If a voltage is sensed over two (2) sample periods, the system assumes a voltage hysteresis mode and sets a voltage hysteresis flag.
  • a voltage is not available on the GP I/O port 148 (FIG. 8 ) for two consecutive sample periods. In such applications, a hard ignition mode flag is set.
  • step 206 samples the voltage at the GP I/O port 148 where the two (2) wires are connected during the first sample period. If a voltage is present, as determined in step 208 , the system sets the current sample to its equivalent digital value by way of the analog to digital converter (ADC) on board the CPU 102 ( FIG. 8 ) in step 210 .
  • ADC analog to digital converter
  • step 212 the system checks whether a previous sampled voltage exists. Assuming that this is the first sample period, the system proceeds to step 214 and sets the variable “Last Sample” to the digital value of the first sample in step 214 . The system then returns to step 206 for a second sample period.
  • the a second sample of the voltage is taken at the GP I/O port 148 ( FIG. 8 ) where the two (2) wires are connected. If a voltage is present, as detected in step 208 , the system sets the second sample to its digital equivalent in step 210 . If a previous voltage sample exists, as determined in step 212 , the system sets a voltage hysteresis mode flag in step 216 . On the other hand, if a voltage is not present in either first or second sample period, as determined in step 208 , the system assumes a hard ignition mode and sets a hard ignition mode flag is set in step 218 .
  • FIG. 10 is a software flow diagram for determining the state of the ignition system.
  • a hard ignition mode flag 240 or a voltage hysteresis mode flag 242 is set. Assuming the hard ignition mode flag was set, the system continuously checks for changes to the ignition input status in step 244 . As mentioned above, with a hard-wired ignition installation, the ignition status is either Ignition On or Ignition Off, as indicated by the logic blocks 246 and 248 , respectively. Each time the ignition state changes, an ignition State Changed flag is set. In step in step 250 .
  • the system monitors the voltage at the port where the two (2) wire ignition is connected and checks in step 252 whether the last sample voltage ⁇ the current sample voltage. The system then checks whether the last sample voltage minus the current sample voltage>the ignition off threshold voltage, for example 0.5 volts DC, assuming a 12 volt system in which the battery voltage is 12.5 volts DC when the ignition is OFF and 12.0 volts DC when the ignition is ON, in step 254 . If so, the system assumes the ignition state is Ignition Off in step 256 . If not, the system assumes the ignition state changed in step 258 .
  • the ignition off threshold voltage for example 0.5 volts DC, assuming a 12 volt system in which the battery voltage is 12.5 volts DC when the ignition is OFF and 12.0 volts DC when the ignition is ON
  • the system monitors the voltage at the port where the two (2) wire ignition is connected and checks in step 252 whether the last sample voltage ⁇ the current sample voltage. If the last sampled voltage ⁇ the last sample voltage, the system proceeds to step 258 and determines whether last sample voltage minus the current sample voltage>the ignition on threshold voltage. If so, the system assumes the ignition state is Ignition On in step 260 . If not, the system assumes the ignition state changed in step 258 .
  • FIG. 11 is a software flow diagram for managing an ultra-low power sleep mode.
  • the system includes a sleep management mode.
  • the sleep management mode is used when there is minimal activity with respect to the state of the ignition system. Depending on the installation type, different sleep durations may be used.
  • the system determines whether the voltage hysteresis mode flag was set. If not, the system assumes a hard wired mode and enables the ignition input as an interrupt source in step 264 . Thus, any changes in the ignition state will interrupt the sleep mode and wake up the asset recovery system 100 .
  • an alarm is set for the current time plus a relatively long duration, for example, 3 minutes.
  • peripherals are turned off in step 268 . These peripherals may include LEDs within the vehicle.
  • the GPS subsystem 114 may also be placed in a hibernation mode.
  • the system then enters the sleep mode 270 ; a relatively low power mode
  • the system remains in the sleep mode until woken up, as indicated by the logic block 272 , by way of an ignition interrupt, as indicated in step 274 .
  • the system exits the sleep mode in step 276 . Otherwise the system remains in the sleep mode.
  • step 262 determines in step 262 , that the voltage hysteresis flag 216 is set
  • the system checks in 278 whether the current ignition state is the same as the old ignition state. If not, the system exits the sleep mode in step 276 . In other words, if the system is in the voltage hysteresis mode, any change in the ignition state causes the system to exit the sleep mode. If the ignition state has not changed, an alarm is set in step 280 for the current time plus a relatively short duration, for example, 30 seconds. At the expiration of the time period, the system proceeds to step 268 and turns off all peripherals and enters the sleep mode in step 270 . The system may then woken up by interrupt or in a predetermined time interval.
  • step 282 the system checks in step 282 whether a predetermined time interval has elapsed, for example, whether a time interval, identified as the “wakeup count” has expired where the wakeup count>long duration/short duration. If so, the system exits the sleep mode. Otherwise, the system stays in the sleep mode.
  • FIG. 12 is an exemplary software flow diagram illustrating the GPS position calculation.
  • the GPS system is used to determine the position of the vehicle.
  • GPS satellites broadcast two types of data: Almanac data and Ephemeris data.
  • Almanac data relates to course orbital parameter data for all of the GPS satellites in the constellation.
  • Each satellite broadcasts Almanac data for all of the satellites in the constellation.
  • Almanac data is not considered to be very precise and is considered valid only for a few months.
  • Ephemeris data by comparison is very precise orbital and clock correction for each satellite and is necessary for precise positioning.
  • Each satellite broadcasts only its own Ephemeris data. This data is only considered valid for about 30 minutes.
  • the Ephemeris data is broadcast by each satellite every 30 seconds.
  • the system checks in steps 286 whether it has the current time.
  • the CPU 102 FIG. 8 i 8 ncludes a real time clock 132 , which can be used for the current time.
  • the GPS Receiver 114 receives Almanac data directly from the satellites, as mentioned above.
  • the Almanac data is saved in Flash memory 106 in step 290 .
  • the system predicts expected satellites in step 292 and searches for those satellites in step 294 .
  • step 296 the system checks whether the expected satellites were found. If either there is no real time data; no valid Almanac data or the expected satellites cannot be found, the system searches for any satellites in step 298 .
  • step 300 the system checks in step 300 whether valid ephemeris data has been found for three (3) or more satellites. If so, the system saves the ephemeris data is found, it is stored in the Flash memory 106 ( FIG. 8 ) in step 302 .
  • step 304 the vehicle position is triangulated based on the ephemeris data. The system then checks in step 306 whether the position is valid by comparing it with the last known position of the vehicle. If the position is not determined to be valid, real time and almanac data is decoded in steps 316 and 318 from the satellite signals located in step 298 . The decoded almanac data is then stored in the flash memory 106 ( FIG. 8 ) and the system proceeds to calculate the vehicle position as indicated in steps 292 - 304 , as discussed above.
  • step 308 the system next checks in step 308 whether the solution is a high precision solution in step 308 .), for example, as provided by the GPS chip set mentioned above. If so, the position is stored in step 310 and the system enters the sleep mode in step 312 for duration as determined by the sleep management mode 218 ( FIG. 11 ).
  • step 308 the system checks whether the search window has expired in step 314 . If not, the system returns to step 284 . If so, the system enters the sleep mode.
  • the main state machine is illustrated in FIG. 13 .
  • the system is configured as a master server network.
  • the asset recovery system 100 is the client which communicates with a remote server (not shown). Initially the power condition of the asset recovery system is checked, for example, by measuring its power input in step 322 . If the power condition is not valid, the system proceeds to step 324 and enters the sleep mode for a duration as determined by the sleep management system 218 .
  • the system checks its inputs. Specifically, the system checks in step 324 whether the ignition state has changed. If so, the system checks in step 326 whether the asset recovery system 100 is configured to allow ignition messages to be sent to the server. In particular, on power-up, the asset recovery system 100 fetches its configuration from a remote server. The system 100 then stores its configuration and sets a flag at the server If the asset recovery system 100 is properly configured, the system adds a location packet to the ignition message so that the ignition message can be correlated to the vehicle position in step 328 . In step 330 , the system checks whether the state of the panic button has changed. If so, the system checks in step 332 whether the asset recovery system 100 is configured to allow panic messages to be sent to the server.
  • step 334 the system checks whether the state of the motion sensor has changed. If so, the system checks in step 336 whether the asset recovery system 100 is configured to allow motion messages to be sent to the server. If so, the system adds a location packet to the panic message so that the change of state of the motion sensor can be correlated to the vehicle position in step 328 .
  • step 338 the system checks whether any commands have been received from the server (not shown). If so, the system processes the command in step 340 . Exemplary commands may include signals to sound the vehicle horn; disable the vehicle starter; or illuminate an LED in the vehicle.
  • step 342 the system checks whether the asset recovery system is configured to allow command type messages. If so, the system proceeds to step 328 .
  • step 344 the system checks in step 344 to determine whether there are packets in the queue ready to be sent to the server over the cellular network. If so, the system is connected to the network in step 346 and connects with the server in step in step 348 . In step 350 , the system transmits the packets to the server.
  • FIG. 14 is a software flow diagram of the loan obligation management system in accordance with one aspect of the present invention.
  • the asset recovery system 100 is provided with additional functionality.
  • the finance company involved with the financing of the vehicle uses the asset recovery system 100 for loan obligation management.
  • a customer purchases a vehicle or other asset as indicated in step 352 and establishes a loan for purchase of the vehicle in step 354 .
  • an asset recovery system 100 is installed in the vehicle in step 356 .
  • an account number for the loan is established and transmitted to the system server in step 360 , thereby establishing the account on the server.
  • the finance company determines a collection strategy, as indicated by the logic block 364 . Based upon changes in the payment history by the debtor, the finance company may determine a that a change in the collection strategy needs to be performed, as indicated by the logic block 366 and sends the server a message with the account number and the action that needs to be taken in step 368 .
  • the server looks up the account number and the associated MSISDN number of the cellular device within the asset recovery system 100 in the vehicle in step 370 and transmits the message in step 372 .
  • the message is stored as a command in the SIM card 172 ( FIG. 8 ).
  • the system performs the command when the ignition is turned on.
  • the system acknowledges to the finance company that that the requested action has been taken.
  • An exemplary embodiment of the loan obligation management system may include management through an entire payment cycle.
  • a payment reminder is enabled in the vehicle.
  • the payment reminder may be illumination of an LED in the vehicle. If the payment is made, as indicated in step 384 , the payment reminder is disabled in step 386 . However, if payment is not made, the vehicle is disabled, for example, by disabling the starter in step 388 . In that situation, the loan status would be considered to be in default and sent to collections, as indicated by the logic blocks 390 and 392 .

Abstract

An asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state while obviating the need to access the ignition switch circuit; the asset tracking system optionally including a loan obligation management system that is integrated with the asset recovery system which provides in-vehicle notifications of loan obligations for the asset upon which the loan obligation is based from a remote location directly to the asset.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle which obviates the need to access the vehicle ignition switch circuit; the asset tracking system optionally including a loan obligation management system that is integrated with the asset recovery system which provides notifications of loan obligations for the asset upon which the loan obligation is based and can even disable the vehicle from a remote location.
  • 2. Description of the Prior Art
  • Various asset tracking systems are known in the art. Such asset tracking systems are typically used to track vehicles. Examples of such asset recovery systems that are used to track vehicles are disclosed in U.S. Pat. Nos. 5,223,844; 5,418,537; 6,025,774; 6,240,365; 6,249,217; and 6,377,210, all hereby incorporated by reference. In addition OnStar1 in-vehicle security, communications, and diagnostics systems and LoJack2 vehicle recovery systems are also known which can locate and track the position of a vehicle and facilitate recovery of stolen vehicles. 1OnStar is a registered trademark of General Motors Corporation2LoJack is a registered trademark of LoJack Corporation
  • In general, such asset recovery systems 20 are generally configured as illustrated in FIG. 1 normally include four (4) relatively autonomous subsystems. The four (4) subsystems consist of an application subsystem 22, a communications subsystem 24, a global positioning system (GPS) subsystem 26 and a power and input/output (I/O) subsystem 28. One problem with known vehicle recovery systems relates to the level of duplication of hardware components among the subsystems 22, 24, 26 and 28. Such duplication increases the complexity and cost of such vehicle recovery systems as well as the size of the device.
  • More particularly, a block diagram of the Application Subsystem 22 is illustrated in FIG. 2. As shown, the Application Subsystem 22 includes a CPU (computer processing unit) 30, peripherals 32, random access memory (RAM), flash memory 36 for storing the main software application 40 and power source 38.
  • A block diagram of the GPS subsystem 26 is illustrated in FIG. 3. The GPS Subsystem 26 includes another CPU 42, peripherals 44, GPS Correlators 46, RAM 48, Flash Memory 50, Communications hardware 52 for communicating the GPS information to the Communications Subsystem 24, a GPS Antenna 52, a GPS RF Receiver 54 for receiving position information from GPS satellites (not shown), and LDO Regulators 56.
  • A low drop out (LDO) regulator is a linear voltage regulator that operates even when the input voltage barely exceeds the desired output voltage. Such LDO regulators are known to be used with systems that are driven by battery power sources, such as a vehicle.
  • FIG. 4 is a block diagram of the Communications Subsystem 24. The Communications Subsystem 24 includes a CPU 58, peripherals 60, a power amplifier 62, RAM 64, and Flash Memory 66, Communications hardware 68 for communicating with the GPS Subsystem 26, an antenna 70, an RF Transceiver 72 and LDO Regulators 74.
  • FIG. 5 illustrates a block diagram of the Power and I/O Subsystem 28. The Power and I/O Subsystem 28 includes power regulators 76, battery charger 80, ESD (Electrostatic discharge) and Surge Protection 84. The Power and I/O Subsystem 28 also includes software configured as I/O drivers 78, battery charge protection 82 and over-current protection 86 that is stored in the Application Subsystem Flash memory 36 (FIG. 2).
  • FIG. 6 illustrates the duplicated hardware and duplicated functionality that exists among the application subsystem 22, the communications subsystem 24, the GPS subsystem 26 and a power and I/O subsystem 28 in known asset tracking systems. In particular, the duplicated hardware and functionality includes:
      • Duplicated CPUs: The application subsystem 22, the GPS subsystem 26 and the communications subsystem 24 each have a single purpose CPU.
      • Duplicated Memory: The application subsystem 22, the GPS subsystem 26 and the communications subsystem 24 all have their own RAM and Flash memory devices for autonomous operation.
      • Duplicated Communication: The application subsystem 22, the GPS subsystem 26 and the communications subsystem 24 each have communication peripherals for state and data communication among them.
      • Duplicated Power Components: Multiple LDOs and regulators are required for autonomous power control.
  • There are other problems associated with known asset recovery systems. For example, such asset recovery systems need the operational state of the ignition system to operate properly. In some vehicles, such as motorcycles, scooters, all terrain vehicles, and watercraft, access to the vehicle ignition system is either unavailable or inaccessible. As such, asset recovery systems are generally unavailable for such vehicles. Another problem with known asset recovery systems is a lack of optimization of system resources, for example, for loan obligation management.
  • Thus, there is a need to simplify such asset recovery systems which minimizes the complexity of the system and minimizes duplication of hardware components to reduce the cost of such systems and obviates the need to access the ignition circuit in order to make such asset recovery systems available for vehicles with inaccessible vehicle ignition systems and provide remote management of the asset with respect to its loan obligation.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle while obviating the need to access the ignition switch circuit; the asset tracking system optionally including a loan obligation management system that is integrated with the asset recovery system which provides audible notifications of loan obligations for the asset upon which the loan obligation is based and can even disable the vehicle from a remote location.
  • DESCRIPTION OF THE DRAWING
  • These and other advantages of the present invention will be readily understood with reference to the following specification and attached drawing wherein:
  • FIG. 1 is a high level block diagram of a known asset recovery system.
  • FIG. 2 is a block diagram of a known application subsystem that forms a part of the asset recovery system illustrated in FIG. 1.
  • FIG. 3 is a block diagram of a known GPS subsystem that forms a part of the asset recovery system illustrated in FIG. 1.
  • FIG. 4 is a block diagram of a known communication subsystem that forms a part of the asset recovery system illustrated in FIG. 1.
  • FIG. 5 is a block diagram of a known power and I/0 subsystem that forms a part of the asset recovery system illustrated in FIG. 1.
  • FIG. 6 illustrates the overlap of the hardware components of the asset recovery system illustrated in FIG. 1.
  • FIG. 7 is a block diagram of the integrated asset recovery system in accordance with the present invention.
  • FIG. 8 is a schematic diagram of the integrated asset in accordance with the present invention.
  • FIG. 9 is a software flow diagram for determining the whether to use a hard-wired ignition state or an “inferred” ignition state.
  • FIG. 10 is a software flow diagram for determining the state of the ignition system.
  • FIG. 11 is a software flow diagram for managing an ultra-low power sleep mode.
  • FIG. 12 is a software flow diagram illustrating the GPS position calculation.
  • FIG. 13 is a software flow diagram of the main application state machine.
  • FIG. 14 is a software flow diagram of the loan obligation management system in accordance with one aspect of the present invention.
  • DETAILED DESCRIPTION
  • The present invention relates to an asset tracking system for tracking assets, for example, a vehicle, with an integrated topology that is configured minimize the complexity of the system by eliminating hardware duplication and sensing the ignition state of the vehicle with two (2) wires over one or more sample periods that obviates the need to access the vehicle ignition switch circuit. FIGS. 7-13 illustrate the integrated asset recovery system in accordance with the present invention. FIG. 14 illustrates an optional loan obligation management system for use with the asset recovery system in accordance with another aspect of the invention.
  • The asset recovery system in accordance with the invention reduces complexity relative to known asset recovery systems in several ways by:
      • Consolidating all subsystem CPU requirements.
      • Eliminating all subsystem intercommunication connections.
      • Consolidating all Flash and RAM memory requirements.
      • Consolidating power rails, switches, regulators and monitors.
    Exemplary Hardware
  • Referring to FIG. 1, a block diagram of the asset recovery system in accordance with the present invention is illustrated and identified with the reference numeral 100. The asset recovery system 100 includes a single CPU 102, for example, a Reduced Instruction Set Computer (RISC), Model ARM7 or ARM9, CPU. As mentioned above, the memory is consolidated with a single RAM memory 104 and a single Flash memory 106. As such, the software applications, such as the main Application 105 and the GPS Correlators 107, on the same memory device, namely, the Flash memory 106. As far as communications ports, ports for inter-communication between different subsystems have been eliminated. With the integrated system in accordance with the present invention, only two (2) communication ports are necessary. A Simple Sensor Interface (SSI) 108 is required for interfacing an RF transceiver 109, which forms part of a cellular subsystem, generally identified with the reference numeral 110 (FIG. 8) with the CPU 102 (FIG. 7). The SSI port 108 may be on-board the CPU 102. The cellular subsystem also includes a cellular antenna 120 for receiving and transmitting data between the asset recovery system 100 and a remote device (not shown). The SSI protocol is a simple communications protocol designed for data transfer between computers or user terminals and smart sensors. Another port, a universal asynchronous receiver/transmitter (UART) 112 is used to interface a GPS receiver 114 with the CPU 102. The UART 112 may be on board the CPU 102. The GPS receiver 114 and a GPS antenna 116 form a GPS subsystem, generally identified with the reference numeral 118. Since only a single CPU 102 is required, the number of associated CPU peripherals is reduced. For example, only a single peripheral 122 is required which includes peripheral devices and applications, such as an analog to digital converter (ADC) and a watchdog timer. The integrated asset recovery system 100 also minimizes the power supply requirements of the system and only requires a single power amplifier 124 and a single LDO regulator 126.
  • A schematic of the asset recovery system 100 is illustrated in FIG. 8. An important aspect of the invention relates to the consolidation of hardware components, such as the CPU. In particular, a single CPU 102 is used to control the entire asset recovery system 100. The CPU 102 may be a RISC processor, for example, an ARM 9 RISC processor, or may be a Model WMP100 wireless microprocessor, chip set, as manufactured by WaveCom SA. As mentioned above, the CPU 102 may include on-board UART 112 and SSI 108 ports for interfacing the GPS Subsystem 118 and the cellular subsystem 110, respectively, with the CPU 112. The CPU 102 may also have on-board ADC 126, as well as on-board static RAM 128 and ROM 130. The CPU 102 may also have an on-board real time clock (RTC) 132 and a digitally controlled crystal oscillator (DCXO) 134, controlled by external crystals 136 and 138, respectively. The crystal 136 is used to generate the clock speed of the CPU 102. The crystal 138 is used for development of a real time clock signal. The CPU 102 may also include a power management unit (PMU) 136, an interrupt controller 138, a direct memory access (DMA) controller 140, internal debug software 142, internal timers 144, a digital signal processor (DSP) accelerator 146, general purpose input/output ports GPIO 148 in addition to the core processor, identified with the reference numeral 150.
  • The asset recover system 100 may include various motion inputs from motion devices that are used to control the power management of the asset recovery system 100. For example, an accelerometer 152 may couple to the power management unit (PMU) 136, on-board the CPU 102. Thus, while the asset, e.g. a vehicle, is parked, power to the asset recovery system 100 can be reduced and later restored when motion of the asset is detected. An additional motion sensor 154, for example, a vibration sensor, may additionally be used to control the power management of the asset recovery system 100. As shown, the motion sensor 154 is interfaced to the CPU 102 by way of the on-board ADC 126.
  • One essential aspect of the asset recovery system 100 is the ability to communicate with a remote device. As shown, a cellular subsystem 110 may be used for two way wireless communication between the asset recovery system 100 and a remote device, such as remote base station. Other communication systems, such as RF and satellite communication systems can also be used.
  • The cellular subsystem 110 includes a cellular receiver 109 and a cellular transmitter 1 11, which may included as a part of the WMP100, wireless microprocessor chip set, mentioned above. The cellular subsystem 110 may be a multi-band system operable on various cellular frequencies. As shown, a GSM (Global System for Mobile communications) cellular subsystem is illustrated which is operable on four (4) frequency bands: 850 MHz, 900 MHz, 1800 MHz and 1900 MHz. Other multi-band and single band systems are also suitable.
  • The cellular subsystem 110 also includes a cellular antenna 156 that is coupled to both the cellular receiver 109 and the cellular transmitter for receiving and transmitting data with respect to a remote device. An RF switch 158 is used to interface the cellular antenna to the cellular receiver 109 and allows the various frequency bands to be selected. The RF switch may, for example, may be included as a part of the WMP100, wireless microprocessor chip set, mentioned above The power amplifier 124 is used to boost the signal from the cellular transmitter 111 before it is directed to the cellular antenna. The power amplifier 124 may be, for example, may included as a part of the WMP100, wireless microprocessor, mentioned above Both the cellular transmitter 111 and the cellular receiver 109 are interfaced to the CPU 102 by way of the on-board SSI 108.
  • The global position system (GPS) subsystem 118 includes a GPS antenna 160 and the GPS receiver 114. The GPS antenna 160 and GPS receiver 114 are configured to receive satellite signals from GPS satellites. The GPS receiver 114, may be, for example, Model GNS-7560 chip set, as manufactured by NXP Semiconductors. The GPS Search and Track Correlator Engine 107 correlates received signals with specific satellites so that the signals can be used to triangulate the position of the asset. GPS Search and Track Correlator Engine 107 is part of the GPS receiver 114. The GPS subsystem is interfaced with the CPU 102 by way of the UART 112, on-board the CPU 102.
  • Electrical power for the asset recovery system 100 may be derived from the vehicle power system, for example, the 12 volt DC power system. A conventional power connector may be used to connect the asset recover system 100. The vehicle power may be regulated by a voltage regulator 126 and applied to the PMU 136. A battery charger 164 and a lithium ion back up battery 166 are provided. The back-up lithium ion battery 166 provides power to the asset recovery system 100 when the vehicle power supply is unavailable. During conditions when the asset recovery system 100 is in a low power state, as will be discussed in more detail below, the battery charger 164 is used to charge the lithium ion back-up battery 166. During states other than a low power state, the battery charger 164 is configured to enable electrical power from the coaxial cable jack 162 to pass directly to the PMU, on-board the CPU 102.
  • There are various inputs 168 and outputs 170 to the CPU 102. These inputs and outputs are all interfaces with the CPU 102 by way of the on-board GPIO 148. The inputs to the CPU 102 include a signal from the vehicle ignition wire, which will either be high or low depending on the state of the ignition system. Other inputs may optionally include an input from a panic button and a temperature input. The panic button enables the user to signal the base station in the event of a medical emergency or other emergency situation. An optional temperature input may be used to monitor the temperature of the CPU 102.
  • The asset recovery system 100 may provide one or more output signals. For example, the system 100 may provide a horn signal that can be used to sound the vehicle horn as well as an LED signal that can be used to illuminate an LED in the vehicle in certain conditions. The asset recovery system 100 may also provide a starter disable signal that can be used to disable the vehicle starter (not shown).
  • In order for the base station to be able to distinguish the various asset recovery systems in the field, a Subscriber Identity Module (SIM) 172 which securely stores the service-subscriber key used to identify a subscriber of the asset recovery system. The SIM 172 is also used to store user level configuration data and may be used to store loan account data for systems equipped with an optional loan obligation management system.
  • Vehicle Ignition State Sensing
  • With the advent of wireless and GPS technology, a variety of asset tracking applications are now possible. Vehicle tracking is a very common asset tracking application whereby the location of the vehicle is determined, recorded, and transmitted to a remote system. In addition to such location tracking, it is further desirable to record and determine other aspects such as the vehicle's utilization rate (% of time in operation) and instantaneous operating state (at rest, moving, idling, marginal operation). It is also desirable to change the operating profile of the asset tracking device based up the instantaneous condition. For example, a vehicle could be tracked more frequently when it is moving or idling than when it is at rest. Or, the asset tracking device might wish to enter a low power consumption mode or even switch itself off in the event that the power supply it is connected to (the vehicle battery) is being depleted. When the vehicle resumes operation, the device can then jump to a more power intensive operation.
  • In order to provide these additional features, known systems use additional inputs, such as an ignition input, temperature input, vibration sensor input, among others. However, this approach increases the cost and complexity of the installation process. In some vehicles, a signal representative of the state of the ignition system is directly available from the vehicle ignition switch. In such systems, signals representative of the ignition states; “Ignition On”; “Ignition Off” are readily available from the vehicle ignition switch. In other vehicles, an ignition input is not readily available or at all present in some vehicles to facilitate switching between different operating modes. Examples are such vehicles include motorcycles, scooters, all terrain vehicles, and watercraft. As such, asset recovery systems are heretofore not known to be available for such systems.
  • Another problem with known asset recovery systems is that smaller vehicles and watercraft are typically equipped with small batteries which can be depleted very quickly. Known systems solve this problem by forcing the system into non-operating sleep modes for extended periods with a periodic wake up in which asset tracking related functions are performed. However, entering extended sleep periods in a two-wire installation significantly impedes the ability of the asset tracking device to maintain and provide reliable information related to the instantaneous operating state or even the overall utilization rate.
  • The asset recovery system 100 in accordance with the present invention overcomes the challenge of two-wire installations by utilizing a dedicated low-power circuit that monitors the voltage of the vehicle battery to provide a signal representative of the instantaneous operating state of the ignition. As is known in the art, the positive rail of the vehicle battery is normally higher when the vehicle ignition is off. For example, in a typical vehicle with a nominal 12 volt battery, the battery voltage is typically 12.5 volts dc when the ignition is OFF and drops down to around 12.0 volts DC when the ignition is ON. Vehicles with other nominal battery voltages experience similar hysteresis of the battery voltage from the ignition OFF state to the ignition ON state. By measuring across the vehicle battery, the status of the ignition system can easily be determined with a two-wire circuit without the need to access the vehicle ignition system. As such vehicles with inaccessible ignition circuits, such as motorcycles, scooters, all terrain vehicles, and watercraft, can now be equipped with an asset recovery systems.
  • The ignition status information is used to enter and exit various operating modes as well as lower the overall impact of the device on the power supply of the vehicle thereby extending the life of the battery. In these cases, the device continues to operate in a higher power mode.
  • Exemplary Software Diagrams
  • FIGS. 9-13 illustrate exemplary software diagrams for the asset recovery system 100, illustrated in FIGS. 1-8. FIG. 14 illustrates an optional loan obligation management system for use with the asset recovery system in accordance with another aspect of the invention.
  • As mentioned above, different methods are known for detecting the ignition state of a vehicle. In accordance with one embodiment of the invention, one asset recovery system 100 can be utilized for both the hard-wired system, i.e. hard-wired to the ignition switch (not shown) and a system in which the ignition state is automatically determined by periodically sampling the voltage across the primary winding of the ignition coil. In accordance with an important aspect of the invention, the asset recovery system 1001 automatically detects which installation type was used on the vehicle.
  • For vehicles in which access to the ignition switch (not shown) is available, the ignition switch, generally identified with the reference numeral 168 (FIG. 8), is coupled to a GP I/O port 148. As is known in the art, vehicle ignition switches have two (2) operating states: “Ignition On” and “Ignition Off”. As such, with vehicles with access to the vehicle ignition system, the ignition states are readily available. In other vehicles, as mentioned above, in which the vehicle ignition circuit is inaccessible, the voltage applied to the ignition coil is monitored and used to provide a signal representative of the ignition state.
  • In order to simplify the installation, a two (2) wire installation is used for both ignition state installation types. For vehicles with access to the vehicle ignition circuit, the two (2) wires are connected to the ignition switch. For vehicles with no access to the vehicle ignition switch circuit, the two (2) wires are connected across the vehicle battery. In order to further the complexity of the installation process, only two (2) wires are provided for external connection. Depending on the accessibility of the ignition circuit, the two (2) wires used to detect the ignition state can be connected to either the ignition switch or the vehicle battery. In accordance with an important aspect of the invention, the asset recovery system 100 automatically determines the installation type. By providing only two (2) wires for external connection, the possibility of incorrect connections is eliminated.
  • Referring to FIG. 9, the system automatically detects whether the two (2) wires are connected to an ignition switch or across the vehicle battery. This part of the system, identified with the reference numeral 200, has two (2) operating modes: a hardwire ignition mode and a voltage hysteresis mode. The system samples the voltage available across the battery; for example, by way of a GP I/O port 148 over a plurality of consecutive sample periods. If a voltage is sensed over two (2) sample periods, the system assumes a voltage hysteresis mode and sets a voltage hysteresis flag. In hard-wired installations, a voltage is not available on the GP I/O port 148 (FIG. 8) for two consecutive sample periods. In such applications, a hard ignition mode flag is set.
  • Initially, on power-up, the system proceeds to step 206 and samples the voltage at the GP I/O port 148 where the two (2) wires are connected during the first sample period. If a voltage is present, as determined in step 208, the system sets the current sample to its equivalent digital value by way of the analog to digital converter (ADC) on board the CPU 102 (FIG. 8) in step 210. Next in step 212, the system checks whether a previous sampled voltage exists. Assuming that this is the first sample period, the system proceeds to step 214 and sets the variable “Last Sample” to the digital value of the first sample in step 214. The system then returns to step 206 for a second sample period.
  • During the second sample period, the a second sample of the voltage is taken at the GP I/O port 148 (FIG. 8) where the two (2) wires are connected. If a voltage is present, as detected in step 208, the system sets the second sample to its digital equivalent in step 210. If a previous voltage sample exists, as determined in step 212, the system sets a voltage hysteresis mode flag in step 216. On the other hand, if a voltage is not present in either first or second sample period, as determined in step 208, the system assumes a hard ignition mode and sets a hard ignition mode flag is set in step 218.
  • FIG. 10 is a software flow diagram for determining the state of the ignition system. Once the installation type is learned by the system, as discussed above, either a hard ignition mode flag 240 or a voltage hysteresis mode flag 242 is set. Assuming the hard ignition mode flag was set, the system continuously checks for changes to the ignition input status in step 244. As mentioned above, with a hard-wired ignition installation, the ignition status is either Ignition On or Ignition Off, as indicated by the logic blocks 246 and 248, respectively. Each time the ignition state changes, an ignition State Changed flag is set. In step in step 250.
  • On the other hand, if the voltage hysteresis mode flag 242 was set, the system monitors the voltage at the port where the two (2) wire ignition is connected and checks in step 252 whether the last sample voltage<the current sample voltage. The system then checks whether the last sample voltage minus the current sample voltage>the ignition off threshold voltage, for example 0.5 volts DC, assuming a 12 volt system in which the battery voltage is 12.5 volts DC when the ignition is OFF and 12.0 volts DC when the ignition is ON, in step 254. If so, the system assumes the ignition state is Ignition Off in step 256. If not, the system assumes the ignition state changed in step 258.
  • As mentioned above, the system monitors the voltage at the port where the two (2) wire ignition is connected and checks in step 252 whether the last sample voltage≦the current sample voltage. If the last sampled voltage<the last sample voltage, the system proceeds to step 258 and determines whether last sample voltage minus the current sample voltage>the ignition on threshold voltage. If so, the system assumes the ignition state is Ignition On in step 260. If not, the system assumes the ignition state changed in step 258.
  • FIG. 11 is a software flow diagram for managing an ultra-low power sleep mode. In order to conserve power particularly for vehicles with relatively small batteries, the system includes a sleep management mode. The sleep management mode is used when there is minimal activity with respect to the state of the ignition system. Depending on the installation type, different sleep durations may be used. Thus, in step 262, the system determines whether the voltage hysteresis mode flag was set. If not, the system assumes a hard wired mode and enables the ignition input as an interrupt source in step 264. Thus, any changes in the ignition state will interrupt the sleep mode and wake up the asset recovery system 100. In step 266, an alarm is set for the current time plus a relatively long duration, for example, 3 minutes. After the alarm is set, all peripherals are turned off in step 268. These peripherals may include LEDs within the vehicle. The GPS subsystem 114 may also be placed in a hibernation mode. The system then enters the sleep mode 270; a relatively low power mode The system remains in the sleep mode until woken up, as indicated by the logic block 272, by way of an ignition interrupt, as indicated in step 274. The system exits the sleep mode in step 276. Otherwise the system remains in the sleep mode.
  • On the other hand, if the system determines in step 262, that the voltage hysteresis flag 216 is set, the system checks in 278 whether the current ignition state is the same as the old ignition state. If not, the system exits the sleep mode in step 276. In other words, if the system is in the voltage hysteresis mode, any change in the ignition state causes the system to exit the sleep mode. If the ignition state has not changed, an alarm is set in step 280 for the current time plus a relatively short duration, for example, 30 seconds. At the expiration of the time period, the system proceeds to step 268 and turns off all peripherals and enters the sleep mode in step 270. The system may then woken up by interrupt or in a predetermined time interval. In particular, if the voltage hysteresis mode flag was set, as determined in step, the system checks in step 282 whether a predetermined time interval has elapsed, for example, whether a time interval, identified as the “wakeup count” has expired where the wakeup count>long duration/short duration. If so, the system exits the sleep mode. Otherwise, the system stays in the sleep mode.
  • FIG. 12 is an exemplary software flow diagram illustrating the GPS position calculation. The GPS system is used to determine the position of the vehicle. GPS satellites broadcast two types of data: Almanac data and Ephemeris data. Almanac data relates to course orbital parameter data for all of the GPS satellites in the constellation. Each satellite broadcasts Almanac data for all of the satellites in the constellation. Almanac data is not considered to be very precise and is considered valid only for a few months. Ephemeris data by comparison is very precise orbital and clock correction for each satellite and is necessary for precise positioning. Each satellite broadcasts only its own Ephemeris data. This data is only considered valid for about 30 minutes. The Ephemeris data is broadcast by each satellite every 30 seconds. When the GPS is initially turned on after being off for more than 30 minutes, it “looks” for the satellites based on where it is based on the almanac and current time. With this information, appropriate satellites can be selected for initial search3. 3“Almanac and Ephemeris Data as used by GPS receivers”, by Joe Mehaffey, (4 Jul. 1998), http://gpsinformation.net/main/almanac.txt
  • Based on the above, the system checks in steps 286 whether it has the current time. As mentioned above, the CPU 102 (FIG. 8) i8ncludes a real time clock 132, which can be used for the current time. The GPS Receiver 114 receives Almanac data directly from the satellites, as mentioned above. The Almanac data is saved in Flash memory 106 in step 290. Based on the real time and the almanac data, the system predicts expected satellites in step 292 and searches for those satellites in step 294. In step 296, the system checks whether the expected satellites were found. If either there is no real time data; no valid Almanac data or the expected satellites cannot be found, the system searches for any satellites in step 298.
  • If the expected satellites are found, as determined in step 296, the system checks in step 300 whether valid ephemeris data has been found for three (3) or more satellites. If so, the system saves the ephemeris data is found, it is stored in the Flash memory 106 (FIG. 8) in step 302. In step 304, the vehicle position is triangulated based on the ephemeris data. The system then checks in step 306 whether the position is valid by comparing it with the last known position of the vehicle. If the position is not determined to be valid, real time and almanac data is decoded in steps 316 and 318 from the satellite signals located in step 298. The decoded almanac data is then stored in the flash memory 106 (FIG. 8) and the system proceeds to calculate the vehicle position as indicated in steps 292-304, as discussed above.
  • If the position is determined to be valid, the system next checks in step 308 whether the solution is a high precision solution in step 308.), for example, as provided by the GPS chip set mentioned above. If so, the position is stored in step 310 and the system enters the sleep mode in step 312 for duration as determined by the sleep management mode 218 (FIG. 11).
  • On the other hand, if the position is not considered to be a high precision solution, as determined in step 308, the system checks whether the search window has expired in step 314. If not, the system returns to step 284. If so, the system enters the sleep mode.
  • The main state machine, generally identified with the reference numeral 320, is illustrated in FIG. 13. As used herein, the system is configured as a master server network. The asset recovery system 100 is the client which communicates with a remote server (not shown). Initially the power condition of the asset recovery system is checked, for example, by measuring its power input in step 322. If the power condition is not valid, the system proceeds to step 324 and enters the sleep mode for a duration as determined by the sleep management system 218.
  • If the power condition is valid, the system checks its inputs. Specifically, the system checks in step 324 whether the ignition state has changed. If so, the system checks in step 326 whether the asset recovery system 100 is configured to allow ignition messages to be sent to the server. In particular, on power-up, the asset recovery system 100 fetches its configuration from a remote server. The system 100 then stores its configuration and sets a flag at the server If the asset recovery system 100 is properly configured, the system adds a location packet to the ignition message so that the ignition message can be correlated to the vehicle position in step 328. In step 330, the system checks whether the state of the panic button has changed. If so, the system checks in step 332 whether the asset recovery system 100 is configured to allow panic messages to be sent to the server. If so, the system adds a location packet to the panic message so that the change of state of the panic button can be correlated to the vehicle position in step 328. In step 334, the system checks whether the state of the motion sensor has changed. If so, the system checks in step 336 whether the asset recovery system 100 is configured to allow motion messages to be sent to the server. If so, the system adds a location packet to the panic message so that the change of state of the motion sensor can be correlated to the vehicle position in step 328.
  • In step 338, the system checks whether any commands have been received from the server (not shown). If so, the system processes the command in step 340. Exemplary commands may include signals to sound the vehicle horn; disable the vehicle starter; or illuminate an LED in the vehicle. In step 342, the system checks whether the asset recovery system is configured to allow command type messages. If so, the system proceeds to step 328.
  • If there are no commands from the server, the system checks in step 344 to determine whether there are packets in the queue ready to be sent to the server over the cellular network. If so, the system is connected to the network in step 346 and connects with the server in step in step 348. In step 350, the system transmits the packets to the server.
  • Loan Obligation Management System
  • FIG. 14 is a software flow diagram of the loan obligation management system in accordance with one aspect of the present invention. In this embodiment of the invention, the asset recovery system 100 is provided with additional functionality. In this embodiment of the invention, the finance company involved with the financing of the vehicle uses the asset recovery system 100 for loan obligation management. In particular, assuming a customer purchases a vehicle or other asset as indicated in step 352 and establishes a loan for purchase of the vehicle in step 354. As part of the loan conditions, an asset recovery system 100 is installed in the vehicle in step 356. In step 358 an account number for the loan is established and transmitted to the system server in step 360, thereby establishing the account on the server.
  • In this system the finance company determines a collection strategy, as indicated by the logic block 364. Based upon changes in the payment history by the debtor, the finance company may determine a that a change in the collection strategy needs to be performed, as indicated by the logic block 366 and sends the server a message with the account number and the action that needs to be taken in step 368. Upon receipt of the message from the finance company, the server looks up the account number and the associated MSISDN number of the cellular device within the asset recovery system 100 in the vehicle in step 370 and transmits the message in step 372. The message is stored as a command in the SIM card 172 (FIG. 8). In step 376, the system performs the command when the ignition is turned on. In step 378, the system acknowledges to the finance company that that the requested action has been taken.
  • An exemplary embodiment of the loan obligation management system may include management through an entire payment cycle. In particular, assuming that a loan payment is due, as indicated by the logic block 380, a payment reminder is enabled in the vehicle. The payment reminder may be illumination of an LED in the vehicle. If the payment is made, as indicated in step 384, the payment reminder is disabled in step 386. However, if payment is not made, the vehicle is disabled, for example, by disabling the starter in step 388. In that situation, the loan status would be considered to be in default and sent to collections, as indicated by the logic blocks 390 and 392.
  • Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described above.

Claims (22)

1. An asset recovery system comprising:
an application subsystem including an application software program;
a GPS subsystem including a GPS software program for tracking the location of said asset;
a communication subsystem including a communication software program for communicating data including the location of the asset with a remote device;
a power subsystem for providing power to said application subsystem, said GPS subsystem and said cellular subsystem, and
an integrated CPU for running said application software program, said communication software program and said GPS software program.
2. The asset recovery system as recited in claim 1, further including a flash memory device coupled to said integrated CPU for storing said application software program, said communication software program and said GPS software program.
3. The asset recovery system as recited in claim 1, wherein said power subsystem is configured to receive an external source of DC power and includes a voltage regulator and a back up battery.
4. The asset recovery system as recited in claim 1, wherein said communication system is configured to provide bidirectional communication between said asset recovery system and said remote device.
5. The asset recovery system as recited in claim 4, wherein said application subsystem is configured to be responsive to external inputs.
6. The asset recovery system as recited in claim 5, wherein said external inputs include a signal representative of the ignition state.
7. The asset recovery system as recited in claim 5, wherein said external inputs include a signal representative of the motion of the asset.
8. The asset recovery system as recited in claim 5, wherein said external inputs include a signal representative of the state of a panic button.
9. The asset recovery system as recited in claim 5, wherein said external inputs include a command from said external device.
10. The asset recovery system as recited in claim 4, wherein said asset recovery system is configured to generate external commands.
11. The asset recovery system as recited in claim 10, wherein said external commands include a command to disable the vehicle starter.
12. The asset recovery system as recited in claim 10, wherein said external commands include a command to sound the vehicle horn.
13. The asset recovery system as recited in claim 10, wherein said external commands include a command to illuminate an LED.
14. A method for determining the ignition state of a vehicle without monitoring the state of an ignition switch, the method comprising the steps of:
(a.) measuring the voltage of the primary voltage of a vehicle ignition coil during a first sample period, defining a first sample voltage;
(b) storing said first sample voltage;
(c) measuring the voltage of the primary voltage of a vehicle ignition coil during a second sample period, defining a second sample voltage;
(d) storing said second sample voltage;
(e) comparing said first sample voltage and said second sample voltage defining a comparison; and
(f) providing an indication of said ignition state as a function of sad comparison.
15. The method as recited in claim 14, wherein step (f) includes determining whether the first sample voltage is greater than or equal to said second sample voltage.
16. The method as recited in claim 15, wherein step (f) includes providing an indication of an ignition state as a function of whether said first sample voltage is greater than or equal to said second sample voltage.
17. The method as recited in claim 16, wherein step (f) includes providing an indication of an Ignition Off State when the difference between said first sample voltage and said second sample voltage is greater than a predetermined value.
18. The method as recited in claim 16, wherein step (f) includes providing an indication of an Ignition State Unchanged when the difference between said first sample voltage and said second sample voltage is not greater than a predetermined value.
19. The method as recited in claim 16, wherein step (f) includes providing an indication of an Ignition On State when the difference between said second sample voltage and said first sample voltage is greater than a predetermined value.
20. The method as recited in claim 16, wherein step (f) includes providing an indication of an Ignition State Unchanged when the difference between said second sample voltage and said first sample voltage is not greater than a predetermined value.
21. A method for managing a loan obligation of an asset which includes: a communication system for enabling communications between said asset and a remote device; a system for detecting the state of said asset and communicating the state of said asset to said remote device by way of said communications system; a system for providing an indication of a payment due; and a system for enabling said asset to be disabled based upon a command from said remote device, the method comprising:
(a) sending a payment reminder over said communication system to said asset providing an indication of a loan obligation;
(b) disabling said payment reminder as a function of said state of said asset by way of said communication system when a payment is made; and
(c) disabling said asset as a function of said state of said asset by way of said communication system when a payment is not made.
22. A system for managing a loan obligation of a vehicle, the system comprising:
a communication system for enabling communication between a vehicle and a remote device;
a system configured to monitor the ignition state of the vehicle; and
a system responsive to commands from said remote device received from said communication system and configured to disable the vehicle in response to receiving a disable command or provide a signal that a payment is due as a function of the ignition state of the vehicle.
US12/351,070 2009-01-09 2009-01-09 Asset tracking system Abandoned US20100179897A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/351,070 US20100179897A1 (en) 2009-01-09 2009-01-09 Asset tracking system
US13/443,314 US8660739B2 (en) 2009-01-09 2012-04-10 Monitoring the status of a vehicle
US14/180,040 US20140164191A1 (en) 2009-01-09 2014-02-13 Asset tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/351,070 US20100179897A1 (en) 2009-01-09 2009-01-09 Asset tracking system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/443,314 Division US8660739B2 (en) 2009-01-09 2012-04-10 Monitoring the status of a vehicle
US14/180,040 Division US20140164191A1 (en) 2009-01-09 2014-02-13 Asset tracking system

Publications (1)

Publication Number Publication Date
US20100179897A1 true US20100179897A1 (en) 2010-07-15

Family

ID=42319729

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/351,070 Abandoned US20100179897A1 (en) 2009-01-09 2009-01-09 Asset tracking system
US13/443,314 Active - Reinstated US8660739B2 (en) 2009-01-09 2012-04-10 Monitoring the status of a vehicle
US14/180,040 Abandoned US20140164191A1 (en) 2009-01-09 2014-02-13 Asset tracking system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/443,314 Active - Reinstated US8660739B2 (en) 2009-01-09 2012-04-10 Monitoring the status of a vehicle
US14/180,040 Abandoned US20140164191A1 (en) 2009-01-09 2014-02-13 Asset tracking system

Country Status (1)

Country Link
US (3) US20100179897A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110307141A1 (en) * 2010-06-14 2011-12-15 On-Board Communications, Inc. System and method for determining equipment utilization
WO2013081765A1 (en) * 2011-12-02 2013-06-06 Continental Automotive Systems, Inc. Improved system operation for telematics systems that use a battery
US8660739B2 (en) 2009-01-09 2014-02-25 Gpsi, Llc Monitoring the status of a vehicle
US20160090923A1 (en) * 2014-09-29 2016-03-31 Sekurus International, Inc. Payment enforcement system
US20170200329A1 (en) * 2014-09-29 2017-07-13 Laird Technologies, Inc. Telematics devices and methods for vehicle ignition detection
US20190013880A1 (en) * 2017-07-05 2019-01-10 Lojack Corporation Systems and Methods for Reducing Undesirable Behaviors in RF Communications
US10243766B2 (en) 2017-07-05 2019-03-26 Lojack Corporation Systems and methods for determining and compensating for offsets in RF communications
US10367457B2 (en) 2017-07-06 2019-07-30 Calamp Wireless Networks Corporation Single stage ramped power amplifiers
EP3595327A1 (en) * 2018-07-12 2020-01-15 Silicon Controls Pty Ltd Telemetric devices and methods of dynamic transmission frequency
US11785424B1 (en) 2021-06-28 2023-10-10 Wm Intellectual Property Holdings, L.L.C. System and method for asset tracking for waste and recycling containers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002627B2 (en) * 2009-08-25 2012-08-15 日立オートモティブシステムズ株式会社 Power control device
US8612137B2 (en) * 2011-07-18 2013-12-17 Ituran Usa System, method and apparatus for tracking parking behavior of a vehicle
ITMI20121650A1 (en) * 2012-10-02 2014-04-03 Cobra Automotive Technologies S P A DEVICE FOR DETECTION OF USE OF A VEHICLE, PARTICULARLY FOR APPLICATIONS IN INSURANCE OR SIMILAR
CN106504123A (en) * 2016-11-28 2017-03-15 国网山东省电力公司济宁供电公司 Charging method and system are urged in a kind of interaction for improving user's participation
CN112912814B (en) * 2018-10-31 2023-01-03 罗姆股份有限公司 Linear power supply circuit

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492213A (en) * 1980-12-08 1985-01-08 Nippondenso Co., Ltd. Ignition system for internal combustion engines
US4514694A (en) * 1981-07-23 1985-04-30 Curtis Instruments Quiescent battery testing method and apparatus
US4734673A (en) * 1981-12-28 1988-03-29 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting a start of an engine for a motor vehicle
US5223844A (en) * 1992-04-17 1993-06-29 Auto-Trac, Inc. Vehicle tracking and security system
US5418537A (en) * 1992-11-18 1995-05-23 Trimble Navigation, Ltd. Location of missing vehicles
US5877724A (en) * 1997-03-25 1999-03-02 Trimble Navigation Limited Combined position locating and cellular telephone system with a single shared microprocessor
US5917423A (en) * 1995-04-12 1999-06-29 Lojack Corporation Vehicles tracking transponder system and transponding method
US6002363A (en) * 1996-03-08 1999-12-14 Snaptrack, Inc. Combined GPS positioning system and communications system utilizing shared circuitry
US6025774A (en) * 1998-06-24 2000-02-15 Forbes; Mark P. Method for retrieving vehicular collateral
US6240365B1 (en) * 1997-01-21 2001-05-29 Frank E. Bunn Automated vehicle tracking and service provision system
US6377210B1 (en) * 2000-02-25 2002-04-23 Grey Island Systems, Inc. Automatic mobile object locator apparatus and method
US6516285B1 (en) * 1999-09-30 2003-02-04 Matsushita Electric Industrial Co. Ltd. Position detecting apparatus with DSRC feature and its control method
US6606562B1 (en) * 2002-08-08 2003-08-12 Concentrax, Inc. Self-monitoring vehicle alert and tracking device system and associated methods
US6688270B2 (en) * 2001-03-30 2004-02-10 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for preventing overrun of starter for engine
US6799564B2 (en) * 2001-06-06 2004-10-05 Siemens Aktiengesellschaft Ignition device, controller and ignition unit for an internal combustion engine
US7071843B2 (en) * 2002-04-26 2006-07-04 Pioneer Corporation Navigation system and navigation equipment
US20070185728A1 (en) * 2006-02-07 2007-08-09 Gordon * Howard Associates, Inc. Starter-interrupt device incorporating global positioning system functionality
US7319378B1 (en) * 2004-04-12 2008-01-15 Bobbie Thompson Anti-theft system for a vehicle with real-time notification feature
US7772806B2 (en) * 2006-04-11 2010-08-10 Mitsubishi Electric Corporation Power storage system
US8660739B2 (en) * 2009-01-09 2014-02-25 Gpsi, Llc Monitoring the status of a vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174243B1 (en) * 2001-12-06 2007-02-06 Hti Ip, Llc Wireless, internet-based system for transmitting and analyzing GPS data
US6948486B2 (en) * 2002-06-28 2005-09-27 Fleetguard, Inc. System and method for derating an engine to encourage servicing of a vehicle
FR2914961B1 (en) * 2007-04-13 2012-08-17 Renault Sas DEVICE FOR DETERMINING THE OPERATING STATE OF AN IGNITION COIL.

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492213A (en) * 1980-12-08 1985-01-08 Nippondenso Co., Ltd. Ignition system for internal combustion engines
US4514694A (en) * 1981-07-23 1985-04-30 Curtis Instruments Quiescent battery testing method and apparatus
US4734673A (en) * 1981-12-28 1988-03-29 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting a start of an engine for a motor vehicle
US5223844A (en) * 1992-04-17 1993-06-29 Auto-Trac, Inc. Vehicle tracking and security system
US5223844B1 (en) * 1992-04-17 2000-01-25 Auto Trac Inc Vehicle tracking and security system
US5418537A (en) * 1992-11-18 1995-05-23 Trimble Navigation, Ltd. Location of missing vehicles
US5917423A (en) * 1995-04-12 1999-06-29 Lojack Corporation Vehicles tracking transponder system and transponding method
US6002363A (en) * 1996-03-08 1999-12-14 Snaptrack, Inc. Combined GPS positioning system and communications system utilizing shared circuitry
US6240365B1 (en) * 1997-01-21 2001-05-29 Frank E. Bunn Automated vehicle tracking and service provision system
US5877724A (en) * 1997-03-25 1999-03-02 Trimble Navigation Limited Combined position locating and cellular telephone system with a single shared microprocessor
US6025774A (en) * 1998-06-24 2000-02-15 Forbes; Mark P. Method for retrieving vehicular collateral
US6249217B1 (en) * 1998-06-24 2001-06-19 Mark P. Forbes Method for retrieving vehicular collateral
US6516285B1 (en) * 1999-09-30 2003-02-04 Matsushita Electric Industrial Co. Ltd. Position detecting apparatus with DSRC feature and its control method
US6377210B1 (en) * 2000-02-25 2002-04-23 Grey Island Systems, Inc. Automatic mobile object locator apparatus and method
US6688270B2 (en) * 2001-03-30 2004-02-10 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for preventing overrun of starter for engine
US6799564B2 (en) * 2001-06-06 2004-10-05 Siemens Aktiengesellschaft Ignition device, controller and ignition unit for an internal combustion engine
US7071843B2 (en) * 2002-04-26 2006-07-04 Pioneer Corporation Navigation system and navigation equipment
US6606562B1 (en) * 2002-08-08 2003-08-12 Concentrax, Inc. Self-monitoring vehicle alert and tracking device system and associated methods
US7319378B1 (en) * 2004-04-12 2008-01-15 Bobbie Thompson Anti-theft system for a vehicle with real-time notification feature
US20070185728A1 (en) * 2006-02-07 2007-08-09 Gordon * Howard Associates, Inc. Starter-interrupt device incorporating global positioning system functionality
US7772806B2 (en) * 2006-04-11 2010-08-10 Mitsubishi Electric Corporation Power storage system
US8660739B2 (en) * 2009-01-09 2014-02-25 Gpsi, Llc Monitoring the status of a vehicle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660739B2 (en) 2009-01-09 2014-02-25 Gpsi, Llc Monitoring the status of a vehicle
US9311616B2 (en) * 2010-06-14 2016-04-12 On-Board Communications, Inc. System and method for determining equipment utilization changes based on ignition and motion status
US20110307141A1 (en) * 2010-06-14 2011-12-15 On-Board Communications, Inc. System and method for determining equipment utilization
WO2013081765A1 (en) * 2011-12-02 2013-06-06 Continental Automotive Systems, Inc. Improved system operation for telematics systems that use a battery
US8630764B2 (en) 2011-12-02 2014-01-14 Continential Automotive Systems, Inc. System operation for telematics systems that use a battery
CN103947232A (en) * 2011-12-02 2014-07-23 大陆汽车系统公司 Improved system operation for telematics systems that use a battery
US9880186B2 (en) 2014-09-29 2018-01-30 Laird Technologies, Inc. Telematics devices and methods for vehicle speeding detection
US20170200329A1 (en) * 2014-09-29 2017-07-13 Laird Technologies, Inc. Telematics devices and methods for vehicle ignition detection
CN107000686A (en) * 2014-09-29 2017-08-01 莱尔德无线技术(上海)有限公司 Remote information process device and the method detected for vehicle ignition
CN107107867A (en) * 2014-09-29 2017-08-29 莱尔德无线技术(上海)有限公司 For the starter override and corresponding method of remote information process device
US20160090923A1 (en) * 2014-09-29 2016-03-31 Sekurus International, Inc. Payment enforcement system
US9934622B2 (en) * 2014-09-29 2018-04-03 Laird Technologies, Inc. Telematics devices and methods for vehicle ignition detection
US10243766B2 (en) 2017-07-05 2019-03-26 Lojack Corporation Systems and methods for determining and compensating for offsets in RF communications
US20190013880A1 (en) * 2017-07-05 2019-01-10 Lojack Corporation Systems and Methods for Reducing Undesirable Behaviors in RF Communications
US10461868B2 (en) * 2017-07-05 2019-10-29 Calamp Wireless Networks Corporation Systems and methods for reducing undesirable behaviors in RF communications
US10951328B2 (en) * 2017-07-05 2021-03-16 Calamp Wireless Networks Corporation Systems and methods for reducing undesirable behaviors in RF communications
US10367457B2 (en) 2017-07-06 2019-07-30 Calamp Wireless Networks Corporation Single stage ramped power amplifiers
EP3595327A1 (en) * 2018-07-12 2020-01-15 Silicon Controls Pty Ltd Telemetric devices and methods of dynamic transmission frequency
US10863254B2 (en) 2018-07-12 2020-12-08 Silicon Controls Pty Ltd Telemetric devices and methods of dynamic transmission frequency
US11323784B2 (en) 2018-07-12 2022-05-03 Silicon Controls Pty Ltd. Telemetric devices and methods of dynamic transmission frequency
US11785424B1 (en) 2021-06-28 2023-10-10 Wm Intellectual Property Holdings, L.L.C. System and method for asset tracking for waste and recycling containers

Also Published As

Publication number Publication date
US20140164191A1 (en) 2014-06-12
US20120200405A1 (en) 2012-08-09
US8660739B2 (en) 2014-02-25

Similar Documents

Publication Publication Date Title
US8660739B2 (en) Monitoring the status of a vehicle
AU2003255267B2 (en) Device, system, and method for position reporting or tracking
CN101360146B (en) Positioning method and system of mobile communication apparatus
US8391831B2 (en) In-vehicle terminal for emergency notification
US20170088072A1 (en) System and method for sensor module power management
US20130044008A1 (en) Enhanced emergency system using a hazard light device
US20130002415A1 (en) Vehicular telematics device with voltage sensor-predicated GPS reciever activation
US7843384B2 (en) Vehicle communication terminal
CN110341549B (en) Monitoring method and device for automobile storage battery and storage medium
KR101612829B1 (en) Telematics terminal, center for preventing vehicle discharge and control method for preventing vehicle discharge the same
US8977427B2 (en) System, method and odometer monitor for detecting connectivity status of mobile data terminal to vehicle
CN112165697B (en) Tbox sleep wake-up control method and device and terminal equipment
US7522942B2 (en) On-vehicle radio communication apparatus
CN104875713A (en) Antitheft system for motorcycle
CN101951019A (en) Power supply management method of vehicle security system
CN104986248A (en) Intelligent positioning and theft-against system for electric bicycle
CN108712182B (en) Vehicle-mounted intelligent antenna system
KR20160038490A (en) System amd method for notifing discharge of battery in vehicle
JP2004037116A (en) Locational information communication terminal and gps positioning system
CN112135260B (en) Control method of main control unit, reporting method of position information and tracker
KR102440593B1 (en) System and method for tire monitoring
US20240047768A1 (en) Control method of vehicle power source and storage medium
CN210605464U (en) Vehicle-mounted system state monitoring tracker
RU117687U1 (en) MULTIFUNCTIONAL SECURITY-SEARCH SATELLITE DEVICE
JP2004178495A (en) Vehicle position information notification system, center and radio communication device

Legal Events

Date Code Title Description
AS Assignment

Owner name: GPSI, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAFFORD, THOMAS E.;REEL/FRAME:022144/0513

Effective date: 20090113

Owner name: GEOMETRIS LP, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DESAI, MANISH J.;REEL/FRAME:022144/0673

Effective date: 20090121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION