US20100256910A1 - Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus - Google Patents

Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus Download PDF

Info

Publication number
US20100256910A1
US20100256910A1 US12/757,905 US75790510A US2010256910A1 US 20100256910 A1 US20100256910 A1 US 20100256910A1 US 75790510 A US75790510 A US 75790510A US 2010256910 A1 US2010256910 A1 US 2010256910A1
Authority
US
United States
Prior art keywords
vehicle
preceding vehicle
traveling
traveling path
surroundings monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/757,905
Inventor
Hiroyuki Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to US12/757,905 priority Critical patent/US20100256910A1/en
Publication of US20100256910A1 publication Critical patent/US20100256910A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator

Definitions

  • the present invention relates to a vehicle surroundings monitoring apparatus for recognizing traveling circumstances in front of an own vehicle by stereoscopic cameras, monocular cameras, millimeter wave radars, and the like and for making an accurate judgment of evacuation of a preceding vehicle from the lane and, more particularly to a traveling control system incorporating such a vehicle surroundings monitoring apparatus.
  • Japanese Patent Application Laid-open No. Toku-Kai-Hei 9-91598 discloses a traveling control system in which a traveling path of an own vehicle is estimated from traveling conditions such as yaw rate and other data and a nearest obstacle on the traveling path is detected as a preceding vehicle to be monitored. Further, in the traveling control system, when the preceding vehicle goes out of the traveling path of the own vehicle, the monitoring of the preceding vehicle is released.
  • the traveling control system In the traveling control system, the technology of recognizing a preceding vehicle is very important.
  • the preceding vehicle sometimes travels in such a manner as trying to avoid an obstacle, sometimes changes the lane, and sometimes goes out of the lane and other vehicle enters the lane in place of the preceding vehicle. If the traveling control system fails to correctly catch the behavior of the preceding vehicle, the traveling control becomes awkward and rather inconvenient for a vehicle driver.
  • a vehicle surroundings monitoring apparatus comprises frontal information detecting means for detecting solid object information in front of an own vehicle, preceding vehicle recognizing means for recognizing a preceding vehicle based on the solid object information, traveling path estimating means for estimating a traveling path of the own vehicle, first evacuation possibility judging means for judging a first possibility of relative evacuation between the preceding vehicle and the own vehicle according to positions of the preceding vehicle and the own vehicle, second evacuation possibility judging means for judging a second possibility of relative evacuation between the preceding vehicle and the own vehicle according to information of solid objects other than the preceding vehicle, and preceding vehicle evacuation possibility judging means for judging a final possibility of relative evacuation between the preceding vehicle and the own vehicle based on the first possibility and the second possibility.
  • FIG. 1 is a schematic diagram showing a traveling control system incorporating a vehicle surroundings monitoring apparatus according to the present invention
  • FIG. 2 is a flowchart showing a routine for monitoring surroundings of a vehicle
  • FIG. 3 is a flowchart showing a routine for estimating a traveling path of an own vehicle
  • FIG. 4 is a flowchart showing a routine for judging the possibility of evacuation of a preceding vehicle using a traveling path C of an own vehicle;
  • FIG. 5 a is an explanatory diagram showing a process of producing a new traveling path C of an own vehicle from the traveling path A and the traveling path B;
  • FIG. 5 b is an explanatory diagram showing a process of producing the new traveling path C when the traveling path A is erroneously recognized;
  • FIG. 5 c is an explanatory diagram showing a process of calculating a new traveling path E from the traveling path C and the traveling path D (traveling path of a preceding vehicle) ;
  • FIG. 6 is an explanatory diagram showing a process for establishing a judging counter.
  • reference numeral 1 denotes a vehicle (own vehicle) on which an intervehicle distance automatically adjusting system (Adaptive Cruise Control: ACC) 2 is mounted.
  • the ACC system 2 is constituted by a traveling control unit 3 , a stereoscopic camera 4 and a vehicle surroundings monitoring apparatus 5 .
  • the ACC system is set to a constant speed control mode, the vehicle travels at a speed established by a vehicle driver and when the system is set to a follow-up traveling control mode, the vehicle travels at a speed targeted to the speed of a preceding vehicle with a constant intervehicle distance to the preceding vehicle maintained.
  • the stereoscopic camera 4 constituting vehicle forward information detecting means is composed of a pair (left and right) of CCD cameras using a solid-state image component such as Charge Coupled Device and the left and right cameras are transversely mounted on a front ceiling of a passenger compartment at a specified interval of distance, respectively.
  • the respective cameras take picture images of an outside object from different view points and input the picture images to the vehicle surroundings monitoring apparatus 5 .
  • the vehicle 1 has a vehicle speed sensor 6 for detecting a vehicle speed and the detected vehicle speed is inputted to the traveling control unit 3 and the vehicle surroundings monitoring apparatus 5 , respectively. Further, the vehicle 1 has a steering angle sensor 7 for detecting a steering angle and a yaw rate sensor 8 for detecting a yaw rate and the detected steering angle and yaw rate signals are inputted to the vehicle surroundings monitoring apparatus 5 . Further, a signal from a turn signal switch 9 is inputted to the vehicle surroundings monitoring apparatus 5 . These sensors 6 , 7 , 8 and the switch 9 act as own vehicle traveling conditions detecting means.
  • the vehicle surroundings monitoring apparatus 5 inputs respective signals indicative of picture images from the stereoscopic camera 4 , vehicle speeds, steering angle, yaw rate and turn signal and detects frontal information about solid objects , side walls and lane markers in front of the vehicle 1 based on the picture images inputted from the stereoscopic camera 4 . Then, the apparatus estimates several traveling paths of the own vehicle 1 from the frontal information and traveling conditions of the own vehicle 1 according to the flowchart which will be described hereinafter and estimates a final traveling path of the own vehicle 1 from those traveling paths. Further, the apparatus establishes a traveling region A corresponding to a detected solid object based on the final traveling path.
  • the apparatus establishes a traveling region B corresponding to the solid object based on at least either of the traveling region A and the traveling road information and judges whether the solid object is a preceding vehicle, a tentative preceding vehicle or others according to the state of existence of the solid object in the traveling regions A and B. As a result of the judgment, a preceding vehicle in front of the own vehicle 1 is extracted and the result is outputted to the traveling control unit 3 .
  • a new own traveling path C is calculated from the own traveling path A (first own traveling path) obtained based on lane markers and side walls and the own traveling path B (second own traveling path) obtained based on yaw rates of the own vehicle. Then, the possibility of evacuation of the preceding vehicle is judged from the relationship between the own traveling path C, the preceding vehicle and the solid object in the vicinity of the preceding vehicle.
  • the vehicle surroundings monitoring apparatus 5 comprises forward information detecting means, preceding vehicle recognizing means, own traveling path estimating means, first evacuation possibility judging means and second evacuation possibility judging means.
  • the solid object data are classified into three kinds of objects, a backward moving object moving toward the own vehicle 1 a still object in standstill and a forward moving object moving in the same direction as the own vehicle 1 based on the relationship between the relative variation of the distance from the own vehicle and the vehicle speed of the own vehicle 1 and the respective solid object data are outputted.
  • the traveling control unit 3 is equipped with a function of a constant speed traveling control for maintaining the vehicle speed at a value inputted by the vehicle driver and a function of a follow-up traveling control for following up the preceding vehicle in a condition to keep the intervehicle distance between the own vehicle 1 and the preceding vehicle constant .
  • the traveling control unit 3 is connected with a constant speed traveling switch 10 constituted by a plurality of switches operated by a constant speed traveling selector lever provided on the side surface of a steering column, the vehicle surroundings monitoring apparatus 5 , the vehicle speed sensor 6 and the like.
  • the constant speed traveling switch 10 is constituted by a speed setting switch for setting a target vehicle speed at the constant speed traveling mode, a coast switch for changing the target vehicle speed in a descending direction and a resume switch for changing the target vehicle speed in an ascending direction. Further, a main switch (not shown) for turning the traveling control on or off is disposed in the vicinity of the constant speed traveling selector lever.
  • a signal indicative of the desired vehicle speed inputs from the constant speed traveling switch 10 to the traveling control unit 3 and a throttle valve 12 driven by a throttle actuator 11 makes a feed-back control so as to converge the vehicle speed detected by the vehicle speed sensor 6 to the established vehicle speed.
  • the own vehicle 1 can travel at a constant speed automatically.
  • the traveling control unit 3 when the traveling control unit 3 makes a constant traveling control, supposing a case where the vehicle surroundings monitoring apparatus 5 recognizes a preceding vehicle, which is traveling at a lower speed than the established vehicle speed, the traveling control unit 3 automatically changes over to a follow-up traveling control mode in which the own vehicle travels in a condition retaining at a constant intervehicle distance.
  • a target value of an appropriate intervehicle distance between the own vehicle 1 and the preceding vehicle is established based on the intervehicle distance obtained from the vehicle surroundings monitoring apparatus 5 , the vehicle speed of the own vehicle 1 detected by the vehicle speed sensor 6 and the vehicle speed of the preceding vehicle obtained from the intervehicle distance and the vehicle speed of the own vehicle 1 . Further, the traveling control unit 3 outputs a drive signal to the throttle actuator 11 and makes a feed-back control of the opening angle of the throttle valve 12 so that the intervehicle distance agrees with the target value and controls the own vehicle 1 in a condition following up the preceding vehicle with the intervehicle distance retained.
  • the coordinate system of the three-dimensional real space is transferred to a coordinate system fixed to the own vehicle. That is , the coordinate system is composed of X coordinate extending in a widthwise direction of the own vehicle, Y coordinate extending in a vertical direction of the own vehicle, Z coordinate extending in a lengthwise direction of the own vehicle and an origin of the coordinate placed on the road surface directly underneath the central point of two CCD cameras.
  • the positive sides of X, Y and Z coordinates are established in a right direction, in an upward direction and in a forward direction, respectively.
  • the routine shown in FIG. 2 is energized every 50 milliseconds.
  • a step (hereinafter abbreviated as S) 101 solid object data, side wall data including guardrails, curbs provided along the road and lane marker data are recognized based on images taken by the stereoscopic camera 4 . Further, with respect to the solid object data, they are classified into three kinds of objects, backward moving objects, still objects and forward moving objects as described above.
  • the program goes to S 102 where the traveling path of the own vehicle is estimated according to a flowchart which will be described hereinafter shown in FIG. 3 .
  • the presently obtained own traveling path Xpr(n)[i] is stored as a previous own traveling path Xpr(n ⁇ 1)[ 1 ].
  • [I] denotes node numbers (segment numbers) attached to the own traveling path extending forward from the own vehicle 1 .
  • the traveling path of the own vehicle is formed in parallel with the lane markers in consideration of the width of the own vehicle 1 and the position of the own vehicle 1 in the present lane.
  • Method B Estimation of Traveling Path Based on Side Wall Data
  • the traveling path of the own vehicle is formed in parallel with the side walls in consideration of the width of the own vehicle 1 and the position of the own vehicle 1 in the present lane.
  • the own traveling path is estimated based on the past traveling trace extracted from the solid object data of the preceding vehicle.
  • the own traveling path is estimated based on the traveling conditions such as yaw rate ⁇ , vehicle speed V and steering wheel rotation angle ⁇ H of the own vehicle 1 .
  • own traveling path B (Xprb[i]) is corrected as follows by the state of the steering wheel rotation angle ⁇ H, that is, by respective states, during traveling straightforwardly, during turning a curve and during returning the steering wheel to straight.
  • the correction coefficient ⁇ is established to a value ( ⁇ 0) from 0 to 1.0.
  • the correction coefficient ⁇ is established to a small value so as to reduce the curvature of the traveling path.
  • the correction coefficient ⁇ is established to 1.0 so as to employ the curvature derived from the yaw rate y as it is.
  • ⁇ and ⁇ are values varying according to the result of recognition of circumstances such as road widths.
  • Kpo (Z coordinate of preceding vehicle ⁇ 10.24)/4.096
  • the signal is the same as a signal indicating that there is a possibility of evacuation of the preceding vehicle.
  • the aforesaid judging counter TIME is for expressing the possibility of evacuation of the preceding vehicle numerically.
  • the program goes to S 308 in which the judgment counter TIME is initialized according to the position of the preceding vehicle as follows (first evacuation possibility judging means):
  • segment kpo of Z coordinate of the preceding vehicle is smaller than 80 meters and larger than 50 meters:
  • the program goes to S 309 wherein the judging counter TIME is established by the solid object other than the preceding vehicle (second evacuation possibility judging means).
  • the judging counter TIME initialized by S 308 is additionally initialized as follows:
  • the program goes to S 310 in which it is judged whether or not TIME is larger than a threshold value (for example 100 ) . If TIME is smaller than 100 , the program goes to S 307 where after a signal indicative of no possibility of evacuation of the preceding vehicle is outputted, the program leaves the routine. If TIME is larger than 100 , the program goes to S 311 where a signal indicative of the possibility of evacuation of the preceding vehicle is outputted and leaves the routine.
  • a threshold value for example 100
  • the introduction of this evacuation judgment process enables an accurate judgment of the possibility of evacuation of the preceding vehicle as a monitoring object based on information of the position of the preceding vehicle, the traveling path of the own vehicle and the objects in the neighborhood of the preceding vehicle, not only the preceding vehicle can be continued to be caught as a monitoring object, but also every behavior of the preceding vehicle including the change of the preceding vehicle from one to another can be detected with quick responsibility and accuracy.
  • the traveling control can be executed stably in a manner similar to driver's driving senses.
  • the program goes to S 208 where it is judged from the result of the judgment at S 207 whether or not there is a possibility of evacuation of the preceding vehicle.
  • the own traveling path D is expressed only by X coordinate xpo at the segment kpo of Z coordinate of the preceding vehicle.
  • is a variable varying according to the recognition of circumstances. When the recognition of circumstances is inferior, ⁇ is established to a large value. That is, in the process of S 211 , as shown in FIG. 5 c , taking the case where the preceding vehicle changes the lane into consideration, only the neighborhood of the preceding vehicle is corrected with respect to the preceding vehicle so that the ACC system 2 operates with accuracy.
  • the program goes to S 103 where the preceding vehicle is extracted, leaving the routine.
  • the extraction of the preceding vehicle is performed as follows:
  • the traveling region A is established based on the traveling path of the own vehicle according to the solid object . Further, the traveling region B is established based on at least either of the traveling region A and road information (road profile estimated from lane markers and side walls). Then, if the detected solid object exists in the traveling region A and if the duration for which the solid object stays in either of the traveling regions A and B, is larger than a specified time and if the solid object is a forward moving object and if the object is nearest one to the own traveling vehicle 1 , the solid object is regarded and extracted as a preceding vehicle.
  • the own traveling path can be estimated accurately, stably and securely.
  • the ON-OFF signal of the turn signal switch 9 and the value of the steering wheel rotation angle enable to obtain the final own traveling path in a natural manner reflecting driver's intention.

Abstract

A vehicle surroundings monitoring apparatus, comprises frontal information detecting means for detecting solid object information in front of an own vehicle, preceding vehicle recognizing means for recognizing a preceding vehicle based on the solid object information, traveling path estimating means for estimating a traveling path of the own vehicle, first evacuation possibility judging means for judging a first possibility of relative evacuation between the preceding vehicle and the own vehicle according to positions of the preceding vehicle and the own vehicle, second evacuation possibility judging means for judging a second possibility of relative evacuation between the preceding vehicle and the own vehicle according to information of solid objects other than the preceding vehicle, and preceding vehicle evacuation possibility judging means for judging a final possibility of relative evacuation between the preceding vehicle and the own vehicle based on the first possibility and the second possibility.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the invention
  • The present invention relates to a vehicle surroundings monitoring apparatus for recognizing traveling circumstances in front of an own vehicle by stereoscopic cameras, monocular cameras, millimeter wave radars, and the like and for making an accurate judgment of evacuation of a preceding vehicle from the lane and, more particularly to a traveling control system incorporating such a vehicle surroundings monitoring apparatus.
  • 2. Discussion of related arts
  • In recent years, such a traveling control system as detecting traveling circumstances in front of an own vehicle by a camera and the like mounted on a vehicle, estimating traveling paths of the own vehicle from the traveling circumstances data, detecting a preceding vehicle traveling ahead of the own vehicle and making a follow-up control of the preceding vehicle or an intervehicle distance control between the own vehicle and the preceding vehicle, has been put into practical use.
  • For example, Japanese Patent Application Laid-open No. Toku-Kai-Hei 9-91598 discloses a traveling control system in which a traveling path of an own vehicle is estimated from traveling conditions such as yaw rate and other data and a nearest obstacle on the traveling path is detected as a preceding vehicle to be monitored. Further, in the traveling control system, when the preceding vehicle goes out of the traveling path of the own vehicle, the monitoring of the preceding vehicle is released.
  • In the traveling control system, the technology of recognizing a preceding vehicle is very important. The preceding vehicle sometimes travels in such a manner as trying to avoid an obstacle, sometimes changes the lane, and sometimes goes out of the lane and other vehicle enters the lane in place of the preceding vehicle. If the traveling control system fails to correctly catch the behavior of the preceding vehicle, the traveling control becomes awkward and rather inconvenient for a vehicle driver.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a vehicle surroundings monitoring apparatus capable of accurately continuing to monitor a preceding vehicle and catching behaviors of the preceding vehicle such as evacuation of a preceding vehicle from a traveling path of an own vehicle, intrusion of a different vehicle in place of the preceding vehicle and the like with quick response and to provide a traveling control system incorporating such a vehicle surroundings monitoring apparatus.
  • In order to attain the object , a vehicle surroundings monitoring apparatus, comprises frontal information detecting means for detecting solid object information in front of an own vehicle, preceding vehicle recognizing means for recognizing a preceding vehicle based on the solid object information, traveling path estimating means for estimating a traveling path of the own vehicle, first evacuation possibility judging means for judging a first possibility of relative evacuation between the preceding vehicle and the own vehicle according to positions of the preceding vehicle and the own vehicle, second evacuation possibility judging means for judging a second possibility of relative evacuation between the preceding vehicle and the own vehicle according to information of solid objects other than the preceding vehicle, and preceding vehicle evacuation possibility judging means for judging a final possibility of relative evacuation between the preceding vehicle and the own vehicle based on the first possibility and the second possibility.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram showing a traveling control system incorporating a vehicle surroundings monitoring apparatus according to the present invention;
  • FIG. 2 is a flowchart showing a routine for monitoring surroundings of a vehicle;
  • FIG. 3 is a flowchart showing a routine for estimating a traveling path of an own vehicle;
  • FIG. 4 is a flowchart showing a routine for judging the possibility of evacuation of a preceding vehicle using a traveling path C of an own vehicle;
  • FIG. 5 a is an explanatory diagram showing a process of producing a new traveling path C of an own vehicle from the traveling path A and the traveling path B;
  • FIG. 5 b is an explanatory diagram showing a process of producing the new traveling path C when the traveling path A is erroneously recognized;
  • FIG. 5 c is an explanatory diagram showing a process of calculating a new traveling path E from the traveling path C and the traveling path D (traveling path of a preceding vehicle) ; and
  • FIG. 6 is an explanatory diagram showing a process for establishing a judging counter.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to FIG. 1, reference numeral 1 denotes a vehicle (own vehicle) on which an intervehicle distance automatically adjusting system (Adaptive Cruise Control: ACC) 2 is mounted. The ACC system 2 is constituted by a traveling control unit 3, a stereoscopic camera 4 and a vehicle surroundings monitoring apparatus 5. When the ACC system is set to a constant speed control mode, the vehicle travels at a speed established by a vehicle driver and when the system is set to a follow-up traveling control mode, the vehicle travels at a speed targeted to the speed of a preceding vehicle with a constant intervehicle distance to the preceding vehicle maintained.
  • The stereoscopic camera 4 constituting vehicle forward information detecting means is composed of a pair (left and right) of CCD cameras using a solid-state image component such as Charge Coupled Device and the left and right cameras are transversely mounted on a front ceiling of a passenger compartment at a specified interval of distance, respectively. The respective cameras take picture images of an outside object from different view points and input the picture images to the vehicle surroundings monitoring apparatus 5.
  • Further, the vehicle 1 has a vehicle speed sensor 6 for detecting a vehicle speed and the detected vehicle speed is inputted to the traveling control unit 3 and the vehicle surroundings monitoring apparatus 5, respectively. Further, the vehicle 1 has a steering angle sensor 7 for detecting a steering angle and a yaw rate sensor 8 for detecting a yaw rate and the detected steering angle and yaw rate signals are inputted to the vehicle surroundings monitoring apparatus 5. Further, a signal from a turn signal switch 9 is inputted to the vehicle surroundings monitoring apparatus 5. These sensors 6, 7, 8 and the switch 9 act as own vehicle traveling conditions detecting means.
  • The vehicle surroundings monitoring apparatus 5 inputs respective signals indicative of picture images from the stereoscopic camera 4, vehicle speeds, steering angle, yaw rate and turn signal and detects frontal information about solid objects , side walls and lane markers in front of the vehicle 1 based on the picture images inputted from the stereoscopic camera 4. Then, the apparatus estimates several traveling paths of the own vehicle 1 from the frontal information and traveling conditions of the own vehicle 1 according to the flowchart which will be described hereinafter and estimates a final traveling path of the own vehicle 1 from those traveling paths. Further, the apparatus establishes a traveling region A corresponding to a detected solid object based on the final traveling path. Further, the apparatus establishes a traveling region B corresponding to the solid object based on at least either of the traveling region A and the traveling road information and judges whether the solid object is a preceding vehicle, a tentative preceding vehicle or others according to the state of existence of the solid object in the traveling regions A and B. As a result of the judgment, a preceding vehicle in front of the own vehicle 1 is extracted and the result is outputted to the traveling control unit 3.
  • Describing the process of estimating the traveling path of the own vehicle (hereinafter referred to as “own traveling path”) in brief, a new own traveling path C is calculated from the own traveling path A (first own traveling path) obtained based on lane markers and side walls and the own traveling path B (second own traveling path) obtained based on yaw rates of the own vehicle. Then, the possibility of evacuation of the preceding vehicle is judged from the relationship between the own traveling path C, the preceding vehicle and the solid object in the vicinity of the preceding vehicle. In case where there is no possibility of evacuation of the preceding vehicle, the turn signal switch is turned off, and the absolute value of the steering wheel rotation angle is smaller than a specified value, a new own traveling path E is calculated from the own traveling path C and the locus of the preceding vehicle and a present own traveling path is calculated from the own traveling path E and the previous own traveling path. On the other hand, in case where the conditions described above are not satisfied, a present own traveling path is calculated from the own traveling path C and the previous own traveling path. The vehicle surroundings monitoring apparatus 5 comprises forward information detecting means, preceding vehicle recognizing means, own traveling path estimating means, first evacuation possibility judging means and second evacuation possibility judging means.
  • Describing the processing of images from the stereoscopic camera 4 in the vehicle surroundings monitoring apparatus 5, with respect to a pair of stereoscopic images taken by the stereoscopic CCD camera 4, distance information over the entire image is obtained from the deviation amount between corresponding positions according to the principle of trianguration and a distance image representing three-dimensional distance distribution is formed based on the distance information. Then, lane marker data, side wall data such as guardrails, curbs and side walls arranged along the road and solid object data such as vehicles and the like, are extracted by means of the known grouping process and the like by comparing the distance image with the three-dimensional road profile data, side wall data, solid object data and the like stored beforehand. Thus extracted lane marker data, side wall data and solid object data are denoted by different numbers respectively. Further, the solid object data are classified into three kinds of objects, a backward moving object moving toward the own vehicle 1 a still object in standstill and a forward moving object moving in the same direction as the own vehicle 1 based on the relationship between the relative variation of the distance from the own vehicle and the vehicle speed of the own vehicle 1 and the respective solid object data are outputted.
  • The traveling control unit 3 is equipped with a function of a constant speed traveling control for maintaining the vehicle speed at a value inputted by the vehicle driver and a function of a follow-up traveling control for following up the preceding vehicle in a condition to keep the intervehicle distance between the own vehicle 1 and the preceding vehicle constant . The traveling control unit 3 is connected with a constant speed traveling switch 10 constituted by a plurality of switches operated by a constant speed traveling selector lever provided on the side surface of a steering column, the vehicle surroundings monitoring apparatus 5, the vehicle speed sensor 6 and the like.
  • The constant speed traveling switch 10 is constituted by a speed setting switch for setting a target vehicle speed at the constant speed traveling mode, a coast switch for changing the target vehicle speed in a descending direction and a resume switch for changing the target vehicle speed in an ascending direction. Further, a main switch (not shown) for turning the traveling control on or off is disposed in the vicinity of the constant speed traveling selector lever.
  • When the driver turns a main switch (not shown) on and sets a desired vehicle speed by operating the constant speed traveling selector lever, a signal indicative of the desired vehicle speed inputs from the constant speed traveling switch 10 to the traveling control unit 3 and a throttle valve 12 driven by a throttle actuator 11 makes a feed-back control so as to converge the vehicle speed detected by the vehicle speed sensor 6 to the established vehicle speed. As a result, the own vehicle 1 can travel at a constant speed automatically.
  • Further, when the traveling control unit 3 makes a constant traveling control, supposing a case where the vehicle surroundings monitoring apparatus 5 recognizes a preceding vehicle, which is traveling at a lower speed than the established vehicle speed, the traveling control unit 3 automatically changes over to a follow-up traveling control mode in which the own vehicle travels in a condition retaining at a constant intervehicle distance.
  • When the constant speed traveling control mode is transferred to the follow-up traveling control mode, a target value of an appropriate intervehicle distance between the own vehicle 1 and the preceding vehicle is established based on the intervehicle distance obtained from the vehicle surroundings monitoring apparatus 5, the vehicle speed of the own vehicle 1 detected by the vehicle speed sensor 6 and the vehicle speed of the preceding vehicle obtained from the intervehicle distance and the vehicle speed of the own vehicle 1 . Further, the traveling control unit 3 outputs a drive signal to the throttle actuator 11 and makes a feed-back control of the opening angle of the throttle valve 12 so that the intervehicle distance agrees with the target value and controls the own vehicle 1 in a condition following up the preceding vehicle with the intervehicle distance retained.
  • Next, a vehicle surroundings monitoring program of the vehicle surroundings monitoring apparatus 5 will be described by referring to a flowchart shown in FIG. 2.
  • In this embodiment, the coordinate system of the three-dimensional real space is transferred to a coordinate system fixed to the own vehicle. That is , the coordinate system is composed of X coordinate extending in a widthwise direction of the own vehicle, Y coordinate extending in a vertical direction of the own vehicle, Z coordinate extending in a lengthwise direction of the own vehicle and an origin of the coordinate placed on the road surface directly underneath the central point of two CCD cameras. The positive sides of X, Y and Z coordinates are established in a right direction, in an upward direction and in a forward direction, respectively.
  • The routine shown in FIG. 2 is energized every 50 milliseconds. First at a step (hereinafter abbreviated as S) 101, solid object data, side wall data including guardrails, curbs provided along the road and lane marker data are recognized based on images taken by the stereoscopic camera 4. Further, with respect to the solid object data, they are classified into three kinds of objects, backward moving objects, still objects and forward moving objects as described above.
  • Next, the program goes to S102 where the traveling path of the own vehicle is estimated according to a flowchart which will be described hereinafter shown in FIG. 3. First, at S201, the presently obtained own traveling path Xpr(n)[i] is stored as a previous own traveling path Xpr(n−1)[1]. [I] denotes node numbers (segment numbers) attached to the own traveling path extending forward from the own vehicle 1. In this embodiment, the own traveling path has 24 segments in a forward direction and is composed of a plurality of straight lines connected with each other. Accordingly, Z coordinate at the segment i is established as follows. Z coordinate at segment i=10. 24 meters
      • +i·4.096 meters (I=0 to 23)
  • Then, the program goes to S202 where an own traveling A (Xpra[i], i=0 to 23) is calculated according to the following method A or B.
  • Method A: Estimation of Traveling Path Based on Lane Markers
  • In case where both or either of left and right lane markers data are obtained and the profile of the lane on which the own vehicle 1 travels can be estimated from these lane markers data, the traveling path of the own vehicle is formed in parallel with the lane markers in consideration of the width of the own vehicle 1 and the position of the own vehicle 1 in the present lane.
  • Method B: Estimation of Traveling Path Based on Side Wall Data
  • In case where both or either of left and right side walls data are obtained and the profile of the lane on which the own vehicle 1 travels can be estimated from these side walls data, the traveling path of the own vehicle is formed in parallel with the side walls in consideration of the width of the own vehicle 1 and the position of the own vehicle 1 in the present lane.
  • In case where the own traveling path A can not be established according to any of the methods A, B, it is calculated according to the following methods C or D.
  • Method C: Estimation Of Traveling Path Based on a Trace of the Preceding Vehicle
  • The own traveling path is estimated based on the past traveling trace extracted from the solid object data of the preceding vehicle.
  • Method D: Estimation of Path Based on Trace of the Own Vehicle
  • The own traveling path is estimated based on the traveling conditions such as yaw rate γ, vehicle speed V and steering wheel rotation angle θ H of the own vehicle 1.
  • After that, the program goes to S203 in which an own traveling path B (Xprb[I], I=0 to 23) is calculated based on the yaw rate γ according to the following processes.
  • Xprb[i]=γ·Z2+10240 (millimeters)
  • Z=4096·i+10240 (millimeters)
  • Thus obtained own traveling path B (Xprb[i]) is corrected as follows by the state of the steering wheel rotation angle θ H, that is, by respective states, during traveling straightforwardly, during turning a curve and during returning the steering wheel to straight.
  • Xprb[i]=Xprb[i]·α
  • where α is a correction coefficient.
  • The correction coefficient α is established to a value (≠0) from 0 to 1.0. When the vehicle travels straight or when the vehicle transfers from curve to straight, the correction coefficient α is established to a small value so as to reduce the curvature of the traveling path. When the vehicle turns a curve, the correction coefficient α is established to 1.0 so as to employ the curvature derived from the yaw rate y as it is.
  • Then, the program goes to S204 where an own traveling path C (Xprc[i], i=0 to 23) is calculated based on the own traveling path A (Xpra[i], i=0 to 23) and the own traveling path B (Xprb[i], i=0 to 23) as shown in FIG. 5 a.
  • Xprc[i]=(Xpra[i]·λ+Xprb[i]·μ/(λ+μ)
  • where λ and μ are values varying according to the result of recognition of circumstances such as road widths.
  • Thus, in case where the accuracy of the own traveling path A (Xpra , i=0 to 23) is exacerbated by erroneous recognition of lane markers or side walls as shown in FIG. 5 b, for example, the recognition accuracy of the own traveling path can be prevented from going down by primarily using the own traveling path B (Xprb[i]i=0 to 23) by means of establishing μ to a larger value than λ.
  • Then, the program goes to S205 in which it is judged whether or not a preceding vehicle is detected and if detected, the program goes to S206 where the segment kpo on Z coordinate of the preceding vehicle is established as follows:
  • Kpo=(Z coordinate of preceding vehicle −10.24)/4.096
  • Then, the program goes to S207 in which the possibility of evacuation of the preceding vehicle is judged using the own traveling path C (Xprc[i], i=0 to 23) calculated at S204, according to a flowchart shown in FIG. 4.
  • In this routine, first, at S301, it is judged whether or not a preceding vehicle exists. If there is no preceding, the program goes to S302 wherein a judging counter TIME is cleared (TIME=0) and then goes to S303 wherein it is judged that there is no preceding vehicle and such a signal is outputted, leaving the routine. In this embodiment, the signal is the same as a signal indicating that there is a possibility of evacuation of the preceding vehicle. Further, the aforesaid judging counter TIME is for expressing the possibility of evacuation of the preceding vehicle numerically.
  • On the other hand, in case where it is judged at S301 that there is a preceding vehicle, the program goes to S304 where the absolute value CAL of the difference between X coordinate kpx of the preceding vehicle and X coordinate of the own traveling path C (Xprc[i], i=0 to 23) on Z coordinate of the preceding vehicle, is calculated (CAL=|kpx−xpx|).
  • The processes from S305 to S311 will be described by reference to FIG. 6.
  • First, at S305, it is judged whether or not the segment kpo of Z coordinate of the preceding vehicle is larger than 17.that is, the division is more than 80 meters ahead. If kpo is larger than 17, the program goes to S306 in which the judging counter TIME is cleared (TIME=0) and then goes to S307 a signal indicative of no possibility of evacuation of the preceding vehicle is outputted, leaving the routine.
  • Further, in case where it is judged at S305 that the segment kpo of Z coordinate of the preceding vehicle is smaller than 80 meters, the program goes to S308 in which the judgment counter TIME is initialized according to the position of the preceding vehicle as follows (first evacuation possibility judging means):
  • A. In case where CAL is smaller than 500 millimeters, that is, the preceding vehicle is in the vicinity of the traveling path of the own vehicle (region 1 of FIG. 6),
  • TIME=0
  • B. In case where CAL is larger than 500 millimeters, that is, the preceding vehicle is regarded as traveling apart from the traveling path of the own vehicle
  • (1) In case where the segment kpo of Z coordinate of the preceding vehicle is smaller than 80 meters and larger than 50 meters:
  • In case of 2000≦CAL≦3000 millimeters (region II of FIG. 6)
  • TIME=TIME+5
  • In case of other than above (particularly, outside of the region II, note that the preceding vehicle travels around curves)
  • TIME=TIME−5
  • (2) In case where the segment kpo of Z coordinate of the preceding vehicle is smaller than 50 meters and larger than 30 meters:
  • In case of 1500≦CAL≦2500 millimeters (region III of FIG. 6)
  • TIME=TIME+10
  • In case of other than above (particularly, outside of the region III, note that the preceding vehicle travels around curves)
  • TIME=TIME−10
  • (3) In case where the segment of kpo of Z coordinate of the preceding vehicle is smaller than 30 meters:
  • In case of CAL≧1000 millimeters (region IV of FIG. 6)
  • TIME=TIME+30
  • In case other than above
  • TIME=TIME−10
  • Then, the program goes to S309 wherein the judging counter TIME is established by the solid object other than the preceding vehicle (second evacuation possibility judging means). For example, in case where a forward traveling solid object enters a traveling region kpo the judging counter TIME initialized by S308 is additionally initialized as follows:
  • TIME=TIME+10
  • Then, the program goes to S310 in which it is judged whether or not TIME is larger than a threshold value (for example 100) . If TIME is smaller than 100, the program goes to S307 where after a signal indicative of no possibility of evacuation of the preceding vehicle is outputted, the program leaves the routine. If TIME is larger than 100, the program goes to S311 where a signal indicative of the possibility of evacuation of the preceding vehicle is outputted and leaves the routine. Thus, since the judgment of evacuation of the preceding vehicle is made by the own traveling path C (Xprc[i], i=0 to 23) and the position where the preceding vehicle exists, even when no lane markers are seen, an accurate judgment of evacuation of the preceding vehicle is available. Further, the accurate judgment of evacuation of the preceding vehicle can prevent the ACC system from following up the preceding vehicle hazardously.
  • Since the introduction of this evacuation judgment process enables an accurate judgment of the possibility of evacuation of the preceding vehicle as a monitoring object based on information of the position of the preceding vehicle, the traveling path of the own vehicle and the objects in the neighborhood of the preceding vehicle, not only the preceding vehicle can be continued to be caught as a monitoring object, but also every behavior of the preceding vehicle including the change of the preceding vehicle from one to another can be detected with quick responsibility and accuracy. As a result, the traveling control can be executed stably in a manner similar to driver's driving senses.
  • Thus, after the judging processes of the possibility of evacuation of the preceding vehicle are executed using the own traveling path C (Xprc[i], i=0 to 23) at S207, the program goes to S208 where it is judged from the result of the judgment at S207 whether or not there is a possibility of evacuation of the preceding vehicle.
  • If it is judged that there is no possibility of evacuation of the preceding vehicle, the program goes to S209 wherein it is judged whether or not the turn signal switch 9 of the own vehicle is turned on. If the turn signal switch 9 is turned off, the program goes to S210 in which it is judged whether or not the absolute value of the steering wheel rotation angle is larger than a specified value, for example 90 degrees. If it is smaller than the specified value, the program goes to S211 where a new own traveling path E (Xpre[i], i=0 to 23) is based on the own traveling path C (Xprc[i], i=0 to 23) and the own traveling path D (Xpre[i], i=0 to 23) according to the following formula:
  • Xpre[i]=Xprc[i]
  • where i=0 to (kpo−2), (kpo+1) to 23
  • Xpre[i]=(Xprc[I]+xpo·κ)/ (1.0+κ)
  • where i=kpo−1, kpo
    In this embodiment, the own traveling path D is expressed only by X coordinate xpo at the segment kpo of Z coordinate of the preceding vehicle. Further, κ is a variable varying according to the recognition of circumstances. When the recognition of circumstances is inferior, κ is established to a large value. That is, in the process of S211, as shown in FIG. 5 c, taking the case where the preceding vehicle changes the lane into consideration, only the neighborhood of the preceding vehicle is corrected with respect to the preceding vehicle so that the ACC system 2 operates with accuracy.
  • Then, the program goes to S212 wherein the present own path (Xprc[i], i=0 to 23) is calculated from the own traveling path E (Xpre[i], i=0 to 23) newly calculated presently and the own traveling path (Xpr(n−1)[i], i=0 to 23) calculated in the previous cycle and stored at S201 as follows:
  • Xpr(n)[1]=Xpr(n−1)[i]φ−Xpre[i]−(1.0−φ
  • where φ is a value established according to traveling conditions of the own vehicle. For example, when the vehicle transfers from curved road to straight road, φ is established to a small value so as to impose more weight on the own traveling path E (Xpre[i], i=0 to 23) calculated newly, presently and otherwise φ is established to a large value so as to impose more weight on the own traveling path (Xpr(n−1)[i], i=0 to 23) calculated in the previous cycle. As a result, the response in accordance with the traveling conditions can be obtained.
  • On the other hand, in case where it is judged at S205 that there is no preceding vehicle, or in case where it is judged at S208 that there is a possibility of evacuation, the program goes to S213. Similarly, in case where it is judged at S209 that the turn signal switch 9 is turned on, or in case where it is judged at S210 that the absolute value of the steering wheel rotation angle is larger than a specified value, the program goes to S213.
  • At S213, the present own traveling path (Xpr(n)[i], i=0 to 23) is calculated from the own traveling path C (Xprc[i], i=0 to 23) calculated at S204 and the previous own traveling path (Xpr(n−1)[1], i=0 to 23) stored at S201 in the following manner:
  • Xpr(n)[i]=Xpr(n−1)[i]φ−Xprc[i]·(1.0−φ)
  • After the own traveling path is estimated, the program goes to S103 where the preceding vehicle is extracted, leaving the routine. The extraction of the preceding vehicle is performed as follows:
  • First, the traveling region A is established based on the traveling path of the own vehicle according to the solid object . Further, the traveling region B is established based on at least either of the traveling region A and road information (road profile estimated from lane markers and side walls). Then, if the detected solid object exists in the traveling region A and if the duration for which the solid object stays in either of the traveling regions A and B, is larger than a specified time and if the solid object is a forward moving object and if the object is nearest one to the own traveling vehicle 1, the solid object is regarded and extracted as a preceding vehicle.
  • According to the embodiment of the present invention, since the final own traveling path is calculated based upon the own traveling path A (Xpra[i], i=0 to 23) obtained from lane marker and side wall data and the own traveling path B (Xprb[i], i=0 to 23) derived from the yaw rate of the own vehicle 1 and the own traveling path D (Xprd[i], i=0 to 23) calculated based on the trace of the preceding vehicle, the own traveling path can be estimated accurately, stably and securely.
  • Further, when the own traveling path C (Xprc[i], i=0 to 23) is calculated from the own traveling path A (Xpra[i], i=0 to 23) and the own traveling path B (Xprb[i], i=0 to 23) and the own traveling path E (Xpre[i], i=0 to 23) is newly calculated using the own traveling path C (Xprc[i], i=0 to 23) and the own traveling path D (Xprd[i], i=0 to 23) produced based on the traveling trace of the preceding vehicle, since an accurate judgment process of evacuation is executed using the own traveling path C (Xprc[i], i=0 to 23) and the own traveling path E (Xpre[i], i=0 to 23) is synthesized according to the result of the judgment, unnecessary calculations according to every behavior of the preceding vehicle can be effectively prevented from being made and as a result an accurate calculation of the own traveling path can be performed.
  • Further, the ON-OFF signal of the turn signal switch 9 and the value of the steering wheel rotation angle enable to obtain the final own traveling path in a natural manner reflecting driver's intention.
  • Furthermore, when the own traveling path E (Xpre[i], i=0 to 23) is calculated using the own traveling path C (Xprc[i], i=0 to 23) and the own traveling path D (Xprd[i], i=0 to 23) derived from the traveling trace of the preceding vehicle, since the possibility of evacuation is judged not only according to the behavior of the preceding vehicle but also according to that of the solid object other than the preceding vehicle in the neighborhood of the preceding vehicle, the judgment of evacuation can be made more correctly.
  • The entire contents of Japanese Patent Application No. Tokugan 2002-271906 filed Sep. 18, 2002, is incorporated herein by reference.
  • While the present invention has been disclosed in terms of the preferred embodiment in order to facilitate better understanding of the invention, it should be appreciated that the invention can be embodied in various ways without departing from the principle of the invention. Therefore, the invention should be understood to include all possible embodiments which can be embodied without departing from the principle of the invention set out in the appended claims.

Claims (7)

1-10. (canceled)
11. A vehicle surroundings monitoring apparatus having a vehicle surroundings monitoring program configured to:
detect solid object information ahead of an own vehicle based on signals from a camera of the own vehicle;
estimate a travel path of the own vehicle based on signals from at least one of the camera, a yaw rate sensor, a vehicle speed sensor and a steering angle sensor of the own vehicle;
recognize a preceding vehicle traveling in front of the travel path of the own vehicle based on the solid object information;
establish a plurality of regions around the own travel path in response to both lengthwise and a widthwise distance from the own vehicle;
provide parameters corresponding to the respective regions;
accumulate said parameters provided to the regions where the preceding vehicle exists in a case where the preceding vehicle exists in one of the regions;
judge whether the number of accumulated parameters is larger than a threshold value; and
output a signal indicating that the preceding vehicle is not traveling in front of the travel path of the own vehicle in a case where the number of accumulated parameters is larger than the threshold value.
12. The vehicle surroundings monitoring apparatus according to. claim 11, wherein the number of accumulated parameters is cleared when the lengthwise distance of the preceding vehicle is farther than a preestablished distance.
13. The vehicle surroundings monitoring apparatus according to claim 11, wherein the parameter is set to increase when the region is in farther than an area of a predetermined width and length around the travel path of the own vehicle.
14. The vehicle surroundings monitoring apparatus according to claim 13, wherein the parameter is set to increase as the region is near the own vehicle region.
15. A travel control system for controlling the travel of an own vehicle at least based on the output signal from the vehicle surroundings monitoring apparatus described in claim 11.
16. The vehicle surroundings monitoring apparatus according to claim 11, wherein the number of accumulated parameters is adjusted to increase when any forward traveling object other than the preceding vehicle has been judged based on the solid object information.
US12/757,905 2002-09-18 2010-04-09 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus Abandoned US20100256910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/757,905 US20100256910A1 (en) 2002-09-18 2010-04-09 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002271906A JP4176430B2 (en) 2002-09-18 2002-09-18 Outside-of-vehicle monitoring device and travel control device equipped with this out-of-vehicle monitoring device
JP2002-271906 2002-09-18
US10/664,089 US7725261B2 (en) 2002-09-18 2003-09-17 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US12/757,905 US20100256910A1 (en) 2002-09-18 2010-04-09 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/664,089 Division US7725261B2 (en) 2002-09-18 2003-09-17 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus

Publications (1)

Publication Number Publication Date
US20100256910A1 true US20100256910A1 (en) 2010-10-07

Family

ID=32024884

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/664,089 Expired - Lifetime US7725261B2 (en) 2002-09-18 2003-09-17 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US12/757,905 Abandoned US20100256910A1 (en) 2002-09-18 2010-04-09 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/664,089 Expired - Lifetime US7725261B2 (en) 2002-09-18 2003-09-17 Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus

Country Status (3)

Country Link
US (2) US7725261B2 (en)
EP (1) EP1407915B1 (en)
JP (1) JP4176430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224862A1 (en) * 2004-09-17 2011-09-15 Honda Motor Co., Ltd. Vehicular control object determination system and vehicular travel locus estimation system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933962B2 (en) * 2007-06-22 2012-05-16 富士重工業株式会社 Branch entry judgment device
JP4759547B2 (en) * 2007-09-27 2011-08-31 日立オートモティブシステムズ株式会社 Driving support device
JP5125400B2 (en) * 2007-10-19 2013-01-23 トヨタ自動車株式会社 Vehicle travel control device
US8428843B2 (en) * 2008-06-20 2013-04-23 GM Global Technology Operations LLC Method to adaptively control vehicle operation using an autonomic vehicle control system
US8818567B2 (en) 2008-09-11 2014-08-26 Deere & Company High integrity perception for machine localization and safeguarding
US9188980B2 (en) 2008-09-11 2015-11-17 Deere & Company Vehicle with high integrity perception system
US9026315B2 (en) 2010-10-13 2015-05-05 Deere & Company Apparatus for machine coordination which maintains line-of-site contact
US8229618B2 (en) * 2008-09-11 2012-07-24 Deere & Company Leader-follower fully autonomous vehicle with operator on side
US8989972B2 (en) 2008-09-11 2015-03-24 Deere & Company Leader-follower fully-autonomous vehicle with operator on side
US8195342B2 (en) * 2008-09-11 2012-06-05 Deere & Company Distributed knowledge base for vehicular localization and work-site management
US9235214B2 (en) 2008-09-11 2016-01-12 Deere & Company Distributed knowledge base method for vehicular localization and work-site management
US8195358B2 (en) 2008-09-11 2012-06-05 Deere & Company Multi-vehicle high integrity perception
US8224500B2 (en) 2008-09-11 2012-07-17 Deere & Company Distributed knowledge base program for vehicular localization and work-site management
US8478493B2 (en) 2008-09-11 2013-07-02 Deere & Company High integrity perception program
US8392065B2 (en) 2008-09-11 2013-03-05 Deere & Company Leader-follower semi-autonomous vehicle with operator on side
JP5985142B2 (en) * 2010-07-30 2016-09-06 いすゞ自動車株式会社 Coasting control device
US20140092249A1 (en) * 2012-09-28 2014-04-03 Ford Global Technologies, Llc Vehicle perimeter detection system
JP6363517B2 (en) * 2015-01-21 2018-07-25 株式会社デンソー Vehicle travel control device
EP3640107A4 (en) * 2017-06-12 2021-03-10 Hitachi Automotive Systems, Ltd. Vehicle driving assistance device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529139A (en) * 1993-03-03 1996-06-25 Nippondenso Co., Ltd. Vehicle speed control system
US5754099A (en) * 1994-03-25 1998-05-19 Nippondenso Co., Ltd. Obstacle warning system for a vehicle
US5760886A (en) * 1994-07-29 1998-06-02 Miyazaki; Hidenori Scanning-type distance measurement device responsive to selected signals
US6401024B1 (en) * 1999-06-15 2002-06-04 Nissan Motor Co., Ltd. Vehicle follow-up control system
US6775395B2 (en) * 2000-03-27 2004-08-10 Honda Giken Kogyo Kabushiki Kaisha Object recognition system
US6888953B2 (en) * 1998-01-30 2005-05-03 Fuji Jukogyo Kabushiki Kaisha Vehicle surroundings monitoring apparatus
US6985619B1 (en) * 1999-09-22 2006-01-10 Fuji Jukogyo Kabushiki Kaisha Distance correcting apparatus of surroundings monitoring system and vanishing point correcting apparatus thereof
US7612800B2 (en) * 2002-06-27 2009-11-03 Kabushiki Kaisha Toshiba Image processing apparatus and method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830790A1 (en) 1988-09-09 1990-03-15 Freund Eckhard METHOD AND DEVICE FOR AUTOMATIC COLLISION AVOIDANCE FOR AUTOMATICALLY DRIVABLE VEHICLES
JPH05265547A (en) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd On-vehicle outside monitoring device
JP3468428B2 (en) * 1993-03-24 2003-11-17 富士重工業株式会社 Vehicle distance detection device
JP3128176B2 (en) * 1993-05-24 2001-01-29 マツダ株式会社 Vehicle obstacle detection device
US5983161A (en) * 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
JP3400092B2 (en) * 1994-05-17 2003-04-28 マツダ株式会社 Vehicle travel path estimation device
JP3357749B2 (en) 1994-07-12 2002-12-16 本田技研工業株式会社 Vehicle road image processing device
JP3104559B2 (en) * 1995-02-08 2000-10-30 トヨタ自動車株式会社 Automotive radar equipment
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US6370475B1 (en) * 1997-10-22 2002-04-09 Intelligent Technologies International Inc. Accident avoidance system
JP3608267B2 (en) 1995-09-25 2005-01-05 マツダ株式会社 Vehicle obstacle detection device
JPH1031799A (en) 1996-07-15 1998-02-03 Toyota Motor Corp Automatic traveling controller
JP3732292B2 (en) * 1996-11-27 2006-01-05 本田技研工業株式会社 Vehicle group running control system
JP3337197B2 (en) * 1997-04-04 2002-10-21 富士重工業株式会社 Outside monitoring device
JP3381778B2 (en) * 1998-08-05 2003-03-04 三菱自動車工業株式会社 Vehicle running control method
JP3327217B2 (en) * 1998-08-05 2002-09-24 三菱自動車工業株式会社 Vehicle running control method
JP3928277B2 (en) * 1998-11-04 2007-06-13 株式会社デンソー Preceding vehicle selection device, inter-vehicle control device, inter-vehicle alarm device, and recording medium
JP4391624B2 (en) * 1999-06-16 2009-12-24 本田技研工業株式会社 Object recognition device
JP4066573B2 (en) * 1999-09-22 2008-03-26 株式会社デンソー Preceding vehicle selection device, inter-vehicle control device, and recording medium
US6515597B1 (en) * 2000-01-31 2003-02-04 Matsushita Electric Industrial Co. Ltd. Vicinity display for car
JP2002067732A (en) * 2000-08-31 2002-03-08 Denso Corp Vehicle travelling control device
JP4615139B2 (en) * 2001-03-30 2011-01-19 本田技研工業株式会社 Vehicle periphery monitoring device
JP3880837B2 (en) * 2001-11-02 2007-02-14 富士重工業株式会社 Outside monitoring device
JP4037722B2 (en) * 2002-09-18 2008-01-23 富士重工業株式会社 Outside-of-vehicle monitoring device and travel control device equipped with this out-of-vehicle monitoring device
JP3979382B2 (en) * 2003-12-03 2007-09-19 日産自動車株式会社 Lane departure prevention device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529139A (en) * 1993-03-03 1996-06-25 Nippondenso Co., Ltd. Vehicle speed control system
US5754099A (en) * 1994-03-25 1998-05-19 Nippondenso Co., Ltd. Obstacle warning system for a vehicle
US5760886A (en) * 1994-07-29 1998-06-02 Miyazaki; Hidenori Scanning-type distance measurement device responsive to selected signals
US6888953B2 (en) * 1998-01-30 2005-05-03 Fuji Jukogyo Kabushiki Kaisha Vehicle surroundings monitoring apparatus
US6401024B1 (en) * 1999-06-15 2002-06-04 Nissan Motor Co., Ltd. Vehicle follow-up control system
US6985619B1 (en) * 1999-09-22 2006-01-10 Fuji Jukogyo Kabushiki Kaisha Distance correcting apparatus of surroundings monitoring system and vanishing point correcting apparatus thereof
US6775395B2 (en) * 2000-03-27 2004-08-10 Honda Giken Kogyo Kabushiki Kaisha Object recognition system
US7612800B2 (en) * 2002-06-27 2009-11-03 Kabushiki Kaisha Toshiba Image processing apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224862A1 (en) * 2004-09-17 2011-09-15 Honda Motor Co., Ltd. Vehicular control object determination system and vehicular travel locus estimation system
US8165797B2 (en) * 2004-09-17 2012-04-24 Honda Motor Co., Ltd. Vehicular control object determination system and vehicular travel locus estimation system

Also Published As

Publication number Publication date
JP2004106697A (en) 2004-04-08
EP1407915B1 (en) 2012-04-25
US7725261B2 (en) 2010-05-25
JP4176430B2 (en) 2008-11-05
EP1407915A1 (en) 2004-04-14
US20040060756A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US6961661B2 (en) Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US20100256910A1 (en) Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US7742864B2 (en) Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US7191049B2 (en) Vehicle drive assist system
US6665614B2 (en) Vehicle surroundings monitoring apparatus and vehicle traveling control system incorporating the apparatus
CN109649393B (en) Path planning method and device for automatically driving lane change
US6489887B2 (en) Lane-keep assisting system for vehicle
US7030775B2 (en) Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
US9751529B2 (en) Lane sensing through lane marker identification for lane centering/keeping
US8170739B2 (en) Path generation algorithm for automated lane centering and lane changing control system
EP2251238B1 (en) Vehicle travel support device, vehicle, and vehicle travel support program
US20090125204A1 (en) Vehicle drive assist system
JP2007261449A (en) Traveling target point setting device, lane following support device and lane deviation prevention device
JPH0781604A (en) Automatic travel vehicle
JP2006213073A (en) Preceding vehicle recognition device
JP3674316B2 (en) Travel position determination device
JP2007204043A (en) Driving operation auxiliary device for vehicle and vehicle provided therewith
US20200241527A1 (en) Vehicle control apparatus
JP3891144B2 (en) VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING THE DEVICE
JP3868922B2 (en) Inter-vehicle distance control device
JP2000211542A (en) Vehicular driving supporting device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION