US20110022026A1 - Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires - Google Patents

Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires Download PDF

Info

Publication number
US20110022026A1
US20110022026A1 US12/506,499 US50649909A US2011022026A1 US 20110022026 A1 US20110022026 A1 US 20110022026A1 US 50649909 A US50649909 A US 50649909A US 2011022026 A1 US2011022026 A1 US 2011022026A1
Authority
US
United States
Prior art keywords
guidewire
expansion member
agent
drug
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/506,499
Inventor
Erik Sorensen
Andrew Senn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lake Region Manufacturing Inc
Original Assignee
Lake Region Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/506,499 priority Critical patent/US20110022026A1/en
Application filed by Lake Region Manufacturing Inc filed Critical Lake Region Manufacturing Inc
Assigned to LAKE REGION MANUFACTURING, INC. D/B/A LAKE REGION MEDICAL, INC. reassignment LAKE REGION MANUFACTURING, INC. D/B/A LAKE REGION MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SORENSEN, ERIK, SENN, ANDREW
Priority to PCT/US2010/042620 priority patent/WO2011011424A2/en
Publication of US20110022026A1 publication Critical patent/US20110022026A1/en
Assigned to GOLDMAN SACHS BANK USA reassignment GOLDMAN SACHS BANK USA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACCELLENT INC., LAKE REGION MANUFACTURING, INC., MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MEDSOURCE TECHNOLOGIES, LLC, MEDSOURCE TECHNOLOGIES, NEWTON INC., MEDSOURCE TRENTON LLC, NOBLE-MET LLC, PORTLYN, LLC, SPECTRUM MANUFACTURING, INC., THERMAT ACQUISITION, LLC, UTI HOLDINGS, LLC
Assigned to UBS AG, STAMFORD BRANCH, AS THE COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS THE COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACCELLENT INC., LAKE REGION MANUFACTURING, INC., MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MEDSOURCE TECHNOLOGIES, LLC, MEDSOURCE TECHNOLOGIES, NEWTON INC., MEDSOURCE TRENTON LLC, NOBLE-MET LLC, PORTLYN, LLC, SPECTRUM MANUFACTURING, INC., THERMAT ACQUISITION, LLC, UTI HOLDINGS, LLC
Assigned to MANUFACTURERS AND TRADERS TRUST COMPANY reassignment MANUFACTURERS AND TRADERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAKE REGION MANUFACTURING, INC., LAKE REGION MEDICAL, INC., MEDSOURCE TECHNOLOGIES PITTS BURGH, INC., MEDSOURCE TECHNOLOGIES, LLC, MEDSOURCE TECHNOLOGIES, NEWTOWN INC., MEDSOURCE TRENTON LLC, NOBLE MET LLC, SPECTRUM MANUFACTURING, INC., UTI HOLDINGS, LLC
Assigned to THERMAT ACQUISITION, LLC, LAKE REGION MEDICAL, INC., MEDSOURCE TECHNOLOGIES, LLC, SPECTRUM MANUFACTURING, INC., LAKE REGION MANUFACTURING, INC., UTI HOLDINGS, LLC, MEDSOURCE TECHNOLOGIES, NEWTON INC., PORTLYN, LLC, MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MEDSOURCE TRENTON LLC, NOBLE-MET LLC reassignment THERMAT ACQUISITION, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT
Assigned to UTI HOLDINGS, LLC, PORTLYN, LLC, MEDSOURCE TRENTON LLC, MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MEDSOURCE TECHNOLOGIES, NEWTON INC., LAKE REGION MANUFACTURING, INC., LAKE REGION MEDICAL, INC., NOBLE-MET LLC, THERMAT ACQUISITION, LLC, MEDSOURCE TECHNOLOGIES, LLC, SPECTRUM MANUFACTURING, INC. reassignment UTI HOLDINGS, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT
Priority to US15/173,754 priority patent/US20160279392A1/en
Priority to US16/166,324 priority patent/US10933224B2/en
Assigned to MEDSOURCE TECHNOLOGIES, LLC, MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., UTI HOLDINGS, LLC, SPECTRUM MANUFACTURING, INC., NOBLE-MET LLC, MEDSOURCE TRENTON LLC, MEDSOURCE TECHNOLOGIES, NEWTON INC., LAKE REGION MEDICAL, INC., LAKE REGIONAL MANUFACTURING, INC. reassignment MEDSOURCE TECHNOLOGIES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT)
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0057Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09008Guide wires having a balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • A61M2025/09091Basic structures of guide wires having a coil around a core where a sheath surrounds the coil at the distal part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09166Guide wires having radio-opaque features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • A61M2025/09183Guide wires having specific characteristics at the distal tip having tools at the distal tip

Definitions

  • the present invention relates to the field of medicinal devices and their use in delivering drugs or agents (including biological substances such as cells) to a particular tissue or body lumen for local or systemic effect.
  • the present invention relates to percutaneous transluminal devices and to methods for treating obstructed (sclerotic) vessel lumina in humans.
  • this invention relates to a low profile guidewire drug delivery apparatus and methods for using a guidewire having an expansion member on which there is disposed a therapeutic agent.
  • the present invention dilates an obstruction within a vessel while simultaneously or subsequently delivering a specified therapeutic agent or medicament dose to or adjacent to the dilatation site.
  • vascular system it has become increasingly common to treat a variety of medical conditions by introducing an implantable medical device partly or completely into the esophagus, trachea, colon, biliary tract, urinary tract, vascular system or other location within a human or veterinary patient.
  • many treatments of the vascular system entail the introduction of a device such as a stent, a catheter, a balloon, a guidewire, a cannula or the like.
  • vascular disease is commonly accepted as being one of the most serious health risks facing our society today.
  • Diseased and obstructed coronary arteries can restrict the flow of blood to the heart and cause tissue ischemia and necrosis. While the exact etiology of sclerotic cardiovascular disease is still in question, the treatment of narrowed coronary arteries is more defined.
  • Surgical construction of coronary artery bypass grafts (CABG) is often the method of choice when there are several diseased segments in one or multiple arteries. Open heart surgery is, of course, very traumatic for patients. In many cases, less traumatic, percutaneous methods are available for treating cardiovascular disease.
  • PTCA percutaneous transluminal angioplasty
  • excising devices atherectomy
  • a further treatment method involves percutaneous, intraluminal installation of expandable, tubular scaffolds or stents or prostheses in sclerotic lesions.
  • a medical device when a medical device is introduced into and manipulated through the vascular system, the blood vessel walls can be disturbed or injured. Clot formation or thrombosis, and/or cell proliferation often results at the injured site, causing stenosis or “restenosis” (i.e., closure) of the blood vessel. Additionally, if the medical device is left within the patient for an extended period of time, thrombus may form on the device itself with subsequent cell proliferation, again causing restenosis. As a result, the patient is placed at risk of a variety of complications, including heart attack or other ischemic disease, pulmonary embolism, and stroke. Thus, the use of such a medical device can entail the risk of precisely the problems that its use was intended to ameliorate.
  • Restenosis is the formation of new blockages at the site of the angioplasty or stent placement or the anastamosis of the bypass.
  • the risk of thrombosis is the greatest immediately after angioplasty, because the resultant tissue trauma tends to trigger blood clotting.
  • This form of restenosis is greatly reduced by using anti-clotting drugs both during and after the procedure.
  • the second form of restenosis is tissue growth at the site of treatment.
  • This form of restenosis a hyperproliferation of the vascular smooth muscle cells that forms a layer in the wall of a blood vessel, tends to occur during the first three to six months after the procedure, and is not prevented by anti-clotting drugs.
  • This form of restenosis can be thought of as resulting from exuberant or overly aggressive tissue healing and regeneration after the trauma of angioplasty and/or stent placement.
  • a standard angioplasty balloon may be coated with a polymeric material which is then used to bond certain medicaments or therapeutic agents. These agents are then delivered to the desired therapeutic site by inflation of the balloon and diffusion of the medicament or therapeutic agent into the vessel wall. Only limited quantities of therapeutic agents can be delivered because of “wash-out” of the drug into the circulation during balloon placement and due to the limited time the inflated balloon can be left in place due to ischemia caused by the balloon.
  • Another object of the invention is to provide a guidewire-based device that can control the release or diffusion of a medicament or therapeutic agent to minimize potential systemic affects and maximize the diffusion or delivery of the medicament or therapeutic agent to the site of treatment while permitting substantially uninterrupted vascular fluid, e.g., blood, flow.
  • vascular fluid e.g., blood
  • Another object of the invention is to provide a device that is not susceptible to structural damage (e.g., balloon rupture) and subsequent release of therapeutic agents or drug materials into the vasculature.
  • the present invention is guidewire-based methods and apparatuses or devices of delivering drugs/agents to tissue in the body, the drugs/agents having activity, such as anti-proliferative activity, in the vascular, particularly the endovasculature and more particularly, the cardiovascular system.
  • This invention is useable alone or in conjunction with one or more separate device(s) used to treat medical infirmity or disease.
  • the drugs used in this invention are coated onto a distally disposed, therapy delivery portion or expansion member of a guidewire and are released from the device segment or portion where they are deployed in a short time, preferably less than 10 minutes, more preferably less than 5 minutes, and most preferably 60 seconds or less upon member activation.
  • Drug release or delivery is accomplished, in one embodiment, by radial expansion of a drug-delivering or drug-supporting portion or surface, or expansion member attached to and activated by expansion means of the guidewire within the vasculature, e.g., at the vascular blockage site.
  • Methods of releasing the therapy also can include activating a trigger mechanism, or having the physiological conditions in the body e.g., temperature, pH, ionic balance, etc., trigger the drug release.
  • Other methods and techniques for guidewire-based expansion member activation include torsionally-induced radial expansion of the member, hydraulic expansion, electro-mechanical expansion, use of shape memory materials which “remember” an expanded or collapsed state under defined conditions.
  • a method of the present invention comprises contacting the tissue or circulation with a radially-expanding guidewire portion, member, or segment which is coated with a therapeutic drug, agent or biological substance, wherein the agent is released into the circulation or deposited onto the tissues surrounding the device in a short time after the contact (or immediately).
  • the therapeutic agent is then quickly, effectively and efficiently absorbed or taken into the tissue, cells or into circulation.
  • precious radial intraluminal or intravascular space or “real estate” is not occupied with structures such as balloon layers, catheter bodies, sheaths, and other device structural features.
  • the method/delivery of this invention permits access to smaller, more tightly circuitous luminal structures, e.g., of smaller or more highly occluded vessels. It also permits drug delivery without ischemic/schemic effects such as those caused by, for example, vessel blockage with a balloon.
  • Therapeutic drugs for coating the device include but are not limited to medicines, proteins, adjuvants, lipids and other compounds which ameliorate the tissue or circulation surrounding the device. Additionally, the drug may be encapsulated in particles or controlled release carriers including liposomes, microparticles, and nanoparticles, which are coated upon the device, or bonded to it. Alternatively, the drug may be an aggregate or flocculate of the drug or drug formulation. These drug aggregates are considered a type of particle, as described herein. The therapeutic drug or drug formulation may have sustained anti-proliferative activity and thus a prolonged effect.
  • paclitaxel paclitaxel
  • sirolimus everolimus
  • ABT-578 biological agents such as cells and antibodies, could also be used to promote positive tissue growth or inhibit tissue growth or cellular proliferation contributing to or causing restenosis.
  • coated is to be broadly interpreted to mean deposited, adhering, locally disposed as well as actually coated onto the operant surface as in the working or expansion surface of a guidewire or a portion thereof.
  • Those terms are intended to include the full spectrum of possible adherent relationships between e.g., the expansion member, and the drug or agent to be delivered.
  • Those terms also include what is primarily a physical interaction, e.g., a drug delivery expansion member or means with a “roughened” surface. “Roughened” textured or porous surface drug retention and subsequent delivery are known in the stent art.
  • the present invention comprises a substantially cylindrically shaped expansion member deployed by and a part of the distal portion of a guidewire. It includes an expansion means engaged to the expansion member for altering the distance between the proximal end and the distal end of the expansion member thereby transforming the expansion member between a diametrically or radially contracted configuration and a diametrically or radially expanded configuration.
  • a therapeutic agent or medicament can be coated directly onto the expansion member or alternatively, the therapeutic agent or medicament can be incorporated into a polymer or other substrate and then coated on the expansion member.
  • the present method also comprises the steps of advancing the guidewire including its expansion member e.g., an expandable mesh basket or balloon-like structure, to the obstruction in a vessel and applying opposed forces on said expansion member (e.g., on its distal and proximal ends or portions) in an axial direction to move the expansion member to an expanded configuration wherein the expansion member dilates the obstruction and the catheter/expansion member assembly actively (or passively) delivers the therapeutic agent or medicament to the obstruction.
  • Hydraulic, pneumatic, electrical or electro-mechanical actualizations also are contemplated. Generally speaking this means endovascular deposition of a drug or agent adjacent to or upon a vascular blockage or site of medical interest.
  • the present method also comprises the steps of advancing its expansion member of the guidewire to e.g., an obstruction in a vessel and applying opposing or opposed forces on said expansion member in an axial or rotational direction to move the expansion member to an expanded configuration wherein the expansion member dilates the obstruction and the guidewire/expansion member assembly actively (or passively) delivers the therapeutic agent or medicament to the obstruction.
  • Opposing forces as used here includes static force, or simply resistance to application of kinetic (moving) force
  • static force includes, for example, one end of the expansion member being anchored or attached to a guidewire structure which resists axial or rotational movement causing the expansion member to expand.
  • the present invention relates to a guidewire having a guidewire expanding member which, in turn has particles dispersed or coated on its surface, each particle encapsulating a therapeutic drug or agent(s), or a combination of therapeutic drugs, having anti-proliferative activity in e.g., the cardiovascular system.
  • the particles may preferably be liposomes, microparticles or nanoparticles.
  • the guidewire expanding member or structure is contacted with surrounding tissue or deployed into circulation such that the therapy is released from the particle and into the surrounding tissue or circulation depending upon the medical problem and/or its treatment.
  • the method of the invention allows the release of drugs or agent and drug or agent formulations from a low profile guidewire structure i.e., a device, that is not permanently implanted in the body.
  • a “low profile” guidewire as that term is used herein is one in which there is no more than about a 10%, preferably less than about 5%, and most preferable less than about 2% variation in diameter a profile from one end of the device to the other.
  • essentially the only variation in diameter of this device is the thickness of the drug coating thereon when the guidewire is in the unexpanded, vessel navigation state.
  • FIG. 1 shows in section a drug delivery guidewire of this invention in navigation to a site of medical interest state.
  • FIG. 2 shows one of the guidewires of FIG. 1 in a drug or agent-deployment or agent delivery state.
  • FIG. 3 is a second embodiment of an expansion member of this invention.
  • FIG. 4 is in part a side view, in part a cross-sectional view through the outer and inner coils and in part a cross-sectional view through the outer coil and a side view of the inner coil of a cable (sometimes called a torque cable) useable in this invention (e.g., as the expansion means or movement mechanism) and a cross-sectional view through a part of a connector or coupling, a number of axial intermediate parts being broken away (U.S. Pat. No. 5,678,296 to Fleischhacker et al describes this torque cable, the entire disclosure of which is incorporated by reference herein).
  • a cable sometimes called a torque cable
  • FIG. 5 is a side view of a part of an axial length of a torque cable/expansion means in this invention indicating its flexibility.
  • FIG. 6 is a side view of manually operated medical apparatus that includes a control member, a medical subassembly, and the torque cable coupling or connecting with nearly 1:1 torque transmission the control member and medical subassembly being diagrammatically illustrated.
  • FIGS. 7 and 8 show in section an embodiment of this invention in which a monofilament expansion member is displayed on the distal end, portion or segment of a guidewire.
  • the present invention relates to a method of delivering drug(s), agent(s), cells or biological substances (the term “agent” includes drugs, biological substances, and biologics as those terms are used in their arts) in a target-specific manner, through the use of a drug or therapy-coated guidewire segment, portion or member, which includes drug delivery means and guidewire structure.
  • the claimed method provides a therapy that targets the traumatized area by proximity alone or in combination with a systemic effect i.e. delivery from an exterior surface of a guidewire.
  • a drug of the present invention provides, for example, anti-proliferative therapeutic activity to the cardiovascular system.
  • a drug of this invention generally is effective locally, i.e., at the site of vessel contact, but may have more general systemic effects.
  • a drug deployed by means of the present invention does not require a delayed or long term release and can be used, e.g., to activate anti-proliferative activity immediately upon contact with the cells of the target tissue or circulation.
  • the drug may have sustained anti-proliferative activity and thus, a prolonged effect.
  • the drug is preferably released in less than about or equal to one minute from the time of its initial contact with the tissue or circulation although longer drug release time will often be used depending upon the drug, the specific therapy and related indications and side effects.
  • FIGS. 4 and 5 shown in section an embodiment of this invention in which a monofilament expansion member is used.
  • the drugs or agents coated upon the guidewire surface e.g., a radially-expanding surface, and thus useful in the present invention are delivered to the target tissue in a short time after the device's initial contact with the targeted tissue or surrounding circulation, i.e., there is a relatively quick release of the drug from the guidewire to the tissue.
  • the drugs which can be used in the present invention provide, in one approach, anti-proliferative activity in the cardiovascular system.
  • Other agents may promote tissue growth to expedite vessel healing, e.g. anti-h-CO54 antibody.
  • the activity of the drug may be sustained and the drug exhibits a prolonged anti-proliferative effect. Therefore, the drug does not require a delayed or prolonged release and as such, the release can be immediate. Accordingly, the drug may be attached to a working or delivery surface of the device that is not a permanent implant but rather briefly contacts the tissue or circulation. Additionally, due to its sustained effect, the drug may also be encapsulated in a particle which may enhance its uptake by the target tissue or cells.
  • the drugs may be directly applied to the guidewire expansion member in a composite, wherein the drugs are mixed with other reagents, or may be encapsulated within drug release particles such as liposomes, microparticles, nanoparticles, or aggregates of the drug.
  • the particles may include inert polymeric particles, such as, for example, microparticles or nanoparticles.
  • the particles may comprise biologically derived reagents, such as, for example, lipids, sugars, carbohydrates, proteins and the like.
  • such particles are release carriers which provide an effective release of the therapeutic agent to the target tissue or cells.
  • the therapeutic agent formulation may be specifically taken up by cells of the white blood-cell lineage, such as macrophages or monocytes.
  • the drugs are delivered in a target-specific manner, without the need to provide a full dosage of drugs to the entire body through conventional drug delivery routes as discussed above. Indeed, providing the therapeutic agent in a localized manner or to specific cells can avoid the undesired side effects of such large doses.
  • the drug release carriers are preferably biodegradable, so that when they are brought into contact with the target tissue or circulation or when taken into specific cells, the drug or therapeutic agent is quickly released from the carrier, and then the biodegradable carrier is itself, in due time, removed by natural body processes.
  • the particles or release carriers include, but are not limited to, semi-synthetic polyacryl starch microparticles, other biodegradable microparticles containing the therapeutic agent, ethyl cellulose, poly-L-lactic acid, heptakis (2,6-di-O-ethyl)-beta-cyclodextrin, polyalkylcyanoacrylate nano capsules, polymethylacrylate, monocarboxycellulose, alginic acid, hyaluronic acid, lipid bilayer beads, polyvinylpyrollidone, polyvinyl alcohol, albumin, lipid carriers of continuous phase (non-microparticle type), nanoparticles, and known agents by those skilled in the art for the release of therapeutic agents.
  • Nanoparticles are preferably spherical or non-spherical polymeric particles that are 30-500 nm in diameter.
  • the therapeutic agent or drug may be encapsulated within, or form itself, a liposome, colloid, aggregate, particle, flocculate or other such structure known in the art for encapsulation of drugs.
  • the encapsulation material itself may have a known and predetermined rate of biodegradation or bioerosion, such that the rate of release and amount released is a function of the rate of biodegradation or bioerosion of the encapsulation material.
  • the encapsulation material should provide a relatively quick release rate.
  • the particles, or release carriers may be supported within the matrix of a macrostructure.
  • Particles or controlled release carriers include, but are not limited to microparticles, nanoparticles, colloids, aggregates, liposomes, particles, or flocculates.
  • Materials used to provide the macrostructure include, but are not limited to, fibrin gels, hydrogels, or glucose.
  • Non-limiting examples of particles supported within a macrostructure include a fibrin gel with colloid suspended within it; a hydrogel with liposomes suspended within it; a polymeric macrostructure with macroaggregated albumin suspended within it; glucose with liposomes suspended within it; or any of the foregoing further including liposomes, flocculants microparticles, nanoparticles, or other particles containing or having dispersed therein a drug or therapeutic agent.
  • the macrostructures nor the particles be entirely bioabsorbed.
  • fibrin or collagen is used to provide the macrostructure, such materials are biodegradable yet can persist in the extracellular matrix for substantial lengths of time.
  • the drug or therapeutic agent is encapsulated within liposomes.
  • Liposomes may be submicroscopic, i.e., preferably no greater than 100 nm in size, capsules consisting of a double membrane containing various lipids.
  • One such lipid is a phospholipid, a natural material commonly isolated from soy beans.
  • Liposomes are nontoxic and generally recognized as safe by the FDA.
  • Liposomes can be characterized as a hollow flexible sphere containing an aqueous internal compartment surrounded by an external aqueous compartment. Any material trapped inside the liposome is protected from the external aqueous environment.
  • the lipid bilayer acts as a barrier and limits exchange of materials inside, with materials outside the membrane.
  • the lipid bilayers are hydrophobic and can “entrap” and retain similar types of substances.
  • the rate of release of an encapsulated therapeutic agent or drug from a liposome can be, for example, controlled by varying the fatty acid composition of the phospholipid acyl groups, or by providing elements which are embedded in the lipid bilayers, which specifically allow a controlled and rapid release of the encapsulated drug from the liposomes.
  • chemical modification of the phospholipid acyl groups is accomplished by either chemically modifying the naturally derived materials, or by selecting the appropriate synthetic phospholipid.
  • the embedded elements in the liposome may be biologically- or bioengineering-derived proteins, polypeptides or other macromolecules to selectively provide pores in the liposome wall.
  • Liposomes are highly advanced assemblages consisting of concentric closed membranes formed by water-insoluble polar lipids.
  • the lipids comprising the membrane may be selected from the group consisting of natural or synthetic phospholipids, mono-, di-, or triacylglycerols, cardiolipin, phosphatidylglycerol, phosphatidic acid, or analogues thereof.
  • the liposome formulations are prepared from a mixture of various lipids.
  • the natural phospholipids are typically those from animal and plant sources, such as phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, or phosphatidylinositol.
  • Synthetic phospholipids typically are those having identical fatty acid groups, including, but not limited to, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine and the corresponding synthetic phosphatidylethanolamines and phosphatidylglycerols.
  • lipids such as cholesterol, glycolipids, fatty acids, sphingolipids, prostaglandins, gangliosides, neobee, niosomes, or any other natural or synthetic amphophiles can also be used in liposome formulations, as is conventionally known for the preparation of liposomes.
  • Membrane fluidity is generally controlled by the composition of the fatty acyl chains of the lipid molecules.
  • the fatty acyl chains can exist in an ordered, rigid state or in a relatively disordered fluid state. Factors affecting rigidity include chain length and degree of saturation of the fatty acyl chains and temperature. Larger chains interact more strongly with each other so fluidity is greater with shorter chains. Saturated chains are more flexible than unsaturated chains. Transition of the membrane from the rigid to the fluid state occurs as the temperature is raised above the “melting temperature”. The melting temperature is a function of the length and degree of unsaturation of the fatty acyl chain.
  • the liposomes, drug aggregates, microparticles, or nanoparticles are created in a pre-selected size that is preferably taken up by macrophages and monocytes.
  • the liposomes act within the macrophages to incapacitate them or to inhibit their activity.
  • the liposomes are greater than 100 nm.
  • a sterol such as cholesterol
  • a charged amphiphile can alter the stability, rigidity and permeability of the liposome by altering the charge on the surface of the liposome and increasing the distance between the lipid bilayers.
  • Proteins and carbohydrates may be incorporated into the liposomes to further modify their properties.
  • the therapeutic agent either directly coated upon or encapsulated and suspended upon a guidewire shall be quickly released into the surrounding tissue or circulation of the cardiovascular system once the guidewire has been implanted or reaches the target area.
  • the porous layer may be positioned over the layer of therapeutic drug coated upon the guidewire or guidewire portion, in order to protect the therapeutic drug from releasing prematurely from the guidewire, that is, prior to reaching its target tissue or circulation.
  • the porous layer may also be positioned over the layer of microparticles or nanoparticles encapsulating the therapeutic drug.
  • the porous layer is preferably biodegradable and slowly consumed during the insertion or deployment of the guidewire, but can also be an inert stable layer.
  • the thickness and type of material used to construct the porous layer is chosen based on the type of device, the insertion or deployment method used, and the length of time the device is in contact with body fluids prior to reaching its target tissue or circulation.
  • various devices and applications require porous layers which degrade at different rates.
  • most of the porous layer is preferably dissolved by the time the guidewire reaches its target tissue or circulation in order for the therapeutic agent to be quickly and effectively released.
  • the material of these particles may be selected such that the biodegradation or bioerosion of the encapsulation material occurs at a rate which does not allow the therapeutic agent to be released prematurely.
  • the release profile of the drug from the microparticles or nanoparticles is determined by many factors including the drug solubility and the thickness and porosity of the microcapsules.
  • the microcapsules of the invention may either be rupturable to release their contents or may be degradable such that they will open when left against the lumen walls.
  • the particles or capsules may release their contents through diffusion or by rupturing due to the application of external forces.
  • the particles or capsules may also be consumed by the phagocytic, chemotactic, and cytotoxic activities of surrounding cells.
  • macrophages are important killer T-cells and by means of antibody-dependent cell-mediated cytotoxicity (ADCC) they are able to kill or damage extracellular targets.
  • the drugs may be released by activating a trigger mechanism, or having it activated passively by the physiological conditions.
  • the drug-coated guidewire expansion member can be configured as at least one of, or any portion of, a catheter, an angioplasty device, a stent, a vascular or other graft, a cardiac pacemaker lead or lead tip, a cardiac defibrillator lead or lead tip, a heart valve, a suture, a needle, a guidewire, a cannula, a pacemaker, a coronary artery bypass graft (CABG), an abdominal aortic aneurysm device (Triple A device) or an orthopedic device, appliance, implant or replacement.
  • the guidewire can also be configured as a combination of portions of any of these devices.
  • the drug may be coated on the entire surface of the medial device or a portion thereof. For example, the entire structure may be coated with a type of therapeutic agent, or only a specific portion, which will contact a target area, may be coated.
  • Guidewire 10 has a central core wire 12 which ends in an atraumatic, bulbous or bullet-shaped tip 14 .
  • Proximal to tip 14 is (in this embodiment) a radiopaque coil 16 .
  • Coil 16 is connected to central core wire 12 and tip 14 e.g., by soldering adhesives or welding.
  • Proximal to coil 16 is an expansion member 18 which in this example is a series of interwound, (e.g. woven), radially expandable drug-coated struts 20 .
  • Struts 20 tend to operate as a unit or member so that application of force to the more proximal end 24 of struts at 22 causes the struts to expand radially outward away from the central axis of core wire 12 generally corresponding to a line down the middle of core wire 12 , e.g., dashed line 13 in FIG. 1 and toward, e.g., the inside of a vessel.
  • Force is applied to the more proximal end 24 of woven struts 20 by expansion means 26 which in this embodiment is a substantially longitudinally rigid or “stiff” tubular member 28 which is both “pushable” (or steerable) and “torquable” as those terms are used in the art. (See, e.g., FIGS.
  • Tubular member 28 has an inside diameter which is just sufficiently larger than the outside diameter of core wire 12 so as to slideably engorge therewith. It will be appreciated that tubular member 28 will have substantially the same rigidity and steerability as core wire 12 so as to cooperate therewith while the guidewire 10 is being directed into the vasculature.
  • expansion member 18 applies distally-directed force to tubular member 28 to expand radially and hence to deploy drug or agent (not shown) coated thereon into and onto the endovasculature, its distal end 25 being held in place by the proximal end 27 of radiopaque coil 16 .
  • FIG. 1 is generally the configuration of guidewire 10 of this embodiment of the invention during navigation of the guidewire to and through the vessel site to be treated.
  • FIG. 2 shows the configuration of guidewire 10 with expansion member 18 in its expanded or delivery state 18 .
  • Proximal retraction of tubular member 28 will cause expansion member 18 , i.e., the strut structure, radially to contract so as to return generally to its navigation configuration and for further proximal withdrawal of guidewire 10 .
  • expansion means or member 26 delivers drug or agent to the site of medical interest, the drug or agent being chosen to address the medical issue e.g., blockage, restenosis, inflammation, which makes the deployments site medically of interest.
  • Expansion member 26 may have an inherent tendency or bias to return to its non-expanded, navigation state. Whether an expansion member does or does not have a tendency to return to a smaller diameter will determine how affirmatively tubular member 28 is attached to the proximal end of expansion member 26 as well as to the structure on its distal end.
  • FIG. 3 is a second embodiment of a guidewire expansion member 30 of this invention.
  • Expansion member 30 is a mesh or woven cylindrical structure comprising individual woven or overlapping struts, strands, helices or wires 32 .
  • Member 30 has a distal end 34 and a proximal end 36 (physician's frame of reference).
  • Proximal end 36 of mesh expansion member 30 has a shoulder or ridge 38 as does distal end 34 (at 40 ).
  • expansion member 30 is attached to expansion means 42 which, as above, is a hollow flexible tubular member.
  • Expansion member 30 is basket-like, bulbous or prolate comprising interwoven strands tending to act like an integrated unit or entity.
  • Expansion member 30 slideably engages guidewire core wire 44 .
  • Distal end 34 of mesh structure 32 is affixed to guidewire 42 .
  • Application of distal force to tubular member 42 causes mesh structure 32 to expand radially and deliver endovascularly any drug or agent (not shown) disposed thereon.
  • the expansion member could be a distal coil, segment, or portion (not shown) that expands and contracts radially as rotational and/or translational force is applied to its proximal end or segment.
  • a torque cable useable in this invention includes an inner coil M made up of a single layer of multifilar helically wound coil of wires, preferably four wires 411 , 412 , 413 , and 414 that has each convolution (helix) of one wire in contact with the adjacent convolution of two other wires. While a multifilar torque cable is preferred, monofilar coils (i.e., a single helically-wound wire) are also contemplated.
  • the inner coil is wound to be, in a relaxed non-assembled condition, a coil having an inner peripheral diameter W and a coil outer peripheral diameter Z.
  • the cable 410 also includes an outer coil N made up of a single layer of multifilar helically wound coil of wire, preferably four wires 416 , 417 , 418 , and 419 that are wound in the opposite direction from the winding of the inner coil, and likewise has adjacent wire convolutions in contact with one another.
  • the outer coil is wound to in a relaxed non-assembled condition have a coil inner peripheral diameter X and a coil outer peripheral diameter Y.
  • the inner coil outer peripheral diameter in a non-(W) assembled condition may be about 0.002′′ greater than the outer coil inner peripheral diameter in a non-assembled condition (X).
  • the torque cable discussed herein could also be used with or coupled to tubular member 28 to comprise an expansion means as that term is used herein.
  • the torque cable could also be coupled to a distal coil segment as is discussed in the previous paragraph.
  • the outer coil is partially unwound by applying an unwinding force to increase the coil inner peripheral diameter. Then the inner coil is inserted into the partially unwound outer coil and thence the unwinding force that was applied to the outer coil is released.
  • the axial central part of the outer coil starts to shrink first to form an interference fit with the inner coil and continues to shrink its outer coil diameter toward the outer coil opposite ends whereby there is obtained an interference fit throughout the entire axial length of the cable.
  • All of the helices of each of the coils in the assembled condition of the coils are of substantially the same inner and outer diameters throughout the axial lengths of the coils while the inner and outer coils are of substantially the same axial lengths. That is the helices of each coil are of substantially the same radial spacing from the respective coil central axis C-C.
  • the cable 410 may by made of an outer diameter of about 1/16′′ or less and bent through, for example, a circular configuration portion 10 a of a radius of curvature R of, for example about 1′′ or/and “S” curved portions 10 b , 10 c radii of curvature such as illustrated in FIG. 5 .
  • the medical apparatus K includes a cable 610 that has its proximal end portion fixedly attached to an optional manually operated control member H while the distal end portion mounts and couples to a medical subassembly P, the control member and medical subassembly being diagrammatically illustrated.
  • Medical subassembly P in this embodiment of the invention is e.g., a guidewire expansion member portion, segment, or working surface according to this invention. (Guidewire core wire 612 is shown and designated by broken lines).
  • expansion member P would comprise a woven structure, basket, bulbous member, which when torque was applied to central member H, would be transmitted on a substantially 1:1 basis by counter-wound torque cable 610 to the proximal end 614 of subassembly P and cause the subassembly P (the distal end of subassembly P presumably being anchored e.g., at the guidewire tip (not shown)) to expand radially. Agent coated on subassembly/expansion member P would then be endovascularly delivered either locally or systemically.
  • FIGS. 7 and 8 illustrate in section a further embodiment of the present invention.
  • FIG. 7 depicts the device in its vascular navigation stage while FIG. 8 shows the device in its drug delivery stage.
  • the guidewire 40 includes an expansion member 42 which comprises a single helically-wound filament or wire 44 .
  • Multi-filar expansion members also could be used.
  • Guidewire 40 comprises a core wire 46 and a radiopaque coil 48 .
  • Core wire 46 and radiopaque coil 48 are coupled to each other e.g., by solder, spot weld or adhesive, at distally-extreme, atraumatic tip 50 .
  • Expansion member 42 has a distal end or portion 52 and a proximal end or portion 54 . As is shown expansion member distal end 52 abuts radiopaque coil 48 at the coil's proximal end 56 and is thereto affixed to core wire 46 .
  • Expansion means or torsion mechanism 58 is, in this embodiment, a hypotube segment having an inside diameter which is about the same as, but slightly larger, than the outside diameter of guidewire core wire 46 at its proximal length. Hypotube 58 is substantially longitudinally or torsionally rigid such that proximally applied, torque or distally-directed force (e.g., arrow 60 ) is efficiently transmitted to expansion member 42 proximal end 54 .
  • FIG. 8 shows the guidewire of FIG. 7 as it appears when member 42 ′ is in the expanded state, e.g., when delivering a drug or agent endovascularly, alone or in conjunction with a luminal opening and expansion of a vessel.
  • Drug or agent (not shown) is or would be coated at least on the outermost segment 62 (only shown in FIG. 8 ) of filament or wire 44 . (Filaments 44 could also be completely coated with drug, agent, or biologic).
  • Expansion member 42 ′ in this embodiment, is shown to be substantially conical with a slightly distally decreasing, outward diameter. As in the earlier embodiments, expansion member 42 , 42 ′ is disposed along and is collinear with core wire and tapers in parallel with taper 64 .
  • Outside segments 62 are shown to be substantially planar. Such a configuration could be obtained e.g., by differential tempering or treating of individual expansion member helices 44 . In this manner overall guidewire outside diameter is kept to a minimum even during drug delivery and/or concurrent or separate vessel angioplasty.
  • a drug-coated or drug bound guidewire, working surface or guidewire portion (usually but not necessarily an expansion member) is utilized to release the therapeutic agents having anti-proliferative activity into the body tissue or circulation.
  • the therapeutic agent preferably encapsulated in a particle or a controlled release carrier, or aggregated to a desirable/pre-selected size, for efficient uptake by a macrophage, is applied to the surface of the guidewire by coating methods known in the art, including, but not limited to spraying, dipping, rolling, brushing, solvent bonding, adhesives or welding or by binding the microparticle or aggregates to the surface of the guidewire by any chemical method known in the art.
  • the therapeutic agent or particle encapsulating the therapeutic agent may be embedded, i.e., mechanically trapped, within the guidewire without the use of adhesives.
  • an additional dosage of the therapeutic drug which inhibits proliferation in the cardiovascular system, may be applied by conventional delivery methods discussed above, (e.g., orally, intravenously) or may be injected through the guidewire.
  • the therapeutic drug may be injected through the guiding catheter via the same method and procedure used to inject the contrast dye commonly used during a PTA.
  • the particles are preferably selected from the group consisting of lipids, microparticles, nanoparticles, or the drug itself in aggregates, flocculates or the like.
  • the therapeutic drugs useful in the present invention preferably inhibit the proliferation of vascular smooth muscle cells.
  • the therapeutic drugs directly alter smooth muscle cell activity by altering cellular metabolism, inhibiting protein synthesis, or inhibiting microtubule and microfilament formation, thus affecting morphology.
  • the therapeutic drug may also include inhibitors of extracellular matrix synthesis or secretion.
  • the methods and dosage forms of the present invention are useful for inhibiting vascular smooth muscle cells by employing a therapeutic agent that inhibits the activity of the cell, i.e. inhibits proliferation, contraction, migration or the like, but does not kill the cell.
  • the methods and dosage forms of the present invention are useful for inhibiting target cell proliferation by employing a therapeutic agent that is cytotoxic to the cell.
  • the therapeutic agent may directly or indirectly inhibit the activity of the smooth muscle cells, thus inhibiting or suppressing proliferation of the smooth muscle cells.
  • the therapeutic agent may directly inhibit the cellular activity of the smooth muscle by inhibiting proliferation, migration, etc. of the smooth muscle cells.
  • the therapeutic agent may inhibit the cellular activity of surrounding cells, whose activity initiates, assists or maintains proliferation of smooth muscle cells.
  • smooth muscle cell proliferation is indirectly inhibited or suppressed by the inhibition or suppression of the metabolic activities of the surrounding cells, whose activities maintain smooth muscle cell proliferation.
  • the therapeutic drug encapsulated and coated on the guidewire is used for reducing, delaying or eliminating restenosis following angioplasty.
  • Reducing restenosis includes decreasing the thickening of the inner blood vessel lining that result from stimulation of smooth muscle cell proliferation following angioplasty.
  • Delaying restenosis includes delaying the time until onset of visible hyperplasia following angioplasty, and eliminating restenosis following angioplasty includes completely reducing and/or completely delaying hyperplasia to an extent which makes it no longer necessary to intervene.
  • Methods of intervening include re-establishing a suitable blood flow through the vessel by methods such as, for example, repeat angioplasty and/or stent placement, or CABG.
  • BP bisphosphonates
  • Bisphosphonates formerly called diphosphonates, are compounds characterized by two C—P bonds. If the two bonds are located on the same carbon atom (P—C—P) they are termed geminal bisphosphonates.
  • Bisphosphonates indirectly inhibit smooth muscle cell proliferation by metabolically altering surrounding cells, namely macrophages and/or monocytes.
  • Bisphosphonates when encapsulated in liposomes or nanoparticles or aggregated in aggregates of a specific size, are taken-up, by way of phagocytosis, very efficiently by the macrophages and monocytes.
  • the liposomes are destroyed and release the encapsulated bisphosphonates, which inhibit the activity of the macrophages. Since macrophages, in their normal state, are recruited to the areas traumatized by angioplasty or other intrusive intervention and initiate the proliferation of smooth-muscle cells (SMC), inhibiting the macrophages' activity will inhibit the proliferation of SMC. Once released and taken-up by the macrophages, the bisphosphonates will have a sustained anti-proliferative activity for the lifetime of the macrophages. Thus, prolonged release of the bisphosphonates is not required in order to sustain inhibition.
  • Representative examples of bisphosphonates suitable for use in the present invention are alendronate, clodronate, and pamidronate.
  • the therapeutic drug is encapsulated in relatively large liposomes that are preferably taken up by cells such as monocytes and macrophages.
  • the structure and composition of the liposomes are discussed supra. Additionally, the liposomes may be greater than 100 nanometers in size and contain, for example, a bisphosphonate drug.
  • the drug such as, for example, a bisphosphonate may be encapsulated in a liposome and coated upon a suitable guidewire.
  • a suitable guidewire Coating methods and suitable guidewires are discussed supra.
  • the liposomal bisphosphonates may be coated on a balloon catheter and suspended in a macrostructure such as glucose or gelatin, or chemically bound to the surface. Thereafter, the balloon catheter is effectively maneuvered through the cardiovascular system and to an occlusive site. Once in the proper position, the balloon is inflated into contact with the lumen to be treated. The liposomes, which encapsulate the bisphosphonate therapeutic drugs, are then released from the guidewire and are present in the tissue and in the circulation, ready for uptake by macrophages, locally and systemically.
  • LBP Liposomal BP
  • the therapeutic agent may also promote the growth of smooth muscle cells (c.s. anti-h-CO54 antibody or stem cells), which promotes tissue growth and healing to prevent an inflammatory and/or thrombogenic-based restenosis.
  • smooth muscle cells c.s. anti-h-CO54 antibody or stem cells
  • the guidewire may also carry therapeutic agents, such as, for example, anti-spasmodic, anti-thrombogenic, and anti-platelet agents, antibiotics, steroids, and the like, in conjunction with the anti-proliferative agent, to provide local administration of additional medication.
  • therapeutic agents such as, for example, anti-spasmodic, anti-thrombogenic, and anti-platelet agents, antibiotics, steroids, and the like, in conjunction with the anti-proliferative agent, to provide local administration of additional medication.

Abstract

The present invention relates to a method of delivering drugs having e.g., anti-proliferative activity in the vascular, preferably, the cardiovascular, system locally or systematically using an at least partially drug-coated guidewire. The drug-coated guidewire, particularly an expansion member or portion thereof, is brought into contact with the target tissue or in circulation and the drugs are quickly released into the area surrounding the device in a short time after the contact step. Once the therapeutic drugs are released, they are quickly and effectively absorbed by the surrounding cells or circulation.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of medicinal devices and their use in delivering drugs or agents (including biological substances such as cells) to a particular tissue or body lumen for local or systemic effect. In general, the present invention relates to percutaneous transluminal devices and to methods for treating obstructed (sclerotic) vessel lumina in humans. In particular, this invention relates to a low profile guidewire drug delivery apparatus and methods for using a guidewire having an expansion member on which there is disposed a therapeutic agent. In one aspect the present invention dilates an obstruction within a vessel while simultaneously or subsequently delivering a specified therapeutic agent or medicament dose to or adjacent to the dilatation site.
  • BACKGROUND OF THE INVENTION
  • It has become increasingly common to treat a variety of medical conditions by introducing an implantable medical device partly or completely into the esophagus, trachea, colon, biliary tract, urinary tract, vascular system or other location within a human or veterinary patient. For example, many treatments of the vascular system entail the introduction of a device such as a stent, a catheter, a balloon, a guidewire, a cannula or the like.
  • Vascular disease, particularly cardiovascular disease, is commonly accepted as being one of the most serious health risks facing our society today. Diseased and obstructed coronary arteries can restrict the flow of blood to the heart and cause tissue ischemia and necrosis. While the exact etiology of sclerotic cardiovascular disease is still in question, the treatment of narrowed coronary arteries is more defined. Surgical construction of coronary artery bypass grafts (CABG) is often the method of choice when there are several diseased segments in one or multiple arteries. Open heart surgery is, of course, very traumatic for patients. In many cases, less traumatic, percutaneous methods are available for treating cardiovascular disease. For example, percutaneous transluminal angioplasty (PTCA) balloons or excising devices (atherectomy) are used to remodel or debulk diseased vessel segments. A further treatment method involves percutaneous, intraluminal installation of expandable, tubular scaffolds or stents or prostheses in sclerotic lesions.
  • Exposure, however, to a medical device which is implanted or inserted into the body of a patient can cause the body tissue to exhibit adverse physiological reactions. For instance, the insertion or implantation of certain catheters or stents can lead to the formation of emboli or clots in blood vessels. Similarly, the implantation of urinary catheters can cause infections, particularly in the urinary tract. Other adverse reactions to implanted or temporary treatment whether introduced by an operation or by a minimally invasive technique, include cell proliferation which can lead to hyperplasia, occlusion of blood vessels, platelet aggregation, rejection of artificial organs, calcification, and impairment of device function.
  • For example, when a medical device is introduced into and manipulated through the vascular system, the blood vessel walls can be disturbed or injured. Clot formation or thrombosis, and/or cell proliferation often results at the injured site, causing stenosis or “restenosis” (i.e., closure) of the blood vessel. Additionally, if the medical device is left within the patient for an extended period of time, thrombus may form on the device itself with subsequent cell proliferation, again causing restenosis. As a result, the patient is placed at risk of a variety of complications, including heart attack or other ischemic disease, pulmonary embolism, and stroke. Thus, the use of such a medical device can entail the risk of precisely the problems that its use was intended to ameliorate.
  • Restenosis is the formation of new blockages at the site of the angioplasty or stent placement or the anastamosis of the bypass. There are two major mechanisms for restenosis. The first is by thrombosis, or blood clotting, at the site of treatment. The risk of thrombosis is the greatest immediately after angioplasty, because the resultant tissue trauma tends to trigger blood clotting. This form of restenosis is greatly reduced by using anti-clotting drugs both during and after the procedure.
  • The second form of restenosis is tissue growth at the site of treatment. This form of restenosis, a hyperproliferation of the vascular smooth muscle cells that forms a layer in the wall of a blood vessel, tends to occur during the first three to six months after the procedure, and is not prevented by anti-clotting drugs. This form of restenosis can be thought of as resulting from exuberant or overly aggressive tissue healing and regeneration after the trauma of angioplasty and/or stent placement.
  • To reduce adverse effects caused by implanted medical devices, such as restenosis, pharmaceuticals, such as anticoagulants and antiproliferation drugs, have been administered in or on stents or balloon catheters. These methods require release their active ingredients slowly. Indeed, prior art therapeutic methods generally include slow controlled agent release.
  • Heretofore, various devices have been disclosed which may be used to deliver a therapeutic agent or medicament to a blood vessel while undergoing angioplasty. Balloon angioplasty catheters have been used to place and deliver a various therapeutic agents or medicaments within human vessels. For example, in U.S. Pat. Nos. 5,112,305, 5,746,716, 5,304,121, 5,674,192, 5,954,706, 5,569,197, 7,519,338, 7,488,314, 7,473,242, 5,681,281, 5,873,852, 5,713,863, 6,997,947, 7,519,418, 7,517,342, and 6,102,904 disclose and claim balloon/catheter systems for delivering a drug into an arterial segment, the disclosures of each said patents being incorporated by reference herein in their entireties.
  • Alternatively a standard angioplasty balloon may be coated with a polymeric material which is then used to bond certain medicaments or therapeutic agents. These agents are then delivered to the desired therapeutic site by inflation of the balloon and diffusion of the medicament or therapeutic agent into the vessel wall. Only limited quantities of therapeutic agents can be delivered because of “wash-out” of the drug into the circulation during balloon placement and due to the limited time the inflated balloon can be left in place due to ischemia caused by the balloon.
  • In general, it is an object of the present invention to provide a guidewire-based dilatation device and method which is capable of dilating an obstruction within a vascular segment while simultaneously delivering a therapeutic agent or medicament to the vessel segment.
  • Another object of the invention is to provide a guidewire-based device that can control the release or diffusion of a medicament or therapeutic agent to minimize potential systemic affects and maximize the diffusion or delivery of the medicament or therapeutic agent to the site of treatment while permitting substantially uninterrupted vascular fluid, e.g., blood, flow.
  • Another object of the invention is to provide a device that is not susceptible to structural damage (e.g., balloon rupture) and subsequent release of therapeutic agents or drug materials into the vasculature.
  • BRIEF SUMMARY OF THE INVENTION
  • Briefly, in one aspect, the present invention is guidewire-based methods and apparatuses or devices of delivering drugs/agents to tissue in the body, the drugs/agents having activity, such as anti-proliferative activity, in the vascular, particularly the endovasculature and more particularly, the cardiovascular system. This invention is useable alone or in conjunction with one or more separate device(s) used to treat medical infirmity or disease. The drugs used in this invention are coated onto a distally disposed, therapy delivery portion or expansion member of a guidewire and are released from the device segment or portion where they are deployed in a short time, preferably less than 10 minutes, more preferably less than 5 minutes, and most preferably 60 seconds or less upon member activation. Drug release or delivery is accomplished, in one embodiment, by radial expansion of a drug-delivering or drug-supporting portion or surface, or expansion member attached to and activated by expansion means of the guidewire within the vasculature, e.g., at the vascular blockage site. Methods of releasing the therapy also can include activating a trigger mechanism, or having the physiological conditions in the body e.g., temperature, pH, ionic balance, etc., trigger the drug release. Other methods and techniques for guidewire-based expansion member activation include torsionally-induced radial expansion of the member, hydraulic expansion, electro-mechanical expansion, use of shape memory materials which “remember” an expanded or collapsed state under defined conditions.
  • A method of the present invention comprises contacting the tissue or circulation with a radially-expanding guidewire portion, member, or segment which is coated with a therapeutic drug, agent or biological substance, wherein the agent is released into the circulation or deposited onto the tissues surrounding the device in a short time after the contact (or immediately). The therapeutic agent is then quickly, effectively and efficiently absorbed or taken into the tissue, cells or into circulation. The clear and unambiguous, critically important advantage of the guidewire-based approach taken here relative to other endoluminal or endovascular drug delivery approaches is that use of a guidewire expansion member according to this invention provides a minimal diameter “low profile” therapeutic delivery. In practice of this invention precious radial intraluminal or intravascular space or “real estate” (as it is sometimes called) is not occupied with structures such as balloon layers, catheter bodies, sheaths, and other device structural features. In short, the method/delivery of this invention permits access to smaller, more tightly circuitous luminal structures, e.g., of smaller or more highly occluded vessels. It also permits drug delivery without ischemic/schemic effects such as those caused by, for example, vessel blockage with a balloon.
  • Therapeutic drugs for coating the device include but are not limited to medicines, proteins, adjuvants, lipids and other compounds which ameliorate the tissue or circulation surrounding the device. Additionally, the drug may be encapsulated in particles or controlled release carriers including liposomes, microparticles, and nanoparticles, which are coated upon the device, or bonded to it. Alternatively, the drug may be an aggregate or flocculate of the drug or drug formulation. These drug aggregates are considered a type of particle, as described herein. The therapeutic drug or drug formulation may have sustained anti-proliferative activity and thus a prolonged effect. One example of a group of drugs useful in the present invention to inhibit proliferative activity in the cardiovascular system, specifically smooth muscle cell proliferation, are paclitaxel, sirolimus, everolimus, or ABT-578 biological agents, such as cells and antibodies, could also be used to promote positive tissue growth or inhibit tissue growth or cellular proliferation contributing to or causing restenosis.
  • The terminology “coated,” “coated thereon,” “coated onto the guidewire” and common variations thereof is to be broadly interpreted to mean deposited, adhering, locally disposed as well as actually coated onto the operant surface as in the working or expansion surface of a guidewire or a portion thereof. Those terms are intended to include the full spectrum of possible adherent relationships between e.g., the expansion member, and the drug or agent to be delivered. Those terms also include what is primarily a physical interaction, e.g., a drug delivery expansion member or means with a “roughened” surface. “Roughened” textured or porous surface drug retention and subsequent delivery are known in the stent art.
  • The present invention comprises a substantially cylindrically shaped expansion member deployed by and a part of the distal portion of a guidewire. It includes an expansion means engaged to the expansion member for altering the distance between the proximal end and the distal end of the expansion member thereby transforming the expansion member between a diametrically or radially contracted configuration and a diametrically or radially expanded configuration. A therapeutic agent or medicament can be coated directly onto the expansion member or alternatively, the therapeutic agent or medicament can be incorporated into a polymer or other substrate and then coated on the expansion member.
  • The present method also comprises the steps of advancing the guidewire including its expansion member e.g., an expandable mesh basket or balloon-like structure, to the obstruction in a vessel and applying opposed forces on said expansion member (e.g., on its distal and proximal ends or portions) in an axial direction to move the expansion member to an expanded configuration wherein the expansion member dilates the obstruction and the catheter/expansion member assembly actively (or passively) delivers the therapeutic agent or medicament to the obstruction. Hydraulic, pneumatic, electrical or electro-mechanical actualizations also are contemplated. Generally speaking this means endovascular deposition of a drug or agent adjacent to or upon a vascular blockage or site of medical interest.
  • The present method also comprises the steps of advancing its expansion member of the guidewire to e.g., an obstruction in a vessel and applying opposing or opposed forces on said expansion member in an axial or rotational direction to move the expansion member to an expanded configuration wherein the expansion member dilates the obstruction and the guidewire/expansion member assembly actively (or passively) delivers the therapeutic agent or medicament to the obstruction. Opposing forces as used here includes static force, or simply resistance to application of kinetic (moving) force, static force includes, for example, one end of the expansion member being anchored or attached to a guidewire structure which resists axial or rotational movement causing the expansion member to expand.
  • In yet a further embodiment, the present invention relates to a guidewire having a guidewire expanding member which, in turn has particles dispersed or coated on its surface, each particle encapsulating a therapeutic drug or agent(s), or a combination of therapeutic drugs, having anti-proliferative activity in e.g., the cardiovascular system. The particles may preferably be liposomes, microparticles or nanoparticles. The guidewire expanding member or structure is contacted with surrounding tissue or deployed into circulation such that the therapy is released from the particle and into the surrounding tissue or circulation depending upon the medical problem and/or its treatment.
  • The method of the invention allows the release of drugs or agent and drug or agent formulations from a low profile guidewire structure i.e., a device, that is not permanently implanted in the body. A “low profile” guidewire as that term is used herein is one in which there is no more than about a 10%, preferably less than about 5%, and most preferable less than about 2% variation in diameter a profile from one end of the device to the other. In other words, essentially the only variation in diameter of this device is the thickness of the drug coating thereon when the guidewire is in the unexpanded, vessel navigation state.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows in section a drug delivery guidewire of this invention in navigation to a site of medical interest state.
  • FIG. 2 shows one of the guidewires of FIG. 1 in a drug or agent-deployment or agent delivery state.
  • FIG. 3 is a second embodiment of an expansion member of this invention.
  • FIG. 4 is in part a side view, in part a cross-sectional view through the outer and inner coils and in part a cross-sectional view through the outer coil and a side view of the inner coil of a cable (sometimes called a torque cable) useable in this invention (e.g., as the expansion means or movement mechanism) and a cross-sectional view through a part of a connector or coupling, a number of axial intermediate parts being broken away (U.S. Pat. No. 5,678,296 to Fleischhacker et al describes this torque cable, the entire disclosure of which is incorporated by reference herein).
  • FIG. 5 is a side view of a part of an axial length of a torque cable/expansion means in this invention indicating its flexibility.
  • FIG. 6 is a side view of manually operated medical apparatus that includes a control member, a medical subassembly, and the torque cable coupling or connecting with nearly 1:1 torque transmission the control member and medical subassembly being diagrammatically illustrated.
  • FIGS. 7 and 8 show in section an embodiment of this invention in which a monofilament expansion member is displayed on the distal end, portion or segment of a guidewire.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a method of delivering drug(s), agent(s), cells or biological substances (the term “agent” includes drugs, biological substances, and biologics as those terms are used in their arts) in a target-specific manner, through the use of a drug or therapy-coated guidewire segment, portion or member, which includes drug delivery means and guidewire structure. The claimed method provides a therapy that targets the traumatized area by proximity alone or in combination with a systemic effect i.e. delivery from an exterior surface of a guidewire. A drug of the present invention provides, for example, anti-proliferative therapeutic activity to the cardiovascular system. A drug of this invention generally is effective locally, i.e., at the site of vessel contact, but may have more general systemic effects. A drug deployed by means of the present invention does not require a delayed or long term release and can be used, e.g., to activate anti-proliferative activity immediately upon contact with the cells of the target tissue or circulation. The drug may have sustained anti-proliferative activity and thus, a prolonged effect. The drug is preferably released in less than about or equal to one minute from the time of its initial contact with the tissue or circulation although longer drug release time will often be used depending upon the drug, the specific therapy and related indications and side effects. FIGS. 4 and 5 shown in section an embodiment of this invention in which a monofilament expansion member is used.
  • The drugs or agents coated upon the guidewire surface, e.g., a radially-expanding surface, and thus useful in the present invention are delivered to the target tissue in a short time after the device's initial contact with the targeted tissue or surrounding circulation, i.e., there is a relatively quick release of the drug from the guidewire to the tissue. The drugs which can be used in the present invention provide, in one approach, anti-proliferative activity in the cardiovascular system. Other agents may promote tissue growth to expedite vessel healing, e.g. anti-h-CO54 antibody.
  • In one embodiment, the activity of the drug may be sustained and the drug exhibits a prolonged anti-proliferative effect. Therefore, the drug does not require a delayed or prolonged release and as such, the release can be immediate. Accordingly, the drug may be attached to a working or delivery surface of the device that is not a permanent implant but rather briefly contacts the tissue or circulation. Additionally, due to its sustained effect, the drug may also be encapsulated in a particle which may enhance its uptake by the target tissue or cells.
  • The drugs may be directly applied to the guidewire expansion member in a composite, wherein the drugs are mixed with other reagents, or may be encapsulated within drug release particles such as liposomes, microparticles, nanoparticles, or aggregates of the drug. The particles may include inert polymeric particles, such as, for example, microparticles or nanoparticles. Alternatively, the particles may comprise biologically derived reagents, such as, for example, lipids, sugars, carbohydrates, proteins and the like. Specifically, such particles are release carriers which provide an effective release of the therapeutic agent to the target tissue or cells. The therapeutic agent formulation may be specifically taken up by cells of the white blood-cell lineage, such as macrophages or monocytes. By this means, the drugs are delivered in a target-specific manner, without the need to provide a full dosage of drugs to the entire body through conventional drug delivery routes as discussed above. Indeed, providing the therapeutic agent in a localized manner or to specific cells can avoid the undesired side effects of such large doses. The drug release carriers are preferably biodegradable, so that when they are brought into contact with the target tissue or circulation or when taken into specific cells, the drug or therapeutic agent is quickly released from the carrier, and then the biodegradable carrier is itself, in due time, removed by natural body processes.
  • In one embodiment of the present invention the particles or release carriers include, but are not limited to, semi-synthetic polyacryl starch microparticles, other biodegradable microparticles containing the therapeutic agent, ethyl cellulose, poly-L-lactic acid, heptakis (2,6-di-O-ethyl)-beta-cyclodextrin, polyalkylcyanoacrylate nano capsules, polymethylacrylate, monocarboxycellulose, alginic acid, hyaluronic acid, lipid bilayer beads, polyvinylpyrollidone, polyvinyl alcohol, albumin, lipid carriers of continuous phase (non-microparticle type), nanoparticles, and known agents by those skilled in the art for the release of therapeutic agents. Nanoparticles are preferably spherical or non-spherical polymeric particles that are 30-500 nm in diameter.
  • In a further embodiment of the present invention, the therapeutic agent or drug may be encapsulated within, or form itself, a liposome, colloid, aggregate, particle, flocculate or other such structure known in the art for encapsulation of drugs. The encapsulation material itself may have a known and predetermined rate of biodegradation or bioerosion, such that the rate of release and amount released is a function of the rate of biodegradation or bioerosion of the encapsulation material. Preferably, the encapsulation material should provide a relatively quick release rate.
  • In yet a further embodiment of the present invention, the particles, or release carriers, may be supported within the matrix of a macrostructure. Particles or controlled release carriers, as previously discussed, include, but are not limited to microparticles, nanoparticles, colloids, aggregates, liposomes, particles, or flocculates. Materials used to provide the macrostructure include, but are not limited to, fibrin gels, hydrogels, or glucose. Non-limiting examples of particles supported within a macrostructure include a fibrin gel with colloid suspended within it; a hydrogel with liposomes suspended within it; a polymeric macrostructure with macroaggregated albumin suspended within it; glucose with liposomes suspended within it; or any of the foregoing further including liposomes, flocculants microparticles, nanoparticles, or other particles containing or having dispersed therein a drug or therapeutic agent. In the use of this invention it need not be that the macrostructures nor the particles be entirely bioabsorbed. For example if fibrin or collagen is used to provide the macrostructure, such materials are biodegradable yet can persist in the extracellular matrix for substantial lengths of time.
  • In one embodiment of the invention, the drug or therapeutic agent is encapsulated within liposomes. Liposomes may be submicroscopic, i.e., preferably no greater than 100 nm in size, capsules consisting of a double membrane containing various lipids. One such lipid is a phospholipid, a natural material commonly isolated from soy beans. Liposomes are nontoxic and generally recognized as safe by the FDA. Liposomes can be characterized as a hollow flexible sphere containing an aqueous internal compartment surrounded by an external aqueous compartment. Any material trapped inside the liposome is protected from the external aqueous environment. The lipid bilayer acts as a barrier and limits exchange of materials inside, with materials outside the membrane. Furthermore, the lipid bilayers are hydrophobic and can “entrap” and retain similar types of substances. The rate of release of an encapsulated therapeutic agent or drug from a liposome can be, for example, controlled by varying the fatty acid composition of the phospholipid acyl groups, or by providing elements which are embedded in the lipid bilayers, which specifically allow a controlled and rapid release of the encapsulated drug from the liposomes. In practice, chemical modification of the phospholipid acyl groups is accomplished by either chemically modifying the naturally derived materials, or by selecting the appropriate synthetic phospholipid. The embedded elements in the liposome may be biologically- or bioengineering-derived proteins, polypeptides or other macromolecules to selectively provide pores in the liposome wall.
  • Liposomes are highly advanced assemblages consisting of concentric closed membranes formed by water-insoluble polar lipids. The lipids comprising the membrane may be selected from the group consisting of natural or synthetic phospholipids, mono-, di-, or triacylglycerols, cardiolipin, phosphatidylglycerol, phosphatidic acid, or analogues thereof. Preferably, the liposome formulations are prepared from a mixture of various lipids.
  • The natural phospholipids are typically those from animal and plant sources, such as phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, or phosphatidylinositol. Synthetic phospholipids typically are those having identical fatty acid groups, including, but not limited to, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine and the corresponding synthetic phosphatidylethanolamines and phosphatidylglycerols.
  • Other additives such as cholesterol, glycolipids, fatty acids, sphingolipids, prostaglandins, gangliosides, neobee, niosomes, or any other natural or synthetic amphophiles can also be used in liposome formulations, as is conventionally known for the preparation of liposomes.
  • Stability, rigidity, and permeability of the liposomes are altered by changes in the lipid composition. Membrane fluidity is generally controlled by the composition of the fatty acyl chains of the lipid molecules. The fatty acyl chains can exist in an ordered, rigid state or in a relatively disordered fluid state. Factors affecting rigidity include chain length and degree of saturation of the fatty acyl chains and temperature. Larger chains interact more strongly with each other so fluidity is greater with shorter chains. Saturated chains are more flexible than unsaturated chains. Transition of the membrane from the rigid to the fluid state occurs as the temperature is raised above the “melting temperature”. The melting temperature is a function of the length and degree of unsaturation of the fatty acyl chain. In one embodiment, the liposomes, drug aggregates, microparticles, or nanoparticles are created in a pre-selected size that is preferably taken up by macrophages and monocytes. Thus, the liposomes act within the macrophages to incapacitate them or to inhibit their activity. In a preferred embodiment of the present invention, the liposomes are greater than 100 nm.
  • In addition to temperature and lipid composition, inclusion of a sterol, such as cholesterol, or a charged amphiphile can alter the stability, rigidity and permeability of the liposome by altering the charge on the surface of the liposome and increasing the distance between the lipid bilayers. Proteins and carbohydrates may be incorporated into the liposomes to further modify their properties. (See U.S. Pat. No. 4,921,757 entitled “System for Delayed and Pulsed Release of Biologically Active Substances,” issued May 11, 1990).
  • The therapeutic agent either directly coated upon or encapsulated and suspended upon a guidewire shall be quickly released into the surrounding tissue or circulation of the cardiovascular system once the guidewire has been implanted or reaches the target area.
  • Optionally, it may be desirable to position a porous layer over the layer of therapeutic drug coated upon the guidewire or guidewire portion, in order to protect the therapeutic drug from releasing prematurely from the guidewire, that is, prior to reaching its target tissue or circulation. Additionally, the porous layer may also be positioned over the layer of microparticles or nanoparticles encapsulating the therapeutic drug. If utilized, the porous layer is preferably biodegradable and slowly consumed during the insertion or deployment of the guidewire, but can also be an inert stable layer. The thickness and type of material used to construct the porous layer is chosen based on the type of device, the insertion or deployment method used, and the length of time the device is in contact with body fluids prior to reaching its target tissue or circulation. Thus, various devices and applications require porous layers which degrade at different rates. However, most of the porous layer is preferably dissolved by the time the guidewire reaches its target tissue or circulation in order for the therapeutic agent to be quickly and effectively released.
  • Alternatively, instead of a porous layer deposited over an existing layer of microparticles or nanoparticles, the material of these particles may be selected such that the biodegradation or bioerosion of the encapsulation material occurs at a rate which does not allow the therapeutic agent to be released prematurely.
  • The release profile of the drug from the microparticles or nanoparticles is determined by many factors including the drug solubility and the thickness and porosity of the microcapsules. The microcapsules of the invention may either be rupturable to release their contents or may be degradable such that they will open when left against the lumen walls. Thus, the particles or capsules may release their contents through diffusion or by rupturing due to the application of external forces. The particles or capsules may also be consumed by the phagocytic, chemotactic, and cytotoxic activities of surrounding cells. For example, macrophages are important killer T-cells and by means of antibody-dependent cell-mediated cytotoxicity (ADCC) they are able to kill or damage extracellular targets. Additionally, the drugs may be released by activating a trigger mechanism, or having it activated passively by the physiological conditions.
  • In one embodiment of the invention, the drug-coated guidewire expansion member can be configured as at least one of, or any portion of, a catheter, an angioplasty device, a stent, a vascular or other graft, a cardiac pacemaker lead or lead tip, a cardiac defibrillator lead or lead tip, a heart valve, a suture, a needle, a guidewire, a cannula, a pacemaker, a coronary artery bypass graft (CABG), an abdominal aortic aneurysm device (Triple A device) or an orthopedic device, appliance, implant or replacement. In a further embodiment, the guidewire can also be configured as a combination of portions of any of these devices. The drug may be coated on the entire surface of the medial device or a portion thereof. For example, the entire structure may be coated with a type of therapeutic agent, or only a specific portion, which will contact a target area, may be coated.
  • Reference now is made to the FIGS. 1-2 in which there is shown a guidewire 10. Guidewire 10 has a central core wire 12 which ends in an atraumatic, bulbous or bullet-shaped tip 14. Proximal to tip 14 is (in this embodiment) a radiopaque coil 16. Coil 16 is connected to central core wire 12 and tip 14 e.g., by soldering adhesives or welding. Proximal to coil 16 is an expansion member 18 which in this example is a series of interwound, (e.g. woven), radially expandable drug-coated struts 20. Struts 20 tend to operate as a unit or member so that application of force to the more proximal end 24 of struts at 22 causes the struts to expand radially outward away from the central axis of core wire 12 generally corresponding to a line down the middle of core wire 12, e.g., dashed line 13 in FIG. 1 and toward, e.g., the inside of a vessel. Force is applied to the more proximal end 24 of woven struts 20 by expansion means 26 which in this embodiment is a substantially longitudinally rigid or “stiff” tubular member 28 which is both “pushable” (or steerable) and “torquable” as those terms are used in the art. (See, e.g., FIGS. 7 and 8). Various other mechanisms to cause expansion member 18 to expand radially e.g., proximal application of radial torque to a counter-wound, 1:1 torque-transmissive coil, will readily be appreciated by one skilled in this art in light of this disclosure. Tubular member 28 has an inside diameter which is just sufficiently larger than the outside diameter of core wire 12 so as to slideably engorge therewith. It will be appreciated that tubular member 28 will have substantially the same rigidity and steerability as core wire 12 so as to cooperate therewith while the guidewire 10 is being directed into the vasculature. Application of distally-directed force to tubular member 28 causes expansion member 18 to expand radially and hence to deploy drug or agent (not shown) coated thereon into and onto the endovasculature, its distal end 25 being held in place by the proximal end 27 of radiopaque coil 16.
  • FIG. 1 is generally the configuration of guidewire 10 of this embodiment of the invention during navigation of the guidewire to and through the vessel site to be treated.
  • FIG. 2 shows the configuration of guidewire 10 with expansion member 18 in its expanded or delivery state 18. Proximal retraction of tubular member 28 will cause expansion member 18, i.e., the strut structure, radially to contract so as to return generally to its navigation configuration and for further proximal withdrawal of guidewire 10. During the expanded state, expansion means or member 26 delivers drug or agent to the site of medical interest, the drug or agent being chosen to address the medical issue e.g., blockage, restenosis, inflammation, which makes the deployments site medically of interest. Expansion member 26 may have an inherent tendency or bias to return to its non-expanded, navigation state. Whether an expansion member does or does not have a tendency to return to a smaller diameter will determine how affirmatively tubular member 28 is attached to the proximal end of expansion member 26 as well as to the structure on its distal end.
  • FIG. 3 is a second embodiment of a guidewire expansion member 30 of this invention. Expansion member 30 is a mesh or woven cylindrical structure comprising individual woven or overlapping struts, strands, helices or wires 32. Member 30 has a distal end 34 and a proximal end 36 (physician's frame of reference). Proximal end 36 of mesh expansion member 30 has a shoulder or ridge 38 as does distal end 34 (at 40). In this variation expansion member 30 is attached to expansion means 42 which, as above, is a hollow flexible tubular member. Expansion member 30 is basket-like, bulbous or prolate comprising interwoven strands tending to act like an integrated unit or entity. Expansion member 30 slideably engages guidewire core wire 44. Distal end 34 of mesh structure 32 is affixed to guidewire 42. Application of distal force to tubular member 42 causes mesh structure 32 to expand radially and deliver endovascularly any drug or agent (not shown) disposed thereon. Similarly, the expansion member could be a distal coil, segment, or portion (not shown) that expands and contracts radially as rotational and/or translational force is applied to its proximal end or segment.
  • Referring to FIG. 4, a torque cable useable in this invention, generally designated 410, includes an inner coil M made up of a single layer of multifilar helically wound coil of wires, preferably four wires 411, 412, 413, and 414 that has each convolution (helix) of one wire in contact with the adjacent convolution of two other wires. While a multifilar torque cable is preferred, monofilar coils (i.e., a single helically-wound wire) are also contemplated. The inner coil is wound to be, in a relaxed non-assembled condition, a coil having an inner peripheral diameter W and a coil outer peripheral diameter Z. The cable 410 also includes an outer coil N made up of a single layer of multifilar helically wound coil of wire, preferably four wires 416, 417, 418, and 419 that are wound in the opposite direction from the winding of the inner coil, and likewise has adjacent wire convolutions in contact with one another. The outer coil is wound to in a relaxed non-assembled condition have a coil inner peripheral diameter X and a coil outer peripheral diameter Y. For example the inner coil outer peripheral diameter in a non-(W) assembled condition may be about 0.002″ greater than the outer coil inner peripheral diameter in a non-assembled condition (X). The torque cable discussed herein could also be used with or coupled to tubular member 28 to comprise an expansion means as that term is used herein. The torque cable could also be coupled to a distal coil segment as is discussed in the previous paragraph.
  • In order to assemble the torque cable, the outer coil is partially unwound by applying an unwinding force to increase the coil inner peripheral diameter. Then the inner coil is inserted into the partially unwound outer coil and thence the unwinding force that was applied to the outer coil is released. The axial central part of the outer coil starts to shrink first to form an interference fit with the inner coil and continues to shrink its outer coil diameter toward the outer coil opposite ends whereby there is obtained an interference fit throughout the entire axial length of the cable. All of the helices of each of the coils in the assembled condition of the coils are of substantially the same inner and outer diameters throughout the axial lengths of the coils while the inner and outer coils are of substantially the same axial lengths. That is the helices of each coil are of substantially the same radial spacing from the respective coil central axis C-C.
  • By assembling through partially unwinding the outer coil and allowing it to contract after the inner coil has been inserted, the cable 410 may by made of an outer diameter of about 1/16″ or less and bent through, for example, a circular configuration portion 10 a of a radius of curvature R of, for example about 1″ or/and “S” curved portions 10 b, 10 c radii of curvature such as illustrated in FIG. 5.
  • Referring to FIG. 6, the medical apparatus K includes a cable 610 that has its proximal end portion fixedly attached to an optional manually operated control member H while the distal end portion mounts and couples to a medical subassembly P, the control member and medical subassembly being diagrammatically illustrated. Medical subassembly P, in this embodiment of the invention is e.g., a guidewire expansion member portion, segment, or working surface according to this invention. (Guidewire core wire 612 is shown and designated by broken lines). For example, expansion member P would comprise a woven structure, basket, bulbous member, which when torque was applied to central member H, would be transmitted on a substantially 1:1 basis by counter-wound torque cable 610 to the proximal end 614 of subassembly P and cause the subassembly P (the distal end of subassembly P presumably being anchored e.g., at the guidewire tip (not shown)) to expand radially. Agent coated on subassembly/expansion member P would then be endovascularly delivered either locally or systemically.
  • FIGS. 7 and 8 illustrate in section a further embodiment of the present invention. FIG. 7 depicts the device in its vascular navigation stage while FIG. 8 shows the device in its drug delivery stage.
  • In FIG. 7 the guidewire 40 includes an expansion member 42 which comprises a single helically-wound filament or wire 44. Multi-filar expansion members also could be used.
  • Guidewire 40 comprises a core wire 46 and a radiopaque coil 48. Core wire 46 and radiopaque coil 48 are coupled to each other e.g., by solder, spot weld or adhesive, at distally-extreme, atraumatic tip 50.
  • Expansion member 42 has a distal end or portion 52 and a proximal end or portion 54. As is shown expansion member distal end 52 abuts radiopaque coil 48 at the coil's proximal end 56 and is thereto affixed to core wire 46. Expansion means or torsion mechanism 58 is, in this embodiment, a hypotube segment having an inside diameter which is about the same as, but slightly larger, than the outside diameter of guidewire core wire 46 at its proximal length. Hypotube 58 is substantially longitudinally or torsionally rigid such that proximally applied, torque or distally-directed force (e.g., arrow 60) is efficiently transmitted to expansion member 42 proximal end 54.
  • FIG. 8 shows the guidewire of FIG. 7 as it appears when member 42′ is in the expanded state, e.g., when delivering a drug or agent endovascularly, alone or in conjunction with a luminal opening and expansion of a vessel. Drug or agent (not shown) is or would be coated at least on the outermost segment 62 (only shown in FIG. 8) of filament or wire 44. (Filaments 44 could also be completely coated with drug, agent, or biologic). Expansion member 42′, in this embodiment, is shown to be substantially conical with a slightly distally decreasing, outward diameter. As in the earlier embodiments, expansion member 42, 42′ is disposed along and is collinear with core wire and tapers in parallel with taper 64. Outside segments 62 are shown to be substantially planar. Such a configuration could be obtained e.g., by differential tempering or treating of individual expansion member helices 44. In this manner overall guidewire outside diameter is kept to a minimum even during drug delivery and/or concurrent or separate vessel angioplasty.
  • In a preferred embodiment, a drug-coated or drug bound guidewire, working surface or guidewire portion (usually but not necessarily an expansion member) is utilized to release the therapeutic agents having anti-proliferative activity into the body tissue or circulation.
  • The therapeutic agent, preferably encapsulated in a particle or a controlled release carrier, or aggregated to a desirable/pre-selected size, for efficient uptake by a macrophage, is applied to the surface of the guidewire by coating methods known in the art, including, but not limited to spraying, dipping, rolling, brushing, solvent bonding, adhesives or welding or by binding the microparticle or aggregates to the surface of the guidewire by any chemical method known in the art. Furthermore, if the guidewire has folds, corrugations, cusps, pores, apertures, or the like, the therapeutic agent or particle encapsulating the therapeutic agent may be embedded, i.e., mechanically trapped, within the guidewire without the use of adhesives. In addition to the drug coated on the guidewire, an additional dosage of the therapeutic drug, which inhibits proliferation in the cardiovascular system, may be applied by conventional delivery methods discussed above, (e.g., orally, intravenously) or may be injected through the guidewire. For example, the therapeutic drug may be injected through the guiding catheter via the same method and procedure used to inject the contrast dye commonly used during a PTA. The particles are preferably selected from the group consisting of lipids, microparticles, nanoparticles, or the drug itself in aggregates, flocculates or the like.
  • The therapeutic drugs useful in the present invention preferably inhibit the proliferation of vascular smooth muscle cells. In one embodiment, the therapeutic drugs directly alter smooth muscle cell activity by altering cellular metabolism, inhibiting protein synthesis, or inhibiting microtubule and microfilament formation, thus affecting morphology. The therapeutic drug may also include inhibitors of extracellular matrix synthesis or secretion. Thus, in one embodiment, the methods and dosage forms of the present invention are useful for inhibiting vascular smooth muscle cells by employing a therapeutic agent that inhibits the activity of the cell, i.e. inhibits proliferation, contraction, migration or the like, but does not kill the cell. However, in a further embodiment, the methods and dosage forms of the present invention are useful for inhibiting target cell proliferation by employing a therapeutic agent that is cytotoxic to the cell.
  • The therapeutic agent, may directly or indirectly inhibit the activity of the smooth muscle cells, thus inhibiting or suppressing proliferation of the smooth muscle cells. For example, in one embodiment, the therapeutic agent may directly inhibit the cellular activity of the smooth muscle by inhibiting proliferation, migration, etc. of the smooth muscle cells. In a further embodiment, the therapeutic agent may inhibit the cellular activity of surrounding cells, whose activity initiates, assists or maintains proliferation of smooth muscle cells. Thus, smooth muscle cell proliferation is indirectly inhibited or suppressed by the inhibition or suppression of the metabolic activities of the surrounding cells, whose activities maintain smooth muscle cell proliferation.
  • In a preferred embodiment, the therapeutic drug encapsulated and coated on the guidewire is used for reducing, delaying or eliminating restenosis following angioplasty. Reducing restenosis includes decreasing the thickening of the inner blood vessel lining that result from stimulation of smooth muscle cell proliferation following angioplasty. Delaying restenosis includes delaying the time until onset of visible hyperplasia following angioplasty, and eliminating restenosis following angioplasty includes completely reducing and/or completely delaying hyperplasia to an extent which makes it no longer necessary to intervene. Methods of intervening include re-establishing a suitable blood flow through the vessel by methods such as, for example, repeat angioplasty and/or stent placement, or CABG.
  • One example of a group of drugs useful in the present invention to inhibit proliferative activity in the cardiovascular system, specifically smooth muscle cell proliferation, are bisphosphonates (BP). Bisphosphonates, formerly called diphosphonates, are compounds characterized by two C—P bonds. If the two bonds are located on the same carbon atom (P—C—P) they are termed geminal bisphosphonates. Bisphosphonates indirectly inhibit smooth muscle cell proliferation by metabolically altering surrounding cells, namely macrophages and/or monocytes. Bisphosphonates when encapsulated in liposomes or nanoparticles or aggregated in aggregates of a specific size, are taken-up, by way of phagocytosis, very efficiently by the macrophages and monocytes. Once inside the macrophages, the liposomes are destroyed and release the encapsulated bisphosphonates, which inhibit the activity of the macrophages. Since macrophages, in their normal state, are recruited to the areas traumatized by angioplasty or other intrusive intervention and initiate the proliferation of smooth-muscle cells (SMC), inhibiting the macrophages' activity will inhibit the proliferation of SMC. Once released and taken-up by the macrophages, the bisphosphonates will have a sustained anti-proliferative activity for the lifetime of the macrophages. Thus, prolonged release of the bisphosphonates is not required in order to sustain inhibition. Representative examples of bisphosphonates suitable for use in the present invention are alendronate, clodronate, and pamidronate.
  • In a preferred embodiment of the present invention, the therapeutic drug is encapsulated in relatively large liposomes that are preferably taken up by cells such as monocytes and macrophages. The structure and composition of the liposomes are discussed supra. Additionally, the liposomes may be greater than 100 nanometers in size and contain, for example, a bisphosphonate drug.
  • In one embodiment, the drug, such as, for example, a bisphosphonate may be encapsulated in a liposome and coated upon a suitable guidewire. Coating methods and suitable guidewires are discussed supra. For example, the liposomal bisphosphonates may be coated on a balloon catheter and suspended in a macrostructure such as glucose or gelatin, or chemically bound to the surface. Thereafter, the balloon catheter is effectively maneuvered through the cardiovascular system and to an occlusive site. Once in the proper position, the balloon is inflated into contact with the lumen to be treated. The liposomes, which encapsulate the bisphosphonate therapeutic drugs, are then released from the guidewire and are present in the tissue and in the circulation, ready for uptake by macrophages, locally and systemically.
  • Upon the release of the liposomes into the lumen of the affected area and immediate uptake by the macrophages, restenosis is inhibited. For example, bisphosphonates may prevent monocytes from developing into macrophages by altering their cellular metabolism. Furthermore, the BP may also inhibit cellular activity of macrophages thereby altering their biological function as the central effector and regulatory cell of the inflammatory response. Therefore, while macrophages are recruited to the traumatized area, these cells can not initiate the inflammatory process that turns into restenosis. The release of the Liposomal BP (LBP) can be carried out systemically and/or locally, and is taken-up by macrophages systemically and locally.
  • The therapeutic agent may also promote the growth of smooth muscle cells (c.s. anti-h-CO54 antibody or stem cells), which promotes tissue growth and healing to prevent an inflammatory and/or thrombogenic-based restenosis.
  • In a further embodiment, the guidewire may also carry therapeutic agents, such as, for example, anti-spasmodic, anti-thrombogenic, and anti-platelet agents, antibiotics, steroids, and the like, in conjunction with the anti-proliferative agent, to provide local administration of additional medication.
  • It is to be understood that the embodiments and variations shown and described herein are merely illustrative of the principles of the present invention. Therefore, various adaptations and modifications may be implemented by those skilled in the art without departing from the spirit and scope of the present invention.

Claims (17)

1. A method of delivering an agent to vascular tissue using a guidewire, the method comprising:
contacting the tissue with an agent-delivering surface of a guidewire the surface having an agent disposed thereon; and
permitting the agent to be delivered to the tissue by maintaining contact between the agent-delivery surface and the tissue a sufficient time for agent delivery to occur.
2. A method according to claim 1 wherein the guidewire surface comprises a portion of a guidewire expansion member.
3. A method according to claim 1 wherein the agent is a drug.
4. A method according to claim 1 wherein the agent is a biological substance.
5. A method according to claim 1 wherein contact between the agent-delivery surface and the tissue is maintained for less than or equal to one minute.
6. A method according to claim 1 wherein the agent-delivering surface is the outside surface of a guidewire expansion member.
7. A method according to claim 6 wherein the expansion member comprises a radially-expandable, interwound cooperating series of struts.
8. An agent-delivery guidewire, the guidewire having distal and proximal portions, and a core wire which defines a guidewire axis, the distal portion including an expansion member, the expansion member having an agent coated on an outside surface thereof and being coupled to the core wire.
9. An agent-delivery guidewire according to claim 8 which further includes a proximally located expansion means, said means coupled to said expansion member so that when activated the expansion means causes the expansion member to expand radially outward from the axis of the guidewire.
10. An agent-delivery guidewire according to claim 9 wherein the expansion means in a hypotube which is slideably disposed over the core wire and coupled to the expansion member on its proximal end.
11. A guidewire of claim 10 wherein the expansion member comprises radially expandable interwound struts.
12. An agent-delivery guidewire according to claim 10 wherein the expansion means is a counter-wound coil disposed over the core wire proximal to the expansion member, the counter-wound coil providing approximately 1:1 torque transmission to the proximal end of the expansion member permitting radial expansion of the expansion member by proximal application of radial torque.
13. A guidewire method of endovascular agent delivery comprising the steps of:
advancing a guidewire through a vessel to a site of treatment to which the agent is to be delivered, the guidewire including an expansion member having agent coated thereon;
applying opposing forces to the expansion member to cause it to expand radially outwardly, from the axis of the guidewire to the site of treatment;
permitting the expansion member endovascularly to deliver the agent to the site of treatment by maintaining the expansion member at the site of treatment for a time sufficient to deliver the agent;
removing the opposing forces applied to the expansion member to permit the expansion member to return to its radial dimension during the advancing step withdrawing the guidewire from the vessel.
14. A method according to claim 13 wherein the expansion member is maintained at the site of treatment for less than 5 minutes.
15. A method according to claim 13 wherein the expansion member is maintained at the site of treatment for less than 1 minute.
16. A method according to claim 13 wherein vessel dilation occurs simultaneously with agent delivery by the radial expansion of the expansion member.
17. Guidewire for delivering a medicament to an obstruction within guidewire apparatus, a vascular segment or a body passageway which comprises:
a guidewire having a distal end and a proximal end;
a substantially cylindrical shaped expansion member located on the distal end of the guidewire, the expansion member including first and second ends and comprising a plurality of flexible elongate elements, the flexible elongate elements comprising:
a first set of elements having a first common direction of rotation crossing a second set of elements having a second common direction of rotation opposite to that of the first direction of rotation to form a mesh, the mesh having on its outward most surface an agent coated thereon.
a movement mechanism which causes the expansion member to change configuration between a first configuration wherein the expansion member is characterized by a first diameter and a second configuration wherein the expansion member is characterized by a second diameter, the second diameter being greater than the first diameter.
US12/506,499 2009-07-21 2009-07-21 Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires Abandoned US20110022026A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/506,499 US20110022026A1 (en) 2009-07-21 2009-07-21 Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires
PCT/US2010/042620 WO2011011424A2 (en) 2009-07-21 2010-07-20 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US15/173,754 US20160279392A1 (en) 2009-07-21 2016-06-06 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US16/166,324 US10933224B2 (en) 2009-07-21 2018-10-22 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/506,499 US20110022026A1 (en) 2009-07-21 2009-07-21 Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/173,754 Continuation US20160279392A1 (en) 2009-07-21 2016-06-06 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires

Publications (1)

Publication Number Publication Date
US20110022026A1 true US20110022026A1 (en) 2011-01-27

Family

ID=43497944

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/506,499 Abandoned US20110022026A1 (en) 2009-07-21 2009-07-21 Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires
US15/173,754 Abandoned US20160279392A1 (en) 2009-07-21 2016-06-06 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US16/166,324 Active 2030-01-13 US10933224B2 (en) 2009-07-21 2018-10-22 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/173,754 Abandoned US20160279392A1 (en) 2009-07-21 2016-06-06 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US16/166,324 Active 2030-01-13 US10933224B2 (en) 2009-07-21 2018-10-22 Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires

Country Status (2)

Country Link
US (3) US20110022026A1 (en)
WO (1) WO2011011424A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9703184B2 (en) 2011-08-12 2017-07-11 Seiko Epson Corporation Dimmer and projector
US10398579B2 (en) * 2016-01-22 2019-09-03 Regents Of The University Of Minnesota Catheter system with guidewire compartmentalization
US10548489B2 (en) 2014-10-31 2020-02-04 Lake Region Medical, Inc. Fiber Bragg grating multi-point pressure sensing guidewire with birefringent component
US11141261B2 (en) * 2016-09-05 2021-10-12 Jacob Schneiderman Method and device for localized intravascular therapy
US11759214B2 (en) * 2019-05-23 2023-09-19 Cervos Medical Llc Flexible cannula with double helix spring coil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142901A1 (en) * 2014-03-17 2015-09-24 Ip Med, Inc. Applicator for antiseptic or medications

Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838857A (en) * 1985-05-29 1989-06-13 Becton, Dickinson And Company Medical infusion device
US4903826A (en) * 1988-02-09 1990-02-27 EMS Medical Group Ltd., Unit 3 Dispenser for surgical guidewire
US4921757A (en) * 1985-04-26 1990-05-01 Massachusetts Institute Of Technology System for delayed and pulsed release of biologically active substances
US4936832A (en) * 1986-11-24 1990-06-26 Vaillancourt Vincent L Ambulatory disposable infusion delivery system
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5265622A (en) * 1990-10-25 1993-11-30 C. R. Bard, Inc. Guidewire having radially expandable member and method for guiding and advancing a catheter using the same
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5409455A (en) * 1993-07-09 1995-04-25 Scimed Life Systems, Inc. Vascular navigation and visualization assist device
US5421826A (en) * 1992-04-29 1995-06-06 Cardiovascular Dynamics, Inc. Drug delivery and dilatation catheter having a reinforced perfusion lumen
US5523092A (en) * 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5540707A (en) * 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5569197A (en) * 1994-12-21 1996-10-29 Schneider (Usa) Inc Drug delivery guidewire
US5571086A (en) * 1992-11-02 1996-11-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5603694A (en) * 1995-10-17 1997-02-18 Brown; Joe E. Infusion coil apparatus and method for delivering fluid-based agents intravascularly
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5681281A (en) * 1995-07-10 1997-10-28 Interventional Technologies, Inc. Catheter with fluid medication injectors
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US5718711A (en) * 1992-11-18 1998-02-17 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using them
US5772629A (en) * 1995-10-23 1998-06-30 Localmed, Inc. Localized intravascular delivery of TFPI for inhibition of restenosis in recanalized blood vessels
US5776100A (en) * 1995-09-27 1998-07-07 Interventional Innovations Corporation Nickel titanium guide wires for occlusion and drug delivery
US5779673A (en) * 1995-06-26 1998-07-14 Focal, Inc. Devices and methods for application of intraluminal photopolymerized gels
US5795318A (en) * 1993-04-30 1998-08-18 Scimed Life Systems, Inc. Method for delivering drugs to a vascular site
US5800408A (en) * 1996-11-08 1998-09-01 Micro Therapeutics, Inc. Infusion device for distributing infusate along an elongated infusion segment
US5873852A (en) * 1995-07-10 1999-02-23 Interventional Technologies Device for injecting fluid into a wall of a blood vessel
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US5928203A (en) * 1997-10-01 1999-07-27 Boston Scientific Corporation Medical fluid infusion and aspiration
US5997487A (en) * 1995-10-11 1999-12-07 Micro Therapeutics, Inc. Infusion wire having fixed core wire
US6053900A (en) * 1996-02-16 2000-04-25 Brown; Joe E. Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US6060454A (en) * 1997-08-08 2000-05-09 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6077256A (en) * 1998-10-06 2000-06-20 Mann; Michael J. Delivery of a composition to the lung
US6102904A (en) * 1995-07-10 2000-08-15 Interventional Technologies, Inc. Device for injecting fluid into a wall of a blood vessel
US6102903A (en) * 1995-12-14 2000-08-15 Medtronics, Inc. Device and method for selectively delivering fluid into an anatomical lumen
US6152141A (en) * 1994-07-28 2000-11-28 Heartport, Inc. Method for delivery of therapeutic agents to the heart
US6183461B1 (en) * 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6347247B1 (en) * 1998-05-08 2002-02-12 Genetronics Inc. Electrically induced vessel vasodilation
US6369039B1 (en) * 1998-06-30 2002-04-09 Scimed Life Sytems, Inc. High efficiency local drug delivery
US6379373B1 (en) * 1998-08-14 2002-04-30 Confluent Surgical, Inc. Methods and apparatus for intraluminal deposition of hydrogels
US6398758B1 (en) * 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US6436091B1 (en) * 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
US6485500B1 (en) * 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US6514236B1 (en) * 1999-04-23 2003-02-04 Alexander A. Stratienko Method for treating a cardiovascular condition
US6537241B1 (en) * 1997-08-08 2003-03-25 Twin Star Medical, Inc. System and method for site specific therapy
US6569147B1 (en) * 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US20030100887A1 (en) * 2001-11-29 2003-05-29 Neal Scott Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US6602241B2 (en) * 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US6635027B1 (en) * 1997-05-19 2003-10-21 Micro Therepeutics, Inc. Method and apparatus for intramural delivery of a substance
US6645176B1 (en) * 2000-04-28 2003-11-11 Medtronic, Inc. Spring loaded implantable drug infusion device
US6692458B2 (en) * 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6740331B1 (en) * 2000-08-25 2004-05-25 Global Gene Therapies, Inc. Apparatus for the delivery of drugs or gene therapy into a patient's vasculature and methods of use
US20040220511A1 (en) * 2003-04-29 2004-11-04 Neal Scott Polymer coated device for electrically mediated drug delivery
US20040260333A1 (en) * 1997-11-12 2004-12-23 Dubrul William R. Medical device and method
US20050085847A1 (en) * 2003-07-22 2005-04-21 Galdonik Jason A. Fiber based embolism protection device
US6890295B2 (en) * 2002-10-31 2005-05-10 Medtronic, Inc. Anatomical space access tools and methods
US6918869B2 (en) * 2002-12-02 2005-07-19 Scimed Life Systems System for administering a combination of therapies to a body lumen
US6951557B2 (en) * 1997-11-04 2005-10-04 Boston Scientific Scimed, Inc. Percutaneous myocardial revascularization device and method
US20050251246A1 (en) * 1998-04-27 2005-11-10 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US20060004323A1 (en) * 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US6997947B2 (en) * 1999-07-28 2006-02-14 Boston Scientific Scimed, Inc. Multi-property nitinol by heat treatment
US7059330B1 (en) * 1995-10-13 2006-06-13 Medtronic Vascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US7166280B2 (en) * 2000-04-06 2007-01-23 Franco Wayne P Combination growth factor therapy and cell therapy for treatment of acute and chronic heart disease
US7191018B2 (en) * 1998-04-30 2007-03-13 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or brain
US7232425B2 (en) * 2001-03-02 2007-06-19 Sorenson Development, Inc. Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication
US20070198048A1 (en) * 2005-12-23 2007-08-23 Niall Behan Medical device suitable for treating reflux from a stomach to an oesophagus
US7357794B2 (en) * 2002-01-17 2008-04-15 Medtronic Vascular, Inc. Devices, systems and methods for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US20080125634A1 (en) * 2006-06-14 2008-05-29 Cornova, Inc. Method and apparatus for identifying and treating myocardial infarction
US7473242B2 (en) * 2003-04-30 2009-01-06 Medtronic Vascular, Inc. Method and systems for treating vulnerable plaque
US20090076448A1 (en) * 2007-09-17 2009-03-19 Consigny Paul M Methods and devices for eluting agents to a vessel
US7519417B2 (en) * 2003-02-12 2009-04-14 University Of Virginia Patent Foundation Quantitative fetal heart rate and cardiotocographic monitoring system and related method thereof
US7519338B2 (en) * 2004-09-13 2009-04-14 Rohde & Schwarz Gmbh & Co. Kg Apparatus and method for pulse measurement

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108595A (en) * 1960-08-08 1963-10-29 Alfred P Overment Retention catheter
US3568659A (en) * 1968-09-24 1971-03-09 James N Karnegis Disposable percutaneous intracardiac pump and method of pumping blood
DE3532653C2 (en) * 1985-09-13 1993-10-21 Martin Kaltenbach Dilatation catheter
US4846174A (en) * 1986-08-08 1989-07-11 Scimed Life Systems, Inc. Angioplasty dilating guide wire
US4793350A (en) * 1987-01-06 1988-12-27 Advanced Cardiovascular Systems, Inc. Liquid filled low profile dilatation catheter
US5002560A (en) * 1989-09-08 1991-03-26 Advanced Cardiovascular Systems, Inc. Expandable cage catheter with a rotatable guide
US5766192A (en) * 1995-10-20 1998-06-16 Zacca; Nadim M. Atherectomy, angioplasty and stent method and apparatus
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
DE60128207T2 (en) * 2000-02-01 2008-01-10 Harold D. Minneapolis Kletschka ANGIOPLASTIEVORRICHTUNNG
US6881194B2 (en) * 2001-03-21 2005-04-19 Asahi Intec Co., Ltd. Wire-stranded medical hollow tube, and a medical guide wire
US20050182437A1 (en) * 2001-11-06 2005-08-18 Bonnette Michael J. Guidewire assembly including a repeatably inflatable occlusive balloon on a guidewire ensheathed with a spiral coil
US7118539B2 (en) * 2002-02-26 2006-10-10 Scimed Life Systems, Inc. Articulating guide wire for embolic protection and methods of use
AU2005332044B2 (en) * 2005-05-25 2012-01-19 Covidien Lp System and method for delivering and deploying and occluding device within a vessel
US8273101B2 (en) * 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9119651B2 (en) * 2006-02-13 2015-09-01 Retro Vascular, Inc. Recanalizing occluded vessels using controlled antegrade and retrograde tracking
KR100735838B1 (en) * 2006-07-31 2007-07-04 삼성전자주식회사 Method for forming integrated circuit module and integrated circuit module therefore
WO2008027375A2 (en) * 2006-08-31 2008-03-06 Cook Incorporated Rotationally actuated fixation mechanism
US20080237028A1 (en) * 2006-09-05 2008-10-02 Hanoch Kislev Nucleation in liquid, methods of use thereof and methods of generation thereof
US8425459B2 (en) * 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US8234558B2 (en) * 2007-06-22 2012-07-31 Apple Inc. Adaptive artwork for bandwidth- and/or memory-limited devices
EP2195071A1 (en) * 2007-09-06 2010-06-16 Boston Scientific Scimed, Inc. Methods and devices for local therapeutic agent delivery to heart valves

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921757A (en) * 1985-04-26 1990-05-01 Massachusetts Institute Of Technology System for delayed and pulsed release of biologically active substances
US4838857A (en) * 1985-05-29 1989-06-13 Becton, Dickinson And Company Medical infusion device
US4936832A (en) * 1986-11-24 1990-06-26 Vaillancourt Vincent L Ambulatory disposable infusion delivery system
US4903826A (en) * 1988-02-09 1990-02-27 EMS Medical Group Ltd., Unit 3 Dispenser for surgical guidewire
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5265622A (en) * 1990-10-25 1993-11-30 C. R. Bard, Inc. Guidewire having radially expandable member and method for guiding and advancing a catheter using the same
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5954706A (en) * 1990-12-28 1999-09-21 Boston Scientific Corporation Drug delivery
US5421826A (en) * 1992-04-29 1995-06-06 Cardiovascular Dynamics, Inc. Drug delivery and dilatation catheter having a reinforced perfusion lumen
US5855563A (en) * 1992-11-02 1999-01-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5571086A (en) * 1992-11-02 1996-11-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5540707A (en) * 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5718711A (en) * 1992-11-18 1998-02-17 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using them
US5523092A (en) * 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5709874A (en) * 1993-04-14 1998-01-20 Emory University Device for local drug delivery and methods for using the same
US5795318A (en) * 1993-04-30 1998-08-18 Scimed Life Systems, Inc. Method for delivering drugs to a vascular site
US5409455A (en) * 1993-07-09 1995-04-25 Scimed Life Systems, Inc. Vascular navigation and visualization assist device
US6152141A (en) * 1994-07-28 2000-11-28 Heartport, Inc. Method for delivery of therapeutic agents to the heart
US5569197A (en) * 1994-12-21 1996-10-29 Schneider (Usa) Inc Drug delivery guidewire
US5779673A (en) * 1995-06-26 1998-07-14 Focal, Inc. Devices and methods for application of intraluminal photopolymerized gels
US6102904A (en) * 1995-07-10 2000-08-15 Interventional Technologies, Inc. Device for injecting fluid into a wall of a blood vessel
US5746716A (en) * 1995-07-10 1998-05-05 Interventional Technologies Inc. Catheter for injecting fluid medication into an arterial wall
US5681281A (en) * 1995-07-10 1997-10-28 Interventional Technologies, Inc. Catheter with fluid medication injectors
US5873852A (en) * 1995-07-10 1999-02-23 Interventional Technologies Device for injecting fluid into a wall of a blood vessel
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US5776100A (en) * 1995-09-27 1998-07-07 Interventional Innovations Corporation Nickel titanium guide wires for occlusion and drug delivery
US5997487A (en) * 1995-10-11 1999-12-07 Micro Therapeutics, Inc. Infusion wire having fixed core wire
US7059330B1 (en) * 1995-10-13 2006-06-13 Medtronic Vascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5603694A (en) * 1995-10-17 1997-02-18 Brown; Joe E. Infusion coil apparatus and method for delivering fluid-based agents intravascularly
US5772629A (en) * 1995-10-23 1998-06-30 Localmed, Inc. Localized intravascular delivery of TFPI for inhibition of restenosis in recanalized blood vessels
US6102903A (en) * 1995-12-14 2000-08-15 Medtronics, Inc. Device and method for selectively delivering fluid into an anatomical lumen
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US6053900A (en) * 1996-02-16 2000-04-25 Brown; Joe E. Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US6569147B1 (en) * 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US6685648B2 (en) * 1996-10-11 2004-02-03 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US5800408A (en) * 1996-11-08 1998-09-01 Micro Therapeutics, Inc. Infusion device for distributing infusate along an elongated infusion segment
US6635027B1 (en) * 1997-05-19 2003-10-21 Micro Therepeutics, Inc. Method and apparatus for intramural delivery of a substance
US6127410A (en) * 1997-08-08 2000-10-03 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6060454A (en) * 1997-08-08 2000-05-09 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6537241B1 (en) * 1997-08-08 2003-03-25 Twin Star Medical, Inc. System and method for site specific therapy
US6120483A (en) * 1997-10-01 2000-09-19 Boston Scientific Corporation Medical fluid infusion and aspiration
US5928203A (en) * 1997-10-01 1999-07-27 Boston Scientific Corporation Medical fluid infusion and aspiration
US6436077B1 (en) * 1997-10-01 2002-08-20 Boston Scientific Corporation Medical fluid infusion and aspiration
US6951557B2 (en) * 1997-11-04 2005-10-04 Boston Scientific Scimed, Inc. Percutaneous myocardial revascularization device and method
US20040260333A1 (en) * 1997-11-12 2004-12-23 Dubrul William R. Medical device and method
US6183461B1 (en) * 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication
US20050251246A1 (en) * 1998-04-27 2005-11-10 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US7191018B2 (en) * 1998-04-30 2007-03-13 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or brain
US6347247B1 (en) * 1998-05-08 2002-02-12 Genetronics Inc. Electrically induced vessel vasodilation
US6369039B1 (en) * 1998-06-30 2002-04-09 Scimed Life Sytems, Inc. High efficiency local drug delivery
US6379373B1 (en) * 1998-08-14 2002-04-30 Confluent Surgical, Inc. Methods and apparatus for intraluminal deposition of hydrogels
US6077256A (en) * 1998-10-06 2000-06-20 Mann; Michael J. Delivery of a composition to the lung
US6398758B1 (en) * 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US6514236B1 (en) * 1999-04-23 2003-02-04 Alexander A. Stratienko Method for treating a cardiovascular condition
US6997947B2 (en) * 1999-07-28 2006-02-14 Boston Scientific Scimed, Inc. Multi-property nitinol by heat treatment
US6436091B1 (en) * 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
US6485500B1 (en) * 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US7166280B2 (en) * 2000-04-06 2007-01-23 Franco Wayne P Combination growth factor therapy and cell therapy for treatment of acute and chronic heart disease
US6645176B1 (en) * 2000-04-28 2003-11-11 Medtronic, Inc. Spring loaded implantable drug infusion device
US6740331B1 (en) * 2000-08-25 2004-05-25 Global Gene Therapies, Inc. Apparatus for the delivery of drugs or gene therapy into a patient's vasculature and methods of use
US6692458B2 (en) * 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US6602241B2 (en) * 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US7232425B2 (en) * 2001-03-02 2007-06-19 Sorenson Development, Inc. Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication
US20050043680A1 (en) * 2001-11-29 2005-02-24 Jerome Segal Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US20030100887A1 (en) * 2001-11-29 2003-05-29 Neal Scott Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US7488313B2 (en) * 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US7488314B2 (en) * 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US7357794B2 (en) * 2002-01-17 2008-04-15 Medtronic Vascular, Inc. Devices, systems and methods for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US6890295B2 (en) * 2002-10-31 2005-05-10 Medtronic, Inc. Anatomical space access tools and methods
US6918869B2 (en) * 2002-12-02 2005-07-19 Scimed Life Systems System for administering a combination of therapies to a body lumen
US7519417B2 (en) * 2003-02-12 2009-04-14 University Of Virginia Patent Foundation Quantitative fetal heart rate and cardiotocographic monitoring system and related method thereof
US7517342B2 (en) * 2003-04-29 2009-04-14 Boston Scientific Scimed, Inc. Polymer coated device for electrically medicated drug delivery
US20040220511A1 (en) * 2003-04-29 2004-11-04 Neal Scott Polymer coated device for electrically mediated drug delivery
US7473242B2 (en) * 2003-04-30 2009-01-06 Medtronic Vascular, Inc. Method and systems for treating vulnerable plaque
US20050085847A1 (en) * 2003-07-22 2005-04-21 Galdonik Jason A. Fiber based embolism protection device
US20060004323A1 (en) * 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7519338B2 (en) * 2004-09-13 2009-04-14 Rohde & Schwarz Gmbh & Co. Kg Apparatus and method for pulse measurement
US20070198048A1 (en) * 2005-12-23 2007-08-23 Niall Behan Medical device suitable for treating reflux from a stomach to an oesophagus
US20080125634A1 (en) * 2006-06-14 2008-05-29 Cornova, Inc. Method and apparatus for identifying and treating myocardial infarction
US20090076448A1 (en) * 2007-09-17 2009-03-19 Consigny Paul M Methods and devices for eluting agents to a vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9703184B2 (en) 2011-08-12 2017-07-11 Seiko Epson Corporation Dimmer and projector
US10548489B2 (en) 2014-10-31 2020-02-04 Lake Region Medical, Inc. Fiber Bragg grating multi-point pressure sensing guidewire with birefringent component
US11291376B2 (en) 2014-10-31 2022-04-05 Lake Region Manufacturing, Inc. Fiber bragg grating multi-point pressure sensing guidewire with birefringent component
US10398579B2 (en) * 2016-01-22 2019-09-03 Regents Of The University Of Minnesota Catheter system with guidewire compartmentalization
US11141261B2 (en) * 2016-09-05 2021-10-12 Jacob Schneiderman Method and device for localized intravascular therapy
US11759214B2 (en) * 2019-05-23 2023-09-19 Cervos Medical Llc Flexible cannula with double helix spring coil

Also Published As

Publication number Publication date
US20190054278A1 (en) 2019-02-21
WO2011011424A3 (en) 2011-04-28
US10933224B2 (en) 2021-03-02
US20160279392A1 (en) 2016-09-29
WO2011011424A2 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US10933224B2 (en) Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US20030064965A1 (en) Method of delivering drugs to a tissue using drug-coated medical devices
JP6793147B2 (en) Devices and methods for treating aneurysms
JP4502812B2 (en) Medical device for administering pharmaceuticals
EP1362603B1 (en) Coated stent for release of active agents
AU2003277023B2 (en) Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
US6833004B2 (en) Stent
US8016880B2 (en) Stent having spiral channel for drug delivery
JP6134984B2 (en) Implant having non-woven fabric
WO2005027996A2 (en) Application of a therapeutic substance to a tissue location using an expandable medical device
WO2008024621A1 (en) Systems for local bioactive material delivery
US20130302381A1 (en) Implantable Medical Devices Including a Water-Insoluble Therapeutic Agent
US10751204B2 (en) Drug-eluting stent formed from a deformable hollow strut for a customizable elution rate
US20100234934A1 (en) Balloon Deployable Coronary Stent
CN117224281A (en) Vascular stent for promoting drug absorption
JP2004329426A (en) Stent

Legal Events

Date Code Title Description
AS Assignment

Owner name: LAKE REGION MANUFACTURING, INC. D/B/A LAKE REGION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SORENSEN, ERIK;SENN, ANDREW;SIGNING DATES FROM 20090728 TO 20090810;REEL/FRAME:023325/0415

AS Assignment

Owner name: GOLDMAN SACHS BANK USA, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ACCELLENT INC.;MEDSOURCE TECHNOLOGIES, NEWTON INC.;MEDSOURCE TECHNOLOGIES, LLC;AND OTHERS;REEL/FRAME:032446/0349

Effective date: 20140312

Owner name: UBS AG, STAMFORD BRANCH, AS THE COLLATERAL AGENT,

Free format text: SECURITY INTEREST;ASSIGNORS:ACCELLENT INC.;MEDSOURCE TECHNOLOGIES, NEWTON INC.;MEDSOURCE TECHNOLOGIES, LLC;AND OTHERS;REEL/FRAME:032443/0341

Effective date: 20140312

AS Assignment

Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:SPECTRUM MANUFACTURING, INC.;MEDSOURCE TECHNOLOGIES, NEWTOWN INC.;UTI HOLDINGS, LLC;AND OTHERS;REEL/FRAME:036980/0115

Effective date: 20151027

AS Assignment

Owner name: UTI HOLDINGS, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: PORTLYN, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: UTI HOLDINGS, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: MEDSOURCE TRENTON LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: NOBLE-MET LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: THERMAT ACQUISITION, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: LAKE REGION MANUFACTURING, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES, NEWTON INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: LAKE REGION MANUFACTURING, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: THERMAT ACQUISITION, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: PORTLYN, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: MEDSOURCE TRENTON LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: SPECTRUM MANUFACTURING, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES, NEWTON INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: LAKE REGION MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MASSACHUS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., MASSACHUS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: LAKE REGION MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:036991/0752

Effective date: 20151027

Owner name: NOBLE-MET LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: MEDSOURCE TECHNOLOGIES, LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

Owner name: SPECTRUM MANUFACTURING, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:036991/0839

Effective date: 20151027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MEDSOURCE TECHNOLOGIES PITTSBURGH, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: LAKE REGIONAL MANUFACTURING, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: LAKE REGION MEDICAL, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: MEDSOURCE TECHNOLOGIES, LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: MEDSOURCE TRENTON LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: NOBLE-MET LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: UTI HOLDINGS, LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: MEDSOURCE TECHNOLOGIES, NEWTON INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903

Owner name: SPECTRUM MANUFACTURING, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058649/0616

Effective date: 20210903