US20120060916A1 - Front electrode for use in photovoltaic device and method of making same - Google Patents

Front electrode for use in photovoltaic device and method of making same Download PDF

Info

Publication number
US20120060916A1
US20120060916A1 US13/297,737 US201113297737A US2012060916A1 US 20120060916 A1 US20120060916 A1 US 20120060916A1 US 201113297737 A US201113297737 A US 201113297737A US 2012060916 A1 US2012060916 A1 US 2012060916A1
Authority
US
United States
Prior art keywords
layer
oxide
tco
thick
front electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/297,737
Inventor
Willem den Boer
Yiwei Lu
David Broadway
Bryce Corsner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guardian Glass LLC
Original Assignee
Guardian Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/591,668 external-priority patent/US20080105298A1/en
Priority claimed from US11/790,812 external-priority patent/US20080105293A1/en
Priority claimed from US11/984,092 external-priority patent/US20080302414A1/en
Priority claimed from US11/987,664 external-priority patent/US20080178932A1/en
Priority claimed from US12/068,117 external-priority patent/US8203073B2/en
Priority claimed from US12/149,263 external-priority patent/US7964788B2/en
Application filed by Guardian Industries Corp filed Critical Guardian Industries Corp
Priority to US13/297,737 priority Critical patent/US20120060916A1/en
Publication of US20120060916A1 publication Critical patent/US20120060916A1/en
Assigned to GUARDIAN GLASS, LLC. reassignment GUARDIAN GLASS, LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUARDIAN INDUSTRIES CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the front electrode is of or includes a transparent conductive coating (TCC) having a plurality of layers, and may be provided on a surface of a front glass substrate opposite to a patterned surface of the substrate.
  • TCC transparent conductive coating
  • the TCC may act to enhance transmission in selected PV active regions of the visible and near IR spectrum, while substantially rejecting and/or blocking undesired IR thermal energy from certain other areas of the spectrum.
  • the front electrode of the photovoltaic device includes a multi-layer coating (or TCC) having at least one infrared (IR) reflecting and conductive substantially metallic layer of or including silver, gold, or the like, and possibly at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, zinc oxide, or the like).
  • TCC multi-layer coating
  • IR infrared
  • TCO transparent conductive oxide
  • the multilayer front electrode coating is designed to realize one or more of the following advantageous features: (a) reduced sheet resistance and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation thereby reducing the operating temperature of the photovoltaic module so as to increase module output power; (c) reduced reflection and/or increased transmission of light in the region of from about 400-700 nm, 450-700 nm, and/or 450-600 nm, which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating which can reduce fabrication costs and/or time; (e) improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conductivity on the overall electric properties of the module given the presence of the highly conductive substantially metallic IR reflecting layer(s); and/or (f) reduced risk of thermal stress caused module breakage by reflecting solar thermal energy and reducing temperature difference across the module.
  • IR infrared
  • Amorphous silicon photovoltaic devices include a front electrode or contact.
  • the transparent front electrode is made of a pyrolytic transparent conductive oxide (TCO) such as zinc oxide or tin oxide formed on a substrate such as a glass substrate.
  • TCO pyrolytic transparent conductive oxide
  • the transparent front electrode is formed of a single layer using a method of chemical pyrolysis where precursors are sprayed onto the glass substrate at approximately 400 to 600 degrees C.
  • Typical pyrolitic fluorine-doped tin oxide TCOs as front electrodes may be about 400 nm thick, which provides for a sheet resistance (R s ) of about 15 ohms/square.
  • R s sheet resistance
  • a front electrode having a low sheet resistance and good ohm-contact to the cell top layer, and allowing maximum solar energy in certain desirable ranges into the absorbing semiconductor film, are desired.
  • photovoltaic devices e.g., solar cells
  • TCO front electrodes suffer from the following problems.
  • a pyrolitic fluorine-doped tin oxide TCO about 400 nm thick as the entire front electrode has a sheet resistance (R s ) of about 15 ohms/square which is rather high for the entire front electrode.
  • R s sheet resistance
  • a lower sheet resistance (and thus better conductivity) would be desired for the front electrode of a photovoltaic device.
  • a lower sheet resistance may be achieved by increasing the thickness of such a TCO, but this will cause transmission of light through the TCO to drop thereby reducing output power of the photovoltaic device.
  • conventional TCO front electrodes such as pyrolytic tin oxide allow a significant amount of infrared (IR) radiation to pass therethrough thereby allowing it to reach the semiconductor or absorbing layer(s) of the photovoltaic device.
  • IR radiation causes heat which increases the operating temperature of the photovoltaic device thereby decreasing the output power thereof.
  • conventional TCO front electrodes such as pyrolytic tin oxide tend to reflect a significant amount of light in the region of from about 400-700 nm, or 450-700 nm, so that less than about 80% of useful solar energy reaches the semiconductor absorbing layer; this significant reflection of visible light is a waste of energy and leads to reduced photovoltaic module output power.
  • the TCO coated glass at the front of the photovoltaic device typically allows less than 80% of the useful solar energy impinging upon the device to reach the semiconductor film which converts the light into electric energy.
  • the rather high total thickness (e.g., 400 nm) of the front electrode in the case of a 400 nm thick tin oxide TCO leads to high fabrication costs.
  • the process window for forming a zinc oxide or tin oxide TCO for a front electrode is both small and important. In this respect, even small changes in the process window can adversely affect conductivity of the TCO. When the TCO is the sole conductive layer of the front electrode, such adverse affects can be highly detrimental.
  • a front electrode structure for a photovoltaic device comprising: a front substantially transparent glass substrate; a first layer comprising one or more of silicon nitride, silicon oxide, silicon oxynitride, and/or tin oxide; a second layer comprising one or more of titanium oxide and/or niobium oxide, wherein at least the first layer is located between the front substrate and the second layer; a third layer comprising zinc oxide and/or zinc aluminum oxide; a conductive layer comprising silver, wherein at least the third layer is provided between the conductive layer comprising silver and the second layer; a layer comprising an oxide of Ni and/or Cr; a transparent conductive oxide (TCO) layer comprising indium tin oxide provided between the layer comprising the oxide of Ni and/or Cr and a transparent conductive oxide (TCO) layer comprising tin oxide; and wherein a layer stack comprising said first layer, said second layer, said third layer, said conductive layer comprising
  • a photovoltaic device including a front electrode structure, the front electrode structure comprising: a front substantially transparent glass substrate; a dielectric layer comprising titanium oxide; a dielectric layer comprising silicon oxynitride, wherein the layer comprising titanium oxide is located between the glass substrate and the layer comprising silicon nitride; a conductive layer comprising indium tin oxide, wherein the layer comprising silicon oxynitride is located between at least the layer comprising indium tin oxide and the layer comprising titanium oxide; a conductive layer comprising zinc oxide and/or zinc aluminum oxide; wherein the front electrode structure comprising said layer comprising titanium oxide, said layer comprising silicon oxynitride, said conductive layer comprising indium tin oxide, and said conductive layer comprising zinc oxide and/or zinc aluminum oxide is provided on an interior surface of the front glass substrate facing a semiconductor film of the photovoltaic device.
  • the front electrode of a photovoltaic device includes a transparent conductive coating (TCC) having a plurality of layers, and is provided on a surface of a front glass substrate opposite to a patterned surface of the substrate.
  • TCC transparent conductive coating
  • the patterned (e.g., etched) surface of the front transparent glass substrate faces incoming light
  • the TCC is provided on the opposite surface of the substrate facing the semiconductor film of the photovoltaic (PV) device.
  • the patterned first or front surface of the glass substrate reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film through scattering, refraction and diffusion.
  • the TCC of the front electrode may be comprise a multilayer coating including at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like), and optionally at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, zinc oxide, or the like).
  • the multilayer front electrode coating may include a plurality of TCO layers and/or a plurality of conductive substantially metallic IR reflecting layers arranged in an alternating manner in order to provide for reduced visible light reflections, increased conductivity, increased IR reflection capability, and so forth.
  • a multilayer front electrode coating may be designed to realize one or more of the following advantageous features: (a) reduced sheet resistance (R s ) and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation thereby reducing the operating temperature of the photovoltaic module so as to increase module output power; (c) reduced reflection and increased transmission of light in the region(s) of from about 400-700 nm, 450-700 nm, or 450-600 nm which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating which can reduce fabrication costs and/or time; (e) an improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conductivity on the overall electric properties of the module given the presence of the highly conductive substantially metallic layer(s); and/or (f) reduced risk of thermal stress caused module breakage by reflecting solar thermal energy and reducing temperature difference across the module.
  • R s reduced sheet resistance
  • a photovoltaic device comprising: a front glass substrate; an active semiconductor film; an electrically conductive and substantially transparent front electrode located between at least the front glass substrate and the semiconductor film; wherein the substantially transparent front electrode comprises, moving away from the front glass substrate toward the semiconductor film, at least a first substantially transparent conductive substantially metallic infrared (IR) reflecting layer comprising silver and/or gold, and a first transparent conductive oxide (TCO) film located between at least the IR reflecting layer and the semiconductor film; and wherein the front electrode is provided on an interior surface of the front glass substrate facing the semiconductor film, and an exterior surface of the front glass substrate facing incident light is textured so as to reduce reflection loss of incident solar flux and increase absorption of photons in the semiconductor film, especially when the sunlight coming at a tinted angle.
  • IR substantially transparent conductive substantially metallic infrared
  • TCO transparent conductive oxide
  • a photovoltaic device comprising: a front glass substrate; a semiconductor film; a substantially transparent front electrode located between at least the front glass substrate and the semiconductor film; wherein the substantially transparent front electrode comprises, moving away from the front glass substrate toward the semiconductor film, at least a first substantially transparent layer that may or may not be conductive, a substantially metallic infrared (IR) reflecting layer comprising silver and/or gold, and a first transparent conductive oxide (TCO) film located between at least the IR reflecting layer and the semiconductor film.
  • IR infrared
  • TCO transparent conductive oxide
  • FIG. 1 is a cross sectional view of an example photovoltaic device according to an example embodiment of this invention.
  • FIG. 2 is a refractive index (n) versus wavelength (nm) graph illustrating refractive indices (n) of glass, a TCO film, silver thin film, and hydrogenated silicon (in amorphous, micro- or poly-crystalline phase).
  • FIG. 3 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a hydrogenated Si thin film of a photovoltaic device comparing examples of this invention versus a comparative example (TCO reference); this shows that the examples of this invention (Examples 1, 2 and 3) have increased transmission in the approximately 450-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (TCO reference).
  • FIG. 4 is a percent reflection (R %) versus wavelength (nm) graph illustrating reflection spectra from a hydrogenated Si thin film of a photovoltaic device comparing the examples of this invention (Examples 1, 2 and 3 referred to in FIG. 3 ) versus a comparative example (TCO reference referred to in FIG. 3 ); this shows that the example embodiment of this invention have increased reflection in the IR range, thereby reducing the operating temperature of the photovoltaic module so as to increase module output power, compared to the comparative example. Because the same Examples 1-3 and comparative example (TCO reference) are being referred to in FIGS. 3 and 4 , the same curve identifiers used in FIG. 3 are also used in FIG. 4 .
  • FIG. 5 is a cross sectional view of the photovoltaic device according to Example 1 of this invention.
  • FIG. 6 is a cross sectional view of the photovoltaic device according to Example 2 of this invention.
  • FIG. 7 is a cross sectional view of the photovoltaic device according to Example 3 of this invention.
  • FIG. 8 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 9 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 10 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 11 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 12 is a measured transmission (T) and reflection (R) (% from first surface 1 a ) spectra, versus wavelength (nm), showing results from Example 4 (having a 10 ohms/sq. Ag-based TCC coating a front glass substrate with a textured surface).
  • FIG. 13 is a transmission ratio versus wavelength (nm) graph illustrating results according to Example 4 (compared to a comparative example).
  • FIG. 14 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into an a-Si cell of a photovoltaic device, showing results of Example 5 of this invention having a textured front surface of the front glass substrate.
  • FIG. 15 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing Example 4 of this invention (having a textured front surface of the front glass substrate) versus comparative examples; this shows that the Example 4 of this invention realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example without the etched front surface (x dotted line) and the comparative example of the conventional TCO superstrate (o solid line).
  • FIG. 16 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 17 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into an a-Si cell of a photovoltaic device comparing the FIG. 16 embodiment of this invention versus a comparative example; this shows that the FIG. 16 embodiment of this invention (e.g., T-9 curve in FIG. 17 ) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 17 ).
  • T % versus wavelength (nm) graph illustrating transmission spectra into an a-Si cell of a photovoltaic device comparing the FIG. 16 embodiment of this invention versus a comparative example; this shows that the FIG. 16 embodiment of this invention (e.g., T-9 curve in FIG. 17 ) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 17 ).
  • FIG. 18 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing the FIG. 16 embodiment of this invention versus a comparative example; this shows that the FIG. 16 embodiment of this invention (e.g., T-Ag curve in FIG. 18 ) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 18 ).
  • FIG. 19( a ) is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 19( b ) is a wavelength vs. transmission/reflection graph of Example 8.
  • FIG. 19( c ) is a wavelength vs. transmission graph of Example 8.
  • FIG. 20 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 21 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 22 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • Photovoltaic devices such as solar cells convert solar radiation into usable electrical energy.
  • the energy conversion occurs typically as the result of the photovoltaic effect.
  • Solar radiation e.g., sunlight
  • impinging on a photovoltaic device and absorbed by an active region of semiconductor material e.g., a semiconductor film including one or more semiconductor layers such as a-Si layers, the semiconductor sometimes being called an absorbing layer or film
  • an active region of semiconductor material e.g., a semiconductor film including one or more semiconductor layers such as a-Si layers, the semiconductor sometimes being called an absorbing layer or film
  • the electrons and holes may be separated by an electric field of a junction in the photovoltaic device. The separation of the electrons and holes by the junction results in the generation of an electric current and voltage.
  • the electrons flow toward the region of the semiconductor material having n-type conductivity, and holes flow toward the region of the semiconductor having p-type conductivity.
  • Current can flow through an external circuit connecting the n-type region to the p-type region as light continues to generate electron-hole pairs in the photovoltaic device.
  • single junction amorphous silicon (a-Si) photovoltaic devices include three semiconductor layers.
  • the amorphous silicon film (which may include one or more layers such as p, n and i type layers) may be of hydrogenated amorphous silicon in certain instances, but may also be of or include hydrogenated amorphous silicon carbon or hydrogenated amorphous silicon germanium, or the like, in certain example embodiments of this invention.
  • a photon of light when a photon of light is absorbed in the i-layer it gives rise to a unit of electrical current (an electron-hole pair).
  • the p and n-layers which contain charged dopant ions, set up an electric field across the i-layer which draws the electric charge out of the i-layer and sends it to an optional external circuit where it can provide power for electrical components.
  • this invention is not so limited and may be used in conjunction with other types of photovoltaic devices in certain instances including but not limited to devices including other types of semiconductor material, single or tandem thin-film solar cells, CdS and/or CdTe (including CdS/CdTe) photovoltaic devices, polysilicon and/or microcrystalline Si photovoltaic devices, and the like.
  • the front electrode of the PV device is of or includes a transparent conductive coating (TCC) having a plurality of layers, and is provided on a surface of a front glass substrate opposite to a patterned surface of the substrate.
  • TCC transparent conductive coating
  • the patterned (e.g., etched) surface of the front transparent glass substrate faces incoming light
  • the TCC is provided on the opposite surface of the substrate facing the semiconductor film of the photovoltaic (PV) device.
  • the patterned first or front surface of the glass substrate reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film through scattering, refraction and diffusion, especially when the sunlight coming at a tinted angle.
  • the TCC may act to enhance transmission in selected PV active regions of the visible and near IR spectrum, while substantially rejecting and/or blocking undesired IR thermal energy from certain other areas of the spectrum.
  • the surface of the front transparent glass substrate on which the front electrode or TCC is provided may be flat or substantially flat (not patterned), whereas in alternative example embodiments it may also be patterned.
  • FIG. 1 is a cross sectional view of a photovoltaic device according to an example embodiment of this invention.
  • the photovoltaic device includes transparent front glass substrate 1 (other suitable material may also be used for the substrate instead of glass in certain instances), optional dielectric layer(s) 2 , multilayer front electrode 3 , active semiconductor film 5 of or including one or more semiconductor layers (such as pin, pn, pinpin tandem layer stacks, or the like), back electrode/contact 7 which may be of a TCO or a metal, an optional encapsulant 9 or adhesive of a material such as ethyl vinyl acetate (EVA) or the like, and an optional superstrate 11 of a material such as glass.
  • EVA ethyl vinyl acetate
  • Front glass substrate 1 and/or rear superstrate (substrate) 11 may be made of soda-lime-silica based glass in certain example embodiments of this invention; and it may have low iron content and/or an antireflection coating thereon to optimize transmission in certain example instances. While substrates 1 , 11 may be of glass in certain example embodiments of this invention, other materials such as quartz, plastics or the like may instead be used for substrate(s) 1 and/or 11 . Moreover, superstrate 11 is optional in certain instances. Glass 1 and/or 11 may or may not be thermally tempered and/or patterned in certain example embodiments of this invention. Additionally, it will be appreciated that the word “on” as used herein covers both a layer being directly on and indirectly on something, with other layers possibly being located therebetween.
  • Dielectric layer(s) 2 may be of any substantially transparent material such as a metal oxide and/or nitride which has a refractive index of from about 1.5 to 2.5, more preferably from about 1.6 to 2.5, more preferably from about 1.6 to 2.2, more preferably from about 1.6 to 2.0, and most preferably from about 1.6 to 1.8. However, in certain situations, the dielectric layer 2 may have a refractive index (n) of from about 2.3 to 2.5.
  • Example materials for dielectric layer 2 include silicon oxide, silicon nitride, silicon oxynitride, zinc oxide, tin oxide, titanium oxide (e.g., TiO 2 ), aluminum oxynitride, aluminum oxide, or mixtures thereof.
  • Dielectric layer(s) 2 functions as a barrier layer in certain example embodiments of this invention, to reduce materials such as sodium from migrating outwardly from the glass substrate 1 and reaching the IR reflecting layer(s) and/or semiconductor.
  • dielectric layer 2 is material having a refractive index (n) in the range discussed above, in order to reduce visible light reflection and thus increase transmission of visible light (e.g., light from about 400-700 nm, 450-700 nm and/or 450-600 nm) through the coating and into the semiconductor 5 which leads to increased photovoltaic module output power.
  • multilayer front electrode 3 in the example embodiment shown in FIG. 1 which is provided for purposes of example only and is not intended to be limiting, includes from the glass substrate 1 outwardly first transparent conductive oxide (TCO) or dielectric layer 3 a , first conductive substantially metallic IR reflecting layer 3 b , second TCO 3 c , second conductive substantially metallic IR reflecting layer 3 d , third TCO 3 e , and optional buffer layer 3 f .
  • layer 3 a may be a dielectric layer instead of a TCO in certain example instances and serve as a seed layer for the layer 3 b .
  • This multilayer film 3 makes up the front electrode in certain example embodiments of this invention.
  • Front electrode 3 may be continuous across all or a substantial portion of glass substrate 1 , or alternatively may be patterned into a desired design (e.g., stripes), in different example embodiments of this invention.
  • Each of layers/films 1 - 3 is substantially transparent in certain example embodiments of this invention.
  • First and second conductive substantially metallic IR reflecting layers 3 b and 3 d may be of or based on any suitable IR reflecting material such as silver, gold, or the like. These materials reflect significant amounts of IR radiation, thereby reducing the amount of IR which reaches the semiconductor film 5 . Since IR increases the temperature of the device, the reduction of the amount of IR radiation reaching the semiconductor film 5 is advantageous in that it reduces the operating temperature of the photovoltaic module so as to increase module output power. Moreover, the highly conductive nature of these substantially metallic layers 3 b and/or 3 d permits the conductivity of the overall electrode 3 to be increased.
  • the multilayer electrode 3 has a sheet resistance of less than or equal to about 12 ohms/square, more preferably less than or equal to about 9 ohms/square, and even more preferably less than or equal to about 6 ohms/square.
  • the increased conductivity increases the overall photovoltaic module output power, by reducing resistive losses in the lateral direction in which current flows to be collected at the edge of cell segments.
  • first and second conductive substantially metallic IR reflecting layers 3 b and 3 d are thin enough so as to be substantially transparent to visible light.
  • first and/or second conductive substantially metallic IR reflecting layers 3 b and/or 3 d are each from about 3 to 12 nm thick, more preferably from about 5 to 10 nm thick, and most preferably from about 5 to 8 nm thick. In embodiments where one of the layers 3 b or 3 d is not used, then the remaining conductive substantially metallic IR reflecting layer may be from about 3 to 18 nm thick, more preferably from about 5 to 12 nm thick, and most preferably from about 6 to 11 nm thick in certain example embodiments of this invention.
  • These thicknesses are desirable in that they permit the layers 3 b and/or 3 d to reflect significant amounts of IR radiation, while at the same time being substantially transparent to visible radiation which is permitted to reach the semiconductor 5 to be transformed by the photovoltaic device into electrical energy.
  • the highly conductive IR reflecting layers 3 b and 3 d attribute to the overall conductivity of the electrode 3 much more than the TCO layers; this allows for expansion of the process window(s) of the TCO layer(s) which has a limited window area to achieve both high conductivity and transparency.
  • First, second, and third TCO layers 3 a , 3 c and 3 e may be of any suitable TCO material including but not limited to conducive forms of zinc oxide, zinc aluminum oxide, tin oxide, indium-tin-oxide, indium zinc oxide (which may or may not be doped with silver), or the like. These layers are typically substoichiometric so as to render them conductive as is known in the art. For example, these layers are made of material(s) which gives them a resistance of no more than about 10 ohm-cm (more preferably no more than about 1 ohm-cm, and most preferably no more than about 20 mohm-cm).
  • TCO layers 3 c and/or 3 e are thicker than layer 3 a (e.g., at least about 5 nm, more preferably at least about 10, and most preferably at least about 20 or 30 nm thicker).
  • TCO layer 3 a is from about 3 to 80 nm thick, more preferably from about 5-30 nm thick, with an example thickness being about 10 nm.
  • Optional layer 3 a is provided mainly as a seeding layer for layer 3 b and/or for antireflection purposes, and its conductivity is not as important as that of layers 3 b - 3 e (thus, layer 3 a may be a dielectric instead of a TCO in certain example embodiments).
  • TCO layer 3 e is from about 20 to 150 nm thick, more preferably from about 40 to 120 nm thick, with an example thickness being about 74-75 nm.
  • TCO layer 3 e is from about 20 to 180 nm thick, more preferably from about 40 to 130 nm thick, with an example thickness being about 94 or 115 nm.
  • part of layer 3 e e.g., from about 1-25 nm or 5-25 nm thick portion, at the interface between layers 3 e and 5 may be replaced with a low conductivity high refractive index (n) film 3 f such as titanium oxide to enhance transmission of light as well as to reduce back diffusion of generated electrical carriers; in this way performance may be further improved.
  • n refractive index
  • outer surface 1 a of the front transparent glass substrate 1 is textured (e.g., etched and/or patterned).
  • the user of the word “patterned” covers etched surfaces, and the use of the word “etched” covers patterned surfaces.
  • the textured surface 1 a of the glass substrate 1 may have a prismatic surface, a matte finish surface, or the like in different example embodiments of this invention.
  • the textured surface 1 a of the glass substrate 1 may have peaks and valleys defined therein with inclined portions interconnecting the peaks and valleys (e.g., see FIG. 1 ).
  • the front major surface of the substrate 1 may be etched (e.g., via HF etching using HF etchant or the like) or patterned via roller(s) or the like during glass manufacture in order to form a textured (and/or patterned) surface 1 a .
  • the patterned (e.g., etched) surface 1 a of the front transparent glass substrate 1 faces incoming light (see the sun in the figures), whereas the TCC 3 is provided on the opposite surface 1 b of the substrate facing the semiconductor film 5 of the photovoltaic (PV) device.
  • the patterned first or front surface 1 a of the glass substrate 1 reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film 5 through scattering, refraction and/or diffusion.
  • the transmission of solar flux into the photovoltaic semiconductor 5 can be further improved by using the patterned/etched surface 1 a of the front glass substrate 1 in combination with the Ag-based TCC 3 as shown in FIGS. 1 and 5 - 11 .
  • the patterned and/or etched surface 1 a results in an effective low index layer due to the introduction of the void(s), and acts as an antireflection coating.
  • the patterned and/or etched surface 1 a Compared to a smooth front surface of the front substrate, the patterned and/or etched surface 1 a provides the following example advantages: (a) reduced reflection from the first surface 1 a , especially at oblique incident angles, due to light trapping and hence increased solar flux into solar cells, and (b) increased optical path of light in the semiconductor 5 thereby resulting in increased photovoltaic current. This may be applicable to embodiments of FIGS. 1 and 5 - 11 in certain instances.
  • average surface roughness on surface 1 a of the front glass substrate is from about 0.1 ⁇ m to 1 mm, more preferably from about 0.5-20 ⁇ m, more preferably from about 1-10 ⁇ m, and most preferably from about 2-8 ⁇ m. Too large of a surface roughness value could lead to much dirt collection on the front of the substrate 1 , whereas too little of a roughness value on surface 1 a could lead to not enough transmission increase. This surface roughness at 1 a may be appliable to any embodiment discussed herein. The provision of such surface roughness on the surface 1 a of the substrate is also advantageous in that it can avoid the need for a separate AR coating on the front glass substrate 1 in certain example embodiments of this invention.
  • the interior or second surface 1 b of the front glass substrate 1 is flat or substantially flat. In other words, surface 1 b is not patterned or etched.
  • the front electrode 3 is provided on the flat or substantially flat surface 1 b of the glass substrate 1 . Accordingly, the layers 3 a - 3 f of the electrode 3 are all substantially flat or planar in such example embodiments of this invention.
  • the inner surface 1 b of the glass substrate 1 may be patterned like outer surface 1 a.
  • the photovoltaic device may be made by providing glass substrate 1 , and then depositing (e.g., via sputtering or any other suitable technique) multilayer electrode 3 on the substrate 1 . Thereafter the structure including substrate 1 and front electrode 3 is coupled with the rest of the device in order to form the photovoltaic device shown in FIG. 1 .
  • the semiconductor layer 5 may then be formed over the front electrode on substrate 1 .
  • the back contact 7 and semiconductor 5 may be fabricated/formed on substrate 11 (e.g., of glass or other suitable material) first; then the electrode 3 and dielectric 2 may be formed on semiconductor 5 and encapsulated by the substrate 1 via an adhesive such as EVA.
  • the alternating nature of the TCO layers 3 a , 3 c and/or 3 e , and the conductive substantially metallic IR reflecting layers 3 b and/or 3 d is also advantageous in that it also one, two, three, four or all of the following advantages to be realized: (a) reduced sheet resistance (R s ) of the overall electrode 3 and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation by the electrode 3 thereby reducing the operating temperature of the semiconductor 5 portion of the photovoltaic module so as to increase module output power; (c) reduced reflection and increased transmission of light in the visible region of from about 450-700 nm (and/or 450-600 nm) by the front electrode 3 which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating 3 which can reduce fabrication costs and/or time; (e) an improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conduct
  • the active semiconductor region or film 5 may include one or more layers, and may be of any suitable material.
  • the active semiconductor film 5 of one type of single junction amorphous silicon (a-Si) photovoltaic device includes three semiconductor layers, namely a p-layer, an n-layer and an i-layer.
  • the p-type a-Si layer of the semiconductor film 5 may be the uppermost portion of the semiconductor film 5 in certain example embodiments of this invention; and the i-layer is typically located between the p and n-type layers.
  • amorphous silicon based layers of film 5 may be of hydrogenated amorphous silicon in certain instances, but may also be of or include hydrogenated amorphous silicon carbon or hydrogenated amorphous silicon germanium, hydrogenated microcrystalline silicon, or other suitable material(s) in certain example embodiments of this invention. It is possible for the active region 5 to be of a double-junction or triple-junction type in alternative embodiments of this invention. CdTe may also be used for semiconductor film 5 in alternative embodiments of this invention.
  • Back contact, reflector and/or electrode 7 may be of any suitable electrically conductive material.
  • the back contact or electrode 7 may be of a TCO and/or a metal in certain instances.
  • Example TCO materials for use as back contact or electrode 7 include indium zinc oxide, indium-tin-oxide (ITO), tin oxide, and/or zinc oxide which may be doped with aluminum (which may or may not be doped with silver).
  • the TCO of the back contact 7 may be of the single layer type or a multi-layer type in different instances.
  • the back contact 7 may include both a TCO portion and a metal portion in certain instances.
  • the TCO portion of the back contact 7 may include a layer of a material such as indium zinc oxide (which may or may not be doped with silver), indium-tin-oxide (ITO), tin oxide, and/or zinc oxide closest to the active region 5 , and the back contact may include another conductive and possibly reflective layer of a material such as silver, molybdenum, platinum, steel, iron, niobium, titanium, chromium, bismuth, antimony, or aluminum further from the active region 5 and closer to the superstrate 11 .
  • the metal portion may be closer to superstrate 11 compared to the TCO portion of the back contact 7 .
  • the photovoltaic module may be encapsulated or partially covered with an encapsulating material such as encapsulant 9 in certain example embodiments.
  • An example encapsulant or adhesive for layer 9 is EVA or PVB.
  • other materials such as Tedlar type plastic, Nuvasil type plastic, Tefzel type plastic or the like may instead be used for layer 9 in different instances.
  • a multilayer front electrode 3 Utilizing the highly conductive substantially metallic IR reflecting layers 3 b and 3 d , and TCO layers 3 a , 3 c and 3 d , to form a multilayer front electrode 3 , permits the thin film photovoltaic device performance to be improved by reduced sheet resistance (increased conductivity) and tailored reflection and transmission spectra which best fit photovoltaic device response.
  • Refractive indices of glass 1 , hydrogenated a-Si as an example semiconductor 5 , Ag as an example for layers 3 b and 3 d , and an example TCO are shown in FIG. 2 . Based on these refractive indices (n), predicted transmission spectra impinging into the semiconductor 5 from the incident surface of substrate 1 are shown in FIG. 3 . In particular, FIG.
  • FIG. 3 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a hydrogenated Si thin film 5 of a photovoltaic device comparing Examples 1-3 of this invention (see Examples 1-3 in FIGS. 5-7 ) versus a comparative example (TCO reference).
  • the TCO reference was made up of 3 mm thick glass substrate 1 and from the glass outwardly 30 nm of tin oxide, 20 nm of silicon oxide and 350 nm of TCO.
  • FIG. 3 thus shows that the examples of this invention (Examples 1-3 shown in FIGS. 5-7 ) has increased transmission in the approximately 450-600 and 450-700 nm wavelength ranges and thus increased photovoltaic module output power, compared to the comparative example (TCO reference).
  • Example 1 shown in FIG. 5 and charted in FIGS. 3-4 was made up of 3 mm thick glass substrate 1 , 16 nm thick TiO 2 dielectric layer 2 , 10 nm thick zinc oxide TCO doped with Al 3 a , 8 nm thick Ag IR reflecting layer 3 b , and 115 nm thick zinc oxide TCO doped with Al 3 e .
  • Surface 1 a was flat in this example.
  • Layers 3 c , 3 d and 3 f were not present in Example 1.
  • 3-4 was made up of 3 mm thick glass substrate 1 with a flat surface 1 a , 16 nm thick TiO 2 dielectric layer 2 , 10 nm thick zinc oxide TCO doped with Al 3 a , 8 nm thick Ag IR reflecting layer 3 b , 100 nm thick zinc oxide TCO doped with Al 3 e , and 20 nm thick titanium suboxide layer 3 f .
  • 3-4 was made up of 3 mm thick glass substrate 1 with a flat surface 1 a , 45 nm thick dielectric layer 2 , 10 nm thick zinc oxide TCO doped with Al 3 a , 5 nm thick Ag IR reflecting layer 3 b , 75 nm thick zinc oxide TCO doped with Al 3 c , 7 nm thick Ag IR reflecting layer 3 d , 95 nm thick zinc oxide TCO doped with Al 3 e , and 20 nm thick titanium suboxide layer 3 f .
  • Examples 1-3 had a sheet resistance less than 10 ohms/square and 6 ohms/square, respectively, and total thicknesses much less than the 400 nm thickness of the prior art.
  • Examples 1-3 had tailored transmission spectra, as shown in FIG. 3 , having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 has the strongest intensity and photovoltaic devices may possibly have the highest or substantially the highest quantum efficiency.
  • FIG. 4 is a percent reflection (R %) versus wavelength (nm) graph illustrating reflection spectra from a hydrogenated Si thin film of a photovoltaic device comparing Examples 1-3 versus the above mentioned comparative example; this shows that Examples 1-3 had increased reflection in the IR range thereby reducing the operating temperature of the photovoltaic modules so as to increase module output power, compared to the comparative example.
  • R % versus wavelength (nm) graph illustrating reflection spectra from a hydrogenated Si thin film of a photovoltaic device comparing Examples 1-3 versus the above mentioned comparative example; this shows that Examples 1-3 had increased reflection in the IR range thereby reducing the operating temperature of the photovoltaic modules so as to increase module output power, compared to the comparative example.
  • the low reflection in the visible range of from about 450-600 nm and/or 450-700 nm is advantageously coupled with high reflection in the near and short IR range beyond about 1000 nm; the high reflection in the near and short IR range reduces the absorption of solar thermal energy that will result in a better cell output due to the reduced cell temperature and series resistance in the module.
  • the front glass substrate 1 and front electrode 3 taken together have a reflectance of at least about 45% (more preferably at least about 55%) in a substantial part or majority of a near to short IR wavelength range of from about 1000-2500 nm and/or 1000 to 2300 nm.
  • the front glass substrate and front electrode 3 taken together have an IR reflectance of at least about 45% and/or 55% in a substantial part or a majority of a near IR wavelength range of from about 1000-2500 nm, possibly from 1200-2300 nm. In certain example embodiments, it may block at least 50% of solar energy in the range of 1000-2500 nm.
  • the electrode 3 is used as a front electrode in a photovoltaic device in certain embodiments of this invention described and illustrated herein, it is also possible to use the electrode 3 as another electrode in the context of a photovoltaic device or otherwise.
  • FIG. 8 is a cross sectional view of a photovoltaic device according to another example embodiment of this invention.
  • An optional antireflective (AR) layer (not shown) may be provided on the light incident side of the front glass substrate 1 in any embodiment of this invention.
  • the photovoltaic device in FIG. 8 is a cross sectional view of a photovoltaic device according to another example embodiment of this invention.
  • An optional antireflective (AR) layer may be provided on the light incident side of the front glass substrate 1 in any embodiment of this invention.
  • dielectric layer(s) 2 e.g., of or including one or more of silicon oxide, silicon oxynitride, silicon nitride, titanium oxide, niobium oxide, and/or the like
  • seed layer 4 b e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like
  • silver based IR reflecting layer 4 c optional overcoat or contact layer 4 d (e.g., of or including an oxide of Ni and/or Cr, zinc oxide, zinc aluminum oxide, or the like) which may be a TCO
  • TCO 4 e e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, or the like
  • layer 4 b may be the same as layer 3 a described above
  • layer 4 c may be the same as layer 3 b or 3 d described above this applies to FIGS. 8-10
  • layer 4 e may be the same as layer 3 e described above (this also applies to FIGS. 8-10 )
  • layer 4 f may be the same as layer 3 f described above (this also applies to FIGS. 8-10 ) (see descriptions above as to other embodiments in this respect).
  • layers 1 , 5 , 7 , 9 and 11 are also discussed above in connection with other embodiments, as are surfaces 1 a and 1 b of the front glass substrate 1 .
  • an example of the FIG. 8 embodiment is as follows (note that certain optional layers shown in FIG. 8 are not used in this example).
  • glass substrate 1 e.g., about 3.2 mm thick
  • dielectric layer 2 e.g., silicon oxynitride about 20 nm thick possibly followed by dielectric TiOx about 20 nm thick
  • Ag seed layer 4 b e.g., dielectric or TCO zinc oxide or zinc aluminum oxide about 10 nm thick
  • IR reflecting layer 4 c silver about 5-8 nm thick
  • TCO 4 e e.g., conductive zinc oxide, tin oxide, zinc aluminum oxide, ITO from about 50-250 nm thick, more preferably from about 100-150 nm thick
  • possibly conductive buffer layer 4 f TCO zinc oxide, tin oxide, zinc aluminum oxide, ITO, or the like, from about 10-50 nm thick).
  • the buffer layer 4 f (or 3 f ) is designed to have a refractive index (n) of from about 2.1 to 2.4, more preferably from about 2.15 to 2.35, for substantial index matching to the semiconductor 5 (e.g., CdS or the like) in order to improve efficiency of the device.
  • n refractive index
  • the photovoltaic device of FIG. 8 may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention.
  • the FIG. 8 embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity and in certain example instances the cell may have the highest or substantially the highest quantum efficiency.
  • FIG. 9 is a cross sectional view of a photovoltaic device according to yet another example embodiment of this invention.
  • the photovoltaic device of the FIG. 9 embodiment includes optional antireflective (AR) layer (not shown) on the light incident side of the front glass substrate 1 , first dielectric layer 2 a , second dielectric layer 2 b , third dielectric layer 2 c which may optionally function as a seed layer (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like) for the silver based layer 4 c , conductive silver based IR reflecting layer 4 c , optional overcoat or contact layer 4 d (e.g., of or including an oxide of Ni and/or Cr, zinc oxide, zinc aluminum oxide, or the like) which may be a TCO or dielectric, TCO 4 e (e.g., including one or more layers, such as of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony
  • Layers 4 e and 4 f are preferably conductive in order to ensure that the metal layer 4 c can be used in connection with the absorber film 5 to generate charge.
  • Semiconductor film 5 may include a single pin or pn semiconductor structure, or a tandem semiconductor structure in different embodiments of this invention.
  • Semiconductor 5 may be of or include silicon in certain example instances.
  • semiconductor film 5 may include a first layer of or including CdS (e.g., window layer) adjacent or closest to layer(s) 4 e and/or 4 f and a second semiconductor layer of or including CdTe (e.g., main absorber) adjacent or closest to the back electrode or contact 7 .
  • CdS e.g., window layer
  • CdTe e.g., main absorber
  • first dielectric layer 2 a has a relatively low refractive index (n) (e.g., n of from about 1.7 to 2.2, more preferably from about 1.8 to 2.2, still more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.08)
  • second dielectric layer 2 b has a relatively high (compared to layer 2 a ) refractive index (n) (e.g., n of from about 2.2 to 2.6, more preferably from about 2.3 to 2.5, and most preferably from about 2.35 to 2.45)
  • third dielectric layer 2 c has a relatively low (compared to layer 2 b ) refractive index (n) (e.g., n of from about 1.8 to 2.2, more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.05).
  • the first low index dielectric layer 2 a may be of or include silicon nitride, silicon oxynitride, or any other suitable material
  • the second high index dielectric layer 2 b may be of or include an oxide of titanium (e.g., TiO 2 , or the like)
  • the third dielectric layer 2 c may be of or include zinc oxide or any other suitable material.
  • layers 2 a - 2 c combine to form a good index matching stack which also functions as a buffer against sodium migration from the glass 1 .
  • the first dielectric layer 2 a is from about 5-30 nm thick, more preferably from about 10-20 nm thick
  • the second dielectric layer 2 b is from about 5-30 nm thick, more preferably from about 10-20 nm thick
  • the third layer 2 c is of a lesser thickness and is from about 3-20 nm thick, more preferably from about 5-15 nm thick, and most preferably from about 6-14 nm thick. While layers 2 a , 2 b and 2 c are dielectrics in certain embodiments of this invention, one, two or all three of these layers may be dielectric or TCO in certain other example embodiments of this invention.
  • Layers 2 b and 2 c are metal oxides in certain example embodiments of this invention, whereas layer 2 a is a metal oxide and/or nitride, or silicon nitride in certain example instances. Layers 2 a - 2 c may be deposited by sputtering or any other suitable technique.
  • the TCO layer(s) 4 e may be of or include any suitable TCO including but not limited to zinc oxide, zinc aluminum oxide, tin oxide and/or the like.
  • TCO layer or file 4 e may include multiple layers in certain example instances.
  • the TCO 4 includes a first layer of a first TCO metal oxide (e.g., zinc oxide) adjacent Ag 4 c , Ag overcoat 4 d and a second layer of a second.
  • TCO metal oxide e.g., tin oxide
  • an example of the FIG. 9 embodiment is as follows.
  • glass substrate 1 e.g., float glass about 3.2 mm thick, and a refractive index n of about 1.52
  • first dielectric layer 2 a e.g., silicon nitride about 15 nm thick, having a refractive index n of about 2.07
  • second dielectric layer 2 b e.g., oxide of Ti, such as TiO 2 or other suitable stoichiometry, about 16 nm thick, having a refractive index n of about 2.45
  • third dielectric layer 2 c e.g., zinc oxide, possibly doped with Al, about 9 nm thick, having a refractive index n of about 2.03
  • IR reflecting layer 4 c silver about 3-9 nm thick, e.g., 6 nm
  • silver overcoat 4 d of NiCrO x about 1-3 nm thick which may or may not be
  • the photovoltaic device of FIG. 9 may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention.
  • the FIG. 9 (and/or FIGS. 10-11 ) embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity.
  • FIG. 10 is a cross sectional view of a photovoltaic device according to still another example embodiment of this invention.
  • the FIG. 10 embodiment is the same as the FIG. 9 embodiment discussed above, except for the TCO film 4 e .
  • the TCO film 4 e includes a first layer 4 e ′ of or including a first TCO metal oxide (e.g., zinc oxide, which may or may not be doped with Al or the like) adjacent and contacting layer 4 d and a second layer 4 e ′′ of a second TCO metal oxide (e.g., tin oxide) adjacent and contacting layer 4 f and/or 5 (e.g., layer 4 f may be omitted, as in previous embodiments).
  • a first TCO metal oxide e.g., zinc oxide, which may or may not be doped with Al or the like
  • a second layer 4 e ′′ of a second TCO metal oxide e.g., tin oxide
  • Layer 4 e ′ is also substantially thicker than layer 4 e ′′ in certain example embodiments.
  • the first TCO layer 4 e ′ has a resistivity which is less than that of the second TCO layer 4 e ′′.
  • the first TCO layer 4 e ′ may be of zinc oxide, Al-doped zinc oxide, or ITO about 70-150 nm thick (e.g., about 110 nm) having a resistivity of no greater than about 1 ohm ⁇ cm
  • the second TCO layer 4 e ′′ may be of tin oxide about 10-50 nm thick (e.g., about 30 nm) having a resistivity of from about 10-100 ohm ⁇ cm, possibly from about 2-100 ohm ⁇ cm.
  • the first TCO layer 4 e ′ is thicker and more conductive than the second TCO layer 4 e ′′ in certain example embodiments, which is advantageous as layer 4 e ′ is closer to the conductive Ag based layer 4 c thereby leading to improved efficiency of the photovoltaic device. Moreover, this design is advantageous in that CdS of the film 5 adheres or sticks well to tin oxide which may be used in or for layer 4 e ′′. TCO layers 4 e ′ and/or 4 e ′′ may be deposited by sputtering or any other suitable technique.
  • the first TCO layer 4 e ′ may be of or include ITO (indium tin oxide) instead of zinc oxide.
  • ITO indium tin oxide
  • the ITO of layer 4 e ′ may be about 90% In, 10% Sn, or alternatively about 50% In, 50% Sn.
  • the use of at least these three dielectrics 2 a - 2 c is advantageous in that it permits reflections to be reduced thereby resulting in a more efficient photovoltaic device.
  • the overcoat layer 4 d e.g., of or including an oxide of Ni and/or Cr
  • the overcoat layer 4 d to be oxidation graded, continuously or discontinuously, in certain example embodiments of this invention.
  • layer 4 d may be designed so as to be more metallic (less oxided) at a location therein closer to Ag based layer 4 d than at a location therein further from the Ag based layer 4 d ; this has been found to be advantageous for thermal stability reasons in that the coating does not degrade as much during subsequently high temperature processing which may be associated with the photovoltaic device manufacturing process or otherwise.
  • a thickness of from about 120-160 nm, more preferably from about 130-150 nm (e.g., 140 nm), for the TCO film 4 e is advantageous in that the Jsc peaks in this range.
  • the Jsc decreases by as much as about 6.5% until it bottoms out at about a TCO thickness of about 60 nm.
  • Below 60 nm it increases again until at a TCO film 4 e thickness of about 15-35 nm (more preferably 20-30 nm) it is attractive, but such thin coatings may not be desirable in certain example non-limiting situations.
  • the thickness of TCO film 4 e may be provided in the range of from about 15-35 nm, or in the range of from about 120-160 nm or 130-150 nm.
  • FIG. 11 is a cross sectional view of a photovoltaic device according to still another example embodiment of this invention.
  • the FIG. 11 embodiment is similar to the FIG. 9-10 embodiments discussed above, except for the differences shown in the figure.
  • FIG. 11 is a cross sectional view of a photovoltaic device according to an example embodiment of this invention. The photovoltaic device of the FIG.
  • first dielectric layer 2 a of or including one or more of silicon nitride (e.g., Si 3 N 4 or other suitable stoichiometry), silicon oxynitride, silicon oxide (e.g., SiO 2 or other suitable stoichiometry), and/or tin oxide (e.g., SnO 2 or other suitable stoichiometry); second dielectric layer 2 b of or including titanium oxide (e.g., TiO 2 or other suitable stoichiometry) and/or niobium oxide; third layer 2 c (which may be a dielectric or a TCO) which may optionally function as a seed layer (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like) for the silver based layer 4 c ; conductive silver based IR
  • dielectric layer 2 a may be from about 10-20 nm thick, more preferably from about 12-18 nm thick; layer 2 b may be from about 10-20 nm thick, more preferably from about 12-18 nm thick; layer 2 c may be from about 5-20 nm thick, more preferably from about 5-15 nm thick (layer 2 c is thinner than one or both of layers 2 a and 2 b in certain example embodiments); layer 4 c may be from about 5-20 nm thick, more preferably from about 6-10 nm thick; layer 4 d may be from about 0.2 to 5 nm thick, more preferably from about 0.5 to 2 nm thick; TCO film 4 e may be from about 50-200 nm thick, more preferably from about 75-150 nm thick, and may have a resistivity of no more than about 100 m ⁇ in certain example instances; and buffer layer 4 f may be from about 10-50 nm thick, more preferably from about 20-40 nm thick
  • Optional buffer layer 4 f may provide substantial index matching between the semiconductor film 5 (e.g., CdS portion) to the TCO 4 e in certain example embodiments, in order to optimize total solar transmission reaching the semiconductor.
  • the semiconductor film 5 e.g., CdS portion
  • semiconductor film 5 may include a single pin or pn semiconductor structure, or a tandem semiconductor structure in different embodiments of this invention.
  • Semiconductor 5 may be of or include silicon in certain example instances.
  • semiconductor film 5 may include a first layer of or including CdS (e.g., window layer) adjacent or closest to layer(s) 4 e and/or 4 f and a second semiconductor layer of or including CdTe (e.g., main absorber) adjacent or closest to the back electrode or contact 7 .
  • CdS e.g., window layer
  • CdTe e.g., main absorber
  • first dielectric layer 2 a has a relatively low refractive index (n) (e.g., n of from about 1.7 to 2.2, more preferably from about 1.8 to 2.2, still more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.08)
  • second dielectric layer 2 b has a relatively high (compared to layer 2 a ) refractive index (n) (e.g., n of from about 2.2 to 2.6, more preferably from about 2.3 to 2.5, and most preferably from about 2.35 to 2.45)
  • third dielectric layer 2 c may optionally have a relatively low (compared to layer 2 b ) refractive index (n) (e.g., n of from about 1.8 to 2.2, more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.05).
  • layers 2 a - 2 c combine to form a good index matching stack for antireflection purposes and which also functions as a buffer against sodium migration from the glass 1 .
  • the first dielectric layer 2 a is from about 5-30 nm thick, more preferably from about 10-20 nm thick
  • the second dielectric layer 2 b is from about 5-30 nm thick, more preferably from about 10-20 nm thick
  • the third layer 2 c is of a lesser thickness and is from about 3-20 nm thick, more preferably from about 5-15 nm thick, and most preferably from about 6-14 nm thick.
  • layers 2 a , 2 b and 2 c are dielectrics in certain embodiments of this invention, one, two or all three of these layers may be dielectric or TCO in certain other example embodiments of this invention.
  • Layers 2 b and 2 c are metal oxides in certain example embodiments of this invention, whereas layer 2 a is a metal oxide and/or nitride, or silicon nitride in certain example instances.
  • Layers 2 a - 2 c may be deposited by sputtering or any other suitable technique.
  • the TCO layer(s) 4 e may be of or include any suitable TCO including but not limited to zinc oxide, zinc aluminum oxide, tin oxide and/or the like.
  • TCO layer or file 4 e may include multiple layers in certain example instances.
  • the TCO 4 includes a first layer of a first TCO metal oxide (e.g., zinc oxide) adjacent Ag 4 c , Ag overcoat 4 d and a second layer of a second TCO metal oxide (e.g., tin oxide) adjacent and contacting layer 4 f and/or 5 .
  • a first TCO metal oxide e.g., zinc oxide
  • Ag overcoat 4 d e.g., Ag overcoat 4 d
  • a second TCO metal oxide e.g., tin oxide
  • FIG. 11 may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention.
  • the FIG. 11 embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity, in certain example embodiments of this invention.
  • Examples 4-5 are discussed below, and each have a textured surface 1 a of the front glass substrate 1 as shown in the figures herein.
  • outer surface 1 a of the front transparent glass substrate 1 was lightly etched having fine features that in effect function as a single layered low index antireflection coating suitable for, e.g., CdTe solar cell applications.
  • Example 5 had larger features on the textured surface 1 a of the front glass substrate, again formed by etching, that trap incoming light and refracts light into the semiconductor at oblique angles, suitable for, e.g., a-Si single and/or tandem solar cell applications.
  • the interior surface 1 b of the glass substrate 1 was flat in each of Examples 4 and 5, as was the front electrode 3 .
  • Example 4 referring to FIG. 11 , the layer stack moving from the glass 1 inwardly toward the semiconductor 5 was glass 1 , silicon nitride (15 nm thick) layer 2 a , TiO x (16 nm thick) layer 2 b , ZnAlO x (10 nm thick) layer 2 c , Ag (7 nm thick) layer 4 c , NiCrO x (1 nm thick) layer 4 d , ITO (110 nm thick) layer 4 e , SnO x (30 nm thick) layer 4 f , and then the CdS/CdTe semiconductor.
  • the etched surface 1 a of the front glass substrate 1 had an effective index and thickness around 1.35-1.42 and 110 nm, respectively.
  • the etched surface 1 a acted as an AR coating (although no such coating was physically present) and increased the transmission 2-3% which will be appreciated as being highly advantageous, around the wavelength region from 400-1,000 nm as shown in FIGS. 12-13 .
  • the combination of the Ag-based TCC 3 and the textured front surface 1 a resulted in enhanced transmission into the CdTe/CdS semiconductor film 5 , especially in the region from 500-700 nm where CdTe PV device QE and solar flux are significant.
  • FIG. 12 is a measured transmission (T) and reflection (R) (% from first surface 1 a ) spectra, versus wavelength (nm), showing results from Example 4, where the example used a 10 ohms/sq. Ag-based TCC coating 3 a front glass substrate with a textured surface 1 .
  • the Example 4 with the textured surface 1 a had slightly increased transmission (T) and slightly reduced reflection (R) in the 500-700 nm region compared to a comparative example shown in FIG. 12 where surface 1 a (first surface) was not etched. This is advantage in that more current is generated in the semiconductor film 5 of the PV device.
  • FIG. 12 is a measured transmission (T) and reflection (R) (% from first surface 1 a ) spectra, versus wavelength (nm), showing results from Example 4, where the example used a 10 ohms/sq. Ag-based TCC coating 3 a front glass substrate with a textured surface 1 .
  • T transmission
  • R reflection
  • FIG. 15 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing Example 4 versus comparative examples.
  • FIG. 15 shows that the Example 4 realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example without the etched front surface (x dotted line) and the comparative example of the conventional TCO superstrate (o solid line).
  • Example 5 the layer stack moving from the glass 1 inwardly toward the semiconductor 5 was glass 1 , silicon nitride (15 nm thick) layer 2 a , TiO x (10 nm thick) layer 2 b , ZnAlO x (10 nm thick) layer 2 c , Ag (8 nm thick) layer 4 c , NiCrO x (1 nm thick) layer 4 d , ITO (70 nm thick) layer 4 e , SnO x (20 nm thick) layer 4 f , and then the a-Si semiconductor 5 .
  • FIG. 14 shows measured and predicted results; measured integrated and specular transmission spectra and predicted light scattering/diffusion, according to Example 5.
  • FIG. 14 shows that the integrated transmission that includes both specular and diffused transmission lights is around 17% higher than the specular only transmission light. This implies that more than 17% of light in the visible and near-IR regions are either diffused or scattered.
  • a diffused and/or scattered light has increased optical path in photovoltaic materials 5 , and is especially desired in a-Si type solar cells.
  • FIG. 16 is a cross sectional view of an example of the FIG. 11 embodiment of this invention.
  • Solar radiation incident on photovoltaic solar cells includes two kinds of photons, short wavelength photons having energies high enough to create electron-hole pairs in photovoltaic materials and long wavelength photons having no contribution to electron-hole pair creation but generating thermal heat that degrades solar cell output power.
  • a transparent conductive superstrate (or front electrode/contact) that acts as not only a transparent conductive front contact but also a short pass filter that allows an increased amount of photons having high enough energy (such as in visible and near infra-red regions of the spectrum) into the active region or absorber of solar cells, and which also blocks the rest or a significant part of the rest of the incident solar radiation which may be harmful or undesirable.
  • the solar cell output power can be improved due to reduced module temperature by increased IR reflection, and increased transmission in visible to near IR.
  • FIG. 16 is a cross sectional view illustrating an example design of such a conductive short pass filter as a front electrode, which achieves high transmission in visible and near IR but reflects long wavelength IR light.
  • the thin Ag-based substantially metal layer 4 c can be single Ag or Ag alloy, or sandwiched between other metallic layer such as TiNx, Ti or NiCr (not shown).
  • the overall physical thickness of the front electrode in the FIG. 16 embodiment may be no more than 15 nm, and resistivity of this front electrode may be no more than 20 uohm-cm.
  • the conductive oxide(s) can be single or multiple layered oxides of In, Sn, Zn, and their alloys with no more than 10% dopants such as Al, Ga, Sb and others in certain example embodiments.
  • the overall conductive front electrode has an effective refractive index of no less than 1.85, and an optical thickness of from about 150-200, more preferably 160-190 nm, in certain example embodiments applicable to a-Si photovoltaic devices.
  • the overall conductive front electrode has an effective refractive index of no less than 1.85, and an optical thickness of from about 240-300, more preferably 250-290 nm, in certain example embodiments applicable to CdS/CdTe photovoltaic devices.
  • the overall sheet resistance of the conductive oxide layer is no more than 2000 ohm/sq. in certain example embodiments.
  • the conductive oxide and Ag provide the required conductive path for electron/hole pairs generated from photovoltaic materials (e.g., semiconductor 5 ).
  • the transparent base layer ( 2 a , 2 b ) can be single or multiple layered oxide, oxynitride, or nitride, and it may be conductive or non-conductive.
  • the transparent base layer ( 2 a , 2 b ) has an overall effective index no less than 2.0 and optical thickness around 50-90 nm in certain example embodiments applicable to a-Si photovoltaic devices; and may have an overall effective index no less than 2.0 and optical thickness around 60-100 nm in certain example embodiments applicable to CdS/CdTe photovoltaic devices.
  • the physical and/or optical thickness of layer 4 e is at least two times thicker than that of layer 4 f , more preferably at least 3 times thicker.
  • layer 4 f may have a refractive index (n) of from about 1.9 to 2.1
  • layer 4 e may have a refractive index less than that of layer 4 f
  • layer 4 e may have a refractive index (n) of from about 1.8 to 2.0
  • layer 2 c may have a refractive index of from about 1.8 to 2.05, more preferably from about 1.85 to 1.95
  • layer 2 b may have a refractive index of from about 2.1 to 2.5, more preferably from about 2.25 to 2.45
  • layer 2 a may have a refractive index (n) of from about 1.9 to 2.1.
  • Example 6 relates to an a-Si based photovoltaic device.
  • the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1 , silicon nitride (about 10-15 nm thick, e.g., about 15 nm thick; refractive index “n” of about 2.0) layer 2 a , TiO x (about 10-20 nm thick, preferably about 10 nm; refractive index “n” of about 2.4) layer 2 b , ZnO or ZnAlO x (about 5-15 nm thick, preferably about 10 nm thick, refractive index “n” of about 1.9-2.0) layer 2 c , Ag (about 6-10 nm thick, preferably about 8 nm thick) layer 4 c , NiCrO x or NiCr (about 1-3 nm thick) layer 4 d , TCO I
  • FIG. 16 shows the predicted results of transmission into the a-Si cell of this Example 6 device compared to a conventional front electrode consisting only of a tin oxide TCO on the glass substrate.
  • FIG. 17 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra for Example 6 into an a-Si cell, illustrating that Example 6 (e.g., T-9 curve in FIG.
  • FIG. 16-17 realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 17 ).
  • the FIG. 16-17 embodiment may have tailored transmission spectra having more than 80%, 85% or even 87% transmission into the semiconductor 5 in part of, the majority of, or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, as shown in FIG. 17 , in certain example embodiments of this invention.
  • Example 7 relates to a CdS/CdTe based photovoltaic device.
  • the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1 , silicon nitride (about 15 nm thick, refractive index “n” of about 2.0) layer 2 a , TiO x (about 16 nm thick, refractive index “n” of about 2,4) layer 2 b , ZnAlO x (about 10 nm thick, refractive index “n” of about 1.9) layer 2 c , Ag (about 7 nm thick) layer 4 c , NiCrO x (about 1 nm thick) layer 4 d , TCO ITO (indium tin oxide) (about 110 nm thick, refractive index “n” of about 1.9) layer 4 e , TCO SnO x (about 30 nm thick,
  • FIG. 18 shows the predicted results of incident transmission into the CdS/CdTe cell of this Example 7 device compared to a similar device including a conventional front electrode consisting only of a tin oxide TCO on the glass substrate.
  • FIG. 18 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra for Example 7 into a CdS/CdTe cell, illustrating that Example 7 (e.g., T-Ag curve in FIG. 18 ) realized increased transmission in the approximately 450-600 and 500-700 nm wavelength ranges and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 18 ).
  • the FIG. 18 shows the predicted results of incident transmission into the CdS/CdTe cell of this Example 7 device compared to a similar device including a conventional front electrode consisting only of a tin oxide TCO on the glass substrate.
  • FIG. 18 is a percent transmission (T %) versus wavelength (nm) graph illustrating
  • 16 , 18 embodiment may have tailored transmission spectra having more than 85%, 90% or even 91 or 92% transmission into the semiconductor 5 in part of, the majority of, or all of the wavelength range(s) of from about 500-600 nm, 450-600 nm and/or 450-700 nm, as shown in FIG. 18 , in certain example embodiments of this invention.
  • Example 8 relates to a CdS/CdTe type photovoltaic device, including an indium tin oxide based transparent conductive coating (TCC) (e.g., see FIGS. 19( a )-( c )).
  • TCC transparent conductive coating
  • the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1 , dielectric TiO x (about 5-15 nm, preferably about 10 nm thick, refractive index “n” of about 2.3-2.4) layer 2 a , dielectric silicon oxynitride (about 20-50 nm thick, preferably about 25-40 nm thick, refractive index “n” of from about 1.45-1.75, preferably from about 1.45-1.65) layer 2 b , highly conductive indium tin oxide (ITO) layer 4 c (e.g., from about 200-500 nm thick, more preferably from about 300-400 nm thick; resistivity of from about 0.2 to 0.5 mohm-cm, refractive index of from about 1.9 to 2.1), TCO SnO x (about 20-80 nm thick, more preferably from about 30-60 nm thick; ref
  • This embodiment includes a transparent conductive superstrate structure including the highly conductive ITO based layer 4 c sandwiched between a low conductive layer 4 f atop and a non-conductive dielectric layer ( 2 a and/or 2 b ) thereunder on the substrate 1 .
  • This coating has a low sheet resistance and high transmission in the visible to near IR that is suitable for applications as transparent conductive superstrates in thin film solar cell modules.
  • Fluorine doped pyrolytic tin oxide is widely used as a TCC in coatings for solar cells.
  • a physical thickness of 350-700 nm associated with more than 10% absorption loss is needed to achieve 10-15 ohm/square sheet resistance in this respect.
  • ITO thin films Comparing to fluorine doped tin oxides, ITO thin films have lower absorption loss and higher conductivity.
  • a reduced absorption loss in visible to near IR allowed increased light impinging into the semiconductor film 5 that results in increased photocurrents.
  • An increased conductivity reduces required physical thicknesses to achieve desired sheet resistance that has direct impact to the manufacturing cost as well as overall absorption loss.
  • the increased conductivity also reduces current loss in a module that improves the total output power. Therefore, the use of ITO is better than F-doped tin oxide for the main conductor of the front electrode of a PV device.
  • the TiO x based dielectric layer 2 a and the silicon oxynitride based dielectric layer 2 b together provide dual roles as an index matching film to reduce reflection loss from the front surface of the device and as a barrier layer to block diffusion of undesired elements from the glass 1 such as reducing or preventing diffusion of sodium from glass 1 into the ITO layer 3 c and/or semiconductor film 5 .
  • the low conductive metal oxide based layer 4 f (of or including tin oxide and/or zinc oxide and/or zinc aluminum oxide) in the FIG. 19( a ) embodiment acts as a buffer layer to reduce shunting risk caused by pinholes on the CdS of the semiconductor 5 .
  • FIG. 19( b ) shows measured optical transmission and reflection before and after the exposure of the Example 8 coating (elements 1 , 2 and 4 in FIG. 19( a )) to elevated temperature(s) (heat treatment of HT) similar to CdTe solar cell processing temperatures.
  • elevated temperature(s) heat treatment of HT
  • the exposure to elevated temperature(s) reduces absorption loss as shown in FIG. 19( b ), as well as sheet resistance of the coating to less than 15 ohms/square as compared to the as-deposited value of 75 ohms/square.
  • FIG. 19( c ) shows the estimated light impinging into the CdS/CdTe film photovoltaic material 5 when the ITO based coating (layers 1 , 2 and 4 in FIG.
  • Example 8 is used as the superstrate.
  • short circuit current density of 24.6 mA/cm 2 was achieved from a 2′ ⁇ 4′ CdTe solar cell panel using this ITO based transparent conductive superstrate.
  • Example 9 is similar to that of Example 8 discussed above, except that it is applicable to amorphous and/or microcrystalline silicon and silicon alloys based single and/or tandem junction thin film solar cells (still referring to FIG. 19( a )), In Example 9, referring to FIG.
  • the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1 , dielectric TiO x (about 5-15 nm, preferably about 10 nm thick, refractive index “n” of about 2.3-2.4) layer 2 a , dielectric silicon oxynitride (about 20-50 nm thick, preferably about 25-40 nm thick, refractive index “n” of from about 1.45-1.75, preferably from about 1.45-1.65) layer 2 b , highly conductive indium tin oxide (ITO) layer 4 c (e.g., from about 100-500 nm thick, more preferably from about 150-250 nm thick; resistivity of from about 0.2 to 0.5 mohm-cm, refractive index of from about 1.9 to 2.1), TCO ZnAlO x (at least about 30 nm thick, more preferably from about 30-150 nm thick
  • This embodiment includes a transparent conductive superstrate structure including the highly conductive ITO based layer 4 c sandwiched between a low conductive layer 4 f atop and a non-conductive dielectric layer ( 2 a and/or 2 b ) thereunder on the substrate 1 .
  • This coating has a low sheet resistance and high transmission in the visible to near IR that is suitable for applications as transparent conductive superstrates in thin film solar cell modules.
  • the ITO layer 4 e plays the major role to provide the desired conduction for the solar cell module.
  • the ZnAlOx layer 4 f has multiple functionalities such as (i) protecting the ITO 4 c from reduction caused by high hydrogen plasma during silicon deposition for layer 5 , (ii) trapping light through a roughened ZnAlOx surface created during deposition or post-deposition treatment such as via etching or laser patterning, and (iii) providing supplementary conduction to the ITO and a good ohmic contact to the silicon based p-layer of film 5 .
  • the TiO x based dielectric layer 2 a and the silicon oxynitride based dielectric layer 2 b bi-layer stack can be replaced by a single layer having an index of from about 1.6 to 1.8, more preferably from about 1.65 to 1.75 (e.g., a silicon oxynitride layer), a high-low index alternating multiple layer stack, or a graded index layer (e.g., graded silicon oxynitride) having an index less than about 1.6 on the side closest to glass 1 and at least 1.7 on the side farthest from glass 1 (on the ITO side).
  • the tin oxide in Ex. 8 and the zinc oxide in Ex. 9 can be replaced by other transparent conductive materials such as indium oxide, and alloys thereof with or without dopants such as Al, Ga and/or Sb.
  • FIG. 21 illustrates another example embodiment of this invention.
  • the FIG. 21 embodiment is the same as the FIG. 19( a )-( c ) embodiment discussed above, except that an additional dielectric silicon oxynitride layer 2 a ′ is provided in the dielectric stack between the glass 1 and the conductive electrode coating 3 .
  • the additional silicon oxynitride layer 2 a ′ in the FIG. 21 embodiment provides for additional index matching to reduce reflection loss from the front surface of the device and additional barrier functionality to block diffusion of undesired elements from the glass 1 such as reducing or preventing diffusion of sodium from glass 1 into the ITO layer 3 c and/or semiconductor film 5 during heat treatment or otherwise.
  • the sheet resistance of such a coating may be from about 20-30 ohms/square as deposited in certain example instances, in an example where the TCO 3 is from about 30-140 nm thick, the titanium oxide based layer 2 a is from about 10-20 nm thick, and the silicon oxynitride layer(s) are each from about 10-400 nm thick.
  • FIG. 22 illustrates another example embodiment of this invention.
  • the FIG. 22 embodiment is the same as the FIG. 19( a )-( c ) embodiment discussed above, except that the dielectric layer stack between the TCO (e.g., Ag based coating, as in any embodiment herein) 3 and the glass 1 is made up of silicon oxynitride layer 2 a ′, silicon nitride (e.g., Si 3 N 4 or a substoichiometric Si-rich type of silicon nitride) layer 2 a , and titanium oxide based layer 2 b .
  • the sheet resistance of such a coating may be from about 20-30 ohms/square as deposited in certain example instances, in an example where the TCO 3 is from about 30-140 nm thick, the titanium oxide based layer 2 b is from about 10-20 nm thick, the silicon nitride based layer 2 a is from about 10-15 nm thick and the silicon oxynitride based layer 2 a ′ is from about 10-400 nm thick.
  • the TCO 3 in FIG. 22 may be of or based on ITO, and the layers 2 a and 2 b can be removed, leaving a structure of glass/SiON/ITO as the front electrode structure.
  • the refractive index (n) of the silicon oxynitride can be from about 1.5 to 1.9 or 2.0, more preferably from about 1.6 to 1.8.
  • the TCO 3 in FIG. 22 may be of or based on ITO and the titanium oxide layer 2 b can be removed, leaving a structure of glass/SiON/SiNx/ITO as the front electrode structure.
  • the silicon nitride layer may have a refractive index of about 2.0.
  • the TCO 3 in FIG. 22 may be of or based on an Ag-based coating of any embodiment herein and the silicon nitride layer 2 a can be removed, leaving a structure of glass/SiON/TiOx/TCO as the front electrode structure.
  • the refractive index (n) of the silicon oxynitride 2 a ′ can be from about 1.5 to 1.9 or 2.0, more preferably from about 1.6 to 1.8.
  • both layers 2 a ′ and 2 a can be removed in certain alternative embodiments.
  • the silicon nitride (layer 2 a ) may be of the Si-rich type (e.g., Si x N y , where the x/y ratio is from about 0.76 to 1.2, more preferably from about 0.82 to 1.1), where absorption loss due to Si-rich nature of the silicon nitride based layer can be reduced after cell processing so keep absorption loss low.
  • Si-rich type e.g., Si x N y , where the x/y ratio is from about 0.76 to 1.2, more preferably from about 0.82 to 1.1

Abstract

This invention relates to a front electrode/contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, ITO, zinc oxide, or the like) and/or at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include one or more conductive metal(s) oxide layer(s) and/or one or more conductive substantially metallic IR reflecting layer(s) in order to provide for reduced visible light reflection, increased conductivity, cheaper manufacturability, and/or increased infrared (IR) reflection capability.

Description

  • This application is a continuation-in-part (CIP) of each of U.S. Ser. Nos. 12/149,263, filed Apr. 29, 2008, 12/068,117, filed Feb. 1, 2008, 11/984,092, filed Nov. 13, 2007, 11/987,664, filed Dec. 3, 2007, 11/898,641, filed Sep. 13, 2007, 11/591,668, filed Nov. 2, 2006, and 11/790,812, filed Apr. 27, 2007, the entire disclosures of which are all hereby incorporated herein by reference.
  • Certain embodiments of this invention relate to a photovoltaic device including an electrode such as a front electrode/contact. In certain example embodiments of this invention, the front electrode is of or includes a transparent conductive coating (TCC) having a plurality of layers, and may be provided on a surface of a front glass substrate opposite to a patterned surface of the substrate. The TCC may act to enhance transmission in selected PV active regions of the visible and near IR spectrum, while substantially rejecting and/or blocking undesired IR thermal energy from certain other areas of the spectrum.
  • In certain example embodiments, the front electrode of the photovoltaic device includes a multi-layer coating (or TCC) having at least one infrared (IR) reflecting and conductive substantially metallic layer of or including silver, gold, or the like, and possibly at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, zinc oxide, or the like). In certain example embodiments, the multilayer front electrode coating is designed to realize one or more of the following advantageous features: (a) reduced sheet resistance and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation thereby reducing the operating temperature of the photovoltaic module so as to increase module output power; (c) reduced reflection and/or increased transmission of light in the region of from about 400-700 nm, 450-700 nm, and/or 450-600 nm, which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating which can reduce fabrication costs and/or time; (e) improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conductivity on the overall electric properties of the module given the presence of the highly conductive substantially metallic IR reflecting layer(s); and/or (f) reduced risk of thermal stress caused module breakage by reflecting solar thermal energy and reducing temperature difference across the module.
  • BACKGROUND AND SUMMARY OF EXAMPLE EMBODIMENTS OF INVENTION
  • Photovoltaic devices are known in the art (e.g., see U.S. Pat. Nos. 6,784,361, 6,288,325, 6,613,603, and 6,123,824, the disclosures of which are hereby incorporated herein by reference). Amorphous silicon photovoltaic devices, for example, include a front electrode or contact. Typically, the transparent front electrode is made of a pyrolytic transparent conductive oxide (TCO) such as zinc oxide or tin oxide formed on a substrate such as a glass substrate. In many instances, the transparent front electrode is formed of a single layer using a method of chemical pyrolysis where precursors are sprayed onto the glass substrate at approximately 400 to 600 degrees C. Typical pyrolitic fluorine-doped tin oxide TCOs as front electrodes may be about 400 nm thick, which provides for a sheet resistance (Rs) of about 15 ohms/square. To achieve high output power, a front electrode having a low sheet resistance and good ohm-contact to the cell top layer, and allowing maximum solar energy in certain desirable ranges into the absorbing semiconductor film, are desired.
  • Unfortunately, photovoltaic devices (e.g., solar cells) with only such conventional TCO front electrodes suffer from the following problems.
  • First, a pyrolitic fluorine-doped tin oxide TCO about 400 nm thick as the entire front electrode has a sheet resistance (Rs) of about 15 ohms/square which is rather high for the entire front electrode. A lower sheet resistance (and thus better conductivity) would be desired for the front electrode of a photovoltaic device. A lower sheet resistance may be achieved by increasing the thickness of such a TCO, but this will cause transmission of light through the TCO to drop thereby reducing output power of the photovoltaic device.
  • Second, conventional TCO front electrodes such as pyrolytic tin oxide allow a significant amount of infrared (IR) radiation to pass therethrough thereby allowing it to reach the semiconductor or absorbing layer(s) of the photovoltaic device. This IR radiation causes heat which increases the operating temperature of the photovoltaic device thereby decreasing the output power thereof.
  • Third, conventional TCO front electrodes such as pyrolytic tin oxide tend to reflect a significant amount of light in the region of from about 400-700 nm, or 450-700 nm, so that less than about 80% of useful solar energy reaches the semiconductor absorbing layer; this significant reflection of visible light is a waste of energy and leads to reduced photovoltaic module output power. Due to the TCO absorption and reflections of light which occur between the TCO (n about 1.8 to 2.0 at 550 nm) and the thin film semiconductor (n about 3.0 to 4.5), and between the TCO and the glass substrate (n about 1.5), the TCO coated glass at the front of the photovoltaic device typically allows less than 80% of the useful solar energy impinging upon the device to reach the semiconductor film which converts the light into electric energy.
  • Fourth, the rather high total thickness (e.g., 400 nm) of the front electrode in the case of a 400 nm thick tin oxide TCO, leads to high fabrication costs.
  • Fifth, the process window for forming a zinc oxide or tin oxide TCO for a front electrode is both small and important. In this respect, even small changes in the process window can adversely affect conductivity of the TCO. When the TCO is the sole conductive layer of the front electrode, such adverse affects can be highly detrimental.
  • Thus, it will be appreciated that there exists a need in the art for an improved front electrode for a photovoltaic device that can solve or address one or more of the aforesaid five problems.
  • In certain example embodiments of this invention, there is provided a front electrode structure for a photovoltaic device, the front electrode structure comprising: a front substantially transparent glass substrate; a first layer comprising one or more of silicon nitride, silicon oxide, silicon oxynitride, and/or tin oxide; a second layer comprising one or more of titanium oxide and/or niobium oxide, wherein at least the first layer is located between the front substrate and the second layer; a third layer comprising zinc oxide and/or zinc aluminum oxide; a conductive layer comprising silver, wherein at least the third layer is provided between the conductive layer comprising silver and the second layer; a layer comprising an oxide of Ni and/or Cr; a transparent conductive oxide (TCO) layer comprising indium tin oxide provided between the layer comprising the oxide of Ni and/or Cr and a transparent conductive oxide (TCO) layer comprising tin oxide; and wherein a layer stack comprising said first layer, said second layer, said third layer, said conductive layer comprising silver, said layer comprising the oxide of Ni and/or Cr, said TCO layer comprising indium tin oxide, and said TCO comprising tin oxide, is provided on an interior surface of the front glass substrate facing the semiconductor film of the photovoltaic device.
  • In certain example embodiments of this invention, there is provided a photovoltaic device including a front electrode structure, the front electrode structure comprising: a front substantially transparent glass substrate; a dielectric layer comprising titanium oxide; a dielectric layer comprising silicon oxynitride, wherein the layer comprising titanium oxide is located between the glass substrate and the layer comprising silicon nitride; a conductive layer comprising indium tin oxide, wherein the layer comprising silicon oxynitride is located between at least the layer comprising indium tin oxide and the layer comprising titanium oxide; a conductive layer comprising zinc oxide and/or zinc aluminum oxide; wherein the front electrode structure comprising said layer comprising titanium oxide, said layer comprising silicon oxynitride, said conductive layer comprising indium tin oxide, and said conductive layer comprising zinc oxide and/or zinc aluminum oxide is provided on an interior surface of the front glass substrate facing a semiconductor film of the photovoltaic device.
  • In certain example embodiments of this invention, the front electrode of a photovoltaic device includes a transparent conductive coating (TCC) having a plurality of layers, and is provided on a surface of a front glass substrate opposite to a patterned surface of the substrate. In certain example embodiments, the patterned (e.g., etched) surface of the front transparent glass substrate faces incoming light, whereas the TCC is provided on the opposite surface of the substrate facing the semiconductor film of the photovoltaic (PV) device. The patterned first or front surface of the glass substrate reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film through scattering, refraction and diffusion.
  • In certain example embodiments, the TCC of the front electrode may be comprise a multilayer coating including at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like), and optionally at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, zinc oxide, or the like). In certain example instances, the multilayer front electrode coating may include a plurality of TCO layers and/or a plurality of conductive substantially metallic IR reflecting layers arranged in an alternating manner in order to provide for reduced visible light reflections, increased conductivity, increased IR reflection capability, and so forth.
  • In certain example embodiments of this invention, a multilayer front electrode coating may be designed to realize one or more of the following advantageous features: (a) reduced sheet resistance (Rs) and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation thereby reducing the operating temperature of the photovoltaic module so as to increase module output power; (c) reduced reflection and increased transmission of light in the region(s) of from about 400-700 nm, 450-700 nm, or 450-600 nm which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating which can reduce fabrication costs and/or time; (e) an improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conductivity on the overall electric properties of the module given the presence of the highly conductive substantially metallic layer(s); and/or (f) reduced risk of thermal stress caused module breakage by reflecting solar thermal energy and reducing temperature difference across the module.
  • In certain example embodiments of this invention, there is provided a photovoltaic device comprising: a front glass substrate; an active semiconductor film; an electrically conductive and substantially transparent front electrode located between at least the front glass substrate and the semiconductor film; wherein the substantially transparent front electrode comprises, moving away from the front glass substrate toward the semiconductor film, at least a first substantially transparent conductive substantially metallic infrared (IR) reflecting layer comprising silver and/or gold, and a first transparent conductive oxide (TCO) film located between at least the IR reflecting layer and the semiconductor film; and wherein the front electrode is provided on an interior surface of the front glass substrate facing the semiconductor film, and an exterior surface of the front glass substrate facing incident light is textured so as to reduce reflection loss of incident solar flux and increase absorption of photons in the semiconductor film, especially when the sunlight coming at a tinted angle.
  • In certain example embodiments of this invention, there is provided a photovoltaic device comprising: a front glass substrate; a semiconductor film; a substantially transparent front electrode located between at least the front glass substrate and the semiconductor film; wherein the substantially transparent front electrode comprises, moving away from the front glass substrate toward the semiconductor film, at least a first substantially transparent layer that may or may not be conductive, a substantially metallic infrared (IR) reflecting layer comprising silver and/or gold, and a first transparent conductive oxide (TCO) film located between at least the IR reflecting layer and the semiconductor film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of an example photovoltaic device according to an example embodiment of this invention.
  • FIG. 2 is a refractive index (n) versus wavelength (nm) graph illustrating refractive indices (n) of glass, a TCO film, silver thin film, and hydrogenated silicon (in amorphous, micro- or poly-crystalline phase).
  • FIG. 3 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a hydrogenated Si thin film of a photovoltaic device comparing examples of this invention versus a comparative example (TCO reference); this shows that the examples of this invention (Examples 1, 2 and 3) have increased transmission in the approximately 450-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (TCO reference).
  • FIG. 4 is a percent reflection (R %) versus wavelength (nm) graph illustrating reflection spectra from a hydrogenated Si thin film of a photovoltaic device comparing the examples of this invention (Examples 1, 2 and 3 referred to in FIG. 3) versus a comparative example (TCO reference referred to in FIG. 3); this shows that the example embodiment of this invention have increased reflection in the IR range, thereby reducing the operating temperature of the photovoltaic module so as to increase module output power, compared to the comparative example. Because the same Examples 1-3 and comparative example (TCO reference) are being referred to in FIGS. 3 and 4, the same curve identifiers used in FIG. 3 are also used in FIG. 4.
  • FIG. 5 is a cross sectional view of the photovoltaic device according to Example 1 of this invention.
  • FIG. 6 is a cross sectional view of the photovoltaic device according to Example 2 of this invention.
  • FIG. 7 is a cross sectional view of the photovoltaic device according to Example 3 of this invention.
  • FIG. 8 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 9 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 10 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 11 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 12 is a measured transmission (T) and reflection (R) (% from first surface 1 a) spectra, versus wavelength (nm), showing results from Example 4 (having a 10 ohms/sq. Ag-based TCC coating a front glass substrate with a textured surface).
  • FIG. 13 is a transmission ratio versus wavelength (nm) graph illustrating results according to Example 4 (compared to a comparative example).
  • FIG. 14 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into an a-Si cell of a photovoltaic device, showing results of Example 5 of this invention having a textured front surface of the front glass substrate.
  • FIG. 15 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing Example 4 of this invention (having a textured front surface of the front glass substrate) versus comparative examples; this shows that the Example 4 of this invention realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example without the etched front surface (x dotted line) and the comparative example of the conventional TCO superstrate (o solid line).
  • FIG. 16 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 17 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into an a-Si cell of a photovoltaic device comparing the FIG. 16 embodiment of this invention versus a comparative example; this shows that the FIG. 16 embodiment of this invention (e.g., T-9 curve in FIG. 17) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 17).
  • FIG. 18 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing the FIG. 16 embodiment of this invention versus a comparative example; this shows that the FIG. 16 embodiment of this invention (e.g., T-Ag curve in FIG. 18) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 18).
  • FIG. 19( a) is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 19( b) is a wavelength vs. transmission/reflection graph of Example 8.
  • FIG. 19( c) is a wavelength vs. transmission graph of Example 8.
  • FIG. 20 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 21 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • FIG. 22 is a cross sectional view of the photovoltaic device according to another example embodiment of this invention.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION
  • Referring now more particularly to the figures in which like reference numerals refer to like parts/layers in the several views.
  • Photovoltaic devices such as solar cells convert solar radiation into usable electrical energy. The energy conversion occurs typically as the result of the photovoltaic effect. Solar radiation (e.g., sunlight) impinging on a photovoltaic device and absorbed by an active region of semiconductor material (e.g., a semiconductor film including one or more semiconductor layers such as a-Si layers, the semiconductor sometimes being called an absorbing layer or film) generates electron-hole pairs in the active region. The electrons and holes may be separated by an electric field of a junction in the photovoltaic device. The separation of the electrons and holes by the junction results in the generation of an electric current and voltage. In certain example embodiments, the electrons flow toward the region of the semiconductor material having n-type conductivity, and holes flow toward the region of the semiconductor having p-type conductivity. Current can flow through an external circuit connecting the n-type region to the p-type region as light continues to generate electron-hole pairs in the photovoltaic device.
  • In certain example embodiments, single junction amorphous silicon (a-Si) photovoltaic devices include three semiconductor layers. In particular, a p-layer, an n-layer and an i-layer which is intrinsic. The amorphous silicon film (which may include one or more layers such as p, n and i type layers) may be of hydrogenated amorphous silicon in certain instances, but may also be of or include hydrogenated amorphous silicon carbon or hydrogenated amorphous silicon germanium, or the like, in certain example embodiments of this invention. For example and without limitation, when a photon of light is absorbed in the i-layer it gives rise to a unit of electrical current (an electron-hole pair). The p and n-layers, which contain charged dopant ions, set up an electric field across the i-layer which draws the electric charge out of the i-layer and sends it to an optional external circuit where it can provide power for electrical components. It is noted that while certain example embodiments of this invention are directed toward amorphous-silicon based photovoltaic devices, this invention is not so limited and may be used in conjunction with other types of photovoltaic devices in certain instances including but not limited to devices including other types of semiconductor material, single or tandem thin-film solar cells, CdS and/or CdTe (including CdS/CdTe) photovoltaic devices, polysilicon and/or microcrystalline Si photovoltaic devices, and the like.
  • In certain embodiments of this invention, the front electrode of the PV device is of or includes a transparent conductive coating (TCC) having a plurality of layers, and is provided on a surface of a front glass substrate opposite to a patterned surface of the substrate. In certain example embodiments, the patterned (e.g., etched) surface of the front transparent glass substrate faces incoming light, whereas the TCC is provided on the opposite surface of the substrate facing the semiconductor film of the photovoltaic (PV) device. The patterned first or front surface of the glass substrate reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film through scattering, refraction and diffusion, especially when the sunlight coming at a tinted angle. The TCC may act to enhance transmission in selected PV active regions of the visible and near IR spectrum, while substantially rejecting and/or blocking undesired IR thermal energy from certain other areas of the spectrum. In certain example embodiments of this invention, the surface of the front transparent glass substrate on which the front electrode or TCC is provided may be flat or substantially flat (not patterned), whereas in alternative example embodiments it may also be patterned.
  • FIG. 1 is a cross sectional view of a photovoltaic device according to an example embodiment of this invention. The photovoltaic device includes transparent front glass substrate 1 (other suitable material may also be used for the substrate instead of glass in certain instances), optional dielectric layer(s) 2, multilayer front electrode 3, active semiconductor film 5 of or including one or more semiconductor layers (such as pin, pn, pinpin tandem layer stacks, or the like), back electrode/contact 7 which may be of a TCO or a metal, an optional encapsulant 9 or adhesive of a material such as ethyl vinyl acetate (EVA) or the like, and an optional superstrate 11 of a material such as glass. Of course, other layer(s) which are not shown may also be provided in the device. Front glass substrate 1 and/or rear superstrate (substrate) 11 may be made of soda-lime-silica based glass in certain example embodiments of this invention; and it may have low iron content and/or an antireflection coating thereon to optimize transmission in certain example instances. While substrates 1, 11 may be of glass in certain example embodiments of this invention, other materials such as quartz, plastics or the like may instead be used for substrate(s) 1 and/or 11. Moreover, superstrate 11 is optional in certain instances. Glass 1 and/or 11 may or may not be thermally tempered and/or patterned in certain example embodiments of this invention. Additionally, it will be appreciated that the word “on” as used herein covers both a layer being directly on and indirectly on something, with other layers possibly being located therebetween.
  • Dielectric layer(s) 2 may be of any substantially transparent material such as a metal oxide and/or nitride which has a refractive index of from about 1.5 to 2.5, more preferably from about 1.6 to 2.5, more preferably from about 1.6 to 2.2, more preferably from about 1.6 to 2.0, and most preferably from about 1.6 to 1.8. However, in certain situations, the dielectric layer 2 may have a refractive index (n) of from about 2.3 to 2.5. Example materials for dielectric layer 2 include silicon oxide, silicon nitride, silicon oxynitride, zinc oxide, tin oxide, titanium oxide (e.g., TiO2), aluminum oxynitride, aluminum oxide, or mixtures thereof. Dielectric layer(s) 2 functions as a barrier layer in certain example embodiments of this invention, to reduce materials such as sodium from migrating outwardly from the glass substrate 1 and reaching the IR reflecting layer(s) and/or semiconductor. Moreover, dielectric layer 2 is material having a refractive index (n) in the range discussed above, in order to reduce visible light reflection and thus increase transmission of visible light (e.g., light from about 400-700 nm, 450-700 nm and/or 450-600 nm) through the coating and into the semiconductor 5 which leads to increased photovoltaic module output power.
  • Still referring to FIG. 1, multilayer front electrode 3 in the example embodiment shown in FIG. 1, which is provided for purposes of example only and is not intended to be limiting, includes from the glass substrate 1 outwardly first transparent conductive oxide (TCO) or dielectric layer 3 a, first conductive substantially metallic IR reflecting layer 3 b, second TCO 3 c, second conductive substantially metallic IR reflecting layer 3 d, third TCO 3 e, and optional buffer layer 3 f. Optionally, layer 3 a may be a dielectric layer instead of a TCO in certain example instances and serve as a seed layer for the layer 3 b. This multilayer film 3 makes up the front electrode in certain example embodiments of this invention. Of course, it is possible for certain layers of electrode 3 to be removed in certain alternative embodiments of this invention (e.g., one or more of layers 3 a, 3 c, 3 d and/or 3 e may be removed), and it is also possible for additional layers to be provided in the multilayer electrode 3. Front electrode 3 may be continuous across all or a substantial portion of glass substrate 1, or alternatively may be patterned into a desired design (e.g., stripes), in different example embodiments of this invention. Each of layers/films 1-3 is substantially transparent in certain example embodiments of this invention.
  • First and second conductive substantially metallic IR reflecting layers 3 b and 3 d may be of or based on any suitable IR reflecting material such as silver, gold, or the like. These materials reflect significant amounts of IR radiation, thereby reducing the amount of IR which reaches the semiconductor film 5. Since IR increases the temperature of the device, the reduction of the amount of IR radiation reaching the semiconductor film 5 is advantageous in that it reduces the operating temperature of the photovoltaic module so as to increase module output power. Moreover, the highly conductive nature of these substantially metallic layers 3 b and/or 3 d permits the conductivity of the overall electrode 3 to be increased. In certain example embodiments of this invention, the multilayer electrode 3 has a sheet resistance of less than or equal to about 12 ohms/square, more preferably less than or equal to about 9 ohms/square, and even more preferably less than or equal to about 6 ohms/square. Again, the increased conductivity (same as reduced sheet resistance) increases the overall photovoltaic module output power, by reducing resistive losses in the lateral direction in which current flows to be collected at the edge of cell segments. It is noted that first and second conductive substantially metallic IR reflecting layers 3 b and 3 d (as well as the other layers of the electrode 3) are thin enough so as to be substantially transparent to visible light. In certain example embodiments of this invention, first and/or second conductive substantially metallic IR reflecting layers 3 b and/or 3 d are each from about 3 to 12 nm thick, more preferably from about 5 to 10 nm thick, and most preferably from about 5 to 8 nm thick. In embodiments where one of the layers 3 b or 3 d is not used, then the remaining conductive substantially metallic IR reflecting layer may be from about 3 to 18 nm thick, more preferably from about 5 to 12 nm thick, and most preferably from about 6 to 11 nm thick in certain example embodiments of this invention. These thicknesses are desirable in that they permit the layers 3 b and/or 3 d to reflect significant amounts of IR radiation, while at the same time being substantially transparent to visible radiation which is permitted to reach the semiconductor 5 to be transformed by the photovoltaic device into electrical energy. The highly conductive IR reflecting layers 3 b and 3 d attribute to the overall conductivity of the electrode 3 much more than the TCO layers; this allows for expansion of the process window(s) of the TCO layer(s) which has a limited window area to achieve both high conductivity and transparency.
  • First, second, and third TCO layers 3 a, 3 c and 3 e, respectively, may be of any suitable TCO material including but not limited to conducive forms of zinc oxide, zinc aluminum oxide, tin oxide, indium-tin-oxide, indium zinc oxide (which may or may not be doped with silver), or the like. These layers are typically substoichiometric so as to render them conductive as is known in the art. For example, these layers are made of material(s) which gives them a resistance of no more than about 10 ohm-cm (more preferably no more than about 1 ohm-cm, and most preferably no more than about 20 mohm-cm). One or more of these layers may be doped with other materials such as fluorine, aluminum, antimony or the like in certain example instances, so long as they remain conductive and substantially transparent to visible light. In certain example embodiments of this invention, TCO layers 3 c and/or 3 e are thicker than layer 3 a (e.g., at least about 5 nm, more preferably at least about 10, and most preferably at least about 20 or 30 nm thicker). In certain example embodiments of this invention, TCO layer 3 a is from about 3 to 80 nm thick, more preferably from about 5-30 nm thick, with an example thickness being about 10 nm. Optional layer 3 a is provided mainly as a seeding layer for layer 3 b and/or for antireflection purposes, and its conductivity is not as important as that of layers 3 b-3 e (thus, layer 3 a may be a dielectric instead of a TCO in certain example embodiments). In certain example embodiments of this invention, TCO layer 3 e is from about 20 to 150 nm thick, more preferably from about 40 to 120 nm thick, with an example thickness being about 74-75 nm. In certain example embodiments of this invention, TCO layer 3 e is from about 20 to 180 nm thick, more preferably from about 40 to 130 nm thick, with an example thickness being about 94 or 115 nm. In certain example embodiments, part of layer 3 e, e.g., from about 1-25 nm or 5-25 nm thick portion, at the interface between layers 3 e and 5 may be replaced with a low conductivity high refractive index (n) film 3 f such as titanium oxide to enhance transmission of light as well as to reduce back diffusion of generated electrical carriers; in this way performance may be further improved.
  • In certain example embodiments, outer surface 1 a of the front transparent glass substrate 1 is textured (e.g., etched and/or patterned). Herein, the user of the word “patterned” covers etched surfaces, and the use of the word “etched” covers patterned surfaces. The textured surface 1 a of the glass substrate 1 may have a prismatic surface, a matte finish surface, or the like in different example embodiments of this invention. The textured surface 1 a of the glass substrate 1 may have peaks and valleys defined therein with inclined portions interconnecting the peaks and valleys (e.g., see FIG. 1). The front major surface of the substrate 1 may be etched (e.g., via HF etching using HF etchant or the like) or patterned via roller(s) or the like during glass manufacture in order to form a textured (and/or patterned) surface 1 a. In certain example embodiments, the patterned (e.g., etched) surface 1 a of the front transparent glass substrate 1 faces incoming light (see the sun in the figures), whereas the TCC 3 is provided on the opposite surface 1 b of the substrate facing the semiconductor film 5 of the photovoltaic (PV) device. The patterned first or front surface 1 a of the glass substrate 1 reduces reflection loss of incident solar flux and increases the absorption of photon(s) in the semiconductor film 5 through scattering, refraction and/or diffusion. The transmission of solar flux into the photovoltaic semiconductor 5 can be further improved by using the patterned/etched surface 1 a of the front glass substrate 1 in combination with the Ag-based TCC 3 as shown in FIGS. 1 and 5-11. The patterned and/or etched surface 1 a results in an effective low index layer due to the introduction of the void(s), and acts as an antireflection coating. Compared to a smooth front surface of the front substrate, the patterned and/or etched surface 1 a provides the following example advantages: (a) reduced reflection from the first surface 1 a, especially at oblique incident angles, due to light trapping and hence increased solar flux into solar cells, and (b) increased optical path of light in the semiconductor 5 thereby resulting in increased photovoltaic current. This may be applicable to embodiments of FIGS. 1 and 5-11 in certain instances.
  • In certain example embodiments of this invention, average surface roughness on surface 1 a of the front glass substrate is from about 0.1 μm to 1 mm, more preferably from about 0.5-20 μm, more preferably from about 1-10 μm, and most preferably from about 2-8 μm. Too large of a surface roughness value could lead to much dirt collection on the front of the substrate 1, whereas too little of a roughness value on surface 1 a could lead to not enough transmission increase. This surface roughness at 1 a may be appliable to any embodiment discussed herein. The provision of such surface roughness on the surface 1 a of the substrate is also advantageous in that it can avoid the need for a separate AR coating on the front glass substrate 1 in certain example embodiments of this invention.
  • In certain example embodiments, the interior or second surface 1 b of the front glass substrate 1 is flat or substantially flat. In other words, surface 1 b is not patterned or etched. In such embodiments, as shown in the figures, the front electrode 3 is provided on the flat or substantially flat surface 1 b of the glass substrate 1. Accordingly, the layers 3 a-3 f of the electrode 3 are all substantially flat or planar in such example embodiments of this invention. Alternatively, in other example embodiments, the inner surface 1 b of the glass substrate 1 may be patterned like outer surface 1 a.
  • In certain example embodiments of this invention, the photovoltaic device may be made by providing glass substrate 1, and then depositing (e.g., via sputtering or any other suitable technique) multilayer electrode 3 on the substrate 1. Thereafter the structure including substrate 1 and front electrode 3 is coupled with the rest of the device in order to form the photovoltaic device shown in FIG. 1. For example, the semiconductor layer 5 may then be formed over the front electrode on substrate 1. Alternatively, the back contact 7 and semiconductor 5 may be fabricated/formed on substrate 11 (e.g., of glass or other suitable material) first; then the electrode 3 and dielectric 2 may be formed on semiconductor 5 and encapsulated by the substrate 1 via an adhesive such as EVA.
  • The alternating nature of the TCO layers 3 a, 3 c and/or 3 e, and the conductive substantially metallic IR reflecting layers 3 b and/or 3 d, is also advantageous in that it also one, two, three, four or all of the following advantages to be realized: (a) reduced sheet resistance (Rs) of the overall electrode 3 and thus increased conductivity and improved overall photovoltaic module output power; (b) increased reflection of infrared (IR) radiation by the electrode 3 thereby reducing the operating temperature of the semiconductor 5 portion of the photovoltaic module so as to increase module output power; (c) reduced reflection and increased transmission of light in the visible region of from about 450-700 nm (and/or 450-600 nm) by the front electrode 3 which leads to increased photovoltaic module output power; (d) reduced total thickness of the front electrode coating 3 which can reduce fabrication costs and/or time; (e) an improved or enlarged process window in forming the TCO layer(s) because of the reduced impact of the TCO's conductivity on the overall electric properties of the module given the presence of the highly conductive substantially metallic layer(s); and/or (f) reduced risk of thermal stress caused module breakage by reflecting solar thermal energy and reducing temperature difference across the module.
  • The active semiconductor region or film 5 may include one or more layers, and may be of any suitable material. For example, the active semiconductor film 5 of one type of single junction amorphous silicon (a-Si) photovoltaic device includes three semiconductor layers, namely a p-layer, an n-layer and an i-layer. The p-type a-Si layer of the semiconductor film 5 may be the uppermost portion of the semiconductor film 5 in certain example embodiments of this invention; and the i-layer is typically located between the p and n-type layers. These amorphous silicon based layers of film 5 may be of hydrogenated amorphous silicon in certain instances, but may also be of or include hydrogenated amorphous silicon carbon or hydrogenated amorphous silicon germanium, hydrogenated microcrystalline silicon, or other suitable material(s) in certain example embodiments of this invention. It is possible for the active region 5 to be of a double-junction or triple-junction type in alternative embodiments of this invention. CdTe may also be used for semiconductor film 5 in alternative embodiments of this invention.
  • Back contact, reflector and/or electrode 7 may be of any suitable electrically conductive material. For example and without limitation, the back contact or electrode 7 may be of a TCO and/or a metal in certain instances. Example TCO materials for use as back contact or electrode 7 include indium zinc oxide, indium-tin-oxide (ITO), tin oxide, and/or zinc oxide which may be doped with aluminum (which may or may not be doped with silver). The TCO of the back contact 7 may be of the single layer type or a multi-layer type in different instances. Moreover, the back contact 7 may include both a TCO portion and a metal portion in certain instances. For example, in an example multi-layer embodiment, the TCO portion of the back contact 7 may include a layer of a material such as indium zinc oxide (which may or may not be doped with silver), indium-tin-oxide (ITO), tin oxide, and/or zinc oxide closest to the active region 5, and the back contact may include another conductive and possibly reflective layer of a material such as silver, molybdenum, platinum, steel, iron, niobium, titanium, chromium, bismuth, antimony, or aluminum further from the active region 5 and closer to the superstrate 11. The metal portion may be closer to superstrate 11 compared to the TCO portion of the back contact 7.
  • The photovoltaic module may be encapsulated or partially covered with an encapsulating material such as encapsulant 9 in certain example embodiments. An example encapsulant or adhesive for layer 9 is EVA or PVB. However, other materials such as Tedlar type plastic, Nuvasil type plastic, Tefzel type plastic or the like may instead be used for layer 9 in different instances.
  • Utilizing the highly conductive substantially metallic IR reflecting layers 3 b and 3 d, and TCO layers 3 a, 3 c and 3 d, to form a multilayer front electrode 3, permits the thin film photovoltaic device performance to be improved by reduced sheet resistance (increased conductivity) and tailored reflection and transmission spectra which best fit photovoltaic device response. Refractive indices of glass 1, hydrogenated a-Si as an example semiconductor 5, Ag as an example for layers 3 b and 3 d, and an example TCO are shown in FIG. 2. Based on these refractive indices (n), predicted transmission spectra impinging into the semiconductor 5 from the incident surface of substrate 1 are shown in FIG. 3. In particular, FIG. 3 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a hydrogenated Si thin film 5 of a photovoltaic device comparing Examples 1-3 of this invention (see Examples 1-3 in FIGS. 5-7) versus a comparative example (TCO reference). The TCO reference was made up of 3 mm thick glass substrate 1 and from the glass outwardly 30 nm of tin oxide, 20 nm of silicon oxide and 350 nm of TCO. FIG. 3 thus shows that the examples of this invention (Examples 1-3 shown in FIGS. 5-7) has increased transmission in the approximately 450-600 and 450-700 nm wavelength ranges and thus increased photovoltaic module output power, compared to the comparative example (TCO reference).
  • Example 1 shown in FIG. 5 and charted in FIGS. 3-4 was made up of 3 mm thick glass substrate 1, 16 nm thick TiO2 dielectric layer 2, 10 nm thick zinc oxide TCO doped with Al 3 a, 8 nm thick Ag IR reflecting layer 3 b, and 115 nm thick zinc oxide TCO doped with Al 3 e. Surface 1 a was flat in this example. Layers 3 c, 3 d and 3 f were not present in Example 1. Example 2 shown in FIG. 6 and charted in FIGS. 3-4 was made up of 3 mm thick glass substrate 1 with a flat surface 1 a, 16 nm thick TiO2 dielectric layer 2, 10 nm thick zinc oxide TCO doped with Al 3 a, 8 nm thick Ag IR reflecting layer 3 b, 100 nm thick zinc oxide TCO doped with Al 3 e, and 20 nm thick titanium suboxide layer 3 f. Example 3 shown in FIG. 7 and charted in FIGS. 3-4 was made up of 3 mm thick glass substrate 1 with a flat surface 1 a, 45 nm thick dielectric layer 2, 10 nm thick zinc oxide TCO doped with Al 3 a, 5 nm thick Ag IR reflecting layer 3 b, 75 nm thick zinc oxide TCO doped with Al 3 c, 7 nm thick Ag IR reflecting layer 3 d, 95 nm thick zinc oxide TCO doped with Al 3 e, and 20 nm thick titanium suboxide layer 3 f. These single and double-silver layered coatings of Examples 1-3 had a sheet resistance less than 10 ohms/square and 6 ohms/square, respectively, and total thicknesses much less than the 400 nm thickness of the prior art. Examples 1-3 had tailored transmission spectra, as shown in FIG. 3, having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 has the strongest intensity and photovoltaic devices may possibly have the highest or substantially the highest quantum efficiency.
  • Meanwhile, FIG. 4 is a percent reflection (R %) versus wavelength (nm) graph illustrating reflection spectra from a hydrogenated Si thin film of a photovoltaic device comparing Examples 1-3 versus the above mentioned comparative example; this shows that Examples 1-3 had increased reflection in the IR range thereby reducing the operating temperature of the photovoltaic modules so as to increase module output power, compared to the comparative example. In FIG. 4, the low reflection in the visible range of from about 450-600 nm and/or 450-700 nm (the cell's high efficiency range) is advantageously coupled with high reflection in the near and short IR range beyond about 1000 nm; the high reflection in the near and short IR range reduces the absorption of solar thermal energy that will result in a better cell output due to the reduced cell temperature and series resistance in the module. As shown in FIG. 4, the front glass substrate 1 and front electrode 3 taken together have a reflectance of at least about 45% (more preferably at least about 55%) in a substantial part or majority of a near to short IR wavelength range of from about 1000-2500 nm and/or 1000 to 2300 nm. In certain example embodiments, it reflects at least 50% of solar energy in the range of from 1000-2500 nm and/or 1200-2300 nm. In certain example embodiments, the front glass substrate and front electrode 3 taken together have an IR reflectance of at least about 45% and/or 55% in a substantial part or a majority of a near IR wavelength range of from about 1000-2500 nm, possibly from 1200-2300 nm. In certain example embodiments, it may block at least 50% of solar energy in the range of 1000-2500 nm.
  • While the electrode 3 is used as a front electrode in a photovoltaic device in certain embodiments of this invention described and illustrated herein, it is also possible to use the electrode 3 as another electrode in the context of a photovoltaic device or otherwise.
  • FIG. 8 is a cross sectional view of a photovoltaic device according to another example embodiment of this invention. An optional antireflective (AR) layer (not shown) may be provided on the light incident side of the front glass substrate 1 in any embodiment of this invention. The photovoltaic device in FIG. 8 includes glass substrate 1, dielectric layer(s) 2 (e.g., of or including one or more of silicon oxide, silicon oxynitride, silicon nitride, titanium oxide, niobium oxide, and/or the like) which may function as a sodium barrier for blocking sodium from migrating out of the front glass substrate 1, seed layer 4 b (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like) which may be a TCO or dielectric in different example embodiments, silver based IR reflecting layer 4 c, optional overcoat or contact layer 4 d (e.g., of or including an oxide of Ni and/or Cr, zinc oxide, zinc aluminum oxide, or the like) which may be a TCO, TCO 4 e (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, or the like), optional buffer layer 4 f (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, or the like) which may be conductive to some extent, semiconductor 5 (e.g., CdS/CdTe, a-Si, or the like), optional back contact, reflector and/or electrode 7, optional adhesive 9, and optional back glass substrate 11. It is noted that in certain example embodiments, layer 4 b may be the same as layer 3 a described above, layer 4 c may be the same as layer 3 b or 3 d described above this applies to FIGS. 8-10), layer 4 e may be the same as layer 3 e described above (this also applies to FIGS. 8-10), and layer 4 f may be the same as layer 3 f described above (this also applies to FIGS. 8-10) (see descriptions above as to other embodiments in this respect). Likewise, layers 1, 5, 7, 9 and 11 are also discussed above in connection with other embodiments, as are surfaces 1 a and 1 b of the front glass substrate 1.
  • For purposes of example only, an example of the FIG. 8 embodiment is as follows (note that certain optional layers shown in FIG. 8 are not used in this example). For example, referring to FIG. 8, glass substrate 1 (e.g., about 3.2 mm thick), dielectric layer 2 (e.g., silicon oxynitride about 20 nm thick possibly followed by dielectric TiOx about 20 nm thick), Ag seed layer 4 b (e.g., dielectric or TCO zinc oxide or zinc aluminum oxide about 10 nm thick), IR reflecting layer 4 c (silver about 5-8 nm thick), TCO 4 e (e.g., conductive zinc oxide, tin oxide, zinc aluminum oxide, ITO from about 50-250 nm thick, more preferably from about 100-150 nm thick), and possibly conductive buffer layer 4 f (TCO zinc oxide, tin oxide, zinc aluminum oxide, ITO, or the like, from about 10-50 nm thick). In certain example embodiments, the buffer layer 4 f (or 3 f) is designed to have a refractive index (n) of from about 2.1 to 2.4, more preferably from about 2.15 to 2.35, for substantial index matching to the semiconductor 5 (e.g., CdS or the like) in order to improve efficiency of the device.
  • The photovoltaic device of FIG. 8 may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention. Moreover, the FIG. 8 embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity and in certain example instances the cell may have the highest or substantially the highest quantum efficiency.
  • FIG. 9 is a cross sectional view of a photovoltaic device according to yet another example embodiment of this invention. The photovoltaic device of the FIG. 9 embodiment includes optional antireflective (AR) layer (not shown) on the light incident side of the front glass substrate 1, first dielectric layer 2 a, second dielectric layer 2 b, third dielectric layer 2 c which may optionally function as a seed layer (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like) for the silver based layer 4 c, conductive silver based IR reflecting layer 4 c, optional overcoat or contact layer 4 d (e.g., of or including an oxide of Ni and/or Cr, zinc oxide, zinc aluminum oxide, or the like) which may be a TCO or dielectric, TCO 4 e (e.g., including one or more layers, such as of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, or the like), optional conductive buffer layer 4 f (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, or the like), semiconductor 5 (e.g., one or more layers such as CdS/CdTe, a-Si, or the like), optional back contact, reflector and/or electrode 7, optional adhesive 9, and optional back/rear glass substrate 11. Layers 4 e and 4 f are preferably conductive in order to ensure that the metal layer 4 c can be used in connection with the absorber film 5 to generate charge. Semiconductor film 5 may include a single pin or pn semiconductor structure, or a tandem semiconductor structure in different embodiments of this invention. Semiconductor 5 may be of or include silicon in certain example instances. In other example embodiments, semiconductor film 5 may include a first layer of or including CdS (e.g., window layer) adjacent or closest to layer(s) 4 e and/or 4 f and a second semiconductor layer of or including CdTe (e.g., main absorber) adjacent or closest to the back electrode or contact 7.
  • Referring to the FIG. 9 embodiment (and the FIG. 10 embodiment), in certain example embodiments, first dielectric layer 2 a has a relatively low refractive index (n) (e.g., n of from about 1.7 to 2.2, more preferably from about 1.8 to 2.2, still more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.08), second dielectric layer 2 b has a relatively high (compared to layer 2 a) refractive index (n) (e.g., n of from about 2.2 to 2.6, more preferably from about 2.3 to 2.5, and most preferably from about 2.35 to 2.45), and third dielectric layer 2 c has a relatively low (compared to layer 2 b) refractive index (n) (e.g., n of from about 1.8 to 2.2, more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.05). In certain example embodiments, the first low index dielectric layer 2 a may be of or include silicon nitride, silicon oxynitride, or any other suitable material, the second high index dielectric layer 2 b may be of or include an oxide of titanium (e.g., TiO2, or the like), and the third dielectric layer 2 c may be of or include zinc oxide or any other suitable material. In certain example embodiments, layers 2 a-2 c combine to form a good index matching stack which also functions as a buffer against sodium migration from the glass 1. In certain example embodiments, the first dielectric layer 2 a is from about 5-30 nm thick, more preferably from about 10-20 nm thick, the second dielectric layer 2 b is from about 5-30 nm thick, more preferably from about 10-20 nm thick, and the third layer 2 c is of a lesser thickness and is from about 3-20 nm thick, more preferably from about 5-15 nm thick, and most preferably from about 6-14 nm thick. While layers 2 a, 2 b and 2 c are dielectrics in certain embodiments of this invention, one, two or all three of these layers may be dielectric or TCO in certain other example embodiments of this invention. Layers 2 b and 2 c are metal oxides in certain example embodiments of this invention, whereas layer 2 a is a metal oxide and/or nitride, or silicon nitride in certain example instances. Layers 2 a-2 c may be deposited by sputtering or any other suitable technique.
  • Still referring to the FIG. 9 embodiment (and the FIG. 10-11 embodiments), the TCO layer(s) 4 e may be of or include any suitable TCO including but not limited to zinc oxide, zinc aluminum oxide, tin oxide and/or the like. TCO layer or file 4 e may include multiple layers in certain example instances. For example, certain instances, the TCO 4 includes a first layer of a first TCO metal oxide (e.g., zinc oxide) adjacent Ag 4 c, Ag overcoat 4 d and a second layer of a second. TCO metal oxide (e.g., tin oxide) adjacent and contacting layer 4 f and/or 5.
  • For purposes of example only, an example of the FIG. 9 embodiment is as follows. For example, referring to FIG. 9, glass substrate 1 (e.g., float glass about 3.2 mm thick, and a refractive index n of about 1.52), first dielectric layer 2 a (e.g., silicon nitride about 15 nm thick, having a refractive index n of about 2.07), second dielectric layer 2 b (e.g., oxide of Ti, such as TiO2 or other suitable stoichiometry, about 16 nm thick, having a refractive index n of about 2.45), third dielectric layer 2 c (e.g., zinc oxide, possibly doped with Al, about 9 nm thick, having a refractive index n of about 2.03), IR reflecting layer 4 c (silver about 3-9 nm thick, e.g., 6 nm), silver overcoat 4 d of NiCrOx about 1-3 nm thick which may or may not be oxidation graded, TCO film 4 e (e.g., conductive zinc oxide, zinc aluminum oxide and/or tin oxide about 10-150 nm thick), a semiconductor film 5 including a first layer of CdS (e.g., about 70 nm) closest to substrate 1 and a second layer of CdTe further from substrate 1, back contact or electrode 7, optional adhesive 9, and optionally substrate 11.
  • The photovoltaic device of FIG. 9 (and/or FIGS. 10-11) may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention. Moreover, the FIG. 9 (and/or FIGS. 10-11) embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity.
  • FIG. 10 is a cross sectional view of a photovoltaic device according to still another example embodiment of this invention. The FIG. 10 embodiment is the same as the FIG. 9 embodiment discussed above, except for the TCO film 4 e. In the FIG. 10 embodiment, the TCO film 4 e includes a first layer 4 e′ of or including a first TCO metal oxide (e.g., zinc oxide, which may or may not be doped with Al or the like) adjacent and contacting layer 4 d and a second layer 4 e″ of a second TCO metal oxide (e.g., tin oxide) adjacent and contacting layer 4 f and/or 5 (e.g., layer 4 f may be omitted, as in previous embodiments). Layer 4 e′ is also substantially thicker than layer 4 e″ in certain example embodiments. In certain example embodiments, the first TCO layer 4 e′ has a resistivity which is less than that of the second TCO layer 4 e″. In certain example embodiments, the first TCO layer 4 e′ may be of zinc oxide, Al-doped zinc oxide, or ITO about 70-150 nm thick (e.g., about 110 nm) having a resistivity of no greater than about 1 ohm·cm, and the second TCO layer 4 e″ may be of tin oxide about 10-50 nm thick (e.g., about 30 nm) having a resistivity of from about 10-100 ohm·cm, possibly from about 2-100 ohm·cm. The first TCO layer 4 e′ is thicker and more conductive than the second TCO layer 4 e″ in certain example embodiments, which is advantageous as layer 4 e′ is closer to the conductive Ag based layer 4 c thereby leading to improved efficiency of the photovoltaic device. Moreover, this design is advantageous in that CdS of the film 5 adheres or sticks well to tin oxide which may be used in or for layer 4 e″. TCO layers 4 e′ and/or 4 e″ may be deposited by sputtering or any other suitable technique.
  • In certain example instances, the first TCO layer 4 e′ may be of or include ITO (indium tin oxide) instead of zinc oxide. In certain example instances, the ITO of layer 4 e′ may be about 90% In, 10% Sn, or alternatively about 50% In, 50% Sn.
  • The use of at least these three dielectrics 2 a-2 c is advantageous in that it permits reflections to be reduced thereby resulting in a more efficient photovoltaic device. Moreover, it is possible for the overcoat layer 4 d (e.g., of or including an oxide of Ni and/or Cr) to be oxidation graded, continuously or discontinuously, in certain example embodiments of this invention. In particular, layer 4 d may be designed so as to be more metallic (less oxided) at a location therein closer to Ag based layer 4 d than at a location therein further from the Ag based layer 4 d; this has been found to be advantageous for thermal stability reasons in that the coating does not degrade as much during subsequently high temperature processing which may be associated with the photovoltaic device manufacturing process or otherwise.
  • In certain example embodiments of this invention, it has been surprisingly found that a thickness of from about 120-160 nm, more preferably from about 130-150 nm (e.g., 140 nm), for the TCO film 4 e is advantageous in that the Jsc peaks in this range. For thinner TCO thicknesses, the Jsc decreases by as much as about 6.5% until it bottoms out at about a TCO thickness of about 60 nm. Below 60 nm, it increases again until at a TCO film 4 e thickness of about 15-35 nm (more preferably 20-30 nm) it is attractive, but such thin coatings may not be desirable in certain example non-limiting situations. Thus, in order to achieve a reduction in short circuit current density of CdS/CdTe photovoltaic devices in certain example instances, the thickness of TCO film 4 e may be provided in the range of from about 15-35 nm, or in the range of from about 120-160 nm or 130-150 nm.
  • FIG. 11 is a cross sectional view of a photovoltaic device according to still another example embodiment of this invention. The FIG. 11 embodiment is similar to the FIG. 9-10 embodiments discussed above, except for the differences shown in the figure. FIG. 11 is a cross sectional view of a photovoltaic device according to an example embodiment of this invention. The photovoltaic device of the FIG. 11 may include: optional antireflective (AR) layer (not shown) on the light incident side of the front glass substrate 1; first dielectric layer 2 a of or including one or more of silicon nitride (e.g., Si3N4 or other suitable stoichiometry), silicon oxynitride, silicon oxide (e.g., SiO2 or other suitable stoichiometry), and/or tin oxide (e.g., SnO2 or other suitable stoichiometry); second dielectric layer 2 b of or including titanium oxide (e.g., TiO2 or other suitable stoichiometry) and/or niobium oxide; third layer 2 c (which may be a dielectric or a TCO) which may optionally function as a seed layer (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, indium zinc oxide, or the like) for the silver based layer 4 c; conductive silver based IR reflecting layer 4 c; overcoat or contact layer 4 d (which may be a dielectric or conductive) of or including an oxide of Ni and/or Cr, NiCr, Ti, an oxide of Ti, zinc aluminum oxide, or the like; TCO 4 e (e.g., including one or more layers) of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide (ITO), indium zinc oxide, and/or zinc gallium aluminum oxide; optional buffer layer 4 f which may be a TCO in certain instances (e.g., of or including zinc oxide, zinc aluminum oxide, tin oxide, tin antimony oxide, zinc tin oxide, indium tin oxide, indium zinc oxide, titanium oxide, or the like) and which may be conductive to some extent; semiconductor film 5 of or including one or more layers such as CdS/CdTe, a-Si, or the like (e.g., film 5 may be made up of a layer of or including CdS adjacent layer 4 f, and a layer of or including CdTe adjacent layer 7); optional back contact/electrode/reflector 7 of aluminum or the like; optional adhesive 9 of or including a polymer such as PVB; and optional back/rear glass substrate 11. In certain example embodiments of this invention, dielectric layer 2 a may be from about 10-20 nm thick, more preferably from about 12-18 nm thick; layer 2 b may be from about 10-20 nm thick, more preferably from about 12-18 nm thick; layer 2 c may be from about 5-20 nm thick, more preferably from about 5-15 nm thick (layer 2 c is thinner than one or both of layers 2 a and 2 b in certain example embodiments); layer 4 c may be from about 5-20 nm thick, more preferably from about 6-10 nm thick; layer 4 d may be from about 0.2 to 5 nm thick, more preferably from about 0.5 to 2 nm thick; TCO film 4 e may be from about 50-200 nm thick, more preferably from about 75-150 nm thick, and may have a resistivity of no more than about 100 mΩ in certain example instances; and buffer layer 4 f may be from about 10-50 nm thick, more preferably from about 20-40 nm thick and may have a resistivity of no more than about 1 MΩ-cm in certain example instances. Moreover, the surface of glass 1 closest to the sun may be patterned via etching or the like in certain example embodiments of this invention.
  • Optional buffer layer 4 f may provide substantial index matching between the semiconductor film 5 (e.g., CdS portion) to the TCO 4 e in certain example embodiments, in order to optimize total solar transmission reaching the semiconductor.
  • Still referring to the FIG. 11 embodiments, semiconductor film 5 may include a single pin or pn semiconductor structure, or a tandem semiconductor structure in different embodiments of this invention. Semiconductor 5 may be of or include silicon in certain example instances. In other example embodiments, semiconductor film 5 may include a first layer of or including CdS (e.g., window layer) adjacent or closest to layer(s) 4 e and/or 4 f and a second semiconductor layer of or including CdTe (e.g., main absorber) adjacent or closest to the back electrode or contact 7.
  • Also referring to FIG. 11, in certain example embodiments, first dielectric layer 2 a has a relatively low refractive index (n) (e.g., n of from about 1.7 to 2.2, more preferably from about 1.8 to 2.2, still more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.08), second dielectric layer 2 b has a relatively high (compared to layer 2 a) refractive index (n) (e.g., n of from about 2.2 to 2.6, more preferably from about 2.3 to 2.5, and most preferably from about 2.35 to 2.45), and third dielectric layer 2 c may optionally have a relatively low (compared to layer 2 b) refractive index (n) (e.g., n of from about 1.8 to 2.2, more preferably from about 1.95 to 2.1, and most preferably from about 2.0 to 2.05). In certain example embodiments, layers 2 a-2 c combine to form a good index matching stack for antireflection purposes and which also functions as a buffer against sodium migration from the glass 1. In certain example embodiments, the first dielectric layer 2 a is from about 5-30 nm thick, more preferably from about 10-20 nm thick, the second dielectric layer 2 b is from about 5-30 nm thick, more preferably from about 10-20 nm thick, and the third layer 2 c is of a lesser thickness and is from about 3-20 nm thick, more preferably from about 5-15 nm thick, and most preferably from about 6-14 nm thick. While layers 2 a, 2 b and 2 c are dielectrics in certain embodiments of this invention, one, two or all three of these layers may be dielectric or TCO in certain other example embodiments of this invention. Layers 2 b and 2 c are metal oxides in certain example embodiments of this invention, whereas layer 2 a is a metal oxide and/or nitride, or silicon nitride in certain example instances. Layers 2 a-2 c may be deposited by sputtering or any other suitable technique.
  • Still referring to the FIG. 11 embodiment, the TCO layer(s) 4 e may be of or include any suitable TCO including but not limited to zinc oxide, zinc aluminum oxide, tin oxide and/or the like. TCO layer or file 4 e may include multiple layers in certain example instances. For example, certain instances, the TCO 4 includes a first layer of a first TCO metal oxide (e.g., zinc oxide) adjacent Ag 4 c, Ag overcoat 4 d and a second layer of a second TCO metal oxide (e.g., tin oxide) adjacent and contacting layer 4 f and/or 5. The photovoltaic device of FIG. 11 may have a sheet resistance of no greater than about 18 ohms/square, more preferably no grater than about 15 ohms/square, even more preferably no greater than about 13 ohms/square in certain example embodiments of this invention. Moreover, the FIG. 11 embodiment may have tailored transmission spectra having more than 80% transmission into the semiconductor 5 in part or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, where AM1.5 may have the strongest intensity, in certain example embodiments of this invention.
  • Examples 4-5 are discussed below, and each have a textured surface 1 a of the front glass substrate 1 as shown in the figures herein. In Example 4, outer surface 1 a of the front transparent glass substrate 1 was lightly etched having fine features that in effect function as a single layered low index antireflection coating suitable for, e.g., CdTe solar cell applications. Example 5 had larger features on the textured surface 1 a of the front glass substrate, again formed by etching, that trap incoming light and refracts light into the semiconductor at oblique angles, suitable for, e.g., a-Si single and/or tandem solar cell applications. The interior surface 1 b of the glass substrate 1 was flat in each of Examples 4 and 5, as was the front electrode 3.
  • In Example 4, referring to FIG. 11, the layer stack moving from the glass 1 inwardly toward the semiconductor 5 was glass 1, silicon nitride (15 nm thick) layer 2 a, TiOx (16 nm thick) layer 2 b, ZnAlOx (10 nm thick) layer 2 c, Ag (7 nm thick) layer 4 c, NiCrOx (1 nm thick) layer 4 d, ITO (110 nm thick) layer 4 e, SnOx (30 nm thick) layer 4 f, and then the CdS/CdTe semiconductor. The etched surface 1 a of the front glass substrate 1 had an effective index and thickness around 1.35-1.42 and 110 nm, respectively. The etched surface 1 a acted as an AR coating (although no such coating was physically present) and increased the transmission 2-3% which will be appreciated as being highly advantageous, around the wavelength region from 400-1,000 nm as shown in FIGS. 12-13. As shown in FIG. 15, the combination of the Ag-based TCC 3 and the textured front surface 1 a resulted in enhanced transmission into the CdTe/CdS semiconductor film 5, especially in the region from 500-700 nm where CdTe PV device QE and solar flux are significant.
  • FIG. 12 is a measured transmission (T) and reflection (R) (% from first surface 1 a) spectra, versus wavelength (nm), showing results from Example 4, where the example used a 10 ohms/sq. Ag-based TCC coating 3 a front glass substrate with a textured surface 1. As explained above, the Example 4 with the textured surface 1 a had slightly increased transmission (T) and slightly reduced reflection (R) in the 500-700 nm region compared to a comparative example shown in FIG. 12 where surface 1 a (first surface) was not etched. This is advantage in that more current is generated in the semiconductor film 5 of the PV device. FIG. 15 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra into a CdS/CdTe cell of a photovoltaic device comparing Example 4 versus comparative examples. FIG. 15 (predicted transmission into CdTe/CdS in a CdTe solar cell module of Example 4, having different front substrates) shows that the Example 4 realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example without the etched front surface (x dotted line) and the comparative example of the conventional TCO superstrate (o solid line).
  • In Example 5, referring to FIG. 11, the layer stack moving from the glass 1 inwardly toward the semiconductor 5 was glass 1, silicon nitride (15 nm thick) layer 2 a, TiOx (10 nm thick) layer 2 b, ZnAlOx (10 nm thick) layer 2 c, Ag (8 nm thick) layer 4 c, NiCrOx (1 nm thick) layer 4 d, ITO (70 nm thick) layer 4 e, SnOx (20 nm thick) layer 4 f, and then the a-Si semiconductor 5. FIG. 14 shows measured and predicted results; measured integrated and specular transmission spectra and predicted light scattering/diffusion, according to Example 5. FIG. 14 shows that the integrated transmission that includes both specular and diffused transmission lights is around 17% higher than the specular only transmission light. This implies that more than 17% of light in the visible and near-IR regions are either diffused or scattered. A diffused and/or scattered light has increased optical path in photovoltaic materials 5, and is especially desired in a-Si type solar cells.
  • FIG. 16 is a cross sectional view of an example of the FIG. 11 embodiment of this invention. Solar radiation incident on photovoltaic solar cells includes two kinds of photons, short wavelength photons having energies high enough to create electron-hole pairs in photovoltaic materials and long wavelength photons having no contribution to electron-hole pair creation but generating thermal heat that degrades solar cell output power. Therefore, it is desired to have a transparent conductive superstrate (or front electrode/contact) that acts as not only a transparent conductive front contact but also a short pass filter that allows an increased amount of photons having high enough energy (such as in visible and near infra-red regions of the spectrum) into the active region or absorber of solar cells, and which also blocks the rest or a significant part of the rest of the incident solar radiation which may be harmful or undesirable. In this way, the solar cell output power can be improved due to reduced module temperature by increased IR reflection, and increased transmission in visible to near IR.
  • FIG. 16 is a cross sectional view illustrating an example design of such a conductive short pass filter as a front electrode, which achieves high transmission in visible and near IR but reflects long wavelength IR light. The thin Ag-based substantially metal layer 4 c can be single Ag or Ag alloy, or sandwiched between other metallic layer such as TiNx, Ti or NiCr (not shown). The overall physical thickness of the front electrode in the FIG. 16 embodiment may be no more than 15 nm, and resistivity of this front electrode may be no more than 20 uohm-cm. The conductive oxide(s) can be single or multiple layered oxides of In, Sn, Zn, and their alloys with no more than 10% dopants such as Al, Ga, Sb and others in certain example embodiments. The overall conductive front electrode has an effective refractive index of no less than 1.85, and an optical thickness of from about 150-200, more preferably 160-190 nm, in certain example embodiments applicable to a-Si photovoltaic devices. The overall conductive front electrode has an effective refractive index of no less than 1.85, and an optical thickness of from about 240-300, more preferably 250-290 nm, in certain example embodiments applicable to CdS/CdTe photovoltaic devices. The overall sheet resistance of the conductive oxide layer is no more than 2000 ohm/sq. in certain example embodiments. The conductive oxide and Ag provide the required conductive path for electron/hole pairs generated from photovoltaic materials (e.g., semiconductor 5). The transparent base layer (2 a, 2 b) can be single or multiple layered oxide, oxynitride, or nitride, and it may be conductive or non-conductive. The transparent base layer (2 a, 2 b) has an overall effective index no less than 2.0 and optical thickness around 50-90 nm in certain example embodiments applicable to a-Si photovoltaic devices; and may have an overall effective index no less than 2.0 and optical thickness around 60-100 nm in certain example embodiments applicable to CdS/CdTe photovoltaic devices.
  • In certain example embodiments, the physical and/or optical thickness of layer 4 e is at least two times thicker than that of layer 4 f, more preferably at least 3 times thicker. Moreover, in certain example embodiments in connection with the FIG. 16 or other embodiments therein, layer 4 f may have a refractive index (n) of from about 1.9 to 2.1, layer 4 e may have a refractive index less than that of layer 4 f, layer 4 e may have a refractive index (n) of from about 1.8 to 2.0, layer 2 c may have a refractive index of from about 1.8 to 2.05, more preferably from about 1.85 to 1.95, layer 2 b may have a refractive index of from about 2.1 to 2.5, more preferably from about 2.25 to 2.45, and layer 2 a may have a refractive index (n) of from about 1.9 to 2.1.
  • Examples 6-7 are set forth below, with reference to the FIG. 16 embodiment of this invention.
  • Example 6 relates to an a-Si based photovoltaic device. In Example 6, referring to FIG. 16 and using physical thickness values and refractive index values at about 550 nm, the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1, silicon nitride (about 10-15 nm thick, e.g., about 15 nm thick; refractive index “n” of about 2.0) layer 2 a, TiOx (about 10-20 nm thick, preferably about 10 nm; refractive index “n” of about 2.4) layer 2 b, ZnO or ZnAlOx (about 5-15 nm thick, preferably about 10 nm thick, refractive index “n” of about 1.9-2.0) layer 2 c, Ag (about 6-10 nm thick, preferably about 8 nm thick) layer 4 c, NiCrOx or NiCr (about 1-3 nm thick) layer 4 d, TCO ITO (indium tin oxide) (about 70 nm thick, refractive index “n” of about 1.9) layer 4 e, TCO SnOx (about 20 nm thick, refractive index “n” of about 2.0) layer 4 f, and then the a-Si or CdS/CdTe based semiconductor 5. The layers 4 e and 4 f in the FIG. 16 embodiment may be omitted in certain example embodiments, so that the NiCr based layer 4 d contacts the semiconductor absorber 5. The FIG. 16 embodiment can be used in a CdTe type photovoltaic device in certain example embodiments of this invention. FIG. 17 shows the predicted results of transmission into the a-Si cell of this Example 6 device compared to a conventional front electrode consisting only of a tin oxide TCO on the glass substrate. In particular, FIG. 17 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra for Example 6 into an a-Si cell, illustrating that Example 6 (e.g., T-9 curve in FIG. 17) realized increased transmission in the approximately 500-700 nm wavelength range and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 17). Moreover, the FIG. 16-17 embodiment may have tailored transmission spectra having more than 80%, 85% or even 87% transmission into the semiconductor 5 in part of, the majority of, or all of the wavelength range of from about 450-600 nm and/or 450-700 nm, as shown in FIG. 17, in certain example embodiments of this invention.
  • Example 7 relates to a CdS/CdTe based photovoltaic device. In Example 7, referring to FIG. 16 and using physical thickness values and refractive index values at about 550 nm, the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1, silicon nitride (about 15 nm thick, refractive index “n” of about 2.0) layer 2 a, TiOx (about 16 nm thick, refractive index “n” of about 2,4) layer 2 b, ZnAlOx (about 10 nm thick, refractive index “n” of about 1.9) layer 2 c, Ag (about 7 nm thick) layer 4 c, NiCrOx (about 1 nm thick) layer 4 d, TCO ITO (indium tin oxide) (about 110 nm thick, refractive index “n” of about 1.9) layer 4 e, TCO SnOx (about 30 nm thick, refractive index “n” of about 2.0) layer 4 f, and then the a-Si based semiconductor 5. FIG. 18 shows the predicted results of incident transmission into the CdS/CdTe cell of this Example 7 device compared to a similar device including a conventional front electrode consisting only of a tin oxide TCO on the glass substrate. In particular, FIG. 18 is a percent transmission (T %) versus wavelength (nm) graph illustrating transmission spectra for Example 7 into a CdS/CdTe cell, illustrating that Example 7 (e.g., T-Ag curve in FIG. 18) realized increased transmission in the approximately 450-600 and 500-700 nm wavelength ranges and thus increased photovoltaic module output power, compared to the comparative example (X-marked curve in FIG. 18). Moreover, the FIG. 16, 18 embodiment may have tailored transmission spectra having more than 85%, 90% or even 91 or 92% transmission into the semiconductor 5 in part of, the majority of, or all of the wavelength range(s) of from about 500-600 nm, 450-600 nm and/or 450-700 nm, as shown in FIG. 18, in certain example embodiments of this invention.
  • Example 8 relates to a CdS/CdTe type photovoltaic device, including an indium tin oxide based transparent conductive coating (TCC) (e.g., see FIGS. 19( a)-(c)). In Example 8, referring to FIG. 19( a) and using physical thickness values and refractive index values at about 550 nm, the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1, dielectric TiOx (about 5-15 nm, preferably about 10 nm thick, refractive index “n” of about 2.3-2.4) layer 2 a, dielectric silicon oxynitride (about 20-50 nm thick, preferably about 25-40 nm thick, refractive index “n” of from about 1.45-1.75, preferably from about 1.45-1.65) layer 2 b, highly conductive indium tin oxide (ITO) layer 4 c (e.g., from about 200-500 nm thick, more preferably from about 300-400 nm thick; resistivity of from about 0.2 to 0.5 mohm-cm, refractive index of from about 1.9 to 2.1), TCO SnOx (about 20-80 nm thick, more preferably from about 30-60 nm thick; refractive index “n” of about 1.9-2,0) layer 4 f, and then CdS/CdTe semiconductor film 5, back contact/electrode 7, optional adhesive 9, and rear glass substrate 11. This embodiment includes a transparent conductive superstrate structure including the highly conductive ITO based layer 4 c sandwiched between a low conductive layer 4 f atop and a non-conductive dielectric layer (2 a and/or 2 b) thereunder on the substrate 1. This coating has a low sheet resistance and high transmission in the visible to near IR that is suitable for applications as transparent conductive superstrates in thin film solar cell modules.
  • Fluorine doped pyrolytic tin oxide is widely used as a TCC in coatings for solar cells. A physical thickness of 350-700 nm associated with more than 10% absorption loss is needed to achieve 10-15 ohm/square sheet resistance in this respect. Comparing to fluorine doped tin oxides, ITO thin films have lower absorption loss and higher conductivity. A reduced absorption loss in visible to near IR allowed increased light impinging into the semiconductor film 5 that results in increased photocurrents. An increased conductivity reduces required physical thicknesses to achieve desired sheet resistance that has direct impact to the manufacturing cost as well as overall absorption loss. The increased conductivity also reduces current loss in a module that improves the total output power. Therefore, the use of ITO is better than F-doped tin oxide for the main conductor of the front electrode of a PV device.
  • In the FIG. 19( a) embodiment, the TiOx based dielectric layer 2 a and the silicon oxynitride based dielectric layer 2 b together provide dual roles as an index matching film to reduce reflection loss from the front surface of the device and as a barrier layer to block diffusion of undesired elements from the glass 1 such as reducing or preventing diffusion of sodium from glass 1 into the ITO layer 3 c and/or semiconductor film 5. The low conductive metal oxide based layer 4 f (of or including tin oxide and/or zinc oxide and/or zinc aluminum oxide) in the FIG. 19( a) embodiment acts as a buffer layer to reduce shunting risk caused by pinholes on the CdS of the semiconductor 5. FIG. 19( b) shows measured optical transmission and reflection before and after the exposure of the Example 8 coating ( elements 1, 2 and 4 in FIG. 19( a)) to elevated temperature(s) (heat treatment of HT) similar to CdTe solar cell processing temperatures. The exposure to elevated temperature(s) reduces absorption loss as shown in FIG. 19( b), as well as sheet resistance of the coating to less than 15 ohms/square as compared to the as-deposited value of 75 ohms/square. FIG. 19( c) shows the estimated light impinging into the CdS/CdTe film photovoltaic material 5 when the ITO based coating ( layers 1, 2 and 4 in FIG. 19( a)) of Example 8 is used as the superstrate. As short circuit current density of 24.6 mA/cm2 was achieved from a 2′×4′ CdTe solar cell panel using this ITO based transparent conductive superstrate.
  • Example 9 is similar to that of Example 8 discussed above, except that it is applicable to amorphous and/or microcrystalline silicon and silicon alloys based single and/or tandem junction thin film solar cells (still referring to FIG. 19( a)), In Example 9, referring to FIG. 19( a), and using physical thickness values and refractive index values at about 550 nm, the layer stack moving from the glass 1 inwardly toward the semiconductor absorber film 5 was glass 1, dielectric TiOx (about 5-15 nm, preferably about 10 nm thick, refractive index “n” of about 2.3-2.4) layer 2 a, dielectric silicon oxynitride (about 20-50 nm thick, preferably about 25-40 nm thick, refractive index “n” of from about 1.45-1.75, preferably from about 1.45-1.65) layer 2 b, highly conductive indium tin oxide (ITO) layer 4 c (e.g., from about 100-500 nm thick, more preferably from about 150-250 nm thick; resistivity of from about 0.2 to 0.5 mohm-cm, refractive index of from about 1.9 to 2.1), TCO ZnAlOx (at least about 30 nm thick, more preferably from about 30-150 nm thick; refractive index “n” of about 1.9-2.2) layer 4 f, and then silicon based semiconductor film 5, back contact/electrode 7, optional adhesive 9, and rear glass substrate 11. This embodiment includes a transparent conductive superstrate structure including the highly conductive ITO based layer 4 c sandwiched between a low conductive layer 4 f atop and a non-conductive dielectric layer (2 a and/or 2 b) thereunder on the substrate 1. This coating has a low sheet resistance and high transmission in the visible to near IR that is suitable for applications as transparent conductive superstrates in thin film solar cell modules. The ITO layer 4 e plays the major role to provide the desired conduction for the solar cell module. The ZnAlOx layer 4 f has multiple functionalities such as (i) protecting the ITO 4 c from reduction caused by high hydrogen plasma during silicon deposition for layer 5, (ii) trapping light through a roughened ZnAlOx surface created during deposition or post-deposition treatment such as via etching or laser patterning, and (iii) providing supplementary conduction to the ITO and a good ohmic contact to the silicon based p-layer of film 5.
  • In the embodiments of Examples 8 and 9 (the FIG. 19( a) embodiments), the TiOx based dielectric layer 2 a and the silicon oxynitride based dielectric layer 2 b bi-layer stack can be replaced by a single layer having an index of from about 1.6 to 1.8, more preferably from about 1.65 to 1.75 (e.g., a silicon oxynitride layer), a high-low index alternating multiple layer stack, or a graded index layer (e.g., graded silicon oxynitride) having an index less than about 1.6 on the side closest to glass 1 and at least 1.7 on the side farthest from glass 1 (on the ITO side). For layer 4 f, the tin oxide in Ex. 8 and the zinc oxide in Ex. 9 can be replaced by other transparent conductive materials such as indium oxide, and alloys thereof with or without dopants such as Al, Ga and/or Sb.
  • FIG. 21 illustrates another example embodiment of this invention. The FIG. 21 embodiment is the same as the FIG. 19( a)-(c) embodiment discussed above, except that an additional dielectric silicon oxynitride layer 2 a′ is provided in the dielectric stack between the glass 1 and the conductive electrode coating 3. The additional silicon oxynitride layer 2 a′ in the FIG. 21 embodiment provides for additional index matching to reduce reflection loss from the front surface of the device and additional barrier functionality to block diffusion of undesired elements from the glass 1 such as reducing or preventing diffusion of sodium from glass 1 into the ITO layer 3 c and/or semiconductor film 5 during heat treatment or otherwise. The sheet resistance of such a coating may be from about 20-30 ohms/square as deposited in certain example instances, in an example where the TCO 3 is from about 30-140 nm thick, the titanium oxide based layer 2 a is from about 10-20 nm thick, and the silicon oxynitride layer(s) are each from about 10-400 nm thick.
  • FIG. 22 illustrates another example embodiment of this invention. The FIG. 22 embodiment is the same as the FIG. 19( a)-(c) embodiment discussed above, except that the dielectric layer stack between the TCO (e.g., Ag based coating, as in any embodiment herein) 3 and the glass 1 is made up of silicon oxynitride layer 2 a′, silicon nitride (e.g., Si3N4 or a substoichiometric Si-rich type of silicon nitride) layer 2 a, and titanium oxide based layer 2 b. The oxidation graded silicon nitride based film 2 a/2 a′ in the FIG. 22 embodiment provides for good index matching while at the same time is a good blocker of sodium diffusion from the glass 1 toward the ITO. The sheet resistance of such a coating may be from about 20-30 ohms/square as deposited in certain example instances, in an example where the TCO 3 is from about 30-140 nm thick, the titanium oxide based layer 2 b is from about 10-20 nm thick, the silicon nitride based layer 2 a is from about 10-15 nm thick and the silicon oxynitride based layer 2 a′ is from about 10-400 nm thick.
  • As a modification of the FIG. 22 embodiment, the TCO 3 in FIG. 22 may be of or based on ITO, and the layers 2 a and 2 b can be removed, leaving a structure of glass/SiON/ITO as the front electrode structure. In such an embodiment, the refractive index (n) of the silicon oxynitride can be from about 1.5 to 1.9 or 2.0, more preferably from about 1.6 to 1.8. Alternatively, as another modification of the FIG. 22 embodiment, the TCO 3 in FIG. 22 may be of or based on ITO and the titanium oxide layer 2 b can be removed, leaving a structure of glass/SiON/SiNx/ITO as the front electrode structure. In such an embodiment, the silicon nitride layer may have a refractive index of about 2.0. As yet another modification of the FIG. 22 embodiment, the TCO 3 in FIG. 22 may be of or based on an Ag-based coating of any embodiment herein and the silicon nitride layer 2 a can be removed, leaving a structure of glass/SiON/TiOx/TCO as the front electrode structure. In such an embodiment, the refractive index (n) of the silicon oxynitride 2 a′ can be from about 1.5 to 1.9 or 2.0, more preferably from about 1.6 to 1.8. Alternatively, in FIG. 22 both layers 2 a′ and 2 a can be removed in certain alternative embodiments. As with all other embodiments herein, the silicon nitride (layer 2 a) may be of the Si-rich type (e.g., SixNy, where the x/y ratio is from about 0.76 to 1.2, more preferably from about 0.82 to 1.1), where absorption loss due to Si-rich nature of the silicon nitride based layer can be reduced after cell processing so keep absorption loss low.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (10)

1-19. (canceled)
20. A front electrode structure for a photovoltaic device, the front electrode comprising:
a front glass substrate;
a first dielectric layer;
a second dielectric layer comprising silicon oxynitride, wherein the first dielectric layer is located between the glass substrate and the second dielectric layer comprising silicon oxynitride;
a conductive layer comprising indium tin oxide, wherein the second dielectric layer comprising silicon oxynitride is located between and contacting at least the layer comprising indium tin oxide and the first dielectric layer;
a conductive layer comprising at least one of zinc oxide, tin oxide, and/or zinc aluminum oxide, wherein the conductive layer comprising indium tin oxide is located between and directly contacting the layer comprising silicon oxynitride and the conductive layer comprising at least one of zinc oxide, tin oxide, and/or zinc aluminum oxide;
wherein the front electrode structure is adapted to be provided on an interior surface of the front glass substrate so as to face a semiconductor film.
21. The front electrode structure of claim 20, further comprising another layer comprising silicon oxynitride and/or silicon nitride between the glass substrate and the first dielectric layer.
22. The front electrode structure of claim 20, wherein an exterior surface of the glass substrate is etched, but the interior surface of the glass substrate on which the layer stack is provided is not etched and is substantially flat.
23. The front electrode structure of claim 20, wherein the semiconductor film is to comprise CdS and/or CdTe.
24. The front electrode structure of claim 20, wherein the front electrode structure has a transmission of at least 90% in at least a majority of a range of from 500-600 nm.
25. The front electrode structure of claim 20, wherein the semiconductor film is to comprise CdS and/or CdTe, and the front electrode structure has a transmission of at least 92% in at least part of a range of from 500-600 nm.
26. The front electrode structure of claim 20, wherein said conductive layer comprises zinc oxide.
27. The front electrode structure of claim 20, wherein said conductive layer comprises tin oxide.
28. The front electrode structure of claim 20, wherein said conductive layer comprises zinc aluminum oxide.
US13/297,737 2006-11-02 2011-11-16 Front electrode for use in photovoltaic device and method of making same Abandoned US20120060916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/297,737 US20120060916A1 (en) 2006-11-02 2011-11-16 Front electrode for use in photovoltaic device and method of making same

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11/591,668 US20080105298A1 (en) 2006-11-02 2006-11-02 Front electrode for use in photovoltaic device and method of making same
US11/790,812 US20080105293A1 (en) 2006-11-02 2007-04-27 Front electrode for use in photovoltaic device and method of making same
US11/898,641 US20080105302A1 (en) 2006-11-02 2007-09-13 Front electrode for use in photovoltaic device and method of making same
US11/984,092 US20080302414A1 (en) 2006-11-02 2007-11-13 Front electrode for use in photovoltaic device and method of making same
US11/987,664 US20080178932A1 (en) 2006-11-02 2007-12-03 Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US12/068,117 US8203073B2 (en) 2006-11-02 2008-02-01 Front electrode for use in photovoltaic device and method of making same
US12/149,263 US7964788B2 (en) 2006-11-02 2008-04-29 Front electrode for use in photovoltaic device and method of making same
US12/232,619 US8076571B2 (en) 2006-11-02 2008-09-19 Front electrode for use in photovoltaic device and method of making same
US13/297,737 US20120060916A1 (en) 2006-11-02 2011-11-16 Front electrode for use in photovoltaic device and method of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/232,619 Continuation US8076571B2 (en) 2006-11-02 2008-09-19 Front electrode for use in photovoltaic device and method of making same

Publications (1)

Publication Number Publication Date
US20120060916A1 true US20120060916A1 (en) 2012-03-15

Family

ID=42040070

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/232,619 Active US8076571B2 (en) 2006-11-02 2008-09-19 Front electrode for use in photovoltaic device and method of making same
US13/297,737 Abandoned US20120060916A1 (en) 2006-11-02 2011-11-16 Front electrode for use in photovoltaic device and method of making same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/232,619 Active US8076571B2 (en) 2006-11-02 2008-09-19 Front electrode for use in photovoltaic device and method of making same

Country Status (4)

Country Link
US (2) US8076571B2 (en)
EP (1) EP2340564A2 (en)
BR (1) BRPI0919196A2 (en)
WO (1) WO2010033310A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214733A1 (en) * 2006-11-02 2011-09-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20130005139A1 (en) * 2011-06-30 2013-01-03 Guardian Industries Corp. Techniques for manufacturing planar patterned transparent contact and/or electronic devices including same
US20130017381A1 (en) * 2011-07-12 2013-01-17 Cardinal Cg Company Sodium accumulation layer for electronic devices
WO2014134599A1 (en) * 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
US9379259B2 (en) * 2012-11-05 2016-06-28 International Business Machines Corporation Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices
US10987902B2 (en) 2017-07-10 2021-04-27 Guardian Glass, LLC Techniques for laser ablation/scribing of coatings in pre- and post-laminated assemblies, and/or associated methods
US11148228B2 (en) 2017-07-10 2021-10-19 Guardian Glass, LLC Method of making insulated glass window units

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080105299A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US8012317B2 (en) * 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080178932A1 (en) * 2006-11-02 2008-07-31 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080302414A1 (en) * 2006-11-02 2008-12-11 Den Boer Willem Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8203073B2 (en) * 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8334452B2 (en) 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
US20080169021A1 (en) * 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
US20080223430A1 (en) * 2007-03-14 2008-09-18 Guardian Industries Corp. Buffer layer for front electrode structure in photovoltaic device or the like
US20080308145A1 (en) * 2007-06-12 2008-12-18 Guardian Industries Corp Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
US20080308146A1 (en) * 2007-06-14 2008-12-18 Guardian Industries Corp. Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
US20090194157A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US20090194155A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US8642138B2 (en) * 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US20100180927A1 (en) * 2008-08-27 2010-07-22 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic and interconnect structures
US7947524B2 (en) * 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) * 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8741689B2 (en) * 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
TWI382551B (en) * 2008-11-06 2013-01-11 Ind Tech Res Inst Solar concentrating module
US8241943B1 (en) 2009-05-08 2012-08-14 Stion Corporation Sodium doping method and system for shaped CIGS/CIS based thin film solar cells
US8372684B1 (en) 2009-05-14 2013-02-12 Stion Corporation Method and system for selenization in fabricating CIGS/CIS solar cells
US8445373B2 (en) * 2009-05-28 2013-05-21 Guardian Industries Corp. Method of enhancing the conductive and optical properties of deposited indium tin oxide (ITO) thin films
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
WO2011005319A1 (en) * 2009-07-09 2011-01-13 Xunlight Corporation Back reflector for photovoltaic devices
CN102484170A (en) * 2009-07-10 2012-05-30 第一太阳能有限公司 Photovoltaic devices including zinc
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
EP2470694A4 (en) * 2009-08-24 2013-10-30 First Solar Inc Doped transparent conductive oxide
DE102009050234A1 (en) 2009-10-21 2011-05-05 Von Ardenne Anlagentechnik Gmbh Process for coating a substrate with a TCO layer and thin-film solar cell
US20110094574A1 (en) * 2009-10-27 2011-04-28 Calisolar Inc. Polarization Resistant Solar Cell Design Using SiCN
US20110168252A1 (en) * 2009-11-05 2011-07-14 Guardian Industries Corp. Textured coating with etching-blocking layer for thin-film solar cells and/or methods of making the same
US20110100446A1 (en) * 2009-11-05 2011-05-05 Guardian Industries Corp. High haze transparent contact including ion-beam treated layer for solar cells, and/or method of making the same
US8502066B2 (en) * 2009-11-05 2013-08-06 Guardian Industries Corp. High haze transparent contact including insertion layer for solar cells, and/or method of making the same
US20110186120A1 (en) * 2009-11-05 2011-08-04 Guardian Industries Corp. Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
US8252618B2 (en) * 2009-12-15 2012-08-28 Primestar Solar, Inc. Methods of manufacturing cadmium telluride thin film photovoltaic devices
US8143515B2 (en) * 2009-12-15 2012-03-27 Primestar Solar, Inc. Cadmium telluride thin film photovoltaic devices and methods of manufacturing the same
WO2011079104A1 (en) * 2009-12-23 2011-06-30 First Solar, Inc. Photovoltaic module interlayer
US11155493B2 (en) 2010-01-16 2021-10-26 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US8859880B2 (en) * 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
KR101130200B1 (en) * 2010-02-03 2012-03-30 엘지전자 주식회사 Solar Cell
US8142521B2 (en) * 2010-03-29 2012-03-27 Stion Corporation Large scale MOCVD system for thin film photovoltaic devices
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
WO2011126709A2 (en) * 2010-03-30 2011-10-13 First Solar, Inc. Doped buffer layer
CN102280512A (en) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 Solar cell module with high conversion efficiency
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
CN103180962B (en) * 2010-08-13 2016-05-11 第一太阳能有限公司 There is the photovoltaic devices of oxide skin(coating)
WO2012021884A2 (en) * 2010-08-13 2012-02-16 First Solar, Inc. Photovoltaic device
WO2012040299A2 (en) 2010-09-22 2012-03-29 First Solar, Inc A thin-film photovoltaic device with a zinc magnesium oxide window layer
US8354586B2 (en) * 2010-10-01 2013-01-15 Guardian Industries Corp. Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
WO2012083018A1 (en) * 2010-12-17 2012-06-21 First Solar, Inc. Photovoltaic device
US20120291840A1 (en) * 2011-05-18 2012-11-22 Glenn Eric Kohnke Patterned textured glass compatible with laser scribing
FR2975989B1 (en) 2011-05-30 2014-04-25 Saint Gobain BARRIER LAYER WITH ALKALINE
US20120024362A1 (en) * 2011-05-31 2012-02-02 Primestar Solar, Inc. Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
DE102011080009A1 (en) * 2011-07-28 2013-01-31 Robert Bosch Gmbh Thin film solar cell
US20130074905A1 (en) * 2011-09-26 2013-03-28 Benyamin Buller Photovoltaic device with reflective stack
US9246434B2 (en) * 2011-09-26 2016-01-26 First Solar, Inc System and method for estimating the short circuit current of a solar device
TWI442587B (en) * 2011-11-11 2014-06-21 Hon Hai Prec Ind Co Ltd Enclosure panel and electronic device using the same
WO2013106439A1 (en) * 2012-01-13 2013-07-18 Applied Materials, Inc. High work-function buffer layers for silicon-based photovoltaic devices
US9082914B2 (en) 2012-01-13 2015-07-14 Gaurdian Industries Corp. Photovoltaic module including high contact angle coating on one or more outer surfaces thereof, and/or methods of making the same
DE102012201284B4 (en) * 2012-01-30 2018-10-31 Ewe-Forschungszentrum Für Energietechnologie E. V. Method for producing a photovoltaic solar cell
DE102012205978A1 (en) * 2012-04-12 2013-10-17 Robert Bosch Gmbh Photovoltaic thin-film solar modules and methods for producing such thin-film solar modules
US20130306130A1 (en) * 2012-05-21 2013-11-21 Stion Corporation Solar module apparatus with edge reflection enhancement and method of making the same
US10222921B2 (en) 2012-11-27 2019-03-05 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US9557871B2 (en) * 2015-04-08 2017-01-31 Guardian Industries Corp. Transparent conductive coating for capacitive touch panel or the like
US20140170806A1 (en) * 2012-12-18 2014-06-19 Intermolecular, Inc. TCOs for High-Efficiency Crystalline Si Heterojunction Solar Cells
US10840400B2 (en) * 2013-08-29 2020-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Photovoltaic device with back reflector
KR101534941B1 (en) * 2013-11-15 2015-07-07 현대자동차주식회사 a method for forming conductive electrode patterns and a method for manufacturing colar cells comprising thereof
US9783901B2 (en) * 2014-03-11 2017-10-10 Macdermid Acumen, Inc. Electroplating of metals on conductive oxide substrates
US20150349180A1 (en) * 2014-05-30 2015-12-03 David D. Smith Relative dopant concentration levels in solar cells
KR102309883B1 (en) * 2014-08-29 2021-10-06 삼성전자주식회사 Phothoelectric conversion device and image sensor having the same
KR20230028582A (en) * 2015-01-23 2023-02-28 마테리온 코포레이션 Near infrared optical interference filters with improved transmission
CN107209306B (en) 2015-02-18 2020-10-20 美题隆公司 Near infrared optical interference filter with improved transmission
US9745792B2 (en) 2015-03-20 2017-08-29 Cardinal Cg Company Nickel-aluminum blocker film multiple cavity controlled transmission coating
US9525008B2 (en) * 2015-03-31 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. RRAM devices
US10133108B2 (en) 2015-04-08 2018-11-20 Guardian Glass, LLC Vending machines with large area transparent touch electrode technology, and/or associated methods
US10353123B2 (en) * 2017-08-08 2019-07-16 Apple Inc. Electronic Devices with glass layer coatings
CN107768286A (en) * 2017-10-20 2018-03-06 米亚索乐装备集成(福建)有限公司 The stress release method and its device of flexible photovoltaic component package glued membrane
US11028012B2 (en) * 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
FR3095523B1 (en) * 2019-04-25 2022-09-09 Centre Nat Rech Scient Mirror for photovoltaic cell, photovoltaic cell and module
GB201910988D0 (en) * 2019-08-01 2019-09-18 Pilkington Group Ltd Touchenable coated substrate
US20220006420A1 (en) * 2020-07-04 2022-01-06 Mitrex Inc. Building-integrated photovoltaic system
CN115707260A (en) * 2021-08-04 2023-02-17 隆基绿能科技股份有限公司 Perovskite battery and photovoltaic module
FR3128825A1 (en) * 2021-11-03 2023-05-05 Institut Photovoltaique D'ile De France (Ipvf) PHOTOVOLTAIC CELL EQUIPPED WITH AT LEAST ONE PERFECTED TRANSPARENT CONDUCTIVE OXIDE LAYER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880677A (en) * 1986-04-08 1989-11-14 Glaverbel Matted glass
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
US20030035906A1 (en) * 2001-05-09 2003-02-20 Hassan Memarian Transparent conductive stratiform coating of indium tin oxide
US20050121070A1 (en) * 2001-12-03 2005-06-09 Nippon Sheet Class Company, Ltd. Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
US20060191567A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Photoelectric conversion element and method for producing photoelectric conversion element

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL127148C (en) 1963-12-23
US3804491A (en) 1971-08-16 1974-04-16 Olympus Optical Co Multilayer reflection proof film
US4155781A (en) 1976-09-03 1979-05-22 Siemens Aktiengesellschaft Method of manufacturing solar cells, utilizing single-crystal whisker growth
US4162505A (en) 1978-04-24 1979-07-24 Rca Corporation Inverted amorphous silicon solar cell utilizing cermet layers
US4163677A (en) 1978-04-28 1979-08-07 Rca Corporation Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
US4213798A (en) 1979-04-27 1980-07-22 Rca Corporation Tellurium schottky barrier contact for amorphous silicon solar cells
DE3280418T2 (en) 1981-07-17 1993-03-04 Kanegafuchi Chemical Ind AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHOUS SILICON.
US4378460A (en) 1981-08-31 1983-03-29 Rca Corporation Metal electrode for amorphous silicon solar cells
US4554727A (en) 1982-08-04 1985-11-26 Exxon Research & Engineering Company Method for making optically enhanced thin film photovoltaic device using lithography defined random surfaces
JPS59175166A (en) 1983-03-23 1984-10-03 Agency Of Ind Science & Technol Amorphous photoelectric conversion element
US4598306A (en) 1983-07-28 1986-07-01 Energy Conversion Devices, Inc. Barrier layer for photovoltaic devices
JPH0680837B2 (en) 1983-08-29 1994-10-12 通商産業省工業技術院長 Photoelectric conversion element with extended optical path
JPS6068663A (en) 1983-09-26 1985-04-19 Komatsu Denshi Kinzoku Kk Amorphous silicon solar battery
US4598396A (en) * 1984-04-03 1986-07-01 Itt Corporation Duplex transmission mechanism for digital telephones
US4689438A (en) 1984-10-17 1987-08-25 Sanyo Electric Co., Ltd. Photovoltaic device
JPS61108176A (en) 1984-11-01 1986-05-26 Fuji Electric Co Ltd Method for coarsening surface
DE3446807A1 (en) * 1984-12-21 1986-07-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Thin-film solar cell having an n-i-p structure
US4663495A (en) 1985-06-04 1987-05-05 Atlantic Richfield Company Transparent photovoltaic module
DE3704880A1 (en) 1986-07-11 1988-01-21 Nukem Gmbh TRANSPARENT, CONDUCTIVE LAYER SYSTEM
AU616736B2 (en) 1988-03-03 1991-11-07 Asahi Glass Company Limited Amorphous oxide film and article having such film thereon
EP0364780B1 (en) 1988-09-30 1997-03-12 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Solar cell with a transparent electrode
US4940495A (en) 1988-12-07 1990-07-10 Minnesota Mining And Manufacturing Company Photovoltaic device having light transmitting electrically conductive stacked films
JP3117446B2 (en) 1989-06-15 2000-12-11 株式会社半導体エネルギー研究所 Method for forming oxide conductive film
US5073451A (en) 1989-07-31 1991-12-17 Central Glass Company, Limited Heat insulating glass with dielectric multilayer coating
EP0436741B1 (en) 1989-08-01 1996-06-26 Asahi Glass Company Ltd. DC sputtering method and target for producing films based on silicon dioxide
DE4000664A1 (en) 1990-01-11 1991-07-18 Siemens Ag Transparent electrode for amorphous silicon photodiodes - comprises multilayer of alternate high and low oxygen content oxide layers
US5183700A (en) 1990-08-10 1993-02-02 Viratec Thin Films, Inc. Solar control properties in low emissivity coatings
AU8872891A (en) 1990-10-15 1992-05-20 United Solar Systems Corporation Monolithic solar cell array and method for its manufacture
DE4126738A1 (en) 1990-12-11 1992-06-17 Claussen Nils ZR0 (DOWN ARROW) 2 (DOWN ARROW) CERAMIC MOLDED BODY
US5171411A (en) 1991-05-21 1992-12-15 The Boc Group, Inc. Rotating cylindrical magnetron structure with self supporting zinc alloy target
US5256858A (en) 1991-08-29 1993-10-26 Tomb Richard H Modular insulation electrically heated building panel with evacuated chambers
US5699035A (en) 1991-12-13 1997-12-16 Symetrix Corporation ZnO thin-film varistors and method of making the same
JP2974485B2 (en) 1992-02-05 1999-11-10 キヤノン株式会社 Manufacturing method of photovoltaic device
US5344718A (en) 1992-04-30 1994-09-06 Guardian Industries Corp. High performance, durable, low-E glass
CN1112734C (en) 1993-09-30 2003-06-25 佳能株式会社 Solar cell module having surface coating material for three-layer structure
JP3029178B2 (en) 1994-04-27 2000-04-04 キヤノン株式会社 Method of manufacturing thin film semiconductor solar cell
FR2728559B1 (en) 1994-12-23 1997-01-31 Saint Gobain Vitrage GLASS SUBSTRATES COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION
US5811191A (en) 1994-12-27 1998-09-22 Ppg Industries, Inc. Multilayer antireflective coating with a graded base layer
GB9500330D0 (en) 1995-01-09 1995-03-01 Pilkington Plc Coatings on glass
FR2730990B1 (en) 1995-02-23 1997-04-04 Saint Gobain Vitrage TRANSPARENT SUBSTRATE WITH ANTI-REFLECTIVE COATING
EP0733931B1 (en) 1995-03-22 2003-08-27 Toppan Printing Co., Ltd. Multilayered conductive film, and transparent electrode substrate and liquid crystal device using the same
JP3431776B2 (en) 1995-11-13 2003-07-28 シャープ株式会社 Manufacturing method of solar cell substrate and solar cell substrate processing apparatus
US6433913B1 (en) 1996-03-15 2002-08-13 Gentex Corporation Electro-optic device incorporating a discrete photovoltaic device and method and apparatus for making same
GB9619134D0 (en) 1996-09-13 1996-10-23 Pilkington Plc Improvements in or related to coated glass
US6406639B2 (en) 1996-11-26 2002-06-18 Nippon Sheet Glass Co., Ltd. Method of partially forming oxide layer on glass substrate
US6123824A (en) 1996-12-13 2000-09-26 Canon Kabushiki Kaisha Process for producing photo-electricity generating device
DE19713215A1 (en) 1997-03-27 1998-10-08 Forschungszentrum Juelich Gmbh Solar cell with textured transparent conductive oxide layer
JP3805889B2 (en) 1997-06-20 2006-08-09 株式会社カネカ Solar cell module and manufacturing method thereof
JPH1146006A (en) 1997-07-25 1999-02-16 Canon Inc Photovoltaic element and manufacture thereof
US6222117B1 (en) 1998-01-05 2001-04-24 Canon Kabushiki Kaisha Photovoltaic device, manufacturing method of photovoltaic device, photovoltaic device integrated with building material and power-generating apparatus
WO1999045163A1 (en) 1998-03-05 1999-09-10 Asahi Glass Company Ltd. Sputtering target, transparent conductive film, and method for producing the same
US6344608B2 (en) 1998-06-30 2002-02-05 Canon Kabushiki Kaisha Photovoltaic element
FR2781062B1 (en) 1998-07-09 2002-07-12 Saint Gobain Vitrage GLAZING WITH ELECTRICALLY CONTROLLED OPTICAL AND / OR ENERGY PROPERTIES
US6077722A (en) 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
WO2000013237A1 (en) 1998-08-26 2000-03-09 Nippon Sheet Glass Co., Ltd. Photovoltaic device
JP2000091084A (en) * 1998-09-16 2000-03-31 Trustees Of Princeton Univ Positive hole injection performance improving electrode
FR2791147B1 (en) 1999-03-19 2002-08-30 Saint Gobain Vitrage ELECTROCHEMICAL DEVICE OF THE ELECTROCOMMANDABLE DEVICE TYPE WITH VARIABLE OPTICAL AND / OR ENERGY PROPERTIES
TW463528B (en) 1999-04-05 2001-11-11 Idemitsu Kosan Co Organic electroluminescence element and their preparation
NO314525B1 (en) 1999-04-22 2003-03-31 Thin Film Electronics Asa Process for the preparation of organic semiconductor devices in thin film
US6380480B1 (en) 1999-05-18 2002-04-30 Nippon Sheet Glass Co., Ltd Photoelectric conversion device and substrate for photoelectric conversion device
JP4460108B2 (en) * 1999-05-18 2010-05-12 日本板硝子株式会社 Method for manufacturing substrate for photoelectric conversion device
JP3227449B2 (en) 1999-05-28 2001-11-12 日本板硝子株式会社 Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same
US6187824B1 (en) 1999-08-25 2001-02-13 Nyacol Nano Technologies, Inc. Zinc oxide sol and method of making
DE19958878B4 (en) 1999-12-07 2012-01-19 Saint-Gobain Glass Deutschland Gmbh Thin film solar cell
JP4434411B2 (en) 2000-02-16 2010-03-17 出光興産株式会社 Active drive type organic EL light emitting device and manufacturing method thereof
US6524647B1 (en) 2000-03-24 2003-02-25 Pilkington Plc Method of forming niobium doped tin oxide coatings on glass and coated glass formed thereby
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US7267879B2 (en) * 2001-02-28 2007-09-11 Guardian Industries Corp. Coated article with silicon oxynitride adjacent glass
US6576349B2 (en) 2000-07-10 2003-06-10 Guardian Industries Corp. Heat treatable low-E coated articles and methods of making same
US6521883B2 (en) 2000-07-18 2003-02-18 Sanyo Electric Co., Ltd. Photovoltaic device
WO2002017689A1 (en) 2000-08-23 2002-02-28 Idemitsu Kosan Co., Ltd. Organic el display
US6784361B2 (en) 2000-09-20 2004-08-31 Bp Corporation North America Inc. Amorphous silicon photovoltaic devices
JP4229606B2 (en) 2000-11-21 2009-02-25 日本板硝子株式会社 Base for photoelectric conversion device and photoelectric conversion device including the same
JP2002260448A (en) 2000-11-21 2002-09-13 Nippon Sheet Glass Co Ltd Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
JP2002170431A (en) 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd Electrode substrate and its manufacturing method
KR100768176B1 (en) 2001-02-07 2007-10-17 삼성에스디아이 주식회사 Functional film having an improved optical and electrical properties
US7132666B2 (en) 2001-02-07 2006-11-07 Tomoji Takamasa Radiation detector and radiation detecting element
US6774300B2 (en) 2001-04-27 2004-08-10 Adrena, Inc. Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
AU2002259152A1 (en) 2001-05-08 2002-11-18 Bp Corporation North America Inc. Improved photovoltaic device
US6589657B2 (en) 2001-08-31 2003-07-08 Von Ardenne Anlagentechnik Gmbh Anti-reflection coatings and associated methods
JP4162447B2 (en) 2001-09-28 2008-10-08 三洋電機株式会社 Photovoltaic element and photovoltaic device
US6936347B2 (en) 2001-10-17 2005-08-30 Guardian Industries Corp. Coated article with high visible transmission and low emissivity
FR2832706B1 (en) 2001-11-28 2004-07-23 Saint Gobain TRANSPARENT SUBSTRATE HAVING AN ELECTRODE
US6586102B1 (en) * 2001-11-30 2003-07-01 Guardian Industries Corp. Coated article with anti-reflective layer(s) system
US6830817B2 (en) 2001-12-21 2004-12-14 Guardian Industries Corp. Low-e coating with high visible transmission
KR100835920B1 (en) 2001-12-27 2008-06-09 엘지디스플레이 주식회사 Liquid Crystal Display Panel Associated With Touch Panel
US7144837B2 (en) 2002-01-28 2006-12-05 Guardian Industries Corp. Clear glass composition with high visible transmittance
US7169722B2 (en) 2002-01-28 2007-01-30 Guardian Industries Corp. Clear glass composition with high visible transmittance
US7037869B2 (en) 2002-01-28 2006-05-02 Guardian Industries Corp. Clear glass composition
US6919133B2 (en) 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
KR100505536B1 (en) 2002-03-27 2005-08-04 스미토모 긴조쿠 고잔 가부시키가이샤 Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
FR2844136B1 (en) 2002-09-03 2006-07-28 Corning Inc MATERIAL USEFUL IN THE MANUFACTURE OF LUMINOUS DISPLAY DEVICES, PARTICULARLY ORGANIC ELECTROLUMINESCENT DIODES
FR2844364B1 (en) 2002-09-11 2004-12-17 Saint Gobain DIFFUSING SUBSTRATE
US7141863B1 (en) 2002-11-27 2006-11-28 University Of Toledo Method of making diode structures
TW583466B (en) 2002-12-09 2004-04-11 Hannstar Display Corp Structure of liquid crystal display
US6975067B2 (en) 2002-12-19 2005-12-13 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
TWI232066B (en) 2002-12-25 2005-05-01 Au Optronics Corp Manufacturing method of organic light emitting diode for reducing reflection of external light
JP4241446B2 (en) 2003-03-26 2009-03-18 キヤノン株式会社 Multilayer photovoltaic device
JP5068946B2 (en) 2003-05-13 2012-11-07 旭硝子株式会社 Transparent conductive substrate for solar cell and method for producing the same
US20040244829A1 (en) 2003-06-04 2004-12-09 Rearick Brian K. Coatings for encapsulation of photovoltaic cells
GB2405030A (en) 2003-08-13 2005-02-16 Univ Loughborough Bifacial thin film solar cell
US7153579B2 (en) 2003-08-22 2006-12-26 Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A, (C.R.V.C.) Heat treatable coated article with tin oxide inclusive layer between titanium oxide and silicon nitride
US7087309B2 (en) 2003-08-22 2006-08-08 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article with tin oxide, silicon nitride and/or zinc oxide under IR reflecting layer and corresponding method
JP4761706B2 (en) 2003-12-25 2011-08-31 京セラ株式会社 Method for manufacturing photoelectric conversion device
US20050208319A1 (en) * 2004-03-22 2005-09-22 Finley James J Methods for forming an electrodeposited coating over a coated substrate and articles made thereby
US8524051B2 (en) 2004-05-18 2013-09-03 Centre Luxembourg de Recherches pour le Verre et al Ceramique S. A. (C.R.V.C.) Coated article with oxidation graded layer proximate IR reflecting layer(s) and corresponding method
US20050257824A1 (en) 2004-05-24 2005-11-24 Maltby Michael G Photovoltaic cell including capping layer
US7700869B2 (en) 2005-02-03 2010-04-20 Guardian Industries Corp. Solar cell low iron patterned glass and method of making same
US7531239B2 (en) 2005-04-06 2009-05-12 Eclipse Energy Systems Inc Transparent electrode
US7700870B2 (en) 2005-05-05 2010-04-20 Guardian Industries Corp. Solar cell using low iron high transmission glass with antimony and corresponding method
US7743630B2 (en) 2005-05-05 2010-06-29 Guardian Industries Corp. Method of making float glass with transparent conductive oxide (TCO) film integrally formed on tin bath side of glass and corresponding product
US8093491B2 (en) 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
US7597964B2 (en) 2005-08-02 2009-10-06 Guardian Industries Corp. Thermally tempered coated article with transparent conductive oxide (TCO) coating
JP2007067194A (en) 2005-08-31 2007-03-15 Fujifilm Corp Organic photoelectric conversion device and stacked photoelectric conversion device
US20070184573A1 (en) 2006-02-08 2007-08-09 Guardian Industries Corp., Method of making a thermally treated coated article with transparent conductive oxide (TCO) coating for use in a semiconductor device
US20070193624A1 (en) 2006-02-23 2007-08-23 Guardian Industries Corp. Indium zinc oxide based front contact for photovoltaic device and method of making same
US8648252B2 (en) 2006-03-13 2014-02-11 Guardian Industries Corp. Solar cell using low iron high transmission glass and corresponding method
US7557053B2 (en) 2006-03-13 2009-07-07 Guardian Industries Corp. Low iron high transmission float glass for solar cell applications and method of making same
US20080047602A1 (en) 2006-08-22 2008-02-28 Guardian Industries Corp. Front contact with high-function TCO for use in photovoltaic device and method of making same
US20080047603A1 (en) 2006-08-24 2008-02-28 Guardian Industries Corp. Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
US7964788B2 (en) * 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105299A1 (en) 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US20080105298A1 (en) 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080178932A1 (en) 2006-11-02 2008-07-31 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080302414A1 (en) * 2006-11-02 2008-12-11 Den Boer Willem Front electrode for use in photovoltaic device and method of making same
US8203073B2 (en) * 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8012317B2 (en) 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
DE102006062092B4 (en) 2006-12-29 2014-02-13 Anton Näbauer In terms of efficiency and reliability optimized solar modules
US8334452B2 (en) 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
FR2911336B3 (en) 2007-01-15 2009-03-20 Saint Gobain GLAZED COATED SUBSTRATE WITH IMPROVED MECHANICAL STRENGTH
US20080169021A1 (en) 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
US20080223430A1 (en) 2007-03-14 2008-09-18 Guardian Industries Corp. Buffer layer for front electrode structure in photovoltaic device or the like
US20080223436A1 (en) 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
US20080308145A1 (en) 2007-06-12 2008-12-18 Guardian Industries Corp Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
US20080308146A1 (en) 2007-06-14 2008-12-18 Guardian Industries Corp. Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US7888594B2 (en) 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
US20090194157A1 (en) 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US20090194155A1 (en) 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880677A (en) * 1986-04-08 1989-11-14 Glaverbel Matted glass
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
US20030035906A1 (en) * 2001-05-09 2003-02-20 Hassan Memarian Transparent conductive stratiform coating of indium tin oxide
US20050121070A1 (en) * 2001-12-03 2005-06-09 Nippon Sheet Class Company, Ltd. Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
US20060191567A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Photoelectric conversion element and method for producing photoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chopra et al. "Thin-Film Solar Cells: An Overview". Prog. Photovolt: Res. Appl. (2004). 12: pgs 69-92. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214733A1 (en) * 2006-11-02 2011-09-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20130005139A1 (en) * 2011-06-30 2013-01-03 Guardian Industries Corp. Techniques for manufacturing planar patterned transparent contact and/or electronic devices including same
US20130017381A1 (en) * 2011-07-12 2013-01-17 Cardinal Cg Company Sodium accumulation layer for electronic devices
US9379259B2 (en) * 2012-11-05 2016-06-28 International Business Machines Corporation Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices
WO2014134599A1 (en) * 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
US11417785B2 (en) 2013-03-01 2022-08-16 First Solar, Inc. Photovoltaic devices and method of making
US10987902B2 (en) 2017-07-10 2021-04-27 Guardian Glass, LLC Techniques for laser ablation/scribing of coatings in pre- and post-laminated assemblies, and/or associated methods
US11148228B2 (en) 2017-07-10 2021-10-19 Guardian Glass, LLC Method of making insulated glass window units

Also Published As

Publication number Publication date
EP2340564A2 (en) 2011-07-06
US8076571B2 (en) 2011-12-13
BRPI0919196A2 (en) 2015-12-15
WO2010033310A3 (en) 2011-02-03
US20090084438A1 (en) 2009-04-02
WO2010033310A2 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US8076571B2 (en) Front electrode for use in photovoltaic device and method of making same
US7964788B2 (en) Front electrode for use in photovoltaic device and method of making same
US8203073B2 (en) Front electrode for use in photovoltaic device and method of making same
US20080105302A1 (en) Front electrode for use in photovoltaic device and method of making same
US8012317B2 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US8022291B2 (en) Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
US20080302414A1 (en) Front electrode for use in photovoltaic device and method of making same
US7888594B2 (en) Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
US20080178932A1 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080223436A1 (en) Back reflector for use in photovoltaic device
WO2008063305A2 (en) Front electrode for use in photovoltaic device and method of making same
US20110180130A1 (en) Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same
US20110100446A1 (en) High haze transparent contact including ion-beam treated layer for solar cells, and/or method of making the same
US20110168252A1 (en) Textured coating with etching-blocking layer for thin-film solar cells and/or methods of making the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GUARDIAN GLASS, LLC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUARDIAN INDUSTRIES CORP.;REEL/FRAME:044053/0318

Effective date: 20170801