US20120088090A1 - Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these - Google Patents

Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these Download PDF

Info

Publication number
US20120088090A1
US20120088090A1 US13/322,805 US201013322805A US2012088090A1 US 20120088090 A1 US20120088090 A1 US 20120088090A1 US 201013322805 A US201013322805 A US 201013322805A US 2012088090 A1 US2012088090 A1 US 2012088090A1
Authority
US
United States
Prior art keywords
cured film
fingerprint
erasing
film
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/322,805
Inventor
Akira Miyazaki
Yasunori Mori
Koichi Kubo
Haruya Kakuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsujiden Co Ltd
Original Assignee
Tsujiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsujiden Co Ltd filed Critical Tsujiden Co Ltd
Assigned to TSUJIDEN CO., LTD. reassignment TSUJIDEN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAKUTA, HARUYA, KUBO, KOICHI, MIYAZAKI, AKIRA, MORI, YASUNORI
Publication of US20120088090A1 publication Critical patent/US20120088090A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Definitions

  • the present invention relates to a cured film having the effect of making soiling from fingerprints adhering thereto less noticeable or no longer visible within a short time period, the film being formable by ordinary methods, such as adhesion, transfer, or coating, onto surfaces of displays of electronic devices such as personal computers, mobile telephones, car navigation systems, ATMs, cash dispensing machines, and the like; onto displays of such electronic devices having a touch panel function; onto electronic devices in which these are used; or onto surfaces of furniture, electronic products, toys, stationery, glass, lenses, wood, and other mirror-finish surfaces whose aesthetic appearance is diminished by fingerprints or other forms of sebaceous soiling.
  • the present invention also relates to a method for manufacturing same; to a display or touch panel using same; and to electronic devices and the like in which these are used.
  • the surfaces of the aforedescribed displays, furniture, electronic products, toys, glass, and the like are susceptible to being scratched, and to being soiled by lipids and the like from the hands, which tends to diminish their appearance.
  • fingerprint soiling is severe owing to the fact that the display face is touched frequently by the fingers.
  • fashion can sometimes make it desirable for not only the display face, but for the electronic device as well, to have a finish such as a mirror coating or the like, in which instance sebaceous soiling from fingerprints will be a significant problem for the case portion as well.
  • a typical countermeasure taken in the past against sebaceous soiling from fingerprints or the like is to give film surfaces a soil-resistant finish of a fluorine-based or silicone-based soil-resistant material, so that sebum does not adhere. Also, measures are taken to facilitate removal of fingerprint soiling deposited on film surfaces, by wiping using a cloth or the like.
  • these anti-soiling films may, for example, have minute asperities formed on the surface so as to prevent reflection of outside light and scratches from becoming noticeable, and a problem is presented in that, on having adhered, soiling matter can penetrate into the asperity surfaces, giving the film surface a cloudy appearance even if an attempt is made to wipe it away.
  • Patent Document 1 discloses an invention for making fingerprints unnoticeable, by fabricating surface asperities using a lipophilic resin, so that even if soiling such as fingerprints or the like are produced on the film, the fingerprint lipid components and the like are diffused and transported across the film surface utilizing capillary action; however, traces of deposited fingerprints are recognizable at the visual level, and the performance is not satisfactory.
  • Patent Document 2 discloses a method for causing soiling matter to blend in and become unnoticeable by imparting lipophilicity to a coating film which sheaths the surface of an electronic device; however, a problem with this method is that it takes an extended period, namely, several days, to render soiling unnoticeable.
  • Patent Document 3 discloses a method of furnishing a hard coat layer by irradiating a radiation-sensitive type resin composition using ultraviolet radiation or the like to bring about curing, followed by surface treatment employing an alkaline aqueous solution; however, this method involves a complicated surface treatment step, and the scope of utilization is limited due to the surface treatment using an alkaline aqueous solution.
  • Patent Document 4 discloses a method for manufacturing a hard coat film by applying an energy beam-curing hard coat composition onto a release film having surface roughness Ra of 0.1 ⁇ m or less; and, after drying, affixing the coated film to a substrate film, heating the assembly, and then irradiating the assembly using ultraviolet radiation or the like to bring about curing.
  • the method involves making the surface smooth in order to improve the ease of wiping away fingerprints, a problem is presented in that the method cannot be utilized in cases where a surface is furnished with fine surface asperities to prevent reflection of outside light and the like.
  • the present invention provides a fingerprint-erasing cured film (herein also termed a “film”) capable of erasing soiling caused by deposition of fingerprints on displays of various kinds of electronic devices or on the surfaces of devices or the like, so that within a short period of time, e.g., 5 minutes, the fingerprint soiling is erased to the point of being no longer visible.
  • the present invention also provides a method for the manufacture of same; a display or touch panel in which same is used; and to electronic devices and the like in which these are used.
  • the present invention has the following means.
  • the invention according to a first aspect is a method for manufacturing a fingerprint-erasing cured film, characterized in that there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; curing of the film is brought about in a state of the solvent being included within the film; and the solvent is subsequently dried.
  • the inventors discovered that during: manufacture of a cured film by curing a coating liquid film of an activating-energy-beam-polymerizable resin composition by irradiating same with a activating energy beam, by bringing about curing in a state with the solvent included [within the film] (*1), the solvent, which does not participate in curing, remains present in a widely dispersed state within the cured film.
  • solvent evaporation micropores a multitude of micropores (hereinafter also termed “solvent evaporation micropores”) of a size too small to be visible, for example, from several microns to several tens of nanometers, which open onto the cured film surface and communicate with the film interior from the surface of the cured film. It is hypothesized that these solvent evaporation micropores [are formed] during the actual curing of the activating-energy-beam-polymerizable resin composition, as the cured resin component and the solvent undergo phase separation, and as in the subsequent drying step the solvent passes through the film interior and evaporates from the film surface, forming pores.
  • the fingerprint-erasing effect is enhanced further by manufacturing the cured film while using, during formation of the cured film, a release material subjected to an embossing or matting process (hereinafter termed a “matting process”) created through sandblasting of the surface or the like.
  • the surface asperities of the release material can be transferred to the film surface to form a multitude of asperity portions and to form a matte-finished cured film with minute micropores (solvent evaporation pores) formed in the asperity portions thereof, and having higher fingerprint-erasing ability than a clear film.
  • minute micropores solvent evaporation pores
  • the invention according to a second aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the first aspect, characterized in that 5 wt % or more of the solvent is included in the film.” According to this invention, a given amount or more of solvent evaporation micropores can be created, and the effect of fingerprint-erasing ability afforded by the micropores on the cured film surface is assured.
  • the invention according to a third aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the first aspect, characterized in that the film is cured in a state of 5 wt % or more and 30 wt % or less of the solvent being included in the film.”
  • the number of micropores increases with a higher solvent content, which is desirable from the standpoint of fingerprint-erasing ability, but on the other hand, excessively reduced mechanical strength of the cured film is a problem as well, and the value of 30 wt % has been established as an upper limit based on these conflicting requirements.
  • the invention according to a fourth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of any of the first through third aspects, wherein there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; and, in a state of the film being sandwiched between a substrate and a release material, and the solvent being included in the film, the film is irradiated with an activating energy and cured, whereby a cured film is formed on the substrate.”
  • the invention according to a fifth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the fourth aspect, characterized in that the release material is a release material having a surface with surface asperities formed by a matting process.” According to this invention, because the release material surface has surface asperities, there ‘is obtained a cured film having surface asperities transferred to the cured film surface, and having solvent’ evaporation micropores formed within the surface asperities.
  • the invention according to a sixth aspect is “a method for manufacturing the fingerprint-erasing cured film according to any of the inventions of the first through fifth aspects, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.” According to this invention, a water-absorbent compound is introduced, and therefore fingerprint-erasing ability is improved.
  • the invention according to a seventh aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the sixth aspect, characterized in that the water-absorbent compound adds 0.4 to 25 wt % of the water-absorbent compound with respect to 100 wt % of the solid fraction.”
  • This invention is a method which limits the proportion of the water-absorbent compound to the solid fraction, specifically, the solid fraction of the activating-energy-beam-polymerizable resin composition.
  • the invention according to an eighth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the sixth aspect, characterized in that the water-absorbent compound is one or two or more compounds selected from the group consisting of water-absorbent resins, oligomers containing carboxyl groups, ionic liquids, water-absorbent inorganic salts or an aqueous solution thereof, and silica gel microparticles.”
  • the invention according to a ninth aspect is “a fingerprint-erasing cured film obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film.” This cured film has good fingerprint-erasing ability.
  • the invention according to a tenth aspect is “a fingerprint-erasing cured film obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that a surface of the cured film is matte-processed, and there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film having the matte-processed surface.”
  • This cured film has even better fingerprint-erasing ability.
  • the fact that the micropores formed on the cured film surface communicate with the cured film interior from the film surface has been confirmed by measurements of refractive index as disclosed below.
  • the invention according to an eleventh aspect is “a fingerprint-erasing cured film according to the invention of the ninth or tenth aspect, characterized in that 6 vol % or more of the micropores communicate with the interior of the cured film from the surface of the cured film.”
  • the invention according to a twelfth aspect is “a display, characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • the invention according to a thirteenth aspect is “a touch panel, characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • the invention according to a fourteenth aspect is “an electronic device characterized in that a touch panel is installed in an input section, and the fingerprint-erasing cured film of any of the inventions of the ninth through eleventh aspects is formed on a surface of the touch panel.”
  • the invention according to a fifteenth aspect is “a mobile device, an item of furniture, a fitting, a glass, an eyeglass lens, or a mirror characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • the fingerprint-erasing cured film obtained by the manufacturing method of the present invention exhibits good fingerprint-erasing ability, such that a fingerprint deposited on a surface is not readily visible, or is rendered invisible, after a short time; for example, five minutes. It is hypothesized that the cured film obtained by the present invention exhibits an excellent fingerprint-erasing effect by virtue of fingerprint soiling deposited on a surface being drawn into the micropores which have been opened onto the cured film surface through evaporation of a solvent, and which communicate with the cured film interior.
  • the solvent content of the cured film coating liquid is preferably 5 wt % or more and 30 wt % or less, for example.
  • the release material having surface asperities created by matte processing is pressed against the coated film to form the cured film, whereby there is obtained a cured film with asperity portions transferred to the cured film surface, and moreover having a multitude of micropores formed on the matte-processed surface thereof.
  • forming asperity portions by matte processing of the cured film increases the relative surface area of the cured film surface, and in accordance therewith, the number of micropores increases as well, so that the number of micropores increases as compared with the case where solvent evaporation micropores are formed in a cured film with a clear (smooth) surface, and fingerprint-erasing ability is enhanced further.
  • fingerprint-erasing effect of the present invention progressively declines, and fingerprint soiling on the film surface becomes noticeable.
  • fingerprint soiling can be eliminated easily by wiping the film surface with a commercially available wet wipe, a cloth product containing water, or the like, at a frequency of, for example, once every several days, whereby good fingerprint-erasing ability may be restored.
  • FIG. 1 is a schematic view of an apparatus for manufacturing a fingerprint-erasing cured film on a sheet material
  • FIG. 2 is a schematic view of an apparatus for manufacturing a fingerprint-erasing cured film on a release material
  • FIG. 3 is a schematic view of a stamp employed for testing to evaluate fingerprint-erasing effect
  • FIG. 4 is an SEM photograph of a surface of a fingerprint-erasing cured film obtained in Working Example 4;
  • FIG. 5 is an SEM photograph of a cross section of the fingerprint-erasing cured film obtained in Working Example 4.
  • FIG. 6 is an SEM photograph of a surface of a fingerprint-erasing cured film obtained in Comparative Example 2;
  • FIG. 7 is an SEM photograph of a cross section of the fingerprint-erasing cured film obtained in Comparative Example 2;
  • FIG. 8 is an SEM image of the surface of a film A
  • FIG. 9 is an SEM image of the surface of a film B
  • FIG. 10 is an SEM image of the surface of a film C
  • FIG. 11 is an SEM image of the surface of a film D
  • FIG. 12 is an SEM image of the surface of a film E.
  • FIG. 13 is an SEM image of the surface of a film F.
  • urethane acrylate based resin compositions polyester acrylate based resin compositions, epoxy acrylate based resin compositions, polyol acrylate based resin compositions, epoxy resin compositions, and the like, or blends of these resin compositions.
  • Copolymers of these resin compositions with polyether acrylate based oligomers, polyoxyalkylene glycol acrylate based oligomers, or other oligomers are also acceptable.
  • acryl urethane based resin compositions there can be mentioned compositions that contain products obtained by reacting a polyester polyol with an isocyanate monomer or prepolymer; acrylate based monomers having hydroxyl groups, such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter, acrylates are assumed to encompass methacrylates and will be denoted as acrylates only), 2-hydroxypropyl acrylate, and the like; and, optionally, a photopolymerization initiator.
  • acrylate based monomers having hydroxyl groups such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter, acrylates are assumed to encompass methacrylates and will be denoted as acrylates only), 2-hydroxypropyl acrylate, and the like.
  • polyester acrylate based-compositions there can be mentioned compositions that contain a polyester polyol, a 2-hydroxyethyl acrylate or 2-hydroxy acrylate based monomer, and, optionally, a photopolymerization initiator.
  • epoxy acrylate based compositions there can be mentioned epoxy acrylate oligomers, to which are added a reactive diluent or a photoreaction initiator.
  • polyol acrylate based compositions there can be mentioned trimethylol propane triacrylate, di(trimethylol propane) tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, and the like, to which may be optionally added a photopolymerization initiator or the like.
  • polyether acrylate based oligomers there can be mentioned polyethylene glycol diacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, and other polyalkylene glycol acrylic acid or methacrylic acid esters.
  • polyoxyalkylene glycol acrylate based oligomers there can be mentioned polyoxypropylene glycol diacrylate and polyoxypropylene dimethacrylate.
  • photoreaction initiators there can be mentioned benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like, and derivatives of these. Concomitant use with a photosensitizer is acceptable.
  • the aforedescribed photoreaction initiators can also be used as photosensitizers.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine, or the like can be mentioned as examples.
  • the solvent employed together with the activating-energy-beam-polymerizable resin composition may be any known solvent which is employed as the solvent for the resin composition; as examples, there can be mentioned, for example, methyl ethyl ketone, methyl isobutyl ketone, and other ketone based organic solvents; ethyl acrylate, butyl acrylate, ethyl ethyoxypropionate, and other ester based organic solvents; and isopropyl alcohol, butyl alcohol, methyl cellosolve, and other alcohol based organic solvents.
  • the solvent which does not participate in curing, is present in a widely dispersed state within the cured film.
  • This solvent is subsequently evaporated through forced or natural drying.
  • a cured film in which there have formed a multitude of solvent evaporation micropores (micropores) of a size too small to be visible, for example, a pore diameter of from several microns to several tens of nanometers, which open onto the cured film surface and communicate with the film interior.
  • micropores solvent evaporation micropores
  • the micropores become more numerous, and fingerprint-erasing ability is enhanced.
  • the film strength of the cured film becomes weaker, and therefore in consideration of a balance between the two, it is preferable to establish an appropriate upper limit for amount of solvent included.
  • This upper limit for the amount of solvent included is a value that may be selected appropriately by the practitioner depending on the film material being used, from the standpoint of strength retention of the film; in preferred practice, it is typically 30 wt % or less.
  • the level of pencil hardness of the cured film is not particularly limited, and the cured film is broadly defined to encompass so-called hard coat films.
  • the solvent it is necessary for the solvent to be included within the coating liquid film after curing.
  • micropores that communicate with the cured film surface from the cured film interior are formed through evaporation of the solvent in the drying process subsequent to curing.
  • a solvent content of 5 wt % or more a solid fraction of 95 wt % or less
  • the number of micropores increases and fingerprint-erasing ability is enhanced.
  • the amount of solvent included during curing is too small, micropores do not form in sufficient numbers in the cured film, and the fingerprint-erasing effect is small.
  • fingerprint-erasing action will be exhibited as long as miscibility with fingerprint soil components is good.
  • evaporation of the solvent is carried out after irradiation with an activating energy beam to bring about curing.
  • an activating energy beam to bring about curing.
  • a manufacturing method with an additional process for carrying out forced evaporation of the solvent prior to irradiation Solvent evaporation subsequent to curing takes place most reliably through forced drying by heating or the like, but depending on the amount of solvent included, natural drying of the cured film on the manufacturing line is also an option, and forced drying is not essential. While fingerprint-erasing ability is high with residual solvent, there may be a strong solvent odor, and therefore [appropriate] drying conditions should be selected.
  • the release material a smooth surface to make the cured film surface clear (smooth), and to then form the solvent evaporation micropores through solvent evaporation.
  • the surface of the release material is furnished with a profile of asperities by matte processing, so that when this presses against the surface of the film to be cured to form the cured film, the multitude of asperity portions can be transferred to the cured film surface, and so that there can be can be formed solvent evaporation micropores which open onto this matte-processed surface and communicate with the cured film interior.
  • a cured film having a matte-processed surface affords further improvement in fingerprint-erasing action, relative to a cured film having a clear surface.
  • the average surface roughness Ra can be selected appropriately within a range of from 0.1 to 5 ⁇ m, for example.
  • a coating liquid containing an activating-energy-beam-polymerizable resin composition and a solvent is coated onto a sheet material (substrate) 2 from a coating liquid coating outlet 1 furnished between the substrate 2 and a release film 3 ; the activating-energy-beam-polymerizable resin composition is cured with an activating energy beam exposure device while the cured film is sandwiched between the substrate 2 and the release film 3 ; and subsequently the release film 3 is peeled away, then the solvent is dried forcibly or naturally, thereby forming a cured film having micropores in the cured film surface.
  • a method of employing two release films of different levels of cohesive force with the cured film As shown in FIG. 2 , first, the coating liquid is coated between a release film A with strong cohesive force with the cured film and a release film B with weak cohesive force, and the coating film is irradiated with an activating energy beam to bring about curing. Subsequent to curing, the release film B with weak cohesive force is peeled off, an adhesive is coated onto the surface from which the release film B was peeled, and the soil-resistant film is caused to adhere through the agency of the adhesive to a surface it is desired to protect. By subsequently peeling off the release film A, a fingerprint-erasing film can be formed on the surface it is desired to protect.
  • the release film A with strong cohesive force corresponds to the substrate in the aforedescribed manufacturing method, and the release film B corresponds to the release material.
  • water-absorbent compounds may be employed for further improvement of fingerprint-erasing ability.
  • water-absorbent compounds there may be cited water-absorbent resins, carboxylic acid-containing oligomers, ionic liquids, water-absorbent inorganic salts or aqueous solutions thereof, and silica gel microparticles. From the standpoint of hardness and transparency of cured films, polyalkylene oxide based or polyacrylic-acid-based water-absorbent resins, carboxylic acid-containing oligomers, or ionic liquids are especially preferred.
  • water-absorbent resins there may be cited acrylic-acid-based water-absorbent resins, polyalkylene-oxide-based water-absorbent resins, acrylamide-based water-absorbent resins, polyvinylamine-based water-absorbent resins, and the like.
  • carboxylic-acid-containing oligomers there may be cited acrylic acid-acrylic ester copolymer oligomers, polybasic-acid-modified acrylate oligomers, and the like.
  • Ionic liquids also called normal-temperature molten salts, are compounds composed of ionic species only, and are liquid at normal temperature.
  • cations in ionic liquids there may be cited, for example, pyrrolidinium and other amidinium cations, guanidium cations, tertiary ammonium cations, and the like.
  • anions in ionic liquids there may be cited, for example, carboxylic acids, sulfuric acid esters, higher alkyl ether sulfate esters, sulfonic acid or phosphoric acid esters, or other esters; and fluoroboric acid, tetrafluoroboric acid, perchloric acid, hexafluorophosphoric acid, hexafluoroantimonic acid, hexafluoroarsenic acid, and other inorganic acids.
  • carboxylic acids sulfuric acid esters, higher alkyl ether sulfate esters, sulfonic acid or phosphoric acid esters, or other esters
  • fluoroboric acid tetrafluoroboric acid, perchloric acid, hexafluorophosphoric acid, hexafluoroantimonic acid, hexafluoroarsenic acid, and other inorganic acids.
  • water-absorbent inorganic salts there may be cited, for example, sodium chloride, calcium chloride, magnesium chloride, calcium carbonate, and other inorganic salts, as well as saturated aqueous solutions of these, or aqueous solutions of high concentration approaching saturation.
  • the added amount of the water-absorbent compound is, for example, from 0.4 to 25 weight parts per 100 weight parts of the solid fraction of the coating liquid.
  • the water-absorbent compound does not dissolve, or dissolves with difficulty, in the solvent of the activating-energy-beam-polymerizable resin composition, the water-absorbent compound can be dissolved or suspended in water or another organic solvent in advance, then added.
  • PA water-absorbent resin composition
  • a coating solution was prepared by adding ethyl 3-ethoxypropionate (EEP: solvent) to a polymerizing composition composed of 55 weight parts of a tri- or tetrafunctional pentaerythritol based ultraviolet-curing resin (PETA: made by Daicel-Cytec Co.), 45 weight parts of polyalkylene glycol diacrylate (ARONIX M-270): M270 made by Toagosei Co.
  • EEP ethyl 3-ethoxypropionate
  • PETA tri- or tetrafunctional pentaerythritol based ultraviolet-curing resin
  • ARONIX M-270 polyalkylene glycol diacrylate
  • a steel sheet was subjected to hard chrome plating to a thickness of 30 ⁇ m, processed to a mirror finish with average surface roughness of 0.02 ⁇ m or less, and the chrome-plated surface was then matte processed by sandblasting to prepare a metal sheet release material.
  • the aforedescribed coating liquid was coated to a thickness of 5 ⁇ m onto the matte-processed surface of the aforedescribed metal sheet, a polyethylene terephthalate film (A4300 made by Toyobo Co. Ltd., thickness 125 ⁇ m) serving as the substrate was pressed against the coated face, and the resin composition was irradiated with ultraviolet to bring about curing, without forced drying. The cured film obtained thereby was naturally dried, and the average surface roughness was measured at 0.7 ⁇ m.
  • a polyethylene terephthalate film A4300 made by Toyobo Co. Ltd., thickness 125 ⁇ m
  • a simulated fingerprint liquid was used.
  • a standard liquid composition (6.1 weight parts oleic acid, 47.5 weight parts jojoba oil, 29.3 weight parts olive oil, and 17.1 weight parts squalane) was prepared.
  • a stamp that can imprint lines with line widths of 0.9 mm, 0.7 mm, 0.5 mm, 0.3 mm, 0.15 mm, and 0.1 mm was fabricated ( FIG. 3 ). Erasure of wider lines within a shorter time can be evaluated as indicative of higher fingerprint-erasing ability.
  • the evaluation stamp was thoroughly loaded with the aforedescribed simulated fingerprint liquid, the aforedescribed stamp was pressed four times against commercially available copy paper, and was subsequently pressed against the anti-soiling film surface being evaluated, and left there for 5 minutes.
  • the extent to which white lines of the simulated fingerprint liquid were no longer visible was evaluated according to the following criteria.
  • the fingerprint-erasing effect of the cured film of Working Example 1 was evaluated and found to be SS.
  • a resin composition was prepared in the same manner as in Working Example 1, except that (Film formation) was modified as follows. Using a polyethylene terephthalate film (A4300 made by Toyobo Co. Ltd., thickness 125 ⁇ m) as the substrate and employing a bar coating method, the aforedescribed coating liquid was coated onto the substrate to a thickness of 5 ⁇ m. Subsequent to coating, the substrate was passed through an oven and heated for 10 minutes at 60° C. to eliminate the solvent. After forcible drying of the solvent, the coated film was irradiated with ultraviolet to cure. The fingerprint-erasing effect of this cured was evaluated and found to be NG.
  • A4300 made by Toyobo Co. Ltd., thickness 125 ⁇ m
  • Coating liquids were prepared in the same manner as in Working Example 1, except for varying the solvent content to bring the solids content within the coating films at the time of ultraviolet irradiation of Working Example 1 to the values disclosed in Table 1. Results are shown in Table 1. Electron microscope (SEM) photographs of the cured film obtained in Working Example 4 are shown in FIG. 4 (surface) and FIG. 5 (cross section), while SEM photographs of the cured film obtained in Comparative Example 2 are shown in FIG. 6 (surface) and FIG. 7 (cross section).
  • the SEM photographs were captured using an S-4800 scanning electron microscope made by Hitachi High Technologies, at 100,000 ⁇ magnification for both the surface photographs and the cross section photographs.
  • the measurement samples for the surface photographs were prepared by cutting cured film samples, which were measured after vapor deposition of carbon onto the surface.
  • the cross section photographs were captured after exposing a face of the samples using a cryo-ultramichrome, and vapor deposition of carbon thereon.
  • FIG. 4 is an SEM photograph of the surface of a cured film, in which sites that appear whitish are the resin portions. Sites that appear blackish are the solvent evaporation micropores. The shapes of the openings of the solvent evaporation micropores at the surface are indeterminate, and judging from the SEM photograph, are several microns to about 10 ⁇ m in size; it was found that these micropores are formed in a substantially uniform distribution on the cured film surface. Because these micropores are of a size not visible to the naked eye, the naked eye can make no distinction from an ordinary matte-processed cured film. From FIG.
  • Comparative Example 2 which is a cured film which had a solvent content of 0 wt % during curing, specifically, one manufactured simply by matte processing and containing no solvent during curing, had a fingerprint-erasing effect rated NG. As may be seen from the SEM photograph of the surface of the cured film in FIG. 6 , the surface of the cured film of Comparative Example 2 was devoid of micropores.
  • PA shows the water-absorbent resin composition employed in Working Example 1
  • M-510 shows a carboxylic acid-containing oligomer (ARONIX M-510 made by Toagosei Co. Ltd.)
  • BMPTS shows 1-butyl-1-methylpyrrolidinum-bis(trifluoromethylsulfonyl)imide
  • the silica gel shows one milled to a number-average particle diameter of 2 ⁇ m (measured using a VH-6300 digital microscope made by Keyence Corp.) with a planetary ball mill
  • the sodium polyacrylate shows a crosslinked sodium polyacrylate (REOJIKKU QG300, made by Nihon Junyaku Co., Ltd.) milled to a number-average particle diameter of 5 ⁇ m (measured with microscope) with a planetary ball mill, respectively.
  • DPHA shows a penta- to hexafunctional pentaerythritol based ultraviolet curing resin (DPHA: made by Daicel-Cytec Co.); and urethane acrylate shows urethane acrylate (CN-968 made by Sartomer Co.)
  • IRR214K shows tricyclodecane dimethanol diacrylate
  • IBOA shows isobornyl acrylate
  • the polypropylene glycol urethane diacrylate used in Working Examples 21 to 32 was prepared by a common known synthesis method, in accordance with the component proportions shown in Table 9. Dibutyltin dilaurate was added as a catalyst to the resin component at a level of 250 ppm, and dibutyl hydroxytoluene was added as a polymerization inhibitor to the resin component at a level of 500 ppm. In the case of the polypropylene glycol urethane diacrylate used in Working Examples 24 to 26 and Working Examples 30 to 32, due to high viscosity, the polymerization reaction was carried out after adjusting the solid fraction to 90 wt % employing ethyl 3-ethoxypropionate as a solvent.
  • a polyester urethane based thermal curing type undercoat coating material was coated on the substrate to a dry film thickness of about 1 ⁇ m and dried, to carry out an adhesion process.
  • a coating liquid was sandwiched between the substrate and the release material to a thickness of about 5 ⁇ m, and irradiated with ultraviolet in an activating energy beam unit to cure the curing resin composition.
  • the release material was peeled from the cured film, leaving the cured film on the substrate. Forced drying was not carried out prior to curing.
  • Working Examples 36 to 38 because a PET release film with a smooth surface was used as the release material, Working Example 5, in which a sandblasting process was not carried out on the release material surface, is reposted in Table 11 as a comparative reference.
  • a coating liquid was sandwiched between the film A and the film B to a thickness of about 5 ⁇ m and irradiated with ultraviolet in an activating energy beam unit, and the release material (film B) was peeled so as to leave the cured film on the substrate (film A).
  • the face from which the film B was peeled was caused to adhere to an adhesive face of a re-releasable adhesive film (GN75 made by PANAC Corp.), and subsequently the film A was peeled from the cured film.
  • GN75 re-releasable adhesive film
  • average surface roughness Ra was measured at a depthwise-direction measurement pitch of 0.2 ⁇ m over a measurement area of about 750 ⁇ m ⁇ about 550 ⁇ m, employing a laser microscope (VK-8500 made by Keyence Corp.). The gloss values were measured at a 60° measuring angle, employing a GLOSS METER GM-3D made by Murakami Color Research Laboratory Co. Ltd.).
  • the following refractive index measurement test was carried out as a test to verify that the solvent evaporation pores which had formed on the surface of the cured film are pores communicating with the cured film interior from the cured film surface.
  • An Abbe refractometer (NAR-IT SOLID) made by Atago Co. Ltd. was employed as the refractometer.
  • Monobromonaphthalene (refractive index 1.656) was employed as the intermediate liquid for measurement of refractive index.
  • the cured film can be considered as a mixture of a resin solid fraction and the intermediate liquid, the refractive index of which can be estimated by the Lorenz-Lorenz equation.
  • the refractive index of which can be estimated by the Lorenz-Lorenz equation.
  • n 1 refractive index of resin solid fraction
  • the volume of the spaces occupied by the solvent also shrinks to a greater or lesser extent, and it is conceivable that, at maximum, shrinkage by an extent comparable to that of the resin solid fraction may arise.
  • the volumetric proportions of the resin solid fraction and the solvent will be unchanged.
  • a case where the volumetric proportions of the resin solid fraction and the solvent are unchanged is considered to be a minimum
  • a case where the volumetric proportion of the resin solid fraction has decreased while the volumetric proportion of the solvent has increased is considered to be a maximum.
  • the measuring error of the refractometer employed in the present measurements was ⁇ 0.002, but in actual measurements, error of about ⁇ 0.003 arose.
  • the refractive indices of various cured films were measured, employing monobromonaphthalene as the intermediate liquid.
  • Results are as shown in Table 16 above.
  • the results were that, at a resin solid fraction ratio of 90 wt % or above prior to curing, there was good agreement between actual measured values and predicted values of refractive index, irrespective of the influence of curing shrinkage of the resin solid fraction; whereas at 80 wt % and below, actual measured values progressively fell below predicted values.
  • These results show that, at a resin solid fraction ratio of 90 wt % or above, the micropores which open on the surface of the cured film are substantially all in communication with the interior from the surface. It was verified that at a resin solid fraction ratio of 80 wt % or below, isolated voids progressively start to be present within the cured film, separately from the micropores which communicate with the cured film surface.
  • the surface shape of a cured film is a matte shape of an extent such that such that the prism of the refractometer is in uniform coherence against the cured film surface via the intermediate liquid, actual measured values of refractive index will agree for both matte and clear (smooth) surface shapes of cured films.
  • FIG. 8 to FIG. 11 The photographs at top and bottom in each figure are, respectively, 30,000 ⁇ photographs taken of the center section of the measured sample, and of a region 3 cm away therefrom.
  • FIG. 9 is an SEM photograph of a cured film formed with a solid fraction of 90 wt %, and a multitude of micropores opening on the cured film surface are clearly observed. A comparison with FIGS. 10 and 11 clearly shows that as solvent content increases, the pore diameter and quantity of voids in the cured film increases.
  • FIG. 12 and FIG. 13 are photographs of the surfaces of cured films obtained with PETA:M270 compositional proportions of 85 wt %:15 wt %, and solid fraction ratios of 90 wt % and 80 wt %. In accordance with decreasing solid fraction ratio, specifically, increasing solvent ratio, solvent evaporation pores increased, and fingerprint-erasing ability was higher.
  • the fingerprint-erasing cured film of the present invention renders fingerprint soiling not readily visible or no longer visible within a short period of time, e.g., 5 minutes or 2 minutes, and affords singularly improved aesthetics in displays of electronic devices using this cured film, and particularly on surfaces of touch panel type displays and members. Also, by manufacturing a fingerprint-erasing cured film between two release films of differing adhesive force, the fingerprint-erasing cured film can be manufactured on any surface, by a simple method.

Abstract

Fingerprint-erasing cured films for rendering fingerprint depositions on various surfaces quickly less visible or invisible; a manufacturing method therefor; a display or touch panel using the same; and electronic devices using these are provided. A liquid coating film including a solvent and a polymerizable resin composition curable by an activating energy beam is formed. In a state of the solvent being included within the film, the film is cured to form a cured film containing the solvent, preferably using a release material whose surface has undergone matte processing; and the solvent is evaporated in a subsequent drying step, whereby a cured film with a multitude of micropores on the surface is formed. Fingerprint soiling is rendered not readily visible or invisible. By using the cured film, there are obtained displays, touch panels, and electronic devices having fingerprint-erasability. To improve fingerprint-erasability, adding a water-absorbent compound to the film composition is preferable.

Description

    TECHNICAL FIELD
  • The present invention relates to a cured film having the effect of making soiling from fingerprints adhering thereto less noticeable or no longer visible within a short time period, the film being formable by ordinary methods, such as adhesion, transfer, or coating, onto surfaces of displays of electronic devices such as personal computers, mobile telephones, car navigation systems, ATMs, cash dispensing machines, and the like; onto displays of such electronic devices having a touch panel function; onto electronic devices in which these are used; or onto surfaces of furniture, electronic products, toys, stationery, glass, lenses, wood, and other mirror-finish surfaces whose aesthetic appearance is diminished by fingerprints or other forms of sebaceous soiling. The present invention also relates to a method for manufacturing same; to a display or touch panel using same; and to electronic devices and the like in which these are used.
  • BACKGROUND ART
  • By virtue of being touched, the surfaces of the aforedescribed displays, furniture, electronic products, toys, glass, and the like are susceptible to being scratched, and to being soiled by lipids and the like from the hands, which tends to diminish their appearance. In particular, in the case of touchpad-type mobile telephones, mobile music playback devices, and the like, fingerprint soiling is severe owing to the fact that the display face is touched frequently by the fingers. Moreover, fashion can sometimes make it desirable for not only the display face, but for the electronic device as well, to have a finish such as a mirror coating or the like, in which instance sebaceous soiling from fingerprints will be a significant problem for the case portion as well. A typical countermeasure taken in the past against sebaceous soiling from fingerprints or the like is to give film surfaces a soil-resistant finish of a fluorine-based or silicone-based soil-resistant material, so that sebum does not adhere. Also, measures are taken to facilitate removal of fingerprint soiling deposited on film surfaces, by wiping using a cloth or the like.
  • However, these anti-soiling films may, for example, have minute asperities formed on the surface so as to prevent reflection of outside light and scratches from becoming noticeable, and a problem is presented in that, on having adhered, soiling matter can penetrate into the asperity surfaces, giving the film surface a cloudy appearance even if an attempt is made to wipe it away.
  • To address this problem, Japanese Laid-open Patent Application No. 2007-58162 (Patent Document 1) discloses an invention for making fingerprints unnoticeable, by fabricating surface asperities using a lipophilic resin, so that even if soiling such as fingerprints or the like are produced on the film, the fingerprint lipid components and the like are diffused and transported across the film surface utilizing capillary action; however, traces of deposited fingerprints are recognizable at the visual level, and the performance is not satisfactory.
  • Japanese Laid-open Patent Application No. 2001-353808 (Patent Document 2) discloses a method for causing soiling matter to blend in and become unnoticeable by imparting lipophilicity to a coating film which sheaths the surface of an electronic device; however, a problem with this method is that it takes an extended period, namely, several days, to render soiling unnoticeable.
  • Japanese Laid-open Patent Application No. 2004-230562 (Patent Document 3) discloses a method of furnishing a hard coat layer by irradiating a radiation-sensitive type resin composition using ultraviolet radiation or the like to bring about curing, followed by surface treatment employing an alkaline aqueous solution; however, this method involves a complicated surface treatment step, and the scope of utilization is limited due to the surface treatment using an alkaline aqueous solution.
  • Japanese Laid-open Patent Application No. 2006-43919 (Patent Document 4) discloses a method for manufacturing a hard coat film by applying an energy beam-curing hard coat composition onto a release film having surface roughness Ra of 0.1 μm or less; and, after drying, affixing the coated film to a substrate film, heating the assembly, and then irradiating the assembly using ultraviolet radiation or the like to bring about curing. However, because the method involves making the surface smooth in order to improve the ease of wiping away fingerprints, a problem is presented in that the method cannot be utilized in cases where a surface is furnished with fine surface asperities to prevent reflection of outside light and the like.
  • PRIOR ART DOCUMENTS Patent Documents
    • Patent Document 1: Japanese Laid-open Patent Application No. 2007-58162
    • Patent Document 2: Japanese Laid-open Patent Application No. 2001-353808
    • Patent Document 3: Japanese Laid-open Patent Application No. 2004-230562
    • Patent Document 4: Japanese Laid-open Patent Application No. 2006-43919
    DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • In order to address the aforedescribed problems, the present invention provides a fingerprint-erasing cured film (herein also termed a “film”) capable of erasing soiling caused by deposition of fingerprints on displays of various kinds of electronic devices or on the surfaces of devices or the like, so that within a short period of time, e.g., 5 minutes, the fingerprint soiling is erased to the point of being no longer visible. The present invention also provides a method for the manufacture of same; a display or touch panel in which same is used; and to electronic devices and the like in which these are used.
  • Means Used to Solve the Above-Mentioned Problems
  • In order to attain the aforedescribed object, the present invention has the following means.
  • Specifically, the invention according to a first aspect is a method for manufacturing a fingerprint-erasing cured film, characterized in that there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; curing of the film is brought about in a state of the solvent being included within the film; and the solvent is subsequently dried.
  • The inventors discovered that during: manufacture of a cured film by curing a coating liquid film of an activating-energy-beam-polymerizable resin composition by irradiating same with a activating energy beam, by bringing about curing in a state with the solvent included [within the film] (*1), the solvent, which does not participate in curing, remains present in a widely dispersed state within the cured film. When this solvent is evaporated through forced drying or natural drying, there is obtained a cured film in which there have formed a multitude of micropores (hereinafter also termed “solvent evaporation micropores”) of a size too small to be visible, for example, from several microns to several tens of nanometers, which open onto the cured film surface and communicate with the film interior from the surface of the cured film. It is hypothesized that these solvent evaporation micropores [are formed] during the actual curing of the activating-energy-beam-polymerizable resin composition, as the cured resin component and the solvent undergo phase separation, and as in the subsequent drying step the solvent passes through the film interior and evaporates from the film surface, forming pores. It is hypothesized that in the cured film of the present invention, by virtue of the communicating micropores from the surface to the film interior, there arises capillary action which draws fingerprint components deposited on the film surface into the film interior, and transports the fingerprint soil components into the micropores, whereby the fingerprints are no longer readily visible, or rendered invisible. Herein, the effect of making [fingerprints] “no longer readily visible, or invisible” is expressed as “fingerprint-erasing ability,” and is evaluated with the frequency disclosed below.
  • The inventors discovered that while this fingerprint-erasing effect is exhibited even with the cured film surface left in a clear [state], the fingerprint-erasing effect is enhanced further by manufacturing the cured film while using, during formation of the cured film, a release material subjected to an embossing or matting process (hereinafter termed a “matting process”) created through sandblasting of the surface or the like. Specifically, it was discovered that when forming the cured film, the surface asperities of the release material can be transferred to the film surface to form a multitude of asperity portions and to form a matte-finished cured film with minute micropores (solvent evaporation pores) formed in the asperity portions thereof, and having higher fingerprint-erasing ability than a clear film. By virtue of possessing both surface asperities and the solvent evaporation micropores, the cured film affords further improvement in fingerprint-erasing ability.
  • The invention according to a second aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the first aspect, characterized in that 5 wt % or more of the solvent is included in the film.” According to this invention, a given amount or more of solvent evaporation micropores can be created, and the effect of fingerprint-erasing ability afforded by the micropores on the cured film surface is assured.
  • The invention according to a third aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the first aspect, characterized in that the film is cured in a state of 5 wt % or more and 30 wt % or less of the solvent being included in the film.” The number of micropores increases with a higher solvent content, which is desirable from the standpoint of fingerprint-erasing ability, but on the other hand, excessively reduced mechanical strength of the cured film is a problem as well, and the value of 30 wt % has been established as an upper limit based on these conflicting requirements.
  • The invention according to a fourth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of any of the first through third aspects, wherein there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; and, in a state of the film being sandwiched between a substrate and a release material, and the solvent being included in the film, the film is irradiated with an activating energy and cured, whereby a cured film is formed on the substrate.”
  • The invention according to a fifth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the fourth aspect, characterized in that the release material is a release material having a surface with surface asperities formed by a matting process.” According to this invention, because the release material surface has surface asperities, there ‘is obtained a cured film having surface asperities transferred to the cured film surface, and having solvent’ evaporation micropores formed within the surface asperities.
  • The invention according to a sixth aspect is “a method for manufacturing the fingerprint-erasing cured film according to any of the inventions of the first through fifth aspects, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.” According to this invention, a water-absorbent compound is introduced, and therefore fingerprint-erasing ability is improved.
  • The invention according to a seventh aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the sixth aspect, characterized in that the water-absorbent compound adds 0.4 to 25 wt % of the water-absorbent compound with respect to 100 wt % of the solid fraction.” (*2) This invention is a method which limits the proportion of the water-absorbent compound to the solid fraction, specifically, the solid fraction of the activating-energy-beam-polymerizable resin composition.
  • The invention according to an eighth aspect is “a method for manufacturing the fingerprint-erasing cured film according to the invention of the sixth aspect, characterized in that the water-absorbent compound is one or two or more compounds selected from the group consisting of water-absorbent resins, oligomers containing carboxyl groups, ionic liquids, water-absorbent inorganic salts or an aqueous solution thereof, and silica gel microparticles.”
  • The invention according to a ninth aspect is “a fingerprint-erasing cured film obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film.” This cured film has good fingerprint-erasing ability.
  • The invention according to a tenth aspect is “a fingerprint-erasing cured film obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that a surface of the cured film is matte-processed, and there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film having the matte-processed surface.” This cured film has even better fingerprint-erasing ability. The fact that the micropores formed on the cured film surface communicate with the cured film interior from the film surface has been confirmed by measurements of refractive index as disclosed below.
  • The invention according to an eleventh aspect is “a fingerprint-erasing cured film according to the invention of the ninth or tenth aspect, characterized in that 6 vol % or more of the micropores communicate with the interior of the cured film from the surface of the cured film.”
  • The invention according to a twelfth aspect is “a display, characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • The invention according to a thirteenth aspect is “a touch panel, characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • The invention according to a fourteenth aspect is “an electronic device characterized in that a touch panel is installed in an input section, and the fingerprint-erasing cured film of any of the inventions of the ninth through eleventh aspects is formed on a surface of the touch panel.”
  • The invention according to a fifteenth aspect is “a mobile device, an item of furniture, a fitting, a glass, an eyeglass lens, or a mirror characterized by having the fingerprint-erasing cured film according to any of the inventions of the ninth through eleventh aspects formed thereon.”
  • Effect of the Invention
  • The fingerprint-erasing cured film obtained by the manufacturing method of the present invention exhibits good fingerprint-erasing ability, such that a fingerprint deposited on a surface is not readily visible, or is rendered invisible, after a short time; for example, five minutes. It is hypothesized that the cured film obtained by the present invention exhibits an excellent fingerprint-erasing effect by virtue of fingerprint soiling deposited on a surface being drawn into the micropores which have been opened onto the cured film surface through evaporation of a solvent, and which communicate with the cured film interior.
  • As the amount of solvent included in, the film coating liquid to be cured increases, the micropores within the cured film become more numerous, and fingerprint-erasing ability is enhanced. On the other hand, if the amount of solvent included is too great, the amount of the solid fraction included will decrease to the point that the mechanical strength of the film declines. The solvent content of the cured film coating liquid is preferably 5 wt % or more and 30 wt % or less, for example.
  • The release material having surface asperities created by matte processing is pressed against the coated film to form the cured film, whereby there is obtained a cured film with asperity portions transferred to the cured film surface, and moreover having a multitude of micropores formed on the matte-processed surface thereof. With this cured film, forming asperity portions by matte processing of the cured film increases the relative surface area of the cured film surface, and in accordance therewith, the number of micropores increases as well, so that the number of micropores increases as compared with the case where solvent evaporation micropores are formed in a cured film with a clear (smooth) surface, and fingerprint-erasing ability is enhanced further.
  • As a touch panel or the like is touched with the fingers a greater number of times, the fingerprint-erasing effect of the present invention progressively declines, and fingerprint soiling on the film surface becomes noticeable. However, fingerprint soiling can be eliminated easily by wiping the film surface with a commercially available wet wipe, a cloth product containing water, or the like, at a frequency of, for example, once every several days, whereby good fingerprint-erasing ability may be restored.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an apparatus for manufacturing a fingerprint-erasing cured film on a sheet material;
  • FIG. 2 is a schematic view of an apparatus for manufacturing a fingerprint-erasing cured film on a release material;
  • FIG. 3 is a schematic view of a stamp employed for testing to evaluate fingerprint-erasing effect;
  • FIG. 4 is an SEM photograph of a surface of a fingerprint-erasing cured film obtained in Working Example 4;
  • FIG. 5 is an SEM photograph of a cross section of the fingerprint-erasing cured film obtained in Working Example 4;
  • FIG. 6 is an SEM photograph of a surface of a fingerprint-erasing cured film obtained in Comparative Example 2;
  • FIG. 7 is an SEM photograph of a cross section of the fingerprint-erasing cured film obtained in Comparative Example 2;
  • FIG. 8 is an SEM image of the surface of a film A;
  • FIG. 9 is an SEM image of the surface of a film B;
  • FIG. 10 is an SEM image of the surface of a film C;
  • FIG. 11 is an SEM image of the surface of a film D;
  • FIG. 12 is an SEM image of the surface of a film E; and
  • FIG. 13 is an SEM image of the surface of a film F.
  • DESCRIPTION OF THE NUMERICAL SYMBOLS
      • 1: coating port
      • 2: sheet material (substrate)
      • 3: release film
      • 4: activating energy beam exposure device
    BEST MODE FOR CARRYING OUT THE INVENTION
  • Known ultraviolet-curing resin compositions, electron beam-curing resin compositions, and the like can be mentioned as examples of the activating-energy-beam-polymerizable resin composition employed in the present invention.
  • By way of specific examples, there can be mentioned urethane acrylate based resin compositions, polyester acrylate based resin compositions, epoxy acrylate based resin compositions, polyol acrylate based resin compositions, epoxy resin compositions, and the like, or blends of these resin compositions. Copolymers of these resin compositions with polyether acrylate based oligomers, polyoxyalkylene glycol acrylate based oligomers, or other oligomers are also acceptable.
  • As examples of acryl urethane based resin compositions there can be mentioned compositions that contain products obtained by reacting a polyester polyol with an isocyanate monomer or prepolymer; acrylate based monomers having hydroxyl groups, such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter, acrylates are assumed to encompass methacrylates and will be denoted as acrylates only), 2-hydroxypropyl acrylate, and the like; and, optionally, a photopolymerization initiator.
  • As examples of polyester acrylate based-compositions there can be mentioned compositions that contain a polyester polyol, a 2-hydroxyethyl acrylate or 2-hydroxy acrylate based monomer, and, optionally, a photopolymerization initiator.
  • As examples of epoxy acrylate based compositions there can be mentioned epoxy acrylate oligomers, to which are added a reactive diluent or a photoreaction initiator.
  • As examples of polyol acrylate based compositions there can be mentioned trimethylol propane triacrylate, di(trimethylol propane) tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, and the like, to which may be optionally added a photopolymerization initiator or the like.
  • As examples of polyether acrylate based oligomers, there can be mentioned polyethylene glycol diacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, and other polyalkylene glycol acrylic acid or methacrylic acid esters. As examples of polyoxyalkylene glycol acrylate based oligomers, there can be mentioned polyoxypropylene glycol diacrylate and polyoxypropylene dimethacrylate.
  • As specific examples of photoreaction initiators, there can be mentioned benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like, and derivatives of these. Concomitant use with a photosensitizer is acceptable. The aforedescribed photoreaction initiators can also be used as photosensitizers. Also, when using an epoxy acrylate based photoreaction initiator, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine, or the like can be mentioned as examples.
  • The solvent employed together with the activating-energy-beam-polymerizable resin composition may be any known solvent which is employed as the solvent for the resin composition; as examples, there can be mentioned, for example, methyl ethyl ketone, methyl isobutyl ketone, and other ketone based organic solvents; ethyl acrylate, butyl acrylate, ethyl ethyoxypropionate, and other ester based organic solvents; and isopropyl alcohol, butyl alcohol, methyl cellosolve, and other alcohol based organic solvents.
  • According to the present invention, once the polymerizing resin coating liquid film is irradiated with an activating energy beam in a state containing a solvent, to bring about curing, the solvent, which does not participate in curing, is present in a widely dispersed state within the cured film. This solvent is subsequently evaporated through forced or natural drying. There is obtained thereby a cured film in which there have formed a multitude of solvent evaporation micropores (micropores) of a size too small to be visible, for example, a pore diameter of from several microns to several tens of nanometers, which open onto the cured film surface and communicate with the film interior.
  • During curing, as the amount of solvent included in the coating liquid increases from a level of 5 wt %, the micropores become more numerous, and fingerprint-erasing ability is enhanced. On the other hand, the film strength of the cured film becomes weaker, and therefore in consideration of a balance between the two, it is preferable to establish an appropriate upper limit for amount of solvent included. This upper limit for the amount of solvent included is a value that may be selected appropriately by the practitioner depending on the film material being used, from the standpoint of strength retention of the film; in preferred practice, it is typically 30 wt % or less. The level of pencil hardness of the cured film is not particularly limited, and the cured film is broadly defined to encompass so-called hard coat films.
  • According to the present invention, it is necessary for the solvent to be included within the coating liquid film after curing. When the solvent is contained, micropores that communicate with the cured film surface from the cured film interior are formed through evaporation of the solvent in the drying process subsequent to curing. For example, where a solvent content of 5 wt % or more (a solid fraction of 95 wt % or less) is used, as a result of the greater amount of the solvent, the number of micropores increases and fingerprint-erasing ability is enhanced. If the amount of solvent included during curing is too small, micropores do not form in sufficient numbers in the cured film, and the fingerprint-erasing effect is small. Also, even if the solvent remains in the micropores, fingerprint-erasing action will be exhibited as long as miscibility with fingerprint soil components is good.
  • As methods for manufacturing the fingerprint-erasing cured film there may be cited (1) a method of coating a coating liquid including the activating-energy-beam-polymerizable resin composition and the solvent onto a substrate by bar coating, die coating, spin coating, or the like, then, with the amount of solvent included brought to within a predetermined range, irradiating with an activating energy beam to bring about curing, followed by drying; and (2) a method of coating an activating-energy-beam-polymerizable resin composition onto a release material such as glass, a resin film, a mold, or the like by die coating or roll coating, pressing it against the coating face of the release material which has undergone the aforedescribed matte processing, and then with the amount of solvent included brought to within a predetermined range, irradiating with an activating energy beam to bring about curing, followed by drying (transfer method).
  • In preferred practice, evaporation of the solvent is carried out after irradiation with an activating energy beam to bring about curing. However, even if a portion of the solvent evaporates prior to irradiation, micropores will form as long as a prescribed amount of the solvent is included during curing, and accordingly there is no intention to exclude from the manufacturing method of the present invention a manufacturing method with an additional process for carrying out forced evaporation of the solvent prior to irradiation. Solvent evaporation subsequent to curing takes place most reliably through forced drying by heating or the like, but depending on the amount of solvent included, natural drying of the cured film on the manufacturing line is also an option, and forced drying is not essential. While fingerprint-erasing ability is high with residual solvent, there may be a strong solvent odor, and therefore [appropriate] drying conditions should be selected.
  • It is also acceptable to give the release material a smooth surface to make the cured film surface clear (smooth), and to then form the solvent evaporation micropores through solvent evaporation. Further, in preferred practice, the surface of the release material is furnished with a profile of asperities by matte processing, so that when this presses against the surface of the film to be cured to form the cured film, the multitude of asperity portions can be transferred to the cured film surface, and so that there can be can be formed solvent evaporation micropores which open onto this matte-processed surface and communicate with the cured film interior. A cured film having a matte-processed surface affords further improvement in fingerprint-erasing action, relative to a cured film having a clear surface. In cases where the release material surface is furnished with a profile of asperities in this manner, the average surface roughness Ra can be selected appropriately within a range of from 0.1 to 5 μm, for example.
  • Also, in a case where a fingerprint-erasing cured film is formed continuously on a sheet material (substrate), as shown in FIG. 1, a coating liquid containing an activating-energy-beam-polymerizable resin composition and a solvent is coated onto a sheet material (substrate) 2 from a coating liquid coating outlet 1 furnished between the substrate 2 and a release film 3; the activating-energy-beam-polymerizable resin composition is cured with an activating energy beam exposure device while the cured film is sandwiched between the substrate 2 and the release film 3; and subsequently the release film 3 is peeled away, then the solvent is dried forcibly or naturally, thereby forming a cured film having micropores in the cured film surface.
  • Further, in cases where the surface of a substrate on which it is desired to form a fingerprint-erasing cured film cannot be coated directly, there may be cited a method of employing two release films of different levels of cohesive force with the cured film. As shown in FIG. 2, first, the coating liquid is coated between a release film A with strong cohesive force with the cured film and a release film B with weak cohesive force, and the coating film is irradiated with an activating energy beam to bring about curing. Subsequent to curing, the release film B with weak cohesive force is peeled off, an adhesive is coated onto the surface from which the release film B was peeled, and the soil-resistant film is caused to adhere through the agency of the adhesive to a surface it is desired to protect. By subsequently peeling off the release film A, a fingerprint-erasing film can be formed on the surface it is desired to protect.
  • In this method, the release film A with strong cohesive force corresponds to the substrate in the aforedescribed manufacturing method, and the release film B corresponds to the release material.
  • In the present invention, water-absorbent compounds may be employed for further improvement of fingerprint-erasing ability. As examples of water-absorbent compounds, there may be cited water-absorbent resins, carboxylic acid-containing oligomers, ionic liquids, water-absorbent inorganic salts or aqueous solutions thereof, and silica gel microparticles. From the standpoint of hardness and transparency of cured films, polyalkylene oxide based or polyacrylic-acid-based water-absorbent resins, carboxylic acid-containing oligomers, or ionic liquids are especially preferred.
  • As examples of water-absorbent resins, there may be cited acrylic-acid-based water-absorbent resins, polyalkylene-oxide-based water-absorbent resins, acrylamide-based water-absorbent resins, polyvinylamine-based water-absorbent resins, and the like.
  • As examples of carboxylic-acid-containing oligomers, there may be cited acrylic acid-acrylic ester copolymer oligomers, polybasic-acid-modified acrylate oligomers, and the like.
  • Ionic liquids, also called normal-temperature molten salts, are compounds composed of ionic species only, and are liquid at normal temperature. As cations in ionic liquids, there may be cited, for example, pyrrolidinium and other amidinium cations, guanidium cations, tertiary ammonium cations, and the like. As anions in ionic liquids, there may be cited, for example, carboxylic acids, sulfuric acid esters, higher alkyl ether sulfate esters, sulfonic acid or phosphoric acid esters, or other esters; and fluoroboric acid, tetrafluoroboric acid, perchloric acid, hexafluorophosphoric acid, hexafluoroantimonic acid, hexafluoroarsenic acid, and other inorganic acids.
  • As water-absorbent inorganic salts, there may be cited, for example, sodium chloride, calcium chloride, magnesium chloride, calcium carbonate, and other inorganic salts, as well as saturated aqueous solutions of these, or aqueous solutions of high concentration approaching saturation.
  • The added amount of the water-absorbent compound is, for example, from 0.4 to 25 weight parts per 100 weight parts of the solid fraction of the coating liquid.
  • In cases where the water-absorbent compound does not dissolve, or dissolves with difficulty, in the solvent of the activating-energy-beam-polymerizable resin composition, the water-absorbent compound can be dissolved or suspended in water or another organic solvent in advance, then added.
  • WORKING EXAMPLES
  • While the present invention is described below through working examples and comparative examples, the present invention is not limited to the working examples.
  • Working Example 1 Preparation of Water-Absorbent Resin Composition
  • 3 weight parts of a polyalkylene oxide based water-absorbent resin (AQUACALK made by Sumitomo Seika Chemicals), 6 weight parts of purified water, and 24 weight parts of isopropyl alcohol were mixed to prepare a water-absorbent resin composition (PA) of gel form including water-absorbent resin in an amount of about 9 wt %.
  • (Preparation of Coating Liquid)
  • A coating solution was prepared by adding ethyl 3-ethoxypropionate (EEP: solvent) to a polymerizing composition composed of 55 weight parts of a tri- or tetrafunctional pentaerythritol based ultraviolet-curing resin (PETA: made by Daicel-Cytec Co.), 45 weight parts of polyalkylene glycol diacrylate (ARONIX M-270): M270 made by Toagosei Co. Ltd.), 3 weight parts of a radical polymerization initiator (IRGACURE 184: 1-hydroxycyclohexyl phenyl ketone: made by Ciba Specialty Chemicals), and 5 weight parts of the aforedescribed water-absorbent resin composition (about 0.45 weight part on a water-absorbent resin content conversion basis), bringing the solid fraction to 90 wt %.
  • (Fabrication of Release Material)
  • A steel sheet was subjected to hard chrome plating to a thickness of 30 μm, processed to a mirror finish with average surface roughness of 0.02 μm or less, and the chrome-plated surface was then matte processed by sandblasting to prepare a metal sheet release material.
  • (Film Formation)
  • The aforedescribed coating liquid was coated to a thickness of 5 μm onto the matte-processed surface of the aforedescribed metal sheet, a polyethylene terephthalate film (A4300 made by Toyobo Co. Ltd., thickness 125 μm) serving as the substrate was pressed against the coated face, and the resin composition was irradiated with ultraviolet to bring about curing, without forced drying. The cured film obtained thereby was naturally dried, and the average surface roughness was measured at 0.7 μm.
  • (Evaluation of Fingerprint-Erasing Effect)
  • As the method for evaluating fingerprint-erasing ability, because methods involving direct application of fingerprints lack objectivity owing to differences among individuals, and to differences depending on physical condition even for the same individual, a simulated fingerprint liquid was used. For the simulated fingerprint liquid, a standard liquid composition (6.1 weight parts oleic acid, 47.5 weight parts jojoba oil, 29.3 weight parts olive oil, and 17.1 weight parts squalane) was prepared.
  • For an evaluation stamp, a stamp that can imprint lines with line widths of 0.9 mm, 0.7 mm, 0.5 mm, 0.3 mm, 0.15 mm, and 0.1 mm was fabricated (FIG. 3). Erasure of wider lines within a shorter time can be evaluated as indicative of higher fingerprint-erasing ability.
  • The evaluation stamp was thoroughly loaded with the aforedescribed simulated fingerprint liquid, the aforedescribed stamp was pressed four times against commercially available copy paper, and was subsequently pressed against the anti-soiling film surface being evaluated, and left there for 5 minutes. The extent to which white lines of the simulated fingerprint liquid were no longer visible was evaluated according to the following criteria.
  • NG: all lines failed to disappear after 5 minutes
  • C: lines of 0.1 mm width were no longer visible after 5 minutes
  • B: lines of 0.15 mm width were no longer visible after 5 minutes
  • A: lines of 0.3 mm width were no longer visible after 5 minutes
  • S: all portions were no longer visible within 5 minutes
  • SS: all portions were no longer visible within 2 minutes
  • SS+: all portions were no longer visible within 1 minute
  • The fingerprint-erasing effect of the cured film of Working Example 1 was evaluated and found to be SS.
  • Comparative Example 1
  • A resin composition was prepared in the same manner as in Working Example 1, except that (Film formation) was modified as follows. Using a polyethylene terephthalate film (A4300 made by Toyobo Co. Ltd., thickness 125 μm) as the substrate and employing a bar coating method, the aforedescribed coating liquid was coated onto the substrate to a thickness of 5 μm. Subsequent to coating, the substrate was passed through an oven and heated for 10 minutes at 60° C. to eliminate the solvent. After forcible drying of the solvent, the coated film was irradiated with ultraviolet to cure. The fingerprint-erasing effect of this cured was evaluated and found to be NG.
  • Working Examples 2 to 4, Comparative Example 2
  • Coating liquids were prepared in the same manner as in Working Example 1, except for varying the solvent content to bring the solids content within the coating films at the time of ultraviolet irradiation of Working Example 1 to the values disclosed in Table 1. Results are shown in Table 1. Electron microscope (SEM) photographs of the cured film obtained in Working Example 4 are shown in FIG. 4 (surface) and FIG. 5 (cross section), while SEM photographs of the cured film obtained in Comparative Example 2 are shown in FIG. 6 (surface) and FIG. 7 (cross section).
  • The SEM photographs were captured using an S-4800 scanning electron microscope made by Hitachi High Technologies, at 100,000× magnification for both the surface photographs and the cross section photographs. The measurement samples for the surface photographs were prepared by cutting cured film samples, which were measured after vapor deposition of carbon onto the surface. The cross section photographs were captured after exposing a face of the samples using a cryo-ultramichrome, and vapor deposition of carbon thereon.
  • FIG. 4 is an SEM photograph of the surface of a cured film, in which sites that appear whitish are the resin portions. Sites that appear blackish are the solvent evaporation micropores. The shapes of the openings of the solvent evaporation micropores at the surface are indeterminate, and judging from the SEM photograph, are several microns to about 10 μm in size; it was found that these micropores are formed in a substantially uniform distribution on the cured film surface. Because these micropores are of a size not visible to the naked eye, the naked eye can make no distinction from an ordinary matte-processed cured film. From FIG. 5, which is an SEM photograph of a cross section of a cured film, it may be discerned that the micropores communicate with the cured film interior. The fact that substantially all of the micropores are communicating pores was verified by the results of refractive index measurements, disclosed below, which showed that theoretical values and actual measured values of refractive index are substantially in agreement.
  • The fingerprint-erasing effect of Working Example 4 was rated SS+. Comparative Example 2, which is a cured film which had a solvent content of 0 wt % during curing, specifically, one manufactured simply by matte processing and containing no solvent during curing, had a fingerprint-erasing effect rated NG. As may be seen from the SEM photograph of the surface of the cured film in FIG. 6, the surface of the cured film of Comparative Example 2 was devoid of micropores.
  • TABLE 1
    Solid Fingerprint-erasing
    fraction (wt %) ability
    Comparative Example 2 100 NG
    Working Example 2 95 B
    Working Example 1 90 SS
    (reposted)
    Working Example 3 80 SS+
    Working Example 4 70 SS+
  • Working Example 5
  • When [a procedure] similar to Working Example 1 was followed, except that no sandblasting (matting) process was carried out in (Fabrication of release material), and the fingerprint-erasing effect was evaluated, the result was rated B. It is hypothesized that because the release material is smooth, a smaller number of solvent evaporation micropores form on the cured film surface as compared with the case where the cured film surface has undergone a matting process, so fingerprint-erasing ability is not particularly high.
  • Working Examples 6 to 14
  • [A procedure] similar to Working Example 1 was followed, except that in (Preparation of coating liquid), the water-absorbent resin composition of Working Example 1 was changed to those disclosed in Table 2. Results are shown in Table 2.
  • TABLE 2
    Fingerprint-erasing
    Additive ability
    Working Example 1 PA 5 weight parts SS
    (reposted)
    Working Example 6 None added A
    Working Example 7 PA 10 weight parts SS
    Working Example 8 M-510 10 weight parts A
    Working Example 9 BMPTS 20 weight parts SS+
    Working Example 10 Saturated sodium chloride S-SS
    solution 5 weight parts
    Working Example 11 Silica gel 5 weight parts S
    Working Example 12 Saturated calcium chloride S-SS
    solution 5 weight parts
    Working Example 13 Saturated magnesium S-SS
    chloride solution 5 weight
    parts
    Working Example 14 Sodium polyacrylate 5 S
    weight parts
  • In Table 2, PA shows the water-absorbent resin composition employed in Working Example 1; M-510 shows a carboxylic acid-containing oligomer (ARONIX M-510 made by Toagosei Co. Ltd.); BMPTS shows 1-butyl-1-methylpyrrolidinum-bis(trifluoromethylsulfonyl)imide; the silica gel shows one milled to a number-average particle diameter of 2 μm (measured using a VH-6300 digital microscope made by Keyence Corp.) with a planetary ball mill; and the sodium polyacrylate shows a crosslinked sodium polyacrylate (REOJIKKU QG300, made by Nihon Junyaku Co., Ltd.) milled to a number-average particle diameter of 5 μm (measured with microscope) with a planetary ball mill, respectively.
  • Working Examples 15 and 16
  • [A procedure] similar to Working Example 1 was followed, except that in (Preparation of coating liquid) of Working Example 1, the included amounts of PETA and M270 were changed to those disclosed in Table 3. Results are shown in Table 3.
  • TABLE 3
    Fingerprint-erasing
    PETA:M270 ability
    Working Example 1 55:45 SS
    (reposted)
    Working Example 15 70:30 B
    Working Example 16 85:15 C
  • Working Examples 17 and 18
  • [A procedure] similar to Working Example 1 was followed, except that the PETA of Working Example 1 was changed to [the compounds] disclosed in Table 4. Results are shown in Table 4.
  • TABLE 4
    Fingerprint-erasing
    Modified component ability
    Working Example 1 PETA SS
    (reposted)
    Working Example 17 DPHA SS
    Working Example 18 Uretharie acrylate SS
  • In Table 4, DPHA shows a penta- to hexafunctional pentaerythritol based ultraviolet curing resin (DPHA: made by Daicel-Cytec Co.); and urethane acrylate shows urethane acrylate (CN-968 made by Sartomer Co.)
  • Working Examples 19 and 20
  • [A procedure] similar to Working Example 1 was followed, except that in (Preparation of coating liquid) of Working Example 1, the compounds disclosed in Table 5 were further added to the coating liquid, in amounts of 10 weight parts. Results are shown in Table 5.
  • TABLE 5
    Fingerprint-erasing
    Additional component ability
    Working Example 19 IRR214K SS+
    Working Example 20 IBOA SS+
  • In Table 5, IRR214K shows tricyclodecane dimethanol diacrylate; and IBOA shows isobornyl acrylate.
  • Working Examples 21 to 23
  • [A procedure] similar to Working Example 1 was followed, except that in (Preparation of coating liquid) of Working Example 1, the M270 was substituted by polypropylene glycol urethane diacrylate of molecular weight (polyoxypropylene glycol moiety) of 1000, 2000, or 4000. Results are shown in Table 6.
  • TABLE 6
    Molecular weight Fingerprint-erasing
    (PO moiety) ability
    Working Example 21 1000 SS
    Working Example 22 2000 SS+
    Working Example 23 4000 SS+
  • Working Examples 24 to 26
  • [A procedure] similar to Working Example 1 was followed, except that in (Preparation of coating liquid) of Working Example 1, the M270 was substituted by a polypropylene glycol urethane diacrylate dimer of molecular weight (polyoxypropylene glycol moiety) of 1000, 2000, or 4000. Results are shown in Table 7.
  • TABLE 7
    Molecular weight Fingerprint-erasing
    (PO moiety) ability
    Working Example 24 2000 (1000 × 2) SS+
    Working Example 25 4000 (2000 × 2) SS+
    Working Example 26 8000 (4000 × 2) SS+
  • Working Examples 27 to 32
  • [A procedure] similar to Working Example 1 was followed, except that no sandblasting process was carried out in (Fabrication of release material), and (Preparation of coating liquid) was identical to that of Working Examples 21 to 26. Results are shown in Table 8.
  • TABLE 8
    Molecular weight Fingerprint-erasing
    (PO moiety) ability
    Working Example 27 1000 B
    Working Example 28 2000 B-A
    Working Example 29 4000 B-A
    Working Example 30 2000 (1000 × 2) A-S
    Working Example 31 4000 (2000 × 2) S
    Working Example 32 8000 (4000 × 2) SS
  • (Preparation of Polypropylene Glycol Urethane Diacrylate)
  • The polypropylene glycol urethane diacrylate used in Working Examples 21 to 32 was prepared by a common known synthesis method, in accordance with the component proportions shown in Table 9. Dibutyltin dilaurate was added as a catalyst to the resin component at a level of 250 ppm, and dibutyl hydroxytoluene was added as a polymerization inhibitor to the resin component at a level of 500 ppm. In the case of the polypropylene glycol urethane diacrylate used in Working Examples 24 to 26 and Working Examples 30 to 32, due to high viscosity, the polymerization reaction was carried out after adjusting the solid fraction to 90 wt % employing ethyl 3-ethoxypropionate as a solvent.
  • TABLE 9
    Working Ex. 24 Working Ex. 25 Working Ex. 26
    Working Ex. 21 Working Ex. 22 Working Ex. 23 Working Ex. 30 Working Ex. 31 Working Ex. 32
    Working Ex. 27 Working Ex. 28 Working Ex. 29 (Note 1) (Note 1) (Note 1)
    Polypropylene glycol 1000 weight 2000 weight
    (MW: 1000) parts parts
    Polypropylene glycol 2000 weight 4000 weight
    (MW: 2000) parts parts
    Polypropylene glycol 4000 weight 8000 weight
    (MW: 4000) parts parts
    Isophorone diisocyanate 444.6 weight 444.6 weight 444.6 weight 666.9 weight 666.9 weight 666.9 weight
    (MW: 222.3) parts parts parts parts parts parts
    2-Hydroxydiethyl 232.3 weight 232.3 weight 232.3 weight 232.3 weight 232.3 weight 232.3 weight
    acrylate (MW: 116.1) parts parts parts parts parts parts
    250 ppm dibutyltin dialaurate added as catalyst to resin component
    500 ppm dibutyl hydroxytoluene added as polymerization inhibitor to resin component
    (Note 1)
    In the case of the target Working Examples, due to the high viscosity of the preparation, reaction was carried at a solid fraction of 90 wt % employing ethyl 3-ethoxypropionate as a solvent.
  • Working Examples 33 to 35
  • [A procedure] similar to Working Example 1 and Working Examples 15 and 16 was followed, except that in (Film formation) in Working Example 1 and Working Examples 15 and 16, coating was done so as to give thickness of 10 μm. In addition to the fingerprint-erasing effect, the pencil hardness of the cured films was measured. Measurement of pencil hardness was carried out by method based on JIS K5600-5-4. Results are shown in Table 10.
  • TABLE 10
    Fingerprint-erasing
    ability Pencil hardness
    Working Example 1 SS F
    (reposted)
    Working Example 15 B H
    (reposted)
    Working Example 16 C H-2H
    (reposted)
    Working Example 33 SS H
    Working Example 34 B 2H
    Working Example 35 C 3H
  • Working Examples 36 to 38 Preparation of Coating Liquid
  • [A procedure] similar to (Preparation of coating liquid) of Working Example 1 was followed.
  • (Provision of Release Material and Substrate)
  • Black PET (MATTE LUMINA, made by Kimoto Co. Ltd.), steel sheets, and glass sheets were prepared as substrates; and PET film (E5100 made by Toyobo Co. Ltd., thickness 75 μm) was provided as a release material.
  • (Film Formation)
  • A polyester urethane based thermal curing type undercoat coating material was coated on the substrate to a dry film thickness of about 1 μm and dried, to carry out an adhesion process. Next, using an apparatus like that shown in FIG. 1, a coating liquid was sandwiched between the substrate and the release material to a thickness of about 5 μm, and irradiated with ultraviolet in an activating energy beam unit to cure the curing resin composition. Thereafter, the release material was peeled from the cured film, leaving the cured film on the substrate. Forced drying was not carried out prior to curing.
  • (Evaluation of Fingerprint-Erasing Effect)
  • [A procedure] similar to (Preparation of coating liquid) of Working Example 1 was followed. Results are shown in Table 7. (*3)
  • TABLE 11
    Fingerprint-erasing
    Substrate ability
    Working Example 36 Black PET B
    Working Example 37 Steel sheet B
    Working Example 38 Glass sheet B
    Working Example 5 PET B
    (reposted)
  • In Working Examples 36 to 38, because a PET release film with a smooth surface was used as the release material, Working Example 5, in which a sandblasting process was not carried out on the release material surface, is reposted in Table 11 as a comparative reference.
  • Working Example 39 Preparation of Coating Liquid
  • [A procedure] similar to Working Example 1 was followed.
  • (Provision of Release Material and Substrate)
  • Two sheets of PET film (E5100 made by Toyobo Co. Ltd., thickness 75 μm) were readied as the substrate and the release material, one of which underwent corona processing (film A), and the other of which did not undergo corona processing (film B). Because the film A employed as the substrate underwent corona processing, cohesion with the cured film was higher than for the film B used as the release material.
  • (Film Formation)
  • Using an apparatus like that shown in FIG. 2, a coating liquid was sandwiched between the film A and the film B to a thickness of about 5 μm and irradiated with ultraviolet in an activating energy beam unit, and the release material (film B) was peeled so as to leave the cured film on the substrate (film A). Next, the face from which the film B was peeled was caused to adhere to an adhesive face of a re-releasable adhesive film (GN75 made by PANAC Corp.), and subsequently the film A was peeled from the cured film.
  • (Evaluation of Fingerprint-Erasing Ability)
  • [A procedure] similar to (Preparation of coating liquid) of Working Example 1 was followed. The result was rated B.
  • Working Examples 40 to 52
  • [A procedure] similar to Working Example 1 was followed, except that the methodology of sandblasting in (Fabrication of release material) of Working Example 1 was modified, to modify the average surface roughness Ra of the cured films obtained thereby in the manner disclosed in Table 12. Results are shown in Table 8 (*4).
  • TABLE 12
    Surface condition of cured film Fingerprint-
    Ra Gloss erasing ability
    (μm) value SS+
    Working Example 40 2.8 8 SS+
    Working Example 41 2.3 8 SS+
    Working Example 42 2.2 9 SS+
    Working Example 43 2.1 9 SS+
    Working Example 44 1.8 19 SS+
    Working Example 45 1.6 20 SS
    Working Example 46 1.5 27 SS+
    Working Example 47 1.3 30 SS
    Working Example 48 1.2 25 SS
    Working Example 49 1.0 32 SS
    Working Example 50 0.9 40 S
    Working Example 51 0.7 75 SS
    Working Example 52 0.5 94 S
  • In Working Examples 40 to 52, average surface roughness Ra was measured at a depthwise-direction measurement pitch of 0.2 μm over a measurement area of about 750 μm×about 550 μm, employing a laser microscope (VK-8500 made by Keyence Corp.). The gloss values were measured at a 60° measuring angle, employing a GLOSS METER GM-3D made by Murakami Color Research Laboratory Co. Ltd.).
  • The following refractive index measurement test was carried out as a test to verify that the solvent evaporation pores which had formed on the surface of the cured film are pores communicating with the cured film interior from the cured film surface.
  • An Abbe refractometer (NAR-IT SOLID) made by Atago Co. Ltd. was employed as the refractometer. Monobromonaphthalene (refractive index 1.656) was employed as the intermediate liquid for measurement of refractive index.
  • As the method for measuring refractive index, an appropriate amount of the intermediate liquid was dripped [onto the film] to an extent such that the prism of the refractometer was in uniform coherence against the cured film surface, and left for one minute. With regard to measuring temperature, changes in temperature during measurement were avoided. Actual measurements were carried out at room temperature.
  • The results of verifying the manner in which the refractive index changes depending on the magnitude of void volume, in the case where the intermediate liquid has penetrated into the cured film interior from the openings of the micropores formed at the surface of the cured film, are shown below.
  • Once the intermediate liquid has penetrated into the micropores, the cured film can be considered as a mixture of a resin solid fraction and the intermediate liquid, the refractive index of which can be estimated by the Lorenz-Lorenz equation. In a case where there are numerous isolated voids, rather than communicating pores, within the cured film, because the intermediate liquid does not penetrate into the void portions and air (refractive index: 1) is present therein, it is conceivable that the actual measured value of refractive index will diverge from the theoretical value.
  • The Lorenz-Lorenz equation, which is ordinarily used when deriving the refractive index of a mixture, is shown [below] (see Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, No. 2, April 2003, pp 147-154).
  • n 2 - 1 n 2 + 2 = v 1 n 1 2 - 1 n 1 2 + 2 + v 2 n 2 2 - 1 n 2 2 + 2 φ = v 1 φ 1 + v 2 φ 2 [ Equation 1 ]
  • v1: volume percentage of resin solid fraction
  • v2: volume percentage of intermediate liquid
  • n1: refractive index of resin solid fraction
  • n2: refractive index of intermediate liquid
  • φ: refractive index of cured film penetrated by intermediate liquid

  • φ=(n 2−1)/(n 2+2)
  • The specific gravities of PETA, M-270, the solvent (EEP), and monobromonaphthalene are shown in Table 13. “Wet” refers to individual specific gravities when the coating film is liquid, and “dry” refers to those when the coating film has cured.
  • TABLE 13
    Specific gravity (wet) Specific gravity (dry)
    PETA 1.18 1.365
    M-270 1.016 1.072
    EEP 0.95
    Monobromonaphthalene 1.48
  • The specific gravity of a 55 wt %:45 wt % mixture of PETA and M-270 was computed by the following calculation. The results are shown in Table 14.
  • TABLE 14
    Specific gravity (wet) Specific gravity (dry)
    PETA:M-270 (55:45) 1.101 1.216
  • The refractive index of a resin solid fraction of 100 wt % in the case of a 55 wt %:45 wt % mixture of PETA and M-270, obtained with an Abbe refractometer, was a value of 1.514 (Comparative Example 3).
  • In the case of computing a theoretical refractive index, it is necessary to consider the influence of curing shrinkage of the resin solid fraction. During coating film fabrication the resin solid fraction is in liquid form, but subsequent to curing it is a solid, and therefore the specific gravity increases commensurately with curing shrinkage (see Tables 13 and 14). On the other hand, because the solvent does not participate in curing, the volume is basically unchanged. In this case, the volumetric proportion of the resin solid component will decrease, while the volumetric proportion of the solvent will increase.
  • However, due to shrinkage of the surrounding resin, the volume of the spaces occupied by the solvent also shrinks to a greater or lesser extent, and it is conceivable that, at maximum, shrinkage by an extent comparable to that of the resin solid fraction may arise. In a case where the volume of the spaces occupied by the solvent shrinks by an extent comparable to that of the resin solid fraction, the volumetric proportions of the resin solid fraction and the solvent will be unchanged.
  • Regarding the influence of curing shrinkage of the resin solid fraction, a case where the volumetric proportions of the resin solid fraction and the solvent are unchanged is considered to be a minimum, and a case where the volumetric proportion of the resin solid fraction has decreased while the volumetric proportion of the solvent has increased is considered to be a maximum.
  • Results of calculations for the influence of curing shrinkage of the resin solid fraction in a case of PETA:M-270 compositional proportions of 55 wt %:45 wt % and a resin solid fraction of 90 wt % are shown in Table 15.
  • TABLE 15
    Influence of resin curing influence at minimum Influence of resin curing influence at maximum
    Resin weight (%) 1.00 0.95 0.90 0.80 0.70 Resin weight (%) 1.00 0.95 0.90 0.80 0.70
    EEP weight (%) 0.00 0.05 0.10 0.20 0.30 EEP weight (%) 0.00 0.05 0.10 0.20 0.30
    Filling rate (wet) 1.000 0.943 0.886 0.775 0.668 Filling rate (wet) 1.000 0.937 0.876 0.758 0.646
    Void rate (wet) 0.000 0.057 0.114 0.225 0.332 Void rate (wet) 0.000 0.063 0.124 0.242 0.354
    φ 0.30106 0.30487 0.30862 0.31596 0.32307 φ 0.30106 0.30524 0.30931 0.31714 0.32455
    n (theoretical value) 1.514 1.52175 1.52943 1.54457 1.55941 n (theoretical value) 1.514 1.52252 1.53085 1.54702 1.56253
  • The measuring error of the refractometer employed in the present measurements was ±0.002, but in actual measurements, error of about ±0.003 arose. Below, the refractive indices of various cured films were measured, employing monobromonaphthalene as the intermediate liquid.
  • Working Examples 53 to 55
  • [Following a procedure] similar to Working Example 1, except for adjusting the coating liquid by varying the solvent content in Working Example 5 to bring the solid fraction in the coating film during ultraviolet irradiation to the values disclosed in Table 16, the relationship between the solvent content in percentage by weight and the percentage by volume of voids in the cured film was investigated based on the relationship of actual measured values and predicted measured values for refractive index thereof.
  • TABLE 16
    Solid Matte
    fraction Fingerprint- Working or Refractive index Filling rate (vol %) Void rate (vol %)
    ratio erasing Comparative Predicted Predicted Predicted
    (wt %) ability Ex. Actual Min. Max. Actual {circle around (1)} {circle around (2)} Actual {circle around (1)} {circle around (2)}
    100 NG Cmp. Ex. 2 1.514 1.514 1.514 100 100 100 0 0 0
    95 B Wrk. Ex. 2 1.522 1.522 1.523 94.1 94.3 93.7 5.9 5.7 6.3
    90 SS Wrk. Ex. 1 1.529 1.529 1.531 88.9 88.6 87.6 11.1 11.4 12.4
    80 SS+ Wrk. Ex. 3 1.540 1.545 1.547 80.9 77.5 75.9 19.1 22.5 24.2
    70 SS+ Wrk. Ex. 4 1.553 1.559 1.563 71.4 66.8 64.6 28.6 33.2 35.4
    Solid Clear
    fraction Fingerprint- Working or Refractive index Filling rate (vol %) Void rate (vol %)
    ratio erasing Comparative Predicted Predicted Predicted
    (wt %) ability Ex. Actual Min. Max. Actual {circle around (1)} {circle around (2)} Actual {circle around (1)} {circle around (2)}
    100 NG Cmp. Ex. 3 1.514 1.514 1.514 100 100 100 0 0 0
    95 C Wrk. Ex. 53 1.522 1.522 1.523 94.1 94.2 93.7 5.9 5.8 6.3
    90 B Wrk. Ex. 5 1.529 1.529 1.531 88.9 88.5 87.6 11.1 11.5 12.4
    80 B-A Wrk. Ex. 54 1.540 1.543 1.547 80.9 77.4 75.8 19.1 22.6 24.2
    70 A Wrk. Ex. 55 1.553 1.559 1.563 71.4 66.7 64.6 28.6 33.3 35.4
  • Results are as shown in Table 16 above. The results were that, at a resin solid fraction ratio of 90 wt % or above prior to curing, there was good agreement between actual measured values and predicted values of refractive index, irrespective of the influence of curing shrinkage of the resin solid fraction; whereas at 80 wt % and below, actual measured values progressively fell below predicted values. These results show that, at a resin solid fraction ratio of 90 wt % or above, the micropores which open on the surface of the cured film are substantially all in communication with the interior from the surface. It was verified that at a resin solid fraction ratio of 80 wt % or below, isolated voids progressively start to be present within the cured film, separately from the micropores which communicate with the cured film surface.
  • Provided that the surface shape of a cured film is a matte shape of an extent such that such that the prism of the refractometer is in uniform coherence against the cured film surface via the intermediate liquid, actual measured values of refractive index will agree for both matte and clear (smooth) surface shapes of cured films.
  • Actual measured values of refractive index [show that] in cases where there exists a void rate of 6 vol % or above of micropores communicating from the surface of the cured film, fingerprint-erasing ability is exhibited both by matte and clear (smooth) surface shapes of cured films, with the fingerprint-erasing effect improving with a rise in the void rate; and in the case of matte profiles, fingerprint-erasing ability is high even with a large solid fraction ratio (low solvent content), thereby making it easy to attain a balance between mechanical strength and fingerprint-erasing effect.
  • Employing an S-4800 scanning electron microscope (made by Hitachi High Technologies), the surfaces of cured films obtained by varying the solid fraction ratio from 100 wt % to 70 wt % while holding the PETA:M270 compositional proportions constant at 55 wt %:45 wt % (Working Examples 1 to 3, Comparative Example 2) were imaged at 30,000× magnification. These are shown in FIG. 8 to FIG. 11. The photographs at top and bottom in each figure are, respectively, 30,000× photographs taken of the center section of the measured sample, and of a region 3 cm away therefrom. FIG. 9 is an SEM photograph of a cured film formed with a solid fraction of 90 wt %, and a multitude of micropores opening on the cured film surface are clearly observed. A comparison with FIGS. 10 and 11 clearly shows that as solvent content increases, the pore diameter and quantity of voids in the cured film increases.
  • Working Examples 56 and 57
  • FIG. 12 and FIG. 13 are photographs of the surfaces of cured films obtained with PETA:M270 compositional proportions of 85 wt %:15 wt %, and solid fraction ratios of 90 wt % and 80 wt %. In accordance with decreasing solid fraction ratio, specifically, increasing solvent ratio, solvent evaporation pores increased, and fingerprint-erasing ability was higher.
  • In the case of Working Example 2 in Table 16, the solid fraction ratio was 95 wt % and the solvent was 5 wt %; volumetric conversion on the basis of specific gravity gives a void rate of 5.9 (about 6) vol %. Therefore, 6 vol (*5) or above increases the fingerprint-erasing ability.
  • INDUSTRIAL APPLICABILITY
  • The fingerprint-erasing cured film of the present invention renders fingerprint soiling not readily visible or no longer visible within a short period of time, e.g., 5 minutes or 2 minutes, and affords singularly improved aesthetics in displays of electronic devices using this cured film, and particularly on surfaces of touch panel type displays and members. Also, by manufacturing a fingerprint-erasing cured film between two release films of differing adhesive force, the fingerprint-erasing cured film can be manufactured on any surface, by a simple method.

Claims (30)

1. A method for manufacturing a fingerprint-erasing cured film, characterized in that there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable by an activating energy beam; curing of said film is brought about in a state of the solvent being included within the film; and the solvent is subsequently dried.
2. The method for manufacturing the fingerprint-erasing cured film according to claim 1, characterized in that 5 wt % or more of the solvent is included in the film.
3. The method for manufacturing the fingerprint-erasing cured film according to claim 1, characterized in that the film is cured in a state of 5 wt % or more and 30 wt % or less of the solvent being included in the film.
4. The method for manufacturing the fingerprint-erasing cured film according to claim 1, wherein there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; and, in a state of said film being sandwiched between a substrate and a release material, and the solvent being included in said film, said film is irradiated with an activating energy and cured, whereby a cured film is formed on the substrate.
5. The method for manufacturing the fingerprint-erasing cured film according to claim 4, characterized in that the release material is a release material having a surface with surface asperities formed by matte processing.
6. The method for manufacturing the fingerprint-erasing cured film according to claim 1, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.
7. The method for manufacturing the fingerprint-erasing cured film according to claim 6, characterized in that the water-absorbent compound adds 0.4 to 25 wt % of the water-absorbent compound with respect to 100 wt % of the solid fraction.
8. The method for manufacturing the fingerprint-erasing cured film according to claim 6, characterized in that the water-absorbent compound is one or two or more compounds selected from the group consisting of water-absorbent resins, oligomers containing carboxyl groups, ionic liquids, water-absorbent inorganic salts or an aqueous solution thereof, and silica gel microparticles.
9. A fingerprint-erasing cured film, obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film.
10. A fingerprint-erasing cured film obtained by curing a resin polymerizable using an activating energy beam, the fingerprint-erasing cured film characterized in that a surface of the cured film is matte-processed, and there are formed a multitude of micropores communicating with an interior of the cured film from a surface of the cured film having the matte-processed surface.
11. The fingerprint-erasing cured film according to claims claim 9, characterized in that 6 vol % or more of the micropores communicate with the interior of the cured film from the surface of the cured film.
12. A display, characterized by having the fingerprint-erasing cured film according to claim 9 formed thereon.
13. A touch panel, characterized by having the fingerprint-erasing cured film according to claim 9 formed thereon.
14. An electronic device characterized in that a touch panel is installed in an input section, and the fingerprint-erasing cured film according to claim 9 is formed on a surface of the touch panel.
15. A mobile device, an item of furniture, a fitting, a glass, an eyeglass lens, or a mirror characterized by having the fingerprint-erasing cured film according to claim 9 formed thereon.
16. The method for manufacturing the fingerprint-erasing cured film according to claim 2, wherein there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; and, in a state of said film being sandwiched between a substrate and a release material, and the solvent being included in said film, said film is irradiated with an activating energy and cured, whereby a cured film is formed on the substrate.
17. The method for manufacturing the fingerprint-erasing cured film according to claim 2, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.
18. The method for manufacturing the fingerprint-erasing cured film according to claim 3, wherein there is formed a film including at least a resin composition and a solvent, the resin composition being polymerizable using an activating energy beam; and, in a state of said film being sandwiched between a substrate and a release material, and the solvent being included in said film, said film is irradiated with an activating energy and cured, whereby a cured film is formed on the substrate.
19. The method for manufacturing the fingerprint-erasing cured film according to claim 3, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.
20. The method for manufacturing the fingerprint-erasing cured film according to claim 4, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.
21. The method for manufacturing the fingerprint-erasing cured film according to claim 5, characterized in that a water-absorbent compound is further added to the resin composition that is polymerizable using an activating energy beam.
22. The fingerprint-erasing cured film according to claim 10, characterized in that 6 vol % or more of the micropores communicate with the interior of the cured film from the surface of the cured film.
23. A display, characterized by having the fingerprint-erasing cured film according to claim 10 formed thereon.
24. A touch panel, characterized by having the fingerprint-erasing cured film according to claim 10 formed thereon.
25. An electronic device characterized in that a touch panel is installed in an input section, and the fingerprint-erasing cured film according to claim 10 is formed on a surface of the touch panel.
26. A mobile device, an item of furniture, a fitting, a glass, an eyeglass lens, or a mirror characterized by having the fingerprint-erasing cured film according to claim 10 formed thereon.
27. A display, characterized by having the fingerprint-erasing cured film according to claim 11 formed thereon.
28. A touch panel, characterized by having the fingerprint-erasing cured film according to claim 11 formed thereon.
29. An electronic device characterized in that a touch panel is installed in an input section, and the fingerprint-erasing cured film according to claim 11 is formed on a surface of the touch panel.
30. A mobile device, an item of furniture, a fitting, a glass, an eyeglass lens, or a mirror characterized by having the fingerprint-erasing cured film according to claim 11 formed thereon.
US13/322,805 2009-06-01 2010-06-01 Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these Abandoned US20120088090A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-132541 2009-06-01
JP2009132541 2009-06-01
PCT/JP2010/059285 WO2010140594A1 (en) 2009-06-01 2010-06-01 Fingerprint-resistant cured film and production method of same; display and touch panel using same; electronic device using the latter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059285 A-371-Of-International WO2010140594A1 (en) 2009-06-01 2010-06-01 Fingerprint-resistant cured film and production method of same; display and touch panel using same; electronic device using the latter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/186,000 Division US9782794B2 (en) 2009-06-01 2014-02-21 Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these

Publications (1)

Publication Number Publication Date
US20120088090A1 true US20120088090A1 (en) 2012-04-12

Family

ID=43297728

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/322,805 Abandoned US20120088090A1 (en) 2009-06-01 2010-06-01 Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these
US14/186,000 Active 2031-10-31 US9782794B2 (en) 2009-06-01 2014-02-21 Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/186,000 Active 2031-10-31 US9782794B2 (en) 2009-06-01 2014-02-21 Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these

Country Status (4)

Country Link
US (2) US20120088090A1 (en)
EP (1) EP2439230A4 (en)
JP (1) JP5634398B2 (en)
WO (1) WO2010140594A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742022B2 (en) 2010-12-20 2014-06-03 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US20150010731A1 (en) * 2012-02-22 2015-01-08 Dexerials Corporation Antifouling layer, antifouling substrate, display device, and input device
US20150239023A1 (en) * 2012-09-05 2015-08-27 Dexerials Corporation Anti-smudge body, display device, input device, and electronic device
US9296904B2 (en) 2010-12-20 2016-03-29 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US9441135B2 (en) 2012-06-19 2016-09-13 3M Innovative Properties Company Additive comprising low surface energy group and hydroxyl groups and coating compositions
US9701850B2 (en) 2012-06-19 2017-07-11 3M Innovative Properties Company Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility
US20190042011A1 (en) * 2017-08-01 2019-02-07 Boe Technology Group Co., Ltd. Touch panel and manufacturing method thereof
WO2019175716A1 (en) * 2018-03-15 2019-09-19 3M Innovative Properties Company Photopolymerizable compositions including a polypropylene oxide component, articles, and methods
WO2020180649A1 (en) * 2019-03-01 2020-09-10 Nbd Nanotechnologies, Inc. Invisible-fingerprint coatings and process for forming same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757065B2 (en) * 2010-04-26 2015-07-29 日油株式会社 Display film and display including the same
US8816012B2 (en) * 2010-08-18 2014-08-26 Ferro Corporation Curable acrylate based printing medium
JP5935271B2 (en) * 2010-09-22 2016-06-15 Dic株式会社 Film for thermal transfer and method for producing the same
JP5935279B2 (en) * 2011-09-07 2016-06-15 Dic株式会社 Film for thermal transfer and method for producing the same
JP2014047299A (en) * 2012-08-31 2014-03-17 Dexerials Corp Antifouling body, display device, input device, electronic equipment and antifouling article
JP6049474B2 (en) * 2013-01-25 2016-12-21 株式会社ニトムズ Sebum-absorbing diffusion film
CN103425366B (en) * 2013-02-04 2016-08-03 南昌欧菲光科技有限公司 Lead-in wire electrode and preparation method thereof
JP2014235235A (en) * 2013-05-31 2014-12-15 日油株式会社 Fingerprint-proof film for display and display including the film
CN104898314B (en) * 2014-03-07 2018-01-05 敦泰电子有限公司 Display device and its drive circuit and driving method, electronic equipment
US11634358B2 (en) 2018-01-03 2023-04-25 Ferro Corporation Polycarbonate diol coating composition for caustic and UV resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173363A (en) * 1990-11-01 1992-12-22 Van Leer Metallized Products (Usa) Limited Coating sheet which wicks away oil
US5871843A (en) * 1996-03-27 1999-02-16 Asahi Glass Company Ltd. Laminate and process for its production
US20030049414A1 (en) * 1999-12-27 2003-03-13 Hirofumi Ichinose Recording medium, method of manufacturing the same and image forming method
US6686000B2 (en) * 1999-12-27 2004-02-03 Canon Kabushiki Kaisha Recording medium and image forming method
US20060029808A1 (en) * 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287415B2 (en) * 1992-03-26 2002-06-04 大日本インキ化学工業株式会社 Method for producing porous polymer membrane
JP3398985B2 (en) * 1992-09-17 2003-04-21 大日本インキ化学工業株式会社 Manufacturing method of sensor
JPH0756336A (en) * 1993-06-07 1995-03-03 Ajinomoto Co Inc Resin composition
JP3741463B2 (en) * 1994-08-01 2006-02-01 大日本インキ化学工業株式会社 Fouling-resistant porous membrane and process for producing the same
JP3254572B2 (en) * 1996-06-28 2002-02-12 バンティコ株式会社 Photopolymerizable thermosetting resin composition
JP2967474B2 (en) * 1997-03-27 1999-10-25 株式会社巴川製紙所 Anti-glare material and polarizing film using the same
US6245421B1 (en) * 1999-02-04 2001-06-12 Kodak Polychrome Graphics Llc Printable media for lithographic printing having a porous, hydrophilic layer and a method for the production thereof
JP4590758B2 (en) * 2000-04-10 2010-12-01 Tdk株式会社 Optical information medium
JP2001353808A (en) 2000-06-13 2001-12-25 Matsushita Electric Ind Co Ltd Coating film for preventing soil from becoming conspicuous, manufacturing method therefor, display and touch panel using the coating film, and information therminal using display and touch panel
JP3722418B2 (en) * 2000-12-08 2005-11-30 信越化学工業株式会社 Antireflection film and optical member using the same
US6533987B2 (en) * 2000-12-15 2003-03-18 Kimberly-Clark Worldwide, Inc. Methods of making materials having shape-memory
US8236406B2 (en) * 2002-11-20 2012-08-07 Kimoto Co., Ltd. Fingerprint easily erasible film
JP4351450B2 (en) 2003-01-28 2009-10-28 リンテック株式会社 Method for producing hard coat film
WO2005021634A2 (en) * 2003-02-20 2005-03-10 Texas Research International, Inc. Ultraviolet light curing compositions for composite repair
US20060257760A1 (en) * 2003-08-11 2006-11-16 Kenichi Mori Near-infrared absorbing film, and process for production the same, near-infrared absorbing film roll, process for producing the same and near-infrared absorbing filter
JP4413102B2 (en) 2004-07-30 2010-02-10 リンテック株式会社 Method for producing hard coat film and hard coat film
JP4872670B2 (en) * 2004-12-03 2012-02-08 三菱化学株式会社 Compositions, cured products and articles
JP2007058162A (en) * 2005-07-28 2007-03-08 Nof Corp Surface material for display and display with same
EP1995260B1 (en) * 2006-03-02 2016-07-20 Dow Corning Corporation High energy ray-curable composition
JP2008197320A (en) * 2007-02-13 2008-08-28 Nippon Paint Co Ltd Antiglare coating composition, antiglare film, and method for manufacturing the same
JP4899999B2 (en) * 2007-03-30 2012-03-21 大日本印刷株式会社 Mirror surface decorative sheet and decorative plate using the same
JP2009025734A (en) * 2007-07-23 2009-02-05 Nof Corp Antidazzle film and display with the same
JP2009109683A (en) * 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
WO2009086026A1 (en) * 2007-12-20 2009-07-09 E. I. Du Pont De Nemours And Company Process for producing a multilayer coating
TWI427117B (en) * 2008-05-30 2014-02-21 Nitto Denko Corp Resin composition for optical components, optical component using the same and production method of optical lens
FR2933420B1 (en) * 2008-07-01 2012-03-30 Essilor Int USE OF A NON-PHOTOCATALYTIC POROUS COATING AS AN ANTI-ALLOY COATING

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173363A (en) * 1990-11-01 1992-12-22 Van Leer Metallized Products (Usa) Limited Coating sheet which wicks away oil
US5871843A (en) * 1996-03-27 1999-02-16 Asahi Glass Company Ltd. Laminate and process for its production
US20030049414A1 (en) * 1999-12-27 2003-03-13 Hirofumi Ichinose Recording medium, method of manufacturing the same and image forming method
US6686000B2 (en) * 1999-12-27 2004-02-03 Canon Kabushiki Kaisha Recording medium and image forming method
US20060029808A1 (en) * 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742022B2 (en) 2010-12-20 2014-06-03 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US9296905B2 (en) 2010-12-20 2016-03-29 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US9296904B2 (en) 2010-12-20 2016-03-29 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US20150010731A1 (en) * 2012-02-22 2015-01-08 Dexerials Corporation Antifouling layer, antifouling substrate, display device, and input device
US9441135B2 (en) 2012-06-19 2016-09-13 3M Innovative Properties Company Additive comprising low surface energy group and hydroxyl groups and coating compositions
US9701850B2 (en) 2012-06-19 2017-07-11 3M Innovative Properties Company Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility
US9803042B2 (en) 2012-06-19 2017-10-31 3M Innovative Properties Co. Additive comprising low surface energy group and hydroxyl groups and coating compositions
US20150239023A1 (en) * 2012-09-05 2015-08-27 Dexerials Corporation Anti-smudge body, display device, input device, and electronic device
US20190042011A1 (en) * 2017-08-01 2019-02-07 Boe Technology Group Co., Ltd. Touch panel and manufacturing method thereof
WO2019175716A1 (en) * 2018-03-15 2019-09-19 3M Innovative Properties Company Photopolymerizable compositions including a polypropylene oxide component, articles, and methods
WO2020180649A1 (en) * 2019-03-01 2020-09-10 Nbd Nanotechnologies, Inc. Invisible-fingerprint coatings and process for forming same

Also Published As

Publication number Publication date
US20140167332A1 (en) 2014-06-19
JPWO2010140594A1 (en) 2012-11-22
US9782794B2 (en) 2017-10-10
EP2439230A1 (en) 2012-04-11
EP2439230A4 (en) 2013-09-11
JP5634398B2 (en) 2014-12-03
WO2010140594A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
US9782794B2 (en) Fingerprint-erasing cured film, method for manufacturing same, display and touch panel using same, and electronic device using these
US9429685B2 (en) Laminate
TWI580753B (en) Radiation curable pressure sensitive adhesive sheet
TWI281890B (en) Fingerprint-erasable film
CN104140724B (en) Multilayer coating system, painting method and the substrate through its coating
JP6115100B2 (en) Photocurable composition
JP5754105B2 (en) Composition for antireflection film
TW200827764A (en) Scratch-resistant thin film
TWI707931B (en) Uv-curing acrylic resin compositions for thermoformable hardcoat applications
TW200420977A (en) Optical film for display devices
CN101224647B (en) Hard coating film
JP2009287017A (en) Active energy ray-curable resin composition, cured product and article
CN110079208A (en) A kind of composition and a kind of brightness enhancement film and its application
CN107189509A (en) A kind of coating composition, optical film and preparation method thereof
TW201821522A (en) Active energy ray-curable resin composition for optical articles, cured product, and optical sheet
US11174448B2 (en) Tactile film, method of producing same, molded article, and method of improving finger slidability
CN109073786B (en) Method for manufacturing optical member and optical member
JPH10158349A (en) Ionizing radiation-curing type resin composition for optical sheet, optical sheet and its production
Milinavičiūtė et al. Properties of UV-curable hyperbranched urethane-acrylate modified acrylic monomer coatings
KR100563239B1 (en) Transparent sheet excellent in diffuse reflection effect and scratch resistance and manufacturing method
JP2011046084A (en) Fingerprint-proof film
CN114929479A (en) Anti-glare laminate
CN108690208A (en) A kind of cured film with high tenacity and high-wearing feature
JP6247826B2 (en) Photo-curable resin composition for imprint molding
JP2012194212A (en) Electron beam curable composition for lens sheet support film formation, lens sheet support film, and lens sheet

Legal Events

Date Code Title Description
AS Assignment

Owner name: TSUJIDEN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYAZAKI, AKIRA;MORI, YASUNORI;KUBO, KOICHI;AND OTHERS;SIGNING DATES FROM 20111128 TO 20111130;REEL/FRAME:027406/0957

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION