US20110191028A1 - Measurement devices with memory tags and methods thereof - Google Patents

Measurement devices with memory tags and methods thereof Download PDF

Info

Publication number
US20110191028A1
US20110191028A1 US12/816,457 US81645710A US2011191028A1 US 20110191028 A1 US20110191028 A1 US 20110191028A1 US 81645710 A US81645710 A US 81645710A US 2011191028 A1 US2011191028 A1 US 2011191028A1
Authority
US
United States
Prior art keywords
measurement device
memory
downhole
downhole measurement
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/816,457
Inventor
Donald W. Ross
Stephen W. Pride
Ian Raw
Emmanuel Balster
Svein Kvernstuen
Rune Gimre
Petrus Gerardus Jacobus Butter
Robert Brent Brough
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US12/816,457 priority Critical patent/US20110191028A1/en
Assigned to SCHLUMBERBER TECHNOLOGY CORPORATION reassignment SCHLUMBERBER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALSTER, EMMANUEL, GIMRE, RUNE, PRIDE, STEPHEN W., ROSS, DONALD W., BUTTER, PETRUS GERARDUS JACOBUS, RAW, IAN, BROUGH, ROBERT B., KVERNSTUEN, SVEIN
Priority to PCT/US2011/021453 priority patent/WO2011097063A2/en
Publication of US20110191028A1 publication Critical patent/US20110191028A1/en
Priority to NO20120833A priority patent/NO20120833A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like

Definitions

  • the invention relates generally to the measurements of wellbore conditions in downhole applications, and more particularly to the use of well-monitoring systems that record downhole data and communicates that data to the surface of a well system.
  • downhole data such as pressure, temperature, flow and other fluid or reservoir properties.
  • These measurements may be obtained by various sensing devices, either using permanent completion deployed sensors or intervention based logging tools on an episodic basis. These sensors may provide key data to enable development of fields, managing and exploiting reserves in place to maximize production and recovery. Challenges exist where the wells or reservoirs become difficult to reach with permanent completion sensors because of multiple stages in the well. In addition, downhole sensors that are installed will fail over time and intervention-based solutions are very costly, especially on small platforms or subsea wells.
  • permanent downhole gauges or sensors may be not installed as part of the completion for many reasons, e.g. cost, geometrical compatibility, reliability, and temperature of the well to name a few.
  • legal (regulatory) or reservoir requirement may demand data from wells at some stage of operations. These data may be obtained with memory gauges or logging tools coupled with various sensors that are configured to report on the performance of a well.
  • data needed to meet these legal or regulatory requirements may be obtained, for example, using slickline memory gauges deployed in a well for a period of time, and then retrieved to download the data.
  • another solution is to use retrofit technology to deploy sensors on slickline, wireline and or coiled tubing into the well.
  • obtaining measurements from a new lateral section in an existing well may pose a difficult task for intervention logging tools.
  • the tools may have a difficult time entering the new lateral section in order to obtain reservoir and/or production measurements.
  • a new completion of a much smaller diameter may be run through the existing upper completion.
  • this new completion may not be tied back or coupled to the surface infrastructure.
  • a downhole measurement device in accordance with one embodiment of the invention includes one or more sensors configured to measure a parameter in a well; a plurality of memory tags for storing measurement data from the one or more sensors, wherein the plurality of memory tags are configured to be carried by a fluid flow uphole; and an ejection module configured to release one of the plurality of memory tags upon a predetermined condition.
  • a method in accordance with one embodiment of the invention includes: deploying of a downhole measurement device having one or more sensors and a plurality of memory tags, wherein the deploying is by allowing the downhole measurement device to be carried by a fluid into the wellbore; obtaining measurement data of the parameter using the one or more sensors; writing the measurement data to one of the plurality of memory tags; releasing the memory tag having the measurement data; allowing the memory tag having the measurement data to be carried by a flow in the wellbore uphole; reading the measurement data from the memory tag having the measurement data at a location remote from the downhole measurement device.
  • FIG. 1 shows a schematic of a prior art well monitoring system having a sensor in a wellbore.
  • FIG. 2 shows a schematic of a measurement device according to one embodiment of the invention.
  • FIG. 3 shows a schematic of a measurement device engaged in a completion nipple or other profile, according to one embodiment of the invention.
  • FIG. 4 shows a schematic of multiple measurement devices deployed in a wellbore according to one embodiment of the invention.
  • FIG. 5 shows a schematic of a self-propelled measurement device according to one embodiment of the invention.
  • FIG. 6 shows a flow chart illustrating a method for monitoring and collecting well parameters by using a downhole measurement device according to one embodiment of the invention.
  • Embodiments of the invention relate to methods and systems for measurements of well conditions or parameters using sensor devices deployed from the surface. Methods and systems of the invention are particularly useful when laterals or multi-laterals are developed to reach new production zones. In such laterals or multi-laterals, permanent sensors are often not installed due to technical difficulties. Using embodiments of the invention, well conditions and parameters may be monitored without permanently installed sensors.
  • memory tag is used to mean an electronic chip that has a memory for storing data. Any memory tag suitable for storing information may be used with embodiments of the invention, such as RFID tags.
  • a memory tag may further include an antenna coil and a power supply circuit such that in use the memory tag may be powered by inductive coupling.
  • a memory tag may also have a sensor for the receipt of transmitted signals, a processor for processing the received input signals, and a modulation circuit for the overlay of output signals onto the power supply circuit.
  • a read/write device may be used to communicate with a memory tag. The read/write device may have a signal generator, an antenna coil and a power supply circuit for powering the memory tag by inductive coupling.
  • the read/write device may further include a light emitter for emission of a light carrying the input signals to the memory tag, and a demodulation circuit for retrieval of the output signals from the inductive coupling.
  • the term “sensor” is used to mean any device for measuring various properties in the well, such as pressure, fluid flow rates, temperatures, vibration, composition, fluid flow regime, and fluid holdup.
  • FIG. 1 shows an example of a sensor installed in a wellbore, as disclosed in U.S. Pat. No. 7,140,434, issued to Chouzenoux et al. As showed in FIG. 1 , a sensor is installed in an underground well having a production tubing 38 therein.
  • the sensor comprises a sensor body 11 that can be installed in a hole formed in the casing 18 so as to extend between the inside and outside of the casing 18 ; sensor elements located within the body and capable of sensing properties of an underground formation 10 surrounding the well; and communication elements 66 located within the body and capable of communicating information between the sensor elements and a communication device 68 in the well; wherein the sensor body 11 also includes a portion that can be sealed to the casing or tubing to prevent fluid communication between the inside and the outside of the casing 18 through the hole when the sensor body is installed therein.
  • the sensors can include pressure, temperature, resistivity, conductivity, stress, strain, pH and chemical composition sensors.
  • a permanent or fixed completion deployed sensors or through intervention based logging tools are conventionally used. Some measurement tools may be installed in the well permanently for long term monitoring, while others are run into the well during an intervention to obtain temporary measurements.
  • Embodiments of the invention provide more convenient approaches to monitoring and measuring well conditions, especially for wells (e.g., new laterals or multi-laterals) where deployment of permanent sensors with completion tubing is impractical.
  • a measurement device in accordance with embodiments of the invention may include a chamber housing memory tags (e.g., RFID tags) and an ejection mechanism (which may be an electrical, hydraulic, or mechanical ejection mechanism) to eject or release those data-containing tags into the flow.
  • ejection mechanism which may be an electrical, hydraulic, or mechanical ejection mechanism
  • sensors e.g., pressure and/or temperature sensors
  • some other sensing devices for measuring downhole conditions.
  • the devices After the sensors make measurements, the devices then write (record) the measured data onto one or more memory tags. Such measurements and recordings may occur, for example, at a predetermined time or under a preset condition.
  • the device may eject or release the memory tag (e.g., an RFID tag), e.g., from an ejection carrier, whereby the tags are carried toward the surface with the flow of oil and/or gas.
  • the memory tags may pass a reader located either on the surface or along the flow line. The reader may automatically upload the acquired data and send the data to surface. This process may take place continuously until the memory tags have been exhausted in the device or the batteries have been expended, whereupon another device may be sent downhole to continue the process.
  • Event logic can also be built into the devices.
  • the event logic may be programmed to obtain high frequency data when a change in production occurs, automatically eject the memory tag (e.g., RFID tag) upon stabilization of the event, and then go back to the original logic. This process may be referred to as delta event management.
  • the sensors and/or event logic components may be MEMS (microelectromechanical systems) or SOI (silicon-on-insulator) devices.
  • MEMS microelectromechanical systems
  • SOI silicon-on-insulator
  • the number of logging of events can essentially be unlimited.
  • Some embodiments of the device may be self-programmable or able to be trained.
  • FIG. 2 through FIG. 5 Some embodiments of the invention are illustrated in FIG. 2 through FIG. 5 .
  • the illustrations are meant to demonstrate how a well measurement device may be shaped, how the various components may fit inside the device, or how the device(s) may be placed in a well or a lateral.
  • One skilled in the art would appreciate that these are for illustration only and are not meant to limit the scope of the invention.
  • FIG. 2 shows an exemplary measurement device in accordance with one embodiment of the invention.
  • a device may be used as a retrievable retrofit measurement device deployed in tubing or casing.
  • the measurement device 200 may be in the form of a flow through plug 202 , which includes a hallow channel allowing fluids to flow therethrough.
  • a flow through plug 202 may be deployed to latch onto a tubing or casing 203 via lock mandrels or dogs 201 .
  • the measurement device 200 may include an ejection capsules 204 containing RFID tags or memory tags, a long life battery 205 , downhole reference clock/counter 206 , which may have time stamping capabilities, and one or more pressure, temperature, or other sensors or a combination of sensors 207 .
  • the flow through plug 202 may be dropped or inserted into the well from the surface (e.g., through a Christmas tree) and be allowed to drop down to the bottom of the well or to set or engage with the surrounding tubing or casing 203 via lock mandrels or dogs 201 .
  • the measurement device may be lodged in a nipple profile or an independent anchor at a predetermined location or be deployed at an appropriate depth and held in place with a lock mandrel or dog 201 until retrieval is required.
  • the device may have built-in intelligence for depth recognition, or for finding or steering its way into a multi lateral leg.
  • the measurement device may be run by battery or downhole power generation.
  • the device may comprise an ejection capsule 204 , which is configured to eject or release the memory tags (e.g., RFID tags).
  • the ejection capsule 204 may be operated by a hydraulic, mechanical, or electrical mechanism.
  • the RFID or memory tags may be able to store a certain amount of data before release, for example up to 1 week of 24 hours of data at 1 second intervals.
  • the writer may be designed to function downhole and the reader may be designed to function downhole or at the surface flow line.
  • a downhole clock/counter 205 may be used to correct or remedy the effects of the time delay between data acquisition and reading.
  • Multiple devices may be operated simultaneously in wells/laterals.
  • the devices may be used where permanent gauges have failed or in a lateral or multiple laterals simultaneously. Since the sizes and structures of oil wells and laterals may differ, the need for well monitoring may be different for each structure. The construction of a measurement device may be altered for different situations.
  • FIG. 3 shows another measurement device, which may be used in downhole retrofit production monitoring.
  • the measurement device 300 may have a nipples or latches 301 to engage a casing or tubing 303 .
  • This measurement device is a variant of the device shown in FIG. 2 .
  • the measurement device 300 may contain one or more components 303 selected from: pressure and/or temperature sensors, battery, clock, RFID receiver/transmitter, etc.
  • the measurement device 300 may be self propelled and/or be programmed to descend to a particular depth or location.
  • the measurement device 300 may include a plurality of releasable RFID tags or memory tags configured to store information from the sensors.
  • the RFID tags or memory tag may be released or ejected in the flow stream to travel toward the surface of the well system.
  • the multiple downhole measurement devices 409 may be deployed though an existing upper completion tubing 401 .
  • the existing upper completion is deployed in a casing 403 .
  • the completion may include a surface controlled sub-surface safety valve (SCSSV) 402 and one or more permanently installed sensor devices 404 , which may include memory tags that can record measurements and be released on demand by signals sent from surface.
  • SCSSV surface controlled sub-surface safety valve
  • a production deflector 406 is used to drill a lateral from the main-bore.
  • the lateral completion may be anchored to the upper completion using a ported packer 405 .
  • other methods of well construction may be used in the lower completion such as a slotted liner or a cemented and perforated liner.
  • the lower completion may include swell packers 408 and inflow control device (ICD) stations with screens 407 .
  • One or more measurement devices 409 (as described in FIG. 2 or 3 ) are shown as being deployed throughout the lateral completion. As shown, the measurement devices 409 may be able to record the contribution of each of the multiple zones of production, indicate the individual production rates, identify the location of water breakthroughs, etc.
  • the measurement devices in accordance with embodiments of the invention may be sent into a wellbore and be carried to the desired locations (depths) by the downward fluid flows or by gravity.
  • such measurement devices may have the ability to self-propel to the desired locations.
  • some of these devices may have the steering ability such that they can be controlled to enter selected laterals.
  • FIG. 5 shows an example of a measurement device 500 having the ability to self-propel and/or steer according to one embodiment of the invention.
  • the measurement device 500 has a substantially truncated cone shape (or dart shaped).
  • Diagram (A) shows a side view
  • Diagram (B) shows a top view of the measurement device 500 .
  • the measurement device 500 may include a self-propel mechanism 502 and a steering mechanism 505 such that the device can self-propel and self-steer to the desired locations.
  • the measurement device also includes an ejection module/carrier 501 for carrying and releasing multiple RFID or memory tags.
  • the measurement device 500 may include a plurality of sensors 506 , which may be SOI or MEMS sensors.
  • the measurement device may optionally include an inflatable or anchor device 504 for lodging itself in the well.
  • the measurement device may also include a memory 507 for storing a program to control the sensor measurements and/or ejection module.
  • the memory 507 may be reprogrammable such that the event logics can be changed when necessary. Any method known in the art may be used to change the program in the memory, for example by sending a signal from the surface downhole or by flowing an RFID tags by the device.
  • the device may be battery-operated so that it can reach a predetermined depth, and the device may be constructed and programmed to self-navigate to enter the well (e.g., a lateral leg) to reach anywhere in the well, or to be fixed at the bottom of the well. Advanced smartness can be built into the device to expand its intelligence, so that it may have depth-recognition, find and steer its way into multi lateral legs, or continuously sweep the producing formation to log the inflow areas. After reaching the desired depth, the device may set or lock itself in a location, for example, by extending or inflating anchor device 504 (see FIG. 5(C) ). In accordance with some embodiments of the invention, the device may be programmed with pre-determined logic that enables the device to carry out self-alignment and depth-correlation.
  • the device may automatically begin the process of data logging and storing data.
  • Various well conditions, formation properties, or fluid properties may be measured.
  • fluid velocity and flow may be measured, for example, using flutes on the tool's surface.
  • the device may send the data-containing RFID tags or memory tags from ejection module/carrier 501 into the fluid flow to send the memory tags uphole.
  • the memory tags are configured or selected such that they can float in the fluids expected in the well. If low flow rates are expected, buoyant RFID tags or memory tags may be used to ensure that they travel to where the tag reader is located or to the surface. Furthermore, the memory tags may include a drag or similar devices such that they will pass the reader in a known orientation.
  • the RFID tag or memory tag reader may capture the well or fluid data in the well or at the surface, as the tags flow by. Alternatively, the tags may be captured by a strainer device in the flow line and be read later.
  • FIG. 6 is a flow chart illustrating a method for monitoring and collecting well parameters by using a downhole measurement device in accordance with embodiments of the invention.
  • a measurement device of the invention may be deployed downhole (step 61 ).
  • the measurement device will include one or more sensors for obtaining well or fluid parameter data (step 62 ).
  • the measurement device may write the measured data onto one or more RFID tags or memory tags (step 63 ).
  • the memory tags are carried in an ejection module.
  • the measurement and recordation may occur at a predetermined time and rate or at the occurrence of certain events, as described above.
  • the ejection module may be configured to release or eject the said data-containing memory tags into the flow at a predetermined rate or based upon some other criteria when the operation is completed or after a certain amount of data has been written to the RFID tags or memory tags (step 64 ).
  • the released tags may be carried toward surface along with the flow.
  • the released tags may pass a tag reader anywhere along the flow line or at the surface. The reader may then gather data or automatically upload the acquired data to a processing or handling system (step 65 ).
  • This process may be carried out on a continuous basis until the RFID or Memory tags have been exhausted in the tool or the battery life is expended. Once the supply of stored RFID or Memory tags is exhausted, the device may be retrieved or allowed to remain in the well, and another device may be sent downhole to continue the measurement process.
  • a reader in the flow line at the wellhead or on a process line may acquire (read) the data as the RFID tags or memory tags pass by or after the memory tags are captured in a strainer device. The reader may send the data to an acquisition or processing system for data analysis and processing.

Abstract

A downhole measurement device includes one or more sensors configured to measure a parameter in a well; a plurality of memory tags for storing measurement data from the one or more sensors; and an ejection module configured to release one of the plurality of memory tags upon a predetermined condition. A method for monitoring a well includes deploying of a measurement device having one or more sensors and a plurality of memory tags into a wellbore; obtaining measurement data of the parameter using the one or more sensors; writing the measurement data to one of the plurality of memory tags; releasing the memory tag having the measurement data; allowing the memory tag having the measurement data to be carried by a flow in the wellbore uphole; reading the measurement data from the memory tag having the measurement data at a location remote from the downhole measurement device.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The invention claims benefits of U.S. Provisional Application No. 61/301,480, filed on Feb. 4, 2010, the disclosure of which is incorporated by reference in its entirety.
  • BACKGROUND OF INVENTION
  • 1. Field of the Invention
  • The invention relates generally to the measurements of wellbore conditions in downhole applications, and more particularly to the use of well-monitoring systems that record downhole data and communicates that data to the surface of a well system.
  • 2. Background Art
  • In oil and gas production, it is important to monitor downhole data, such as pressure, temperature, flow and other fluid or reservoir properties. These measurements may be obtained by various sensing devices, either using permanent completion deployed sensors or intervention based logging tools on an episodic basis. These sensors may provide key data to enable development of fields, managing and exploiting reserves in place to maximize production and recovery. Challenges exist where the wells or reservoirs become difficult to reach with permanent completion sensors because of multiple stages in the well. In addition, downhole sensors that are installed will fail over time and intervention-based solutions are very costly, especially on small platforms or subsea wells.
  • In most cases, permanent downhole gauges or sensors may be not installed as part of the completion for many reasons, e.g. cost, geometrical compatibility, reliability, and temperature of the well to name a few. However, legal (regulatory) or reservoir requirement may demand data from wells at some stage of operations. These data may be obtained with memory gauges or logging tools coupled with various sensors that are configured to report on the performance of a well. When sensors are not permanently installed with completion, data needed to meet these legal or regulatory requirements may be obtained, for example, using slickline memory gauges deployed in a well for a period of time, and then retrieved to download the data. Additionally, another solution is to use retrofit technology to deploy sensors on slickline, wireline and or coiled tubing into the well.
  • Many of these technologies have safety risks with regards to intervention in a well, are costly, and have limited data capability. As existing oil wells begin to either deplete or water out, there is a need to close off the existing production zones and drill a secondary leg in the same well. This secondary leg, drilled to a new pocket of oil and or gas, is known as a lateral or multi-lateral leg and is accomplished by through tubing drilling and completion. The through tubing drilling and completion makes use of the existing well upper casing and upper completion sections and offers additional drainage point(s) from the same well, considerably lowering an operator's CAPEX and OPEX costs.
  • With lateral or multi-lateral well construction, obtaining measurements from a new lateral section in an existing well may pose a difficult task for intervention logging tools. The tools may have a difficult time entering the new lateral section in order to obtain reservoir and/or production measurements. Additionally, it is not possible to run a conventional permanent sensor as the existing completion is not removed and therefore limits the size of what can be run in hole. In some cases, a new completion of a much smaller diameter may be run through the existing upper completion. However, this new completion may not be tied back or coupled to the surface infrastructure.
  • Therefore, there is still a need for systems and methods that can be used to monitor or measure conditions in a wellbore, especially in newly developed wells, such as laterals or multi-laterals.
  • SUMMARY OF INVENTION
  • One aspect of the invention relates to downhole measurement devices. A downhole measurement device in accordance with one embodiment of the invention includes one or more sensors configured to measure a parameter in a well; a plurality of memory tags for storing measurement data from the one or more sensors, wherein the plurality of memory tags are configured to be carried by a fluid flow uphole; and an ejection module configured to release one of the plurality of memory tags upon a predetermined condition.
  • Another aspect of the invention relates to methods for monitoring a well or fluid parameter in a wellbore. A method in accordance with one embodiment of the invention includes: deploying of a downhole measurement device having one or more sensors and a plurality of memory tags, wherein the deploying is by allowing the downhole measurement device to be carried by a fluid into the wellbore; obtaining measurement data of the parameter using the one or more sensors; writing the measurement data to one of the plurality of memory tags; releasing the memory tag having the measurement data; allowing the memory tag having the measurement data to be carried by a flow in the wellbore uphole; reading the measurement data from the memory tag having the measurement data at a location remote from the downhole measurement device.
  • Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein reference numerals denote corresponding elements. It should be understood, however, that the accompanying drawings illustrate only the various implementations described herein and are not meant to limit the scope of various technologies described herein. The drawings are as follows:
  • FIG. 1 shows a schematic of a prior art well monitoring system having a sensor in a wellbore.
  • FIG. 2 shows a schematic of a measurement device according to one embodiment of the invention.
  • FIG. 3 shows a schematic of a measurement device engaged in a completion nipple or other profile, according to one embodiment of the invention.
  • FIG. 4 shows a schematic of multiple measurement devices deployed in a wellbore according to one embodiment of the invention.
  • FIG. 5 shows a schematic of a self-propelled measurement device according to one embodiment of the invention.
  • FIG. 6 shows a flow chart illustrating a method for monitoring and collecting well parameters by using a downhole measurement device according to one embodiment of the invention.
  • DETAILED DESCRIPTION
  • Embodiments of the invention relate to methods and systems for measurements of well conditions or parameters using sensor devices deployed from the surface. Methods and systems of the invention are particularly useful when laterals or multi-laterals are developed to reach new production zones. In such laterals or multi-laterals, permanent sensors are often not installed due to technical difficulties. Using embodiments of the invention, well conditions and parameters may be monitored without permanently installed sensors.
  • In the following description, numerous details are set forth to provide an understanding of some illustrative embodiments of the present disclosure. However, it will be understood by those skilled in the art that various embodiments of the present disclosure may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible without departing from the scope of the invention.
  • In the specification and appended claims the terms “memory tag” is used to mean an electronic chip that has a memory for storing data. Any memory tag suitable for storing information may be used with embodiments of the invention, such as RFID tags. A memory tag may further include an antenna coil and a power supply circuit such that in use the memory tag may be powered by inductive coupling. A memory tag may also have a sensor for the receipt of transmitted signals, a processor for processing the received input signals, and a modulation circuit for the overlay of output signals onto the power supply circuit. A read/write device may be used to communicate with a memory tag. The read/write device may have a signal generator, an antenna coil and a power supply circuit for powering the memory tag by inductive coupling. The read/write device may further include a light emitter for emission of a light carrying the input signals to the memory tag, and a demodulation circuit for retrieval of the output signals from the inductive coupling. The term “sensor” is used to mean any device for measuring various properties in the well, such as pressure, fluid flow rates, temperatures, vibration, composition, fluid flow regime, and fluid holdup.
  • FIG. 1 shows an example of a sensor installed in a wellbore, as disclosed in U.S. Pat. No. 7,140,434, issued to Chouzenoux et al. As showed in FIG. 1, a sensor is installed in an underground well having a production tubing 38 therein. The sensor comprises a sensor body 11 that can be installed in a hole formed in the casing 18 so as to extend between the inside and outside of the casing 18; sensor elements located within the body and capable of sensing properties of an underground formation 10 surrounding the well; and communication elements 66 located within the body and capable of communicating information between the sensor elements and a communication device 68 in the well; wherein the sensor body 11 also includes a portion that can be sealed to the casing or tubing to prevent fluid communication between the inside and the outside of the casing 18 through the hole when the sensor body is installed therein. The sensors can include pressure, temperature, resistivity, conductivity, stress, strain, pH and chemical composition sensors.
  • To obtain downhole data, such as pressure, temperature, flow, and other fluid or reservoir properties, a permanent or fixed completion deployed sensors or through intervention based logging tools are conventionally used. Some measurement tools may be installed in the well permanently for long term monitoring, while others are run into the well during an intervention to obtain temporary measurements.
  • As noted above, when new laterals are developed, it is impractical to deploy permanent sensors in the new legs and the intervention approach is costly. Embodiments of the invention provide more convenient approaches to monitoring and measuring well conditions, especially for wells (e.g., new laterals or multi-laterals) where deployment of permanent sensors with completion tubing is impractical.
  • Some embodiments of the invention relate to deployable measurement devices that can be sent into wellbores from the surface to monitor or measurement wellbore conditions or fluid/reservoir properties. These measurement devices will then record such measurements on memory tags (such as RFID tags) and send those tags uphole. For example, a measurement device in accordance with embodiments of the invention may include a chamber housing memory tags (e.g., RFID tags) and an ejection mechanism (which may be an electrical, hydraulic, or mechanical ejection mechanism) to eject or release those data-containing tags into the flow. These devices may include sensors (e.g., pressure and/or temperature sensors) or some other sensing devices for measuring downhole conditions.
  • After the sensors make measurements, the devices then write (record) the measured data onto one or more memory tags. Such measurements and recordings may occur, for example, at a predetermined time or under a preset condition. Once this operation is completed, the device may eject or release the memory tag (e.g., an RFID tag), e.g., from an ejection carrier, whereby the tags are carried toward the surface with the flow of oil and/or gas. The memory tags may pass a reader located either on the surface or along the flow line. The reader may automatically upload the acquired data and send the data to surface. This process may take place continuously until the memory tags have been exhausted in the device or the batteries have been expended, whereupon another device may be sent downhole to continue the process.
  • Event logic can also be built into the devices. The event logic, for example, may be programmed to obtain high frequency data when a change in production occurs, automatically eject the memory tag (e.g., RFID tag) upon stabilization of the event, and then go back to the original logic. This process may be referred to as delta event management.
  • The sensors and/or event logic components may be MEMS (microelectromechanical systems) or SOI (silicon-on-insulator) devices. The number of logging of events can essentially be unlimited. Some embodiments of the device may be self-programmable or able to be trained.
  • Some embodiments of the invention are illustrated in FIG. 2 through FIG. 5. The illustrations are meant to demonstrate how a well measurement device may be shaped, how the various components may fit inside the device, or how the device(s) may be placed in a well or a lateral. One skilled in the art would appreciate that these are for illustration only and are not meant to limit the scope of the invention.
  • Referring to FIG. 2, which shows an exemplary measurement device in accordance with one embodiment of the invention. Such a device may be used as a retrievable retrofit measurement device deployed in tubing or casing. As shown, the measurement device 200 may be in the form of a flow through plug 202, which includes a hallow channel allowing fluids to flow therethrough. In accordance with embodiments of the invention, such a flow through plug 202 may be deployed to latch onto a tubing or casing 203 via lock mandrels or dogs 201. The measurement device 200 may include an ejection capsules 204 containing RFID tags or memory tags, a long life battery 205, downhole reference clock/counter 206, which may have time stamping capabilities, and one or more pressure, temperature, or other sensors or a combination of sensors 207.
  • The flow through plug 202 may be dropped or inserted into the well from the surface (e.g., through a Christmas tree) and be allowed to drop down to the bottom of the well or to set or engage with the surrounding tubing or casing 203 via lock mandrels or dogs 201. The measurement device may be lodged in a nipple profile or an independent anchor at a predetermined location or be deployed at an appropriate depth and held in place with a lock mandrel or dog 201 until retrieval is required. The device may have built-in intelligence for depth recognition, or for finding or steering its way into a multi lateral leg. The measurement device may be run by battery or downhole power generation.
  • The device may comprise an ejection capsule 204, which is configured to eject or release the memory tags (e.g., RFID tags). The ejection capsule 204 may be operated by a hydraulic, mechanical, or electrical mechanism. In accordance with some embodiments of the invention, the RFID or memory tags may be able to store a certain amount of data before release, for example up to 1 week of 24 hours of data at 1 second intervals. The writer may be designed to function downhole and the reader may be designed to function downhole or at the surface flow line. A downhole clock/counter 205 may be used to correct or remedy the effects of the time delay between data acquisition and reading.
  • Multiple devices may be operated simultaneously in wells/laterals. The devices may be used where permanent gauges have failed or in a lateral or multiple laterals simultaneously. Since the sizes and structures of oil wells and laterals may differ, the need for well monitoring may be different for each structure. The construction of a measurement device may be altered for different situations.
  • FIG. 3 shows another measurement device, which may be used in downhole retrofit production monitoring. As shown in FIG. 3, the measurement device 300 may have a nipples or latches 301 to engage a casing or tubing 303. This measurement device is a variant of the device shown in FIG. 2. The measurement device 300 may contain one or more components 303 selected from: pressure and/or temperature sensors, battery, clock, RFID receiver/transmitter, etc. The measurement device 300 may be self propelled and/or be programmed to descend to a particular depth or location. The measurement device 300 may include a plurality of releasable RFID tags or memory tags configured to store information from the sensors. The RFID tags or memory tag may be released or ejected in the flow stream to travel toward the surface of the well system.
  • Referring to FIG. 4, which shows an illustrative embodiment of simultaneous use of multiple downhole measurement devices described in FIG. 3. As shown in FIG. 4, the multiple downhole measurement devices 409 may be deployed though an existing upper completion tubing 401. The existing upper completion is deployed in a casing 403. The completion may include a surface controlled sub-surface safety valve (SCSSV) 402 and one or more permanently installed sensor devices 404, which may include memory tags that can record measurements and be released on demand by signals sent from surface.
  • A production deflector 406 is used to drill a lateral from the main-bore. The lateral completion may be anchored to the upper completion using a ported packer 405. In some embodiments, other methods of well construction may be used in the lower completion such as a slotted liner or a cemented and perforated liner. The lower completion may include swell packers 408 and inflow control device (ICD) stations with screens 407. One or more measurement devices 409 (as described in FIG. 2 or 3) are shown as being deployed throughout the lateral completion. As shown, the measurement devices 409 may be able to record the contribution of each of the multiple zones of production, indicate the individual production rates, identify the location of water breakthroughs, etc.
  • The measurement devices in accordance with embodiments of the invention may be sent into a wellbore and be carried to the desired locations (depths) by the downward fluid flows or by gravity. Alternatively, such measurement devices may have the ability to self-propel to the desired locations. Furthermore, some of these devices may have the steering ability such that they can be controlled to enter selected laterals.
  • FIG. 5 shows an example of a measurement device 500 having the ability to self-propel and/or steer according to one embodiment of the invention. In this particular example, the measurement device 500 has a substantially truncated cone shape (or dart shaped). However, one skilled in the art would appreciate that a device in accordance with embodiments of the invention may also adopt other shapes. Diagram (A) shows a side view and Diagram (B) shows a top view of the measurement device 500. The measurement device 500 may include a self-propel mechanism 502 and a steering mechanism 505 such that the device can self-propel and self-steer to the desired locations. The measurement device also includes an ejection module/carrier 501 for carrying and releasing multiple RFID or memory tags. In addition, the measurement device 500 may include a plurality of sensors 506, which may be SOI or MEMS sensors. The measurement device may optionally include an inflatable or anchor device 504 for lodging itself in the well.
  • Furthermore, the measurement device may also include a memory 507 for storing a program to control the sensor measurements and/or ejection module. In accordance with embodiments of the invention, the memory 507 may be reprogrammable such that the event logics can be changed when necessary. Any method known in the art may be used to change the program in the memory, for example by sending a signal from the surface downhole or by flowing an RFID tags by the device.
  • The device may be battery-operated so that it can reach a predetermined depth, and the device may be constructed and programmed to self-navigate to enter the well (e.g., a lateral leg) to reach anywhere in the well, or to be fixed at the bottom of the well. Advanced smartness can be built into the device to expand its intelligence, so that it may have depth-recognition, find and steer its way into multi lateral legs, or continuously sweep the producing formation to log the inflow areas. After reaching the desired depth, the device may set or lock itself in a location, for example, by extending or inflating anchor device 504 (see FIG. 5(C)). In accordance with some embodiments of the invention, the device may be programmed with pre-determined logic that enables the device to carry out self-alignment and depth-correlation.
  • Once at the desired location, the device may automatically begin the process of data logging and storing data. Various well conditions, formation properties, or fluid properties may be measured. In addition, fluid velocity and flow may be measured, for example, using flutes on the tool's surface. The device may send the data-containing RFID tags or memory tags from ejection module/carrier 501 into the fluid flow to send the memory tags uphole.
  • In accordance with embodiments of the invention, the memory tags are configured or selected such that they can float in the fluids expected in the well. If low flow rates are expected, buoyant RFID tags or memory tags may be used to ensure that they travel to where the tag reader is located or to the surface. Furthermore, the memory tags may include a drag or similar devices such that they will pass the reader in a known orientation. The RFID tag or memory tag reader may capture the well or fluid data in the well or at the surface, as the tags flow by. Alternatively, the tags may be captured by a strainer device in the flow line and be read later.
  • Turning to FIG. 6 which is a flow chart illustrating a method for monitoring and collecting well parameters by using a downhole measurement device in accordance with embodiments of the invention. In accordance with this method, a measurement device of the invention may be deployed downhole (step 61). The measurement device will include one or more sensors for obtaining well or fluid parameter data (step 62). After obtaining said well or fluid parameters data, the measurement device may write the measured data onto one or more RFID tags or memory tags (step 63). The memory tags are carried in an ejection module. The measurement and recordation may occur at a predetermined time and rate or at the occurrence of certain events, as described above. The ejection module may be configured to release or eject the said data-containing memory tags into the flow at a predetermined rate or based upon some other criteria when the operation is completed or after a certain amount of data has been written to the RFID tags or memory tags (step 64). The released tags may be carried toward surface along with the flow. The released tags may pass a tag reader anywhere along the flow line or at the surface. The reader may then gather data or automatically upload the acquired data to a processing or handling system (step 65).
  • This process may be carried out on a continuous basis until the RFID or Memory tags have been exhausted in the tool or the battery life is expended. Once the supply of stored RFID or Memory tags is exhausted, the device may be retrieved or allowed to remain in the well, and another device may be sent downhole to continue the measurement process. A reader in the flow line at the wellhead or on a process line may acquire (read) the data as the RFID tags or memory tags pass by or after the memory tags are captured in a strainer device. The reader may send the data to an acquisition or processing system for data analysis and processing.
  • While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (15)

1. A downhole measurement device, comprising:
one or more sensors configured to measure a parameter in a well;
a plurality of memory tags for storing measurement data from the one or more sensors, wherein the plurality of memory tags are configured to be carried by a fluid flow uphole; and
an ejection module configured to release one of the plurality of memory tags upon a predetermined condition.
2. The downhole measurement device of claim 1, wherein the plurality of memory tags are radiofrequency identification (RFID) type memory tags.
3. The downhole measurement device of claim 1, further comprising a self-propel mechanism.
4. The downhole measurement device of claim 3, further comprising a steering mechanism.
5. The downhole measurement device of claim 1, wherein the one or more sensors comprise one or more of a pressure sensor, a temperature sensor, a vibration sensor, a flow sensor, a chemical gauges, or a combination thereof.
6. The downhole measurement device of claim 1, further comprising a mechanism for anchoring itself in the well.
7. The downhole measurement device of claim 1, wherein the downhole measurement device has a dart or plug shape.
8. The downhole measurement device of claim 7, wherein the downhole measurement device comprises a channel to allow a fluid to flow through the downhole measurement device.
9. The downhole measurement device of claim 1, further comprising a memory storing a program for controlling data measurements and/or ejection of the plurality of memory tags.
10. The downhole measurement device of claim 9, wherein the memory is reprogrammable.
11. A method for monitoring a well or fluid parameter in a wellbore, comprising:
deploying of a downhole measurement device having one or more sensors and a plurality of memory tags, wherein the deploying is by allowing the downhole measurement device to be carried by a fluid into the wellbore;
obtaining measurement data of the parameter using the one or more sensors;
writing the measurement data to one of the plurality of memory tags;
releasing the memory tag having the measurement data;
allowing the memory tag having the measurement data to be carried by a flow in the wellbore uphole;
reading the measurement data from the memory tag having the measurement data at a location remote from the downhole measurement device.
12. The method of claim 11, wherein the deploying is to a lateral leg in the wellbore.
13. The method of claim 12, wherein the deploying uses a self-propel mechanism on the downhole measurement device to enter the lateral leg.
14. The method of claim 11, wherein the obtaining the measurement data is control by a program stored in a memory in the downhole measurement device.
15. The method of claim 11, wherein the deploying results in the downhole measurement device being lodged at a predetermined depth in the wellbore.
US12/816,457 2010-02-04 2010-06-16 Measurement devices with memory tags and methods thereof Abandoned US20110191028A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/816,457 US20110191028A1 (en) 2010-02-04 2010-06-16 Measurement devices with memory tags and methods thereof
PCT/US2011/021453 WO2011097063A2 (en) 2010-02-04 2011-01-17 Measurement devices with memory tags and methods thereof
NO20120833A NO20120833A1 (en) 2010-02-04 2012-07-18 Paint devices with memory labels and methods for these.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30148010P 2010-02-04 2010-02-04
US12/816,457 US20110191028A1 (en) 2010-02-04 2010-06-16 Measurement devices with memory tags and methods thereof

Publications (1)

Publication Number Publication Date
US20110191028A1 true US20110191028A1 (en) 2011-08-04

Family

ID=44342361

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/816,457 Abandoned US20110191028A1 (en) 2010-02-04 2010-06-16 Measurement devices with memory tags and methods thereof

Country Status (3)

Country Link
US (1) US20110191028A1 (en)
NO (1) NO20120833A1 (en)
WO (1) WO2011097063A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260961B2 (en) 2013-06-14 2016-02-16 Baker Hughes Incorporated Modular monitoring assembly
WO2016137480A1 (en) * 2015-02-27 2016-09-01 Halliburton Energy Services, Inc. Sensor coil for inclusion in an rfid sensor assembly
WO2016140651A1 (en) * 2015-03-03 2016-09-09 Halliburton Energy Services, Inc. Multi-coil rfid sensor assembly
WO2017007460A1 (en) * 2015-07-07 2017-01-12 Halliburton Energy Services, Inc. Particulate dispenser
US9759645B2 (en) 2014-12-29 2017-09-12 Halliburton Energy Services, Inc. Sweep efficiency for hole cleaning
US20180306027A1 (en) * 2016-09-23 2018-10-25 Terves Inc. Method of Assuring Dissolution of Degradable Tools
US20180372518A1 (en) * 2015-12-18 2018-12-27 Elbi International S.P.A. Method for determining at least one variable operational characteristic of a hydraulic system
CN109469475A (en) * 2017-09-08 2019-03-15 中国石油化工股份有限公司 Downhole drill data storage and release device and with bore data transmission method
WO2019075297A1 (en) * 2017-10-13 2019-04-18 California Institute Of Technology Ruggedized buoyant memory modules for data logging and delivery system using fluid flow in oil and gas wells
US10443344B2 (en) * 2014-08-08 2019-10-15 Welltec Oilfield Solutions Ag Downhole valve system
US10598006B2 (en) 2017-05-30 2020-03-24 Baker Hughes Oilfield Operations, Llc Methods and systems for downhole sensing and communications in wells
US10718883B2 (en) 2014-12-30 2020-07-21 Halliburton Energy Services, Inc. Subterranean formation characterization using microelectromechanical system (MEMS) devices
US20230184103A1 (en) * 2021-12-10 2023-06-15 Saudi Arabian Oil Company Method and systems for a dissolvable material based downhole tool
US11708758B2 (en) * 2019-10-28 2023-07-25 ExxonMobil Technology and Engineering Comany Hydrocarbon wells and methods of probing a subsurface region of the hydrocarbon wells

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112674A2 (en) * 2012-01-25 2013-08-01 Bp Corporation North America Inc. Systems, methods, and devices for monitoring wellbore conditions
US20140262320A1 (en) 2013-03-12 2014-09-18 Halliburton Energy Services, Inc. Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication
GB2529845B (en) * 2014-09-03 2020-07-15 Weatherford Tech Holdings Llc Method and apparatus
CN108112260A (en) 2015-04-30 2018-06-01 沙特阿拉伯石油公司 For obtaining the method and apparatus of the measured value of the underground characteristic in missile silo
US10669810B2 (en) 2018-06-11 2020-06-02 Saudi Arabian Oil Company Controlling water inflow in a wellbore
WO2020197665A1 (en) * 2019-03-28 2020-10-01 California Institute Of Technology Lateral well ruggedized buoyant data module deployment
US11401796B2 (en) 2020-07-24 2022-08-02 Saudi Arabian Oil Company System and method for acquiring wellbore data
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054969A1 (en) * 2000-03-28 2001-12-27 Thomeer Hubertus V. Apparatus and method for downhole well equipment and process management, identification, and actuation
US6360823B1 (en) * 2000-07-20 2002-03-26 Intevep, S.A. Apparatus and method for performing downhole measurements
US6443228B1 (en) * 1999-05-28 2002-09-03 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US20020195247A1 (en) * 1997-06-02 2002-12-26 Schlumberger Technology Corporation Well-bore sensor apparatus and method
US20050194134A1 (en) * 2004-03-04 2005-09-08 Mcgregor Malcolm D. Downhole formation sampling
US20060000604A1 (en) * 2004-06-09 2006-01-05 Schlumberger Technology Corporation Radio frequency tags for turbulent flows
US7140434B2 (en) * 2004-07-08 2006-11-28 Schlumberger Technology Corporation Sensor system
US20070131418A1 (en) * 2005-12-14 2007-06-14 Schlumberger Technology Corporation Methods and systems for robust and accurate determination of wireline depth in a borehole
US7293715B2 (en) * 2004-12-16 2007-11-13 Schlumberger Technology Corporation Marking system and method
US20080068209A1 (en) * 2006-09-15 2008-03-20 Schlumberger Technology Corporation Methods and Systems for Wellhole Logging Utilizing Radio Frequency Communication
US7363967B2 (en) * 2004-05-03 2008-04-29 Halliburton Energy Services, Inc. Downhole tool with navigation system
US20090151939A1 (en) * 2007-12-13 2009-06-18 Schlumberger Technology Corporation Surface tagging system with wired tubulars
US20090211754A1 (en) * 2007-06-25 2009-08-27 Turbo-Chem International, Inc. WirelessTag Tracer Method and Apparatus
US20090272580A1 (en) * 2008-05-01 2009-11-05 Schlumberger Technology Corporation Drilling system with drill string valves
US20090294124A1 (en) * 2008-05-28 2009-12-03 Schlumberger Technology Corporation System and method for shifting a tool in a well

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068581A2 (en) * 2007-10-08 2014-05-08 Halliburton Offshore Services, Inc A nano-robots system and methods for well logging and borehole measurements

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195247A1 (en) * 1997-06-02 2002-12-26 Schlumberger Technology Corporation Well-bore sensor apparatus and method
US6443228B1 (en) * 1999-05-28 2002-09-03 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US20010054969A1 (en) * 2000-03-28 2001-12-27 Thomeer Hubertus V. Apparatus and method for downhole well equipment and process management, identification, and actuation
US6360823B1 (en) * 2000-07-20 2002-03-26 Intevep, S.A. Apparatus and method for performing downhole measurements
US20050194134A1 (en) * 2004-03-04 2005-09-08 Mcgregor Malcolm D. Downhole formation sampling
US7363967B2 (en) * 2004-05-03 2008-04-29 Halliburton Energy Services, Inc. Downhole tool with navigation system
US20060000604A1 (en) * 2004-06-09 2006-01-05 Schlumberger Technology Corporation Radio frequency tags for turbulent flows
US7455108B2 (en) * 2004-06-09 2008-11-25 Schlumberger Technology Corporation Radio frequency tags for turbulent flows
US7140434B2 (en) * 2004-07-08 2006-11-28 Schlumberger Technology Corporation Sensor system
US7293715B2 (en) * 2004-12-16 2007-11-13 Schlumberger Technology Corporation Marking system and method
US20070131418A1 (en) * 2005-12-14 2007-06-14 Schlumberger Technology Corporation Methods and systems for robust and accurate determination of wireline depth in a borehole
US20080068209A1 (en) * 2006-09-15 2008-03-20 Schlumberger Technology Corporation Methods and Systems for Wellhole Logging Utilizing Radio Frequency Communication
US20090211754A1 (en) * 2007-06-25 2009-08-27 Turbo-Chem International, Inc. WirelessTag Tracer Method and Apparatus
US20090151939A1 (en) * 2007-12-13 2009-06-18 Schlumberger Technology Corporation Surface tagging system with wired tubulars
US20090272580A1 (en) * 2008-05-01 2009-11-05 Schlumberger Technology Corporation Drilling system with drill string valves
US20090294124A1 (en) * 2008-05-28 2009-12-03 Schlumberger Technology Corporation System and method for shifting a tool in a well

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260961B2 (en) 2013-06-14 2016-02-16 Baker Hughes Incorporated Modular monitoring assembly
US10443344B2 (en) * 2014-08-08 2019-10-15 Welltec Oilfield Solutions Ag Downhole valve system
US9759645B2 (en) 2014-12-29 2017-09-12 Halliburton Energy Services, Inc. Sweep efficiency for hole cleaning
US10718883B2 (en) 2014-12-30 2020-07-21 Halliburton Energy Services, Inc. Subterranean formation characterization using microelectromechanical system (MEMS) devices
US10415372B2 (en) 2015-02-27 2019-09-17 Halliburton Energy Services, Inc. Sensor coil for inclusion in an RFID sensor assembly
WO2016137480A1 (en) * 2015-02-27 2016-09-01 Halliburton Energy Services, Inc. Sensor coil for inclusion in an rfid sensor assembly
GB2549667A (en) * 2015-02-27 2017-10-25 Halliburton Energy Services Inc Sensor coil for inclusion in an RFID Sensor assembly
GB2549667B (en) * 2015-02-27 2019-10-02 Halliburton Energy Services Inc Sensor coil for inclusion in an RFID Sensor assembly
GB2551284A (en) * 2015-03-03 2017-12-13 Halliburton Energy Services Inc Multi-coil RFID sensor assembly
US10474853B2 (en) 2015-03-03 2019-11-12 Halliburton Energy Services, Inc. Multi-coil RFID sensor assembly
WO2016140651A1 (en) * 2015-03-03 2016-09-09 Halliburton Energy Services, Inc. Multi-coil rfid sensor assembly
US11085257B2 (en) 2015-07-07 2021-08-10 Halliburton Energy Services, Inc. Particulate dispenser
US10697261B2 (en) 2015-07-07 2020-06-30 Halliburton Energy Services, Inc. Particulate dispenser
GB2554830A (en) * 2015-07-07 2018-04-11 Halliburton Energy Services Inc Particulate dispenser
WO2017007460A1 (en) * 2015-07-07 2017-01-12 Halliburton Energy Services, Inc. Particulate dispenser
GB2554830B (en) * 2015-07-07 2021-04-28 Halliburton Energy Services Inc Particulate dispenser
US20180372518A1 (en) * 2015-12-18 2018-12-27 Elbi International S.P.A. Method for determining at least one variable operational characteristic of a hydraulic system
US20200049000A1 (en) * 2016-09-23 2020-02-13 Terves Inc. Method of Assuring Dissolution of Degradable Tools
US20180306027A1 (en) * 2016-09-23 2018-10-25 Terves Inc. Method of Assuring Dissolution of Degradable Tools
US10598006B2 (en) 2017-05-30 2020-03-24 Baker Hughes Oilfield Operations, Llc Methods and systems for downhole sensing and communications in wells
CN109469475A (en) * 2017-09-08 2019-03-15 中国石油化工股份有限公司 Downhole drill data storage and release device and with bore data transmission method
WO2019075297A1 (en) * 2017-10-13 2019-04-18 California Institute Of Technology Ruggedized buoyant memory modules for data logging and delivery system using fluid flow in oil and gas wells
US11708758B2 (en) * 2019-10-28 2023-07-25 ExxonMobil Technology and Engineering Comany Hydrocarbon wells and methods of probing a subsurface region of the hydrocarbon wells
US20230184103A1 (en) * 2021-12-10 2023-06-15 Saudi Arabian Oil Company Method and systems for a dissolvable material based downhole tool
US11859449B2 (en) * 2021-12-10 2024-01-02 Saudi Arabian Oil Company Systems for a dissolvable material based downhole tool

Also Published As

Publication number Publication date
WO2011097063A2 (en) 2011-08-11
WO2011097063A3 (en) 2011-11-17
NO20120833A1 (en) 2012-08-24

Similar Documents

Publication Publication Date Title
US20110191028A1 (en) Measurement devices with memory tags and methods thereof
US8016036B2 (en) Tagging a formation for use in wellbore related operations
CA2921495C (en) Intelligent cement wiper plugs and casing collars
EP2954153B1 (en) Wellbore servicing tools, systems and methods utilizing near-field communication
US20110192596A1 (en) Through tubing intelligent completion system and method with connection
EP1830035A1 (en) Method for determining the position of a movable device in an underground borehole
US20110277984A1 (en) Data Gathering Device and Method of Removing Contaminations from a Borehole Wall of a Well Before In Situ Gathering of Formation Data from the Borehole Wall
US20170335644A1 (en) Smart frac ball
US11261692B2 (en) Method and apparatus for identifying and remediating loss circulation zone
US11572751B2 (en) Expandable meshed component for guiding an untethered device in a subterranean well
US20220056779A1 (en) Smart plug integrated sensor system
EP2642066A1 (en) Downhole detection system
CA2509603C (en) Separable plug for use with a wellbore tool
US9260960B2 (en) Method and apparatus for subsea wireless communication
US10837246B2 (en) System for acquisition of wellbore parameters and short distance data transfer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERBER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSS, DONALD W.;PRIDE, STEPHEN W.;RAW, IAN;AND OTHERS;SIGNING DATES FROM 20100719 TO 20100810;REEL/FRAME:024872/0164

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION