US20120197252A1 - Apparatuses for renal neuromodulation - Google Patents

Apparatuses for renal neuromodulation Download PDF

Info

Publication number
US20120197252A1
US20120197252A1 US13/361,542 US201213361542A US2012197252A1 US 20120197252 A1 US20120197252 A1 US 20120197252A1 US 201213361542 A US201213361542 A US 201213361542A US 2012197252 A1 US2012197252 A1 US 2012197252A1
Authority
US
United States
Prior art keywords
renal
electrode
electrodes
electric field
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/361,542
Inventor
Mark Deem
Denise Demarais
Douglas Sutton
Hanson Gifford, III
Howard R. Levin
Mark Gelfand
Benjamin J. Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Ardian Luxembourg SARL
Original Assignee
Ardian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/408,665 external-priority patent/US7162303B2/en
Priority claimed from US10/900,199 external-priority patent/US6978174B2/en
Priority claimed from US11/129,765 external-priority patent/US7653438B2/en
Priority to US13/361,542 priority Critical patent/US20120197252A1/en
Application filed by Ardian Inc filed Critical Ardian Inc
Publication of US20120197252A1 publication Critical patent/US20120197252A1/en
Assigned to MEDTRONIC ARDIAN LLC reassignment MEDTRONIC ARDIAN LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ARDIAN, INC.
Assigned to MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L. reassignment MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC ARDIAN LLC
Priority to US13/942,223 priority patent/US9072527B2/en
Priority to US14/279,023 priority patent/US9186213B2/en
Priority to US14/878,898 priority patent/US9463066B2/en
Priority to US15/254,340 priority patent/US9731132B2/en
Priority to US15/636,381 priority patent/US9956410B2/en
Priority to US15/937,729 priority patent/US10272246B2/en
Priority to US16/368,487 priority patent/US20190282816A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • A61N1/36117Cardiac control, e.g. by vagal stimulation for treating hypertension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/327Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1435Spiral

Definitions

  • the present invention relates to methods and apparatus for renal neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving renal neuromodulation via a pulsed electric field and/or electroporation or electrofusion.
  • CHF Congestive Heart Failure
  • CHF While many different diseases may initially damage the heart, once present, CHF is split into two types: Chronic CHF and Acute (or Decompensated-Chronic) CHF.
  • Chronic Congestive Heart Failure is a longer term, slowly progressive, degenerative disease. Over years, chronic congestive heart failure leads to cardiac insufficiency.
  • Chronic CHF is clinically categorized by the patient's ability to exercise or perform normal activities of daily living (such as defined by the New York Heart Association Functional Class). Chronic CHF patients are usually managed on an outpatient basis, typically with drugs.
  • Acute Congestive Heart Failure a chronic deterioration in heart function
  • Acute CHF deteriorations can occur when extra stress (such as an infection or excessive fluid overload) significantly increases the workload on the heart in a stable chronic CHF patient.
  • extra stress such as an infection or excessive fluid overload
  • a patient suffering acute CHF may deteriorate from even the earliest stages of CHF to severe hernodynamic collapse.
  • Acute CHF can occur within hours or days following an Acute Myocardial Infarction (“AMI”), which is a sudden, irreversible injury to the heart muscle, commonly referred to as a heart attack.
  • AMI Acute Myocardial Infarction
  • kidneys play a significant role in the progression of CHF, as well as in Chronic Renal Failure (“CRF”), End-Stage Renal Disease (“ESRD”), hypertension (pathologically high blood pressure) and other cardio-renal diseases.
  • CRF Chronic Renal Failure
  • ESRD End-Stage Renal Disease
  • hypertension pathologically high blood pressure
  • Other cardio-renal diseases The functions of the kidney can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow.
  • a patient Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body.
  • kidney failure are believed to increase the workload of the heart.
  • renal failure will cause the heart to further deteriorate as the water build-up and blood toxins accumulate due to the poorly functioning kidneys and, in turn, cause the heart further harm.
  • the primary functional unit of the kidneys that is involved in urine formation is called the “nephron.”
  • Each kidney consists of about one million nephrons.
  • the nephron is made up of a glomerulus and its tubules, which can be separated into a number of sections: the proximal tubule, the medullary loop (loop of Henle), and the distal tubule.
  • Each nephron is surrounded by different types of cells that have the ability to secrete several substances and hormones (such as renin and erythropoietin).
  • Urine is formed as a result of a complex process starting with the filtration of plasma water from blood into the glomerulus.
  • the walls of the glomerulus are freely permeable to water and small molecules but almost impermeable to proteins and large molecules.
  • the filtrate is virtually free of protein and has no cellular elements.
  • the filtered fluid that eventually becomes urine flows through the tubules.
  • the final chemical composition of the urine is determined by the secretion into, and re-absorption of substances from, the urine required to maintain homeostasis.
  • the two kidneys filter about 125 ml of plasma water per minute. Filtration occurs because of a pressure gradient across the glomerular membrane. The pressure in the arteries of the kidney pushes plasma water into the glomerulus causing filtration. To keep the Glomerulur Filtration Rate (“GFR”) relatively constant, pressure in the glomerulus is held constant by the constriction or dilatation of the afferent and efferent arterioles, the muscular walled vessels leading to and from each glomerulus.
  • GFR Glomerulur Filtration Rate
  • a combination of complex mechanisms contribute to deleterious fluid overload in CHF.
  • the kidneys cannot function and become impaired due to insufficient blood pressure for perfusion. This impairment in renal function ultimately leads to the decrease in urine output. Without sufficient urine output, the body retains fluids, and the resulting fluid overload causes peripheral edema (swelling of the legs), shortness of breath (due to fluid in the lungs), and fluid retention in the abdomen, among other undesirable conditions in the patient.
  • cardiac output leads to reduced renal blood flow, increased neurohormonal stimulus, and release of the hormone renin from the juxtaglomerular apparatus of the kidney.
  • Increased renin results in the formation of angiotensin, a potent vasoconstrictor.
  • Heart failure and the resulting reduction in blood pressure also reduce the blood flow and perfusion pressure through organs in the body other than the kidneys. As they suffer reduced blood pressure, these organs may become hypoxic, resulting in a metabolic acidosis that reduces the effectiveness of pharmacological therapy and increases a risk of sudden death.
  • CHF is associated with an abnormally elevated peripheral vascular resistance and is dominated by alterations of the circulation resulting from an intense disturbance of sympathetic nervous system function.
  • Increased activity of the sympathetic nervous system promotes a downward vicious cycle of increased arterial vasoconstriction (increased resistance of vessels to blood flow) followed by a further reduction of cardiac output, causing even more diminished blood flow to the vital organs.
  • the heart and circulatory system dramatically reduce blood flow to the kidneys.
  • the kidneys receive a command from higher neural centers via neural pathways and hormonal messengers to retain fluid and sodium in the body.
  • the neural centers command the kidneys to reduce their filtering functions. While in the short term, these commands can be beneficial, if these commands continue over hours and days they can jeopardize the person's life or make the person dependent on artificial kidney for life by causing the kidneys to cease functioning
  • the hemodynamic impairment resulting from CHF activates several neurohormonal systems, such as the renin-angiotensin and aldosterone system, sympatho-adrenal system and vasopressin release.
  • neurohormonal systems such as the renin-angiotensin and aldosterone system, sympatho-adrenal system and vasopressin release.
  • the GFR drops, and the sodium load in the circulatory system increases.
  • more renin is liberated from the juxtaglomerular of the kidney.
  • the combined effects of reduced kidney functioning include reduced glomerular sodium load, an aldosterone-mediated increase in tubular reabsorption of sodium, and retention in the body of sodium and water.
  • CHF is progressive, and as of now, not curable.
  • Surgical therapies are effective in some cases, but limited to the end-stage patient population because of the associated risk and cost.
  • the dramatic role played by kidneys in the deterioration of CHF patients is not adequately addressed by current surgical therapies.
  • the autonomic nervous system is recognized as an important pathway for control signals that are responsible for the regulation of body functions critical for maintaining vascular fluid balance and blood pressure.
  • the autonomic nervous system conducts information in the form of signals from the body's biologic sensors such as baroreceptors (responding to pressure and volume of blood) and chemoreceptors (responding to chemical composition of blood) to the central nervous system via its sensory fibers. It also conducts command signals from the central nervous system that control the various innervated components of the vascular system via its motor fibers.
  • renin is a hormone responsible for the “vicious cycle” of vasoconstriction and water and sodium retention in heart failure patients. It was demonstrated that an increase or decrease in renal sympathetic nerve activity produced parallel increases and decreases in the renin secretion rate by the kidney, respectively.
  • baroreceptors If exposed to a reduced level of arterial pressure for a prolonged time, baroreceptors normally “reset,” i.e., return to a baseline level of activity, until a new disturbance is introduced. Therefore, it is believed that in chronic CHF patients, the components of the autonomic-nervous system responsible for the control of blood pressure and the neural control of the kidney function become abnormal. The exact mechanisms that cause this abnormality are not fully understood, but its effects on the overall condition of the CHF patients are profoundly negative.
  • End-Stage Renal Disease is another condition at least partially controlled by renal neural activity.
  • ESRD end-Stage Renal Disease
  • Chronic Renal Failure slowly progresses to ESRD.
  • CRF represents a critical period in the evolution of ESRD.
  • the signs and symptoms of CRF are initially minor, but over the course of 2-5 years, become progressive and irreversible. While some progress has been made in combating the progression to, and complications of, ESRD, the clinical benefits of existing interventions remain limited.
  • kidneys are damaged by direct renal toxicity from the release of sympathetic neurotransmitters (such as norepinephrine) in the kidneys independent of the hypertension. Furthermore, secretion of renin that activates Angiotensin II is increased, which increases systemic vasoconstriction and exacerbates hypertension.
  • sympathetic neurotransmitters such as norepinephrine
  • the present invention provides methods and apparatus for renal neuromodulation (e.g., denervation) using a pulsed electric field (PEF).
  • a pulsed electric field to effectuate electroporation and/or electrofusion in renal nerves, other neural fibers that contribute to renal neural function, or other neural features.
  • Several embodiments of the invention are extravascular devices for inducing renal neuromodulation.
  • the apparatus and methods described herein may utilize any suitable electrical signal or field parameters that achieve neuromodulation, including denervation, and/or otherwise create an electroporative and/or electrofusion effect.
  • the electrical signal may incorporate a nanosecond pulsed electric field (nsPEF) and/or a PEF for effectuating electroporation.
  • nsPEF nanosecond pulsed electric field
  • One specific embodiment comprises applying a first course of PEF electroporation followed by a second course of nsPEF electroporation to induce apoptosis in any cells left intact after the PEF treatment, or vice versa.
  • An alternative embodiment comprises fusing nerve cells by applying a PEF in a manner that is expected to reduce or eliminate the ability of the nerves to conduct electrical impulses.
  • Pulsed electric field parameters can include, but are not limited to, field strength, pulse width, the shape of the pulse, the number of pulses and/or the interval between pulses (e.g., duty cycle).
  • Suitable field strengths include, for example, strengths of up to about 10,000 Vlcm.
  • Suitable pulse widths include, for example, widths of up to about 1 second.
  • Suitable shapes of the pulse waveform include, for example, AC waveforms, sinusoidal waves, cosine waves, combinations of sine and cosine waves, DC waveforms, DC-shifted AC waveforms, RF waveforms, square waves, trapezoidal waves, exponentially-decaying waves, combinations thereof, etc.
  • Suitable numbers of pulses include, for example, at least one pulse.
  • Suitable pulse intervals include, for example, intervals less than about 10 seconds. Any combination of these parameters may be utilized as desired. These parameters are provided for the sake of illustration and should in no way be considered limiting. Additional and alternative waveform parameters will be apparent.
  • one embodiment of the invention comprises treating a patient for an infarction, e.g., via coronary angioplasty and/or stenting, and performing an extravascular pulsed electric field renal denervation procedure under, for example, Computed Tomography (“CT”) guidance.
  • CT Computed Tomography
  • PEF therapy can, for example, be delivered in a separate session soon after the AMI has been stabilized.
  • Renal neuromodulation also may be used as an adjunctive therapy to renal surgical procedures.
  • the anticipated increase in urine output, decrease in renin levels, increase in urinary sodium excretion and/or control of blood pressure provided by the renal PEF therapy is expected to reduce the load on the heart to inhibit expansion of the infarct and prevent CHF.
  • extravascular pulsed electric field systems described herein may denervate or reduce the activity of the renal nervous supply immediately post-infarct, or at any time thereafter, without leaving behind a permanent implant in the patient.
  • These embodiments are expected to increase urine output, decrease renin levels, increase urinary sodium excretion and/or control blood pressure for a period of several months during which the patient's heart can heal. If it is determined that repeat and/or chronic neuromodulation would be beneficial after this period of healing, renal PEF treatment can be repeated as needed and/or a permanent implant may be provided.
  • systems described herein are also expected to treat CHF, hypertension, renal failure, and other renal or cardio-renal diseases influenced or affected by increased renal sympathetic nervous activity.
  • the systems may be used to treat CHF at any time by extravascularly advancing the PEF system to a treatment site, for example, under CT-guidance. Once properly positioned, a PEF therapy may be delivered to the treatment site. This may, for example, modify a level of fluid offload.
  • the use of PEF therapy for the treatment of CHF, hypertension, end-stage renal disease and other cardio-renal diseases is described in detail hereinafter in several different extravascular system embodiments.
  • the systems can be introduced into the area of the renal neural tissue under, for example, CT, ultrasonic, angiographic or laparoscopic guidance, or the systems can be surgically implanted using a combination of these or other techniques.
  • the various elements of the system may be placed in a single operative session, or in two or more staged sessions. For instance, a percutaneous therapy might be conducted under CT or CTI/angiographic guidance.
  • a combination of CT, angiographic or laparoscopic implantation of leads and nerve contact elements might be paired with a surgical implantation of the subcutaneous contact element or control unit.
  • the systems may be employed unilaterally or bilaterally as desired for the intended clinical effect.
  • the systems can be used to modulate efferent or afferent nerve signals, as well as combinations of efferent and afferent signals.
  • PEF therapy is delivered at a treatment site to create a nonthermal nerve block, reduce neural signaling, or otherwise modulate neural activity.
  • cooling, cryogenic, pulsed RF, thermal RF, thermal or nonthermal microwave, focused or unfocused ultrasound, thermal or non-thermal DC, as well as any combination thereof, may be employed to reduce or otherwise control neural signaling.
  • PEF systems may completely block or denervate the target neural structures, or the PEF systems may otherwise modulate the renal nervous activity.
  • the PEF systems may otherwise modulate the renal nervous activity.
  • other neuromodulation produces a less-than-complete change in the level of renal nervous activity between the kidney(s) and the rest of the body. Accordingly, varying the pulsed electric field parameters will produce different effects on the nervous activity.
  • any of the embodiments of the present invention described herein optionally may be configured for infusing agents into the treatment area before, during or after energy application.
  • the infused agents may create a working space for introduction of PEF system elements, such as electrodes. Additionally or alternatively, the infused agents may be selected to enhance or modify the neuromodulatory effect of the energy application. The agents also may protect or temporarily displace non-target cells, and/or facilitate visualization.
  • Several embodiments of the present invention may comprise detectors or other elements that facilitate identification of locations for treatment and/or that measure or confirm the success of treatment.
  • temporary nerve-block agents such as lidocaine, bupivacaine or the like
  • the system can be configured to also deliver stimulation waveforms and monitor physiological parameters known to respond to stimulation of the renal nerves. Based on the results of the monitored parameters, the system can determine the location of renal nerves and/or whether denervation has occurred.
  • Detectors for monitoring of such physiological responses include, for example, Doppler elements, thermocouples, pressure sensors, and imaging modalities (e.g., fluoroscopy, intravascular ultrasound, etc.).
  • electroporation may be monitored directly using, for example, Electrical Impedance Tomography (“EIT”) or other electrical impedance measurements or sensors. Additional monitoring techniques and elements will be apparent.
  • EIT Electrical Impedance Tomography
  • Such detector(s) may be integrated with the PEF systems or they may be separate elements.
  • stimulation of the nerve plexus may be utilized to determine whether repeat therapy is required. For example, stimulation may be used to elicit a pain response from the renal nerves. If the patient senses this stimulation, then it is apparent that nerve conduction has returned, and repeat therapy is warranted.
  • This method optionally may be built into any of the systems described hereinafter—percutaneous, partially implantable or fully implantable.
  • Still other specific embodiments include electrodes configured to align the electric field with the longer dimension of the target cells.
  • nerve cells tend to be elongate structures with lengths that greatly exceed their lateral dimensions (e.g., diameter).
  • lateral dimensions e.g., diameter
  • inventions of the invention are directed to applications in which the longitudinal dimensions of cells in tissues overlying or underlying the nerve are transverse (e.g., orthogonal or otherwise at an angle) with respect to the longitudinal direction of the nerve cells.
  • Another aspect of these embodiments is to align the directionality of the PEF such that the field aligns with the longer dimensions of the target cells and the shorter dimensions of the non-target cells.
  • arterial smooth muscle cells are typically elongate cells which surround the arterial circumference in a generally spiraling orientation so that their longer dimensions are circumferential rather than running longitudinally along the artery. Nerves of the renal plexus, on the other hand, run along the outside of the artery generally in the longitudinal direction of the artery.
  • applying a PEF which is generally aligned with the longitudinal direction of the artery is expected to preferentially cause electroporation in the target nerve cells without affecting at least some of the non-target arterial smooth muscle cells to the same degree. This may enable preferential denervation of nerve cells (target cells) in the adventitia or periarterial region without affecting the smooth muscle cells of the vessel to an undesirable extent.
  • tissue to be treated may be conducted to tissue to be treated from a short distance away from the tissue itself.
  • thermal RF energy and non-thermal pulsed RF may be conducted to tissue to be treated from a short distance away from the tissue itself.
  • a laparoscopic or percutaneous system is utilized.
  • a percutaneous probe may be inserted in proximity to the track of the renal neural supply along the renal artery or vein and/or within the Gerota's fascia, under, e.g., CT or radiographic guidance.
  • pulsed electric field therapy may be applied to target neural fibers via the probe, after which the probe may be removed from the patient to conclude the procedure.
  • Such therapy would reduce or alleviate clinical symptoms of CHF, hypertension, renal disease and/or other cardio-renal diseases, for several months (e.g., potentially up to six months or more).
  • This time period might be sufficient to allow the body to heal, for example, this period might reduce a risk of CHF onset after an acute myocardial infarction, thereby alleviating a need for subsequent re-treatment.
  • the patient might return to the physician or self-administer a repeat therapy.
  • repeat therapy might be fully automated.
  • the need for a repeat therapy optionally might be predicted by monitoring of physiologic parameters, for example, by monitoring specific neurohormones (plasma renin levels, etc.) that are indicative of increased sympathetic nervous activity.
  • specific neurohormones plasma renin levels, etc.
  • provocative maneuvers known to increase sympathetic nervous activity such as head-out water immersion testing, may be conducted to determine the need for repeat therapy.
  • an external control box may connect through or across the patient's skin to a subcutaneous element. Leads may be tunneled from the subcutaneous element to a nerve cuff or a nerve contact element in proximity to Gerota's fascia, the renal artery, vein and/or hilum. PEF therapy may be conducted from the external control box across or through the skin to the subcutaneous element and to the nerve cuff or nerve contact element to modulate neural fibers that contribute to renal function.
  • the PEF may be transmitted across or through the skin via direct methods, such as needles or trocars, or via indirect methods such as transcutaneous energy transfer (“TET”) systems.
  • TET systems are used clinically to recharge batteries in rechargeable implantable stimulation or pacing devices, left ventricular assist devices, etc.
  • the subcutaneous system may have a receiving coil to gather transmitted energy, a capacitor or temporary storage device to collect the charge, control electronics to create a waveform, as well as leads and nerve electrode(s) to deliver the energy waveform to the renal nerves.
  • a PEF signal itself may be transmitted telemetrically through the skin to a subcutaneous receiving element.
  • Passive leads connecting the subcutaneous receiving element to nerve electrodes may conduct the signal to the nerves for treatment, thereby eliminating a need for a receiving battery or capacitor, as well as signal processing circuitry, in the implanted portion of the PEF system.
  • the implanted subcutaneous elements may be entirely passive.
  • the subcutaneous elements may include an implantable electrical connector that is easily accessible via a simple needle, leads to the nerve electrodes, and the nerve electrodes themselves.
  • the implanted system might also incorporate an infusion lumen to allow drugs to be introduced from a subcutaneous port to the treatment area.
  • a control box, a lead and a transcutaneous needle or trocar electrical connector may be disposed external to the patient.
  • PEF systems In addition or as an alternative to non-implanted PEF systems, or partially implantable PEF systems, fully implantable PEF systems may be utilized.
  • An implantable control housing containing signal generation circuitry and energy supply circuitry may be attached to leads which are tunneled to a renal nerve cuff or renal nerve contact electrodes.
  • Power may be provided by a battery included with the implantable housing. The battery may, for example, require surgical replacement after a period of months or years, or may be rechargeable via a TET system.
  • a PEF signal is applied to the nerves using the contact electrodes, with the control housing serving as the return electrode.
  • the need for repeat therapy may be tested by the implantable system.
  • a lower-frequency stimulation signal may be applied to the nerves periodically by the system.
  • the test signal would be felt by the patient, and the system then would be instructed to apply another course of PEF therapy.
  • This repeat treatment optionally might be patient or physician initiated. If the patient feels the test signal, the patient or physician might operate the implantable system via electronic telemetry, magnetic switching or other means to apply the required therapeutic PEF.
  • the system could be programmed in an open-loop fashion to apply another PEF treatment periodically, for example, once every six months.
  • monitoring methods that assess parameters or symptoms of the patient's clinical status may be used to determine the need for repeat therapy.
  • the nerve contact elements of any of the percutaneous, partially implantable or fully implantable systems may comprise a variety of embodiments.
  • the implanted elements might be in the form of a cuff, basket, cupped contact, fan-shaped contact, space-filling contact, spiral contact or the like.
  • Implantable nerve contact elements may incorporate elements that facilitate anchoring and/or tissue in-growth.
  • fabric or implantable materials such as Dacron or ePTFE might be incorporated into the design of the contact elements to facilitate in-growth into areas of the device that would help anchor the system in place, but repel tissue in-growth in undesired areas, such as the electrical contacts.
  • coatings, material treatments, drug coatings or drug elution might be used alone or in combination to facilitate or retard tissue in-growth into various segments of the implanted system as desired.
  • FIG. 1 is a schematic view illustrating human renal anatomy.
  • FIG. 2 is a schematic detail view showing the location of the renal nerves relative to the renal artery.
  • FIGS. 3A and 3B are schematic side- and end-views, respectively, illustrating a direction of electrical current flow for selectively affecting renal nerves.
  • FIG. 4 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation.
  • FIG. 5 is a schematic view illustrating another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode for at least partially surrounding renal vasculature.
  • FIG. 6 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spiral electrode configured to surround renal vasculature.
  • FIG. 7 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a ring electrode configured to at least partially surround renal vasculature.
  • FIG. 8 is a schematic view illustrating another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode configured for positioning near the renal hilum.
  • FIG. 9 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a space-occupying electrode configured for positioning near the renal hilum.
  • FIG. 10 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for accessing Gerota's fascia.
  • FIGS. 11A and 11B are schematic views illustrating methods and apparatus for mechanically anchoring a delivery system or electrode within Gerota's fascia.
  • FIG. 12 is a schematic view illustrating a method and apparatus for positioning electrodes along a patient's renal artery within an annular space between the artery and Gerota's fascia in order to achieve renal neuromodulation.
  • FIGS. 13A-13C are schematic detail views of various embodiments of the electrodes of FIG. 12 .
  • FIGS. 14A-14C are schematic views and a detail view illustrating another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIGS. 15A and 158 are a schematic view and a detail view illustrating yet another method and apparatus for positioning electrodes.
  • FIG. 16 is a schematic view illustrating still another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIGS. 17A and 17B are schematic views illustrating another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIG. 18 is a schematic view illustrating a method and apparatus for positioning implantable electrodes along the patient's renal artery.
  • FIGS. 19A and 19B are schematic views illustrating methods and apparatus for renal neuromodulation via partially implantable systems.
  • FIG. 20 is a schematic view illustrating a method and apparatus for renal neuromodulation via a fully implantable system.
  • FIGS. 21A and 21B are schematic views illustrating a method and apparatus for positioning electrodes relative to a renal neural structure in accordance with another embodiment of the invention.
  • FIGS. 22A and 22B are schematic views illustrating a method and apparatus for positioning electrodes relative to a patient's renal neural structure in accordance with still another embodiment of the invention.
  • FIG. 23 is a schematic view illustrating a method and apparatus for positioning electrodes relative to a patient's renal neural structure in accordance with yet another embodiment of the invention.
  • the present invention relates to methods and apparatus for renal neuromodulation and/or other neuromodulation. More particularly, the present invention relates to methods and apparatus for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion.
  • electroporation and electropermeabilization are methods of manipulating the cell membrane or intracellular apparatus. For example, short high-energy pulses cause pores to open in cell membranes. The extent of porosity in the cell membrane (e.g., size and number of pores) and the duration of the pores (e.g., temporary or permanent) are a function of the field strength, pulse width, duty cycle, field orientation, cell type and other parameters.
  • pores will generally close spontaneously upon termination of lower strength fields or shorter pulse widths (herein defined as “reversible electroporation”).
  • reversible electroporation Each cell type has a critical threshold above which pores do not close such that pore formation is no longer reversible; this result is defined as “irreversible electroporation,” “irreversible breakdown” or “irreversible damage.”
  • the cell membrane ruptures and/or irreversible chemical imbalances caused by the high porosity occur.
  • Such high porosity can be the result of a single large hole and/or a plurality of smaller holes.
  • nsPEF nanosecond pulsed electric fields
  • Certain applications of nsPEF have been shown to cause cell death by inducing apoptosis, or programmed cell death, rather than acute cell death.
  • the term “comprising” is used throughout to mean including at least the recited feature such that any greater number of the same feature and/or additional types features are not precluded.
  • Several embodiments of the present invention provide extravascular devices or systems for inducing renal neuromodulation, such as a temporary change in target nerves that dissipates over time, continuous control over neural function, and/or denervation.
  • the apparatus and methods described herein may utilize any suitable electrical signal or field parameters, e.g., any electric field, that will achieve the desired neuromodulation (e.g., electroporative effect).
  • any suitable electrical signal or field parameters e.g., any electric field
  • the human renal anatomy includes kidneys K that are supplied with oxygenated blood by renal arteries RA, which are connected to the heart by the abdominal aorta AA. Deoxygenated blood flows from the kidneys to the heart via renal veins RV and the inferior vena cava IVC.
  • FIG. 2 illustrates a portion of the renal anatomy in greater detail. More specifically, the renal anatomy also includes renal nerves RN extending longitudinally along the lengthwise dimension L of renal artery RA generally within the adventitia of the artery.
  • the renal artery RA has smooth muscle cells SMC that surround the arterial circumference and spiral around the angular axis ⁇ of the artery.
  • the smooth muscle cells of the renal artery accordingly have a lengthwise or longer dimension extending transverse (i.e., non-parallel) to the lengthwise dimension of the renal artery.
  • the misalignment of the lengthwise dimensions of the renal nerves and the smooth muscle cells is defined as “cellular misalignment.”
  • the cellular misalignment of the renal nerves and the smooth muscle cells may be exploited to selectively affect renal nerve cells with reduced effect on smooth muscle cells. More specifically, because larger cells require less energy to exceed the irreversibility threshold of electroporation, several embodiments of electrodes of the present invention are configured to align at least a portion of an electric field generated by the electrodes with or near the longer dimensions of the cells to be affected.
  • the extravascular device has electrodes configured to create an electrical field aligned with or near the lengthwise dimension L of the renal artery RA to affect renal nerves RN.
  • the lengthwise or longer dimensions of tissues overlying or underlying the target nerve are orthogonal or otherwise off-axis (e.g., transverse) with respect to the longer dimensions of the nerve cells.
  • the PEF may propagate along the lateral or shorter dimensions of the non-target cells (i.e., such that the PEF propagates at least partially out of alignment with non-target smooth muscle cells SMC). Therefore, as seen in FIG.
  • applying a PEF with propagation lines Li generally aligned with the longitudinal dimension L of the renal artery RA is expected to preferentially cause electroporation, electrofusion, denervation or other neuromodulation in cells of the target renal nerves RN without unduly affecting the non-target arterial smooth muscle cells SMC.
  • the pulsed electric field may propagate in a single plane along the longitudinal axis of the renal artery, or may propagate in the longitudinal direction along any angular segment 9 through a range of 0′′-360′′.
  • Embodiments of the method shown in FIG. 3 may have particular application with the extravascular methods and apparatus of the present invention.
  • a PEF system placed exterior to the renal artery may propagate an electric field having a longitudinal portion that is aligned to run with the longitudinal dimension of the artery in the region of the renal nerves RN and the smooth muscle cell SMC of the vessel wall so that the wall of the artery remains at least substantially intact while the outer nerve cells are destroyed.
  • FIG. 4 shows one embodiment of an extravascular pulsed electric field apparatus 200 in accordance with the present invention that includes one or more electrodes configured to deliver a pulsed electric field to renal neural fibers to achieve renal neuromodulation.
  • Apparatus 200 comprises a laparoscopic or percutaneous PEF system having -probe 210 configured for insertion in proximity to the track of the renal neural supply along the renal artery or vein or hilum and/or within Gerota's fascia under, e.g., CT or radiographic guidance.
  • the proximal section of probe 210 generally has an electrical connector to couple the probe to pulse generator 100 , and the distal section has at least one electrode 212 .
  • Pulsed electric field generator 100 is located external to the patient, and the electrode(s) 212 are electrically coupled to the generator via probe 210 and wires 211 .
  • the generator 100 as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention described hereinafter for delivery of a PEF with desired field parameters. It should be understood that electrodes of embodiments described hereinafter may be electronically connected to the generator, even if the generator is not explicitly shown or described with each embodiment.
  • the electrode(s) 212 can be individual electrodes, a common but segmented electrode, or a common and continuous electrode.
  • a common but segmented electrode may, for example, be formed by providing a slotted tube fitted onto the electrode, or by electrically connecting a series of individual electrodes.
  • Individual electrodes or groups of electrodes 212 may be configured to provide a bipolar signal.
  • Electrodes 212 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and external ground pad 214 .
  • Ground pad 214 may, for example, be attached externally to the patient's skin, e.g., to the patient's leg or flank.
  • electrode 212 may comprise a single electrode that is used in conjunction with separate patient ground pad 214 located external to the patient and coupled to generator 100 for monopolar use.
  • Probe 210 optionally may comprise a conductive material that is insulated in regions other than its distal tip, thereby forming distal tip electrode 212 .
  • electrode 212 may, for example, be delivered through a lumen of probe 210 .
  • Probe 210 and electrode 212 may be of the standard needle or trocar-type used clinically for pulsed RF nerve block, such as those sold by Valleylab (a division of Tyco Healthcare Group LP) of Boulder, Colo.
  • apparatus 200 may comprise a flexible and/or custom-designed probe for the renal application described herein.
  • percutaneous probe 210 has been advanced through percutaneous access site P into proximity within renal artery RA. Once properly positioned, pulsed electric field therapy may be applied to target neural fibers across electrode 212 and ground pad 214 . After treatment, apparatus 200 may be removed from the patient to conclude the procedure.
  • the need for a repeat therapy optionally might be predicted by monitoring of physiologic parameters, for example, by monitoring specific neurohormones (plasma renin levels, etc.) that are indicative of increased sympathetic nervous activity.
  • specific neurohormones plasma renin levels, etc.
  • provocative maneuvers known to increase sympathetic nervous activity such as head-out water immersion testing, may be conducted to determine the need for repeat therapy.
  • apparatus 200 may comprise a probe having an introducer with an expandable distal segment having one or more electrodes. After insertion in proximity to target neural fibers, the distal segment may be opened or expanded into an expanded configuration. In one embodiment, this expanded configuration would follow a contour of the renal artery and/or vein to treat a number of neural fibers with a single application of PEF therapy. For example, in the expanded configuration, the distal segment may partially or completely encircle the renal artery and/or vein. In another embodiment, the expanded configuration may facilitate mechanical dissection, for example, to expand Gerota's fascia and create a working space for placement of the electrodes and/or for delivery of PEF therapy. The distal segment optionally may be translated independently of the probe or introducer.
  • the distal segment When utilized as an electrode, the distal segment may, for example, be extended out of an introducer placed near the treatment area.
  • the conducting distal segment maybe advanced out of the sheath until a desired amount of renal neural tissue is contacted; and then PEF therapy may be delivered via the distal segment electrode.
  • the conducting distal segment may be allowed to reform or expand into a spiral of one or more loops, a random space-occupying shape, or another suitable configuration.
  • Mesh, braid, or conductive gels or liquids could be employed in a similar manner.
  • FIG. 5 illustrates another embodiment of apparatus 200 comprising an expandable distal segment.
  • apparatus 200 comprises introducer probe 220 and electrode element 230 with a distal segment 232 that may be expandable.
  • Probe 220 may, for example, comprise a standard, needle or trocar.
  • Electrode element 230 is proximally coupled to generator 100 and is configured for advancement through probe 220 .
  • Distal segment 232 of the electrode element may be delivered to a treatment site in a closed or contracted configuration within probe 220 and then opened or .expanded to a treatment configuration at or near the treatment site.
  • the distal segment 232 can be expanded by advancing segment 232 out of probe 220 and/or by retracting the probe relative to the distal segment.
  • the embodiment of the distal segment 232 shown in FIG. 5 comprises a basket or cup-shaped element in a deployed configuration 234 for delivering treatment.
  • the distal segment 232 preferably self-expands to the treatment configuration.
  • the apparatus 200 can further include one or more electrodes 233 coupled to distal segment 232 .
  • Electrode element 230 optionally may be electrically isolated from probe 220 such that the probe and electrodes 233 form two parts of a bipolar system in which the probe 220 is a return electrode.
  • distal segment 232 alternatively may comprise a spiral element 236 in the treatment configuration.
  • the distal segment may, for example, be pre-formed into a spiral configuration.
  • the spiral might be straightened through a number of different mechanisms (e.g., positioning within probe 220 , pull wires to actuate segment 232 between straight and spiraled, a shape-memory material, etc.) for insertion into proximity, e.g., with the renal vasculature.
  • the spiral Once near a target vessel, the spiral may be actuated or allowed to reform in order to more fully encircle the vessel, thereby facilitating treatment of a greater number of neural fibers with a single application of PEF therapy.
  • the spiral or helical element 236 of distal segment 232 is configured to appose the vessel wall and bring electrode(s) 233 into close proximity to renal neural structures.
  • the pitch of the helix can be varied to provide a longer treatment zone or to minimize circumferential overlap of adjacent treatments zones, e.g., in order to reduce a risk of stenosis formation.
  • This pitch change can be achieved, for example, via (a) a heatset, (b) combining a plurality of segments of different pitches to form segment 232 , (c) adjusting the pitch of segment 232 through the use of internal pull wires, (d) adjusting mandrels inserted into the segment, (e) shaping sheaths placed over the segment, or (f) any other suitable means for changing the pitch either in-situ or before introduction into the body.
  • the electrode(s) 233 along the length of distal segment 232 can be individual electrodes, a common but segmented electrode, or a common and continuous electrode.
  • a common and continuous electrode may, for example, comprise a conductive coil formed into or placed over the helix of distal segment 232 .
  • Individual electrodes or groups of electrodes 233 may be configured to provide a bipolar signal, or any configuration of the electrodes may be used together at a common potential in conjunction with a separate external patient ground for monopolar use.
  • Electrodes 233 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and an external ground.
  • Distal segment 232 optionally may be insulated on a side facing away from the renal artery such that at least portions of the side of the segment configured to face the renal artery are exposed to form electrode(s) 233 .
  • Distal segment 232 of electrode element 230 may be delivered in proximity to renal artery RA in a low profile delivery configuration within probe 220 .
  • distal segment 232 may self-expand or may be expanded actively, e.g., via a pull wire or a balloon, into the spiral configuration 236 about the wall of the artery.
  • the distal segment may, for example, be guided around the vessel, e.g., via steering and blunt dissection, and activated to take on the tighter-pitch coil of the spiral configuration 236 .
  • the distal segment might be advanced relative to probe 220 and snaked around the artery via its predisposition to assume the spiral configuration. Positioning the distal segment within Gerota's fascia might facilitate placement of distal segment 232 around the artery.
  • a pulsed electric field then may be generated by the PEF generator 100 , transferred through electrode element 230 to electrodes 233 , and delivered via the electrodes to renal nerves located along the artery.
  • the electrodes are arranged so that the pulsed electric field is aligned with the longitudinal dimension of the artery to modulate the neural activity along the renal nerves (e.g., denervation). This may be achieved, for example, via irreversible electroporation, electrofusion and/or inducement of apoptosis in the nerve cells.
  • distal segment 232 of electrode element 230 of apparatus 200 comprises electrode 233 having ring or cuff configuration 238 .
  • the ring electrode may partially surround renal artery RA, as shown.
  • Electrode 233 optionally may comprise retractable pin 239 for closing the ring to more fully or completely encircle the artery once the electrode has been placed about the artery.
  • a PEF therapy may be delivered via the electrode to achieve renal neuromodulation.
  • ring electrode 238 optionally may be surgically placed.
  • FIG. 8 illustrates another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode configured for positioning near the renal hilum.
  • distal segment 232 of electrode element 230 may comprise fan-shaped member 240 having a plurality of fingers that may be collapsed or constrained within probe 220 during percutaneous introduction to, and/or retraction from, a treatment site.
  • One or more electrodes 233 may be positioned along the fingers of the distal segment. Once in the area of the renal vasculature and/or renal hilum HI the fan may be extended, or probe 220 may be retracted, to deploy distal segment 232 .
  • the fingers for example, spread out to cover a larger treatment area along the vasculature or renal hilum that facilitates treatment of a greater number of target neural fibers and/or creates a working space for subsequent introduction of electrodes 233 .
  • a distal region of probe 220 is positioned in proximity to renal hilum HI and the fan-shaped distal segment 232 has been expanded to the deployed configuration.
  • PEF therapy then may be delivered via electrodes 233 to neural fibers in that region for renal neuromodulation.
  • distal segment 232 alternatively may comprise a tufted element 242 having one or more strands with electrodes 233 .
  • Distal segment 232 may be positioned in proximity to renal hilum H within probe 220 , and then the tufted element 242 can be expanded to a space-occupying configuration. Electrodes 233 then may deliver PEF therapy to renal nerves.
  • probe 220 optionally may pierce fascia F (e.g. Gerota's fascia) that surrounds kidney K and/or renal artery RA.
  • Distal segment 232 may be advanced through probe 220 between the fascia and renal structures, such as hilum H and artery RA. This may position electrodes 233 into closer proximity with target renal neural structures.
  • distal segment 232 comprises the fan-shaped member 240 of FIG. 8 or the tufted element 242 of FIG. 9
  • expansion of the distal segment within fascia F may place electrodes 233 into proximity with more target renal neural structures and/or may create a working space for delivery of one or more electrodes 233 or of conducting gels or liquids, etc.
  • FIGS. 11A and 118 methods and apparatus for mechanically anchoring probe 220 , distal segment 232 of electrode element 230 , and/or electrode(s) 233 within fascia F are described.
  • FIGS. 11A and 11B illustrate mechanical anchoring element 250 in combination with distal segment 232 of electrode element 230 , but this should in no way be construed as limiting because the apparatus 200 does not need to include the anchoring element 250 .
  • distal segment 232 may be expandable or non-expansile.
  • distal segment 232 comprises anchoring element 250 having collar 252 disposed about the distal segment.
  • Self-expanding wire loops 254 of the anchoring element extend from the collar.
  • the loops 254 may be collapsed against the shaft of distal segment 232 while the distal segment is disposed within probe 220 (as illustrated in dotted profile in FIG. 11A ).
  • Probe 220 may pierce the fascia near a treatment site, thereby positioning a distal tip of the probe within the fascia.
  • the probe then may be retracted relative to electrode element 230 (and/or the electrode element may be advanced relative to the probe) to position distal segment 232 distal of the probe.
  • the loops 254 self-expand in a manner that mechanically anchors distal segment 232 within the fascia.
  • anchoring element 250 may be actively expanded, e.g., in a mechanical fashion.
  • the loops 254 optionally may be covered with an elastic polymer, such as silicone, CFlex, urethane, etc., such that the anchoring element 250 at least partially seals an entry site into fascia F. This may facilitate immediate infusion of fluids through probe 220 or electrode element 230 without leakage or with reduced leakage. Additionally or alternatively, when electrode element 230 is configured for longer-term implantation, anchoring element 250 may be covered in a porous material, such as a polyester fabric or mesh, that allows or promotes tissue in-growth. Tissue in-growth may enhance the anchoring providing by element 250 for maintaining the position of distal segment 232 and/or electrode(s) 233 . Tissue in-growth may also enhance sealing at the entry site into the fascia.
  • an elastic polymer such as silicone, CFlex, urethane, etc.
  • distal segment 232 is cut in the longitudinal direction to create a series of flaps 256 around the catheter that form an alternative anchoring element 250 .
  • Pull-wire 258 may, for example, extend along the exterior of electrode element 230 or may be disposed within a lumen of the electrode element, and is coupled to distal segment 232 distal of flaps 256 .
  • other expandable members incorporating wires, baskets, meshes, braids or the like may be mechanically expanded to provide anchoring.
  • anchoring element 250 of FIG. 11B optionally may be covered with an elastic polymer covering to create a gasket for sealing the entry site into the fascia.
  • infusion holes may be provided distal of the anchoring element.
  • a proximal portion of the slit section of anchoring element 250 may be covered with the elastic polymer, while a distal portion remains uncovered, for example, to facilitate infusion through slits 256 .
  • anchoring element 250 of FIG. 11B may comprise a porous material to facilitate tissue in-growth, as described previously. As with the elastic polymer, the porous material optionally may cover only a portion of the anchoring element to facilitate, for example, both tissue in-growth and infusion.
  • FIG. 12 shows a method and apparatus for renal neuromodulation in which electrodes are positioned along a patient's renal vasculature within an annular space between the vasculature and the surrounding fascia.
  • the electrodes may be positioned in proximity to the renal artery and/or the renal vein by guiding a needle within fascia F using, for example, Computed Tomography (“CT”) guidance.
  • CT Computed Tomography
  • the needle may comprise introducer probe 220 , or the probe may be advanced over and exchanged for the needle after placement of the needle within the fascia.
  • the electrode element 230 When the probe 220 is within the Gerota's fascia, the electrode element 230 is delivered through the probe in close proximity to renal vasculature (e.g., the renal artery RA).
  • the electrode element optionally may be advanced along the length of the artery toward the patient's aorta to bluntly dissect a space for the electrode element as the electrode element is advanced.
  • the electrode element 230 may comprise a catheter, and electrodes 233 coupled to the electrode element 230 may deliver PEF therapy or other types of therapy to renal neural structures located along the renal artery. Bipolar or monopolar electrode(s) may be provided as desired.
  • electrodes 233 comprise a pair of bipolar electrode coils disposed about distal segment 232 .
  • electrodes 233 comprise a pair of bipolar electrodes having contoured metal plates disposed on the side of distal segment 232 facing renal artery RA to face target renal neural structures. This is expected to preferentially direct PEF therapy delivered between electrodes 233 towards the renal artery.
  • distal segment 232 and/or electrodes 233 may comprise a concave profile so that more surface area of the electrodes is juxtaposed with the wall of the renal artery.
  • FIGS. 14A-C show another method and apparatus for positioning electrodes along the patient's renal artery.
  • apparatus 200 of FIGS. 14A-C comprises catheter 300 .
  • Electrode element 230 is positioned within catheter 300 and optionally may comprise an atraumatic tip of the catheter.
  • catheter 300 may be advanced through probe 220 within the annular space between the fascia F and the renal vasculature shown as renal artery RA.
  • the catheter and/or the probe optionally may be advanced over a guidewire.
  • Various agents may be infused through the catheter to create a working space for advancement of the catheter and/or to facilitate placement of electrodes 233 .
  • the catheter may be retracted relative to the electrode element to expose electrodes 233 along distal segment 232 of the electrode element, as in FIG. 140 .
  • the electrodes 233 in FIGS. 14A-C may comprise a bipolar pair of expandable electrodes that may be collapsed for delivery within catheter 300 .
  • the electrodes may, for example, be fabricated from a self-expanding material, such as spring steel or Nitinol.
  • electrodes 233 illustratively are on a common electrode element 230 , it should be understood that multiple electrode elements 230 each having one or more electrodes 233 may be delivered through catheter 300 and positioned as desired along the renal vasculature.
  • electrodes 233 at least partially surround or encircle renal artery RA. It is expected that at least partially encircling the renal artery during PEF therapy will enhance the efficacy of renal neuromodulation or denervation.
  • the electrodes may be used to deliver PEF therapy and/or to stimulate a physiologic response to test or to challenge an extent of neuromodulation, as well as to apply energy to disrupt, modulate or block renal nerve function.
  • Various agents may be infused in the vicinity of electrodes 233 prior to, during or after energy delivery, for example, to aid in conduction (e.g., saline and hypertonic saline), to improve electroporative effect (e.g., heated solutions) or to provide protection to non-target cells (e.g., cooling solutions or Poloxamer-188).
  • to aid in conduction e.g., saline and hypertonic saline
  • electroporative effect e.g., heated solutions
  • non-target cells e.g., cooling solutions or Poloxamer-188.
  • Electrodes 233 may, for example, comprise coils, wires, ribbons, polymers, braids or composites. Polymers may be used in combination with conductive materials to direct a pulsed electric field into and/or along target tissue while insulating surrounding tissue. With reference to FIG. 14C , distal segment 232 of electrode element 230 may comprise insulation I that is locally removed or omitted along an inner surface of electrodes 233 where the electrodes face or contact renal vasculature.
  • electrode(s) 233 may comprise an undulating or sinusoidal configuration that extends along the renal vasculature.
  • the sinusoidal configuration of electrodes 233 may provide for greater contact area along the vessel wall than do electrodes 233 of FIGS. 14A-C , while still facilitating sheathing of electrode element 230 within catheter 300 for delivery and/or retrieval.
  • Electrode(s) 233 may comprise a unitary electrode configured for monopolar energy delivery, or distal segment 232 of electrode element 230 may comprise insulation that is locally removed or omitted to expose electrodes 233 .
  • the electrodes may comprise discrete wire coils or other conductive sections attached to the undulating distal segment 232 .
  • Electrodes 233 may be energized in any combination to form a bipolar electrode pair.
  • FIG. 16 is a schematic view illustrating yet another embodiment of the method and apparatus of FIGS. 14A-C .
  • catheter 300 comprises multiple lumens 304 through which electrode elements 230 may be advanced and electrodes 233 may be collapsed for delivery.
  • electrode elements 230 When positioned at a treatment site, electrode elements 230 may be advanced relative to catheter 300 and/or the catheter 300 may be retracted relative to the electrode elements, such that electrodes 233 expand to the configuration of FIG. 16 for at least partially encircling renal vasculature.
  • apparatus 200 illustratively comprises two electrode elements 230 , each having an expandable electrode 233 .
  • the two electrodes 233 may be used as a bipolar electrode pair during PEF therapy.
  • Electrode elements 230 may be translated independently, such that a separation distance between electrodes 233 may be altered dynamically, as desired.
  • FIGS. 17A-B show still another embodiment of the method and apparatus of FIGS. 14A-C .
  • electrode 233 comprises a panel that may be rolled into scroll for low-profile delivery within catheter 300 .
  • the catheter may be retracted relative to the electrode, and/or the electrode may be advanced relative to the catheter, such that panel unfurls or unrolls, preferably in a self-expanding fashion, to partially or completely encircle renal artery RA.
  • PEF therapy may be delivered through electrode 233 in a monopolar fashion, or the electrode may be segmented to facilitate bipolar use.
  • a second electrode may be delivery in proximity to electrode 233 for bipolar PEF therapy.
  • Electrodes embodiments 212 or 233 of FIGS. 5-17B may be configured for use in a single PEF therapy session, or may be configured for implantation for application of follow-on PEF therapy sessions.
  • leads may, for example, extend from electrodes 212 or 233 to a subcutaneous element controllable through the skin or to an implantable controller.
  • distal segment 232 of electrode element 230 may, for example, be detachable at a treatment site, such that electrodes 233 are implanted in the annular space between renal artery RA and fascia F, while a proximal portion of electrode element 230 is removed from the patient.
  • electrode element 230 may comprise leads 260 for tunneling to a subcutaneous element or to an implantable controller.
  • the electrode element further comprises detachment mechanism 270 disposed just proximal of distal segment 232 for detachment of the distal segment at the treatment site.
  • Distal segment 232 optionally may comprise elements configured to promote tissue in-growth in the vicinity of electrodes 233 .
  • FIGS. 19A-B illustrate partially implantable systems having a pulsed electric field generator 100 connected either directly or indirectly to a subcutaneous element 400 through or across the patient's skin.
  • Subcutaneous element 400 may be placed, for example, posteriorly, e.g., in the patient's lower back.
  • the subcutaneous element 400 is attached to leads 260 , and the leads 260 are electrically coupled to implanted electrodes 233 positioned in proximity to the renal artery, renal vein, renal hilum, Gerota's fascia or other suitable structures.
  • Electrodes 233 can be located bilaterally, i.e., in proximity to both the right and left renal vasculature, but alternatively may be positioned unilaterally. Furthermore, multiple electrodes may be positioned in proximity to either or both kidneys for bipolar PEF therapy, or monopolar electrodes may be provided and used in combination with a return electrode, such as external ground pad 214 or a return electrode integrated with subcutaneous element 400 .
  • subcutaneous element 400 may comprise a subcutaneous port 402 having an electrical contact 403 comprising one or more connecting or docking points for coupling the electrical contact(s) to generator 100 .
  • a transcutaneous needle, trocar, probe or other element 410 that is electrically coupled to generator 100 pierces the patient's skin and releasably couples to contact 403 .
  • Transcutaneous element 410 conducts PEF therapy from the generator 100 across or through the patient's skin to , subcutaneous contact 403 and to electrodes 233 for modulating neural fibers that contribute to renal function.
  • the implanted system might also incorporate an infusion lumen to allow drugs to be introduced from subcutaneous port 402 to the treatment area.
  • TET transcutaneous energy transfer
  • subcutaneous element 400 comprises subcutaneous receiving element 404
  • external TET transmitting element 420 is coupled to generator 100 .
  • a PEF signal may be transmitted telemetrically through the skin from external transmitting element 420 to subcutaneous receiving element 404 .
  • Passive leads 260 connect the subcutaneous receiving element to nerve electrodes 233 and may conduct the signal to the nerves for treatment.
  • subcutaneous receiving element 404 is coupled to a capacitor or other energy storage element 430 , such as a battery, which in turn is coupled to implanted controller 440 that connects via leads 260 to electrodes 233 .
  • External transmitting element 420 is coupled to external charger and programmer 450 for transmitting energy to the implanted system and/or to program the implanted system.
  • Charger and programmer 450 need not supply energy in the form of a PEF for transmission across the patient's skin from external element 420 to receiving element 404 .
  • controller 440 may create a PEF waveform from energy stored within storage element 430 .
  • the controller optionally may serve as a return electrode for monopolar-type PEF therapy.
  • FIG. 20 illustratively is rechargeable and/or reprogrammable.
  • the fully implanted PEF system alternatively may be neither rechargeable nor programmable. Rather, the system may be powered via storage element 430 , which, if necessary, may be configured for surgical replacement after a period of months or years after which energy stored in the storage element has been depleted.
  • the need for repeat therapy, the location for initial therapy and/or the efficacy of therapy optionally may be determined by the system.
  • an implantable system periodically may apply a lower-frequency stimulation signal to renal nerves; when the nerve has returned toward baseline function, the test signal would be felt by the patient, and the system would apply another course of PEF therapy.
  • This repeat treatment optionally might be patient initiated: when the patient feels the test signal, the patient would operate the implantable system via electronic telemetry, magnetic switching or other means to apply the required therapeutic PEF.
  • the responses of physiologic parameters known to be affected by stimulation of the renal nerves may be monitored.
  • Such parameters comprise, for example, renin levels, sodium levels, renal blood flow and blood pressure.
  • the known physiologic responses to stimulation should no longer occur in response to such stimulation.
  • Efferent nerve stimulation waveforms may, for example, comprise frequencies of about 1-10 Hz, while afferent nerve stimulation waveforms may, for example, comprise frequencies of up to about 50 Hz.
  • Waveform amplitudes may, for example, range up to about 50V1 while pulse durations may, for example, range up to about 20 milliseconds.
  • the electrodes used to deliver PEFs in any of the previously described variations of the present invention also may be used to deliver stimulation waveforms to the renal vasculature.
  • the variations may comprise independent electrodes configured for stimulation.
  • a separate stimulation apparatus may be provided.
  • one way to use stimulation to identify renal nerves is to stimulate the nerves such that renal blood flow is affected—or would be affected if the renal nerves had not been denervated or modulated.
  • stimulation acts to reduce renal blood flow, this response may be attenuated or abolished with denervation.
  • stimulation prior to neural modulation would be expected to reduce blood flow, while stimulation after neural modulation would not be expected to reduce blood flow to the same degree when utilizing similar stimulation parameters and location(s) as prior to neural modulation. This phenomenon may be utilized to quantify an extent of renal neuromodulation.
  • Embodiments of the present invention may comprise elements for monitoring renal blood flow or for monitoring any of the other physiological parameters known to be affected by renal stimulation.
  • Renal blood flow optionally may be visualized through the skin (e.g., using an ultrasound transducer).
  • An extent of electroporation additionally or alternatively may be monitored directly using Electrical Impedance Tomography (“EIT”) or other electrical impedance measurements or sensors, such as an electrical impedance index.
  • EIT Electrical Impedance Tomography
  • other electrical impedance measurements or sensors such as an electrical impedance index.
  • monitoring methods which check for measures of the patient's clinical status may be used to determine the need for repeat therapy.
  • These monitoring methods could be completely or partially implantable, or they could be external measurements which communicate telemetrically with implantable elements.
  • an implantable pressure sensor of the kind known in the field e.g., sensors developed by CardioMEMS of Atlanta, Ga.
  • Increasing right atrial pressure is a sign of fluid overload and improper CHF management. If an increase in right atrial pressure is detected by the sensor, a signal might be sent to controller 440 and another PEF treatment would delivered.
  • arterial pressure might be monitored and/or used as a control signal in other disease conditions, such as the treatment of high blood pressure.
  • invasive or non-invasive measures of cardiac output might be utilized. Non-invasive measures include, for example, thoracic electrical bioimpedance.
  • weight fluctuation is correlated with percentage body fat to determine a need for repeat therapy. It is known that increasing patient weight, especially in the absence of an increase in percent body fat, is a sign of increasing volume overload. Thus, the patient's weight and percentage body fat may be monitored, e.g., via a specially-designed scale that compares the weight gain to percentage body fat. If it is determined that weight gain is due fluid overload, the scale or other monitoring element(s) could signal controller 440 , e.g., telemetrically, to apply another PEF treatment.
  • thermocouple When using partially or completely implantable PEF systems, a thermocouple, other temperature or impedance monitoring elements, or other sensors, might be incorporated into subcutaneous elements 400 .
  • External elements of the PEF system might be designed to connect with and/or receive information from the sensor elements.
  • transcutaneous element 410 connects to subcutaneous electrical contact 403 of port 402 and can deliver stimulation signals to interrogate target neural tissue to determine a need, or parameters, for therapy, as well as to determine impedance of the nerve and nerve electrodes.
  • a separate connector to mate with a sensor lead may be extended through or alongside transcutaneous element 410 to contact a corresponding subcutaneous sensor lead.
  • subcutaneous electrical contact 403 may have multiple target zones placed next to one another, but electrically isolated from one another.
  • a lead extending from an external controller e.g., external generator 100 , would split into several individual transcutaneous needles, or individual needle points coupled within a larger probe, which are inserted through the skin to independently contact their respective subcutaneous target zones.
  • an external controller e.g., external generator 100
  • diagnostic electronics within the external controller optionally may be designed to ensure that the correct needle is in contact with each corresponding subcutaneous target zone.
  • Elements may be incorporated into the implanted elements of PEF systems to facilitate anchoring and/or tissue in-growth.
  • fabric or implantable materials such as Dacron or ePTFE, might be incorporated into the design of the subcutaneous elements 400 to facilitate in-growth into areas of the elements that would facilitate anchoring of the elements in place, while optionally repelling tissue in-growth in undesired areas, such as along electrodes 233 .
  • coatings, material treatments, drug coatings or drug elution might be used alone or in combination to facilitate or retard tissue in-growth into various elements of the implanted PEF system, as desired.
  • any of the embodiments of the present invention described herein optionally may be configured for infusion of agents into the treatment area before, during or after energy application, for example, to create a working space to facilitate electrode placement, to enhance or modify the neurodestructive or neuromodulatory effect of applied energy, to protect or temporarily displace non-target cells, and/or to facilitate visualization. Additional applications for infused agents will be apparent. If desired, uptake of infused agents by cells may be enhanced via initiation of reversible electroporation in the cells in the presence of the infused agents.
  • the infusate may comprise, for example, fluids (e.g., heated or chilled fluids), air, CO2, saline, heparinized saline, hypertonic saline, contrast agents, gels, conductive materials, space-occupying materials (gas, solid or liquid), protective agents, such as Poloxamer-188, anti-proliferative agents, or other drugs and/or drug delivery elements. Variations of the present invention additionally or alternatively may be configured for aspiration.
  • FIGS. 21A and 21B illustrate another embodiment of the apparatus 200 in accordance with the invention.
  • the apparatus 200 includes the probe 220 and a catheter 300 received within the probe 220 .
  • the catheter 300 includes an anchoring mechanism 251 having a first collar 280 , a second collar 282 located distally relative to the first collar 280 , and an expandable member 284 connected to the first and second collars 280 and 282 .
  • the expandable member 284 can be a braid, mesh, woven member or other device that expands as the distance between the first and second collars 280 and 282 is reduced.
  • the expandable member 284 can include polyesters, Nitinol, elgiloy, stainless steel, composites and/or other suitable materials.
  • the collars 280 and 282 , and/or the expandable member 284 may be at least partially covered in an expandable polymer to form a seal with the patient.
  • the apparatus 200 can further include a plurality of electrodes 230 located at the expandable member 284 and/or the first or second collars 280 or 282 .
  • the anchoring mechanism 250 operates by moving at least one of the collars 280 and 282 toward the other to reduce the distance between the collars.
  • the first collar 280 can be slidable along the catheter 300
  • the second collar 282 can be fixed to the catheter 300 .
  • the expandable member 284 can be expanded by pulling back on the catheter 300 to engage the proximal collar 280 with the distal end of the probe 220 .
  • the distal end of the probe 220 drives the first collar 280 toward the second collar 282 to move the anchoring mechanism 251 from a collapsed position shown in FIG. 21A to an expanded configuration illustrated in FIG. 218 .
  • the apparatus 200 can include an actuator that can be advanced distally to drive the first collar 280 toward the second collar 282 .
  • the actuator for example, can be a coaxial sleeve around the catheter 300 that may be operated from the proximal end of the probe 220 .
  • FIGS. 22A and 22B illustrate another embodiment of the apparatus 200 in accordance with the invention.
  • the apparatus 200 includes a probe 220 and a catheter 300 that moves through the probe 220 as described above with reference to FIGS. 11A-B .
  • the apparatus 200 of this embodiment further includes an anchoring mechanism 253 having a first collar 281 , a second collar 283 located distally along the catheter 300 relative to the first collar 281 , and an expandable member 285 attached to the first and second collars 281 and 283 .
  • the first collar 281 is slidably movable along the catheter 300
  • the second collar 283 is fixed to the catheter 300 .
  • the first collar 281 can be fixed to the catheter 300 and the second collar 283 can be movable along the catheter 300 .
  • the expandable member 285 is a self-contracting member that is actively stretched into a collapsed configuration to be contained within the probe 220 for delivery to the desired treatment site in the patient.
  • FIG. 22A illustrates the expandable member 285 stretched into an elongated state to be constrained within the probe 220 .
  • the apparatus 200 is deployed in the patient by moving the probe 220 proximally relative to the catheter 300 and/or moving the catheter 300 distally relative to the probe 220 until the expandable member 285 is outside of the probe 220 .
  • the expandable member 285 draws the movable collar toward the fixed collar to allow the expandable member 285 to expand outwardly relative to the radius of the catheter shaft 300 .
  • the expandable member 285 can be a spring formed from a polyester, stainless steel, composites or other suitable materials with sufficient elasticity to inherently move into the expanded configuration shown in FIG. 228 .
  • the expandable member can be formed from a shaped memory metal, such as Nitinol or elgiloy, that moves from the collapsed configuration illustrated in FIG. 22A to the expanded configuration illustrated in FIG. 226 at a given temperature.
  • the apparatus 200 can further include electrodes (not shown) located along the expandable member for delivering the pulsed electric field to the renal nerve or other structure related to renallcardio activity.
  • FIG. 23 illustrates yet another embodiment of a method and apparatus for positioning an electrode relative to a renal structure to deliver a PEF for neuromodulation.
  • the apparatus includes a first percutaneous member 510 , a second percutaneous member 520 , an electrode assembly 530 , and a retriever 540 .
  • the first percutaneous member 510 can be a first trocar through which the electrode assembly 530 is delivered to the renal artery RA or other renal structure
  • the second percutaneous member 520 can be a second trocar through which the retriever 540 is delivered to the general region of the electrode assembly 530 .
  • the electrode assembly 530 includes an electrode 532
  • the retriever 540 is a snare configured to capture the electrode assembly.
  • the first percutaneous member 510 is inserted into the patient and the electrode assembly 530 is passed through the first percutaneous member 510 until the electrode 532 is at or near a desired location relative to the renal structure.
  • the second percutaneous member 520 is also inserted into the patient so that the retriever 540 can engage the electrode assembly 530 .
  • the retriever 540 can be used to hold the electrode 532 at the desired location during delivery of a PEF to the patient and/or to remove the electrode assembly 530 after delivering the PEF.

Abstract

Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/189,563, filed on Jul. 25, 2005, which is a Continuation-In-Part of U.S. application patent Ser. No. 11/129,765, filed on May 13, 2005, now U.S. Pat. No. 7,653,483, which claims benefit from the filing dates of U.S. provisional patent application Ser. No. 60/616,254, filed Oct. 5, 2004; and Ser. No. 60/624,793, filed Nov. 2, 2004; all of which are incorporated herein by reference in their entireties. Furthermore, U.S. patent application Ser. No. 11/189,563 is also a Continuation-In-Part of U.S. application patent Ser. No. 10/900,199 filed Jul. 28, 2004, now U.S. Pat. No. 6,978,174, and U.S. application patent Ser. No. 10/408,665, filed Apr. 8, 2003, now U.S. Pat. No. 7,162,303; both of which claim the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/370,190, filed Apr. 8, 2002; Ser. No. 60/415,575, filed Oct. 3, 2002; and Ser. No. 60/442,970, filed Jan. 29, 2003; and all of which are incorporated herein by reference in their entireties.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually' indicated to be incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to methods and apparatus for renal neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving renal neuromodulation via a pulsed electric field and/or electroporation or electrofusion.
  • BACKGROUND
  • Congestive Heart Failure (“CHF”) is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes impaired and results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidney and circulatory system.
  • This reduced capacity further reduces blood flow to the kidney. It is believed that progressively decreasing perfusion of the kidney is a principal non-cardiac cause perpetuating the downward spiral of CHF. Moreover, the fluid overload and associated clinical symptoms resulting from these physiologic changes are predominant causes for excessive hospital admissions, terrible quality of life and overwhelming costs to the health care system due to CHF.
  • While many different diseases may initially damage the heart, once present, CHF is split into two types: Chronic CHF and Acute (or Decompensated-Chronic) CHF. Chronic Congestive Heart Failure is a longer term, slowly progressive, degenerative disease. Over years, chronic congestive heart failure leads to cardiac insufficiency. Chronic CHF is clinically categorized by the patient's ability to exercise or perform normal activities of daily living (such as defined by the New York Heart Association Functional Class). Chronic CHF patients are usually managed on an outpatient basis, typically with drugs.
  • Chronic CHF patients may experience an abrupt, severe deterioration in heart function, termed Acute Congestive Heart Failure, resulting in the inability of the heart to maintain sufficient blood flow and pressure to keep vital organs of the body alive. These Acute CHF deteriorations can occur when extra stress (such as an infection or excessive fluid overload) significantly increases the workload on the heart in a stable chronic CHF patient. In contrast to the stepwise downward progression of chronic CHF, a patient suffering acute CHF may deteriorate from even the earliest stages of CHF to severe hernodynamic collapse. In addition, Acute CHF can occur within hours or days following an Acute Myocardial Infarction (“AMI”), which is a sudden, irreversible injury to the heart muscle, commonly referred to as a heart attack.
  • As mentioned, the kidneys play a significant role in the progression of CHF, as well as in Chronic Renal Failure (“CRF”), End-Stage Renal Disease (“ESRD”), hypertension (pathologically high blood pressure) and other cardio-renal diseases. The functions of the kidney can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow. Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions resulting from reduced renal function or renal failure (kidney failure) are believed to increase the workload of the heart. In a CHF patient, renal failure will cause the heart to further deteriorate as the water build-up and blood toxins accumulate due to the poorly functioning kidneys and, in turn, cause the heart further harm.
  • The primary functional unit of the kidneys that is involved in urine formation is called the “nephron.” Each kidney consists of about one million nephrons. The nephron is made up of a glomerulus and its tubules, which can be separated into a number of sections: the proximal tubule, the medullary loop (loop of Henle), and the distal tubule. Each nephron is surrounded by different types of cells that have the ability to secrete several substances and hormones (such as renin and erythropoietin). Urine is formed as a result of a complex process starting with the filtration of plasma water from blood into the glomerulus. The walls of the glomerulus are freely permeable to water and small molecules but almost impermeable to proteins and large molecules. Thus, in a healthy kidney, the filtrate is virtually free of protein and has no cellular elements. The filtered fluid that eventually becomes urine flows through the tubules. The final chemical composition of the urine is determined by the secretion into, and re-absorption of substances from, the urine required to maintain homeostasis.
  • Receiving about 20% of cardiac output, the two kidneys filter about 125 ml of plasma water per minute. Filtration occurs because of a pressure gradient across the glomerular membrane. The pressure in the arteries of the kidney pushes plasma water into the glomerulus causing filtration. To keep the Glomerulur Filtration Rate (“GFR”) relatively constant, pressure in the glomerulus is held constant by the constriction or dilatation of the afferent and efferent arterioles, the muscular walled vessels leading to and from each glomerulus.
  • In a CHF patient, the heart will progressively fail, and blood flow and pressure will drop in the patient's circulatory system. During acute heart failure, short-term compensations serve to maintain perfusion to critical organs, notably the brain and the heart that cannot survive prolonged reduction in blood flow. However, these same responses that initially aid survival during acute heart failure become deleterious during chronic heart failure.
  • A combination of complex mechanisms contribute to deleterious fluid overload in CHF. As the heart fails and blood pressure drops, the kidneys cannot function and become impaired due to insufficient blood pressure for perfusion. This impairment in renal function ultimately leads to the decrease in urine output. Without sufficient urine output, the body retains fluids, and the resulting fluid overload causes peripheral edema (swelling of the legs), shortness of breath (due to fluid in the lungs), and fluid retention in the abdomen, among other undesirable conditions in the patient.
  • In addition, the decrease in cardiac output leads to reduced renal blood flow, increased neurohormonal stimulus, and release of the hormone renin from the juxtaglomerular apparatus of the kidney. This results in avid retention of sodium and, thus, volume expansion. Increased renin results in the formation of angiotensin, a potent vasoconstrictor. Heart failure and the resulting reduction in blood pressure also reduce the blood flow and perfusion pressure through organs in the body other than the kidneys. As they suffer reduced blood pressure, these organs may become hypoxic, resulting in a metabolic acidosis that reduces the effectiveness of pharmacological therapy and increases a risk of sudden death.
  • This spiral of deterioration that physicians observe in heart failure patients is believed to be mediated, at least in part, by activation of a subtle interaction between heart function and kidney function, known as the renin-angiotensin system. Disturbances in the heart's pumping function results in decreased cardiac output and diminished blood flow. The kidneys respond to the diminished blood flow as though the total blood volume was decreased, when in fact the measured volume is normal or even increased. This leads to fluid retention by the kidneys and formation of edema, thereby causing the fluid overload and increased stress on the heart
  • Systemically, CHF is associated with an abnormally elevated peripheral vascular resistance and is dominated by alterations of the circulation resulting from an intense disturbance of sympathetic nervous system function. Increased activity of the sympathetic nervous system promotes a downward vicious cycle of increased arterial vasoconstriction (increased resistance of vessels to blood flow) followed by a further reduction of cardiac output, causing even more diminished blood flow to the vital organs.
  • In CHF via the previously explained mechanism of vasoconstriction, the heart and circulatory system dramatically reduce blood flow to the kidneys. During CHF, the kidneys receive a command from higher neural centers via neural pathways and hormonal messengers to retain fluid and sodium in the body. In response to stress on the heart, the neural centers command the kidneys to reduce their filtering functions. While in the short term, these commands can be beneficial, if these commands continue over hours and days they can jeopardize the person's life or make the person dependent on artificial kidney for life by causing the kidneys to cease functioning
  • When the kidneys do not fully filter the blood, a huge amount of fluid is retained in the body, which results in bloating (fluid retention in tissues) and increases the workload of the heart. Fluid can penetrate into the lungs, and the patient becomes short of breath. This odd and self-destructive phenomenon is most likely explained by the effects of normal compensatory mechanisms of the body that improperly perceive the chronically low blood pressure of CHF as a sign of temporary disturbance, such as bleeding.
  • In an acute situation, the body tries to protect its most vital organs, the brain and the heart, from the hazards of oxygen deprivation. Commands are issued via neural and hormonal pathways and messengers. These commands are directed toward the goal of maintaining blood pressure to the brain and heart, which are treated by the body as the most vital organs. The brain and heart cannot sustain low perfusion for any substantial period of time. A stroke or a cardiac arrest will result if the blood pressure to these organs is reduced to unacceptable levels. Other organs, such as the kidneys, can withstand somewhat longer periods of ischemia without suffering long-term damage. Accordingly, the body sacrifices blood supply to these other organs in favor of the brain and the heart.
  • The hemodynamic impairment resulting from CHF activates several neurohormonal systems, such as the renin-angiotensin and aldosterone system, sympatho-adrenal system and vasopressin release. As the kidneys suffer from increased renal vasoconstriction, the GFR drops, and the sodium load in the circulatory system increases. Simultaneously, more renin is liberated from the juxtaglomerular of the kidney. The combined effects of reduced kidney functioning include reduced glomerular sodium load, an aldosterone-mediated increase in tubular reabsorption of sodium, and retention in the body of sodium and water. These effects lead to several signs and symptoms of the CHF condition, including an enlarged heart, increased systolic wall stress, an increased myocardial oxygen demand, and the formation of edema on the basis of fluid and sodium retention in the kidney. Accordingly, sustained reduction in renal blood flow and vasoconstriction is directly responsible for causing the fluid retention associated with CHF.
  • CHF is progressive, and as of now, not curable. The limitations of drug therapy and its inability to reverse or even arrest the deterioration of CHF patients are clear. Surgical therapies are effective in some cases, but limited to the end-stage patient population because of the associated risk and cost. Furthermore, the dramatic role played by kidneys in the deterioration of CHF patients is not adequately addressed by current surgical therapies.
  • The autonomic nervous system is recognized as an important pathway for control signals that are responsible for the regulation of body functions critical for maintaining vascular fluid balance and blood pressure. The autonomic nervous system conducts information in the form of signals from the body's biologic sensors such as baroreceptors (responding to pressure and volume of blood) and chemoreceptors (responding to chemical composition of blood) to the central nervous system via its sensory fibers. It also conducts command signals from the central nervous system that control the various innervated components of the vascular system via its motor fibers.
  • Experience with human kidney transplantation provided early evidence of the role of the nervous system in kidney function. It was noted that after transplant, when all the kidney nerves were totally severed, the kidney increased the excretion of water and sodium. This phenomenon was also observed in animals when the renal nerves were cut or chemically destroyed. The phenomenon was called “denervation diuresis” since the denervation acted on a kidney similar to a diuretic medication. Later the “denervation diuresis” was found to be associated with vasodilatation of the renal arterial system that led to increased blood flow through the kidney. This observation was confirmed by the observation in animals that reducing blood pressure supplying the kidneys reversed the “denervation diuresis.”
  • It was also observed that after several months passed after the transplant surgery in successful cases, the “denervation diuresis” in transplant recipients stopped and the kidney function returned to normal. Originally, it was believed that the “renal diuresis” was a transient phenomenon and that the nerves conducting signals from the central nervous system to the kidney were not essential to kidney function. Later discoveries suggested that the renal nerves had a profound ability to regenerate and that the reversal of “denervation diuresis” could be attributed to the growth of new nerve fibers supplying the kidneys with necessary stimuli.
  • Another body of research focused on the role of the neural control of secretion of the hormone renin by the kidney. As was discussed previously, renin is a hormone responsible for the “vicious cycle” of vasoconstriction and water and sodium retention in heart failure patients. It was demonstrated that an increase or decrease in renal sympathetic nerve activity produced parallel increases and decreases in the renin secretion rate by the kidney, respectively.
  • In summary, it is known from clinical experience and the large body of animal research that an increase in renal sympathetic nerve activity leads to vasoconstriction of blood vessels supplying the kidney, decreased renal blood flow, decreased removal of water and sodium from the body, and increased renin secretion. It is also known that reduction of sympathetic renal nerve activity, e.g., via denervation, may reverse these processes.
  • It has been established in animal models that the heart failure condition results in abnormally high sympathetic stimulation of the kidney. This phenomenon was traced back to the sensory nerves conducting signals from baroreceptors to the central nervous system. Baroreceptors are present in the different locations of the vascular system. Powerful relationships exist between baroreceptors in the carotid arteries (supplying the brain with arterial blood) and sympathetic nervous stimulus to the kidneys. When arterial blood pressure was suddenly reduced in experimental animals with heart failure, sympathetic tone increased. Nevertheless, the normal baroreflex likely is not solely responsible for elevated renal nerve activity in chronic CHF patients. If exposed to a reduced level of arterial pressure for a prolonged time, baroreceptors normally “reset,” i.e., return to a baseline level of activity, until a new disturbance is introduced. Therefore, it is believed that in chronic CHF patients, the components of the autonomic-nervous system responsible for the control of blood pressure and the neural control of the kidney function become abnormal. The exact mechanisms that cause this abnormality are not fully understood, but its effects on the overall condition of the CHF patients are profoundly negative.
  • End-Stage Renal Disease is another condition at least partially controlled by renal neural activity. There has been a dramatic increase in patients with ESRD due to diabetic nephropathy, chronic glomerulonephritis and uncontrolled hypertension. Chronic Renal Failure slowly progresses to ESRD. CRF represents a critical period in the evolution of ESRD. The signs and symptoms of CRF are initially minor, but over the course of 2-5 years, become progressive and irreversible. While some progress has been made in combating the progression to, and complications of, ESRD, the clinical benefits of existing interventions remain limited.
  • It has been known for several decades that renal diseases of diverse etiology (hypotension, infection, trauma, autoimmune disease, etc.) can lead to the syndrome of CRF characterized by systemic hypertension, proteinuria (excess protein filtered from the blood into the urine) and a progressive decline in GFR ultimately resulting in ESRD. These observations suggest that CRF progresses via a common pathway of mechanisms and that therapeutic interventions inhibiting this common pathway may be successful in slowing the rate of progression of CRF irrespective of the initiating cause.
  • To start the vicious cycle of CRF, an initial insult to the kidney causes loss of some nephrons. To maintain normal GFR, there is an activation of compensatory renal and systemic mechanisms resulting in a state of hyperfiltration in the remaining nephrons. Eventually, however, the increasing numbers of nephrons “overworked” and damaged by hyperfiltration are lost. At some point, a sufficient number of nephrons are lost so that normal GFR can no longer be maintained. These pathologic changes of CRF produce worsening systemic hypertension, thus high glomerular pressure and increased hyperfiltration. Increased glomerular hyperfiltration and permeability in CRF pushes an increased amount of protein from the blood, across the glomerulus and into the renal tubules. This protein is directly toxic to the tubules and leads to further loss of nephrons, increasing the rate of progression of CRF. This vicious cycle of CRF continues as the GFR drops with loss of additional nephrons leading to further hyperfiltration and eventually to ESRD requiring dialysis. Clinically, hypertension and excess protein filtration have been shown to be two major determining factors in the rate of progression of CRF to ESRD.
  • Though previously clinically known, it was not until the 1980s that the physiologic link between hypertension, proteinuria, nephron loss and CRF was identified. In the 1990s the role of sympathetic nervous system activity was elucidated. Afferent signals arising from the damaged kidneys due to the activation of mechanoreceptors and chemoreceptors stimulate areas of the brain responsible for blood pressure control. In response, the brain increases sympathetic stimulation on the systemic level, resulting in increased blood pressure primarily through vasoconstriction of blood vessels. When elevated sympathetic stimulation reaches the kidney via the efferent sympathetic nerve fibers, it produces major deleterious effects in two forms. The kidneys are damaged by direct renal toxicity from the release of sympathetic neurotransmitters (such as norepinephrine) in the kidneys independent of the hypertension. Furthermore, secretion of renin that activates Angiotensin II is increased, which increases systemic vasoconstriction and exacerbates hypertension.
  • Over time, damage to the kidneys leads to a further increase of afferent sympathetic signals from the kidney to the brain. Elevated Angiotensin II further facilitates internal renal release of neurotransmitters. The feedback loop is therefore closed, which accelerates deterioration of the kidneys.
  • In view of the foregoing, it would be desirable to provide methods and apparatus for the treatment of congestive heart failure, renal disease, hypertension and/or other cardio-renal diseases via renal neuromodulation and/or denervation.
  • SUMMARY
  • The present invention provides methods and apparatus for renal neuromodulation (e.g., denervation) using a pulsed electric field (PEF). Several aspects of the invention apply a pulsed electric field to effectuate electroporation and/or electrofusion in renal nerves, other neural fibers that contribute to renal neural function, or other neural features. Several embodiments of the invention are extravascular devices for inducing renal neuromodulation. The apparatus and methods described herein may utilize any suitable electrical signal or field parameters that achieve neuromodulation, including denervation, and/or otherwise create an electroporative and/or electrofusion effect. For example, the electrical signal may incorporate a nanosecond pulsed electric field (nsPEF) and/or a PEF for effectuating electroporation. One specific embodiment comprises applying a first course of PEF electroporation followed by a second course of nsPEF electroporation to induce apoptosis in any cells left intact after the PEF treatment, or vice versa. An alternative embodiment comprises fusing nerve cells by applying a PEF in a manner that is expected to reduce or eliminate the ability of the nerves to conduct electrical impulses. When the methods and apparatus are applied to renal nerves and/or other neural fibers that contribute to renal neural functions, the inventors of the present invention believe that urine output will increase, renin levels will decrease, urinary sodium excretion will increase and/or blood pressure will be controlled in a manner that will prevent or treat CHF, hypertension, renal system diseases, and other renal anomalies.
  • Several aspects of particular embodiments can achieve such results by selecting suitable parameters for the PEFs and/or nsPEFs. Pulsed electric field parameters can include, but are not limited to, field strength, pulse width, the shape of the pulse, the number of pulses and/or the interval between pulses (e.g., duty cycle). Suitable field strengths include, for example, strengths of up to about 10,000 Vlcm. Suitable pulse widths include, for example, widths of up to about 1 second. Suitable shapes of the pulse waveform include, for example, AC waveforms, sinusoidal waves, cosine waves, combinations of sine and cosine waves, DC waveforms, DC-shifted AC waveforms, RF waveforms, square waves, trapezoidal waves, exponentially-decaying waves, combinations thereof, etc. Suitable numbers of pulses include, for example, at least one pulse. Suitable pulse intervals include, for example, intervals less than about 10 seconds. Any combination of these parameters may be utilized as desired. These parameters are provided for the sake of illustration and should in no way be considered limiting. Additional and alternative waveform parameters will be apparent.
  • Several embodiments are directed to extravascular systems for providing longlasting denervation to minimize acute myocardial infarct (“AMI”) expansion and for helping to prevent the onset of morphological changes that are affiliated with congestive heart failure. For example, one embodiment of the invention comprises treating a patient for an infarction, e.g., via coronary angioplasty and/or stenting, and performing an extravascular pulsed electric field renal denervation procedure under, for example, Computed Tomography (“CT”) guidance. PEF therapy can, for example, be delivered in a separate session soon after the AMI has been stabilized. Renal neuromodulation also may be used as an adjunctive therapy to renal surgical procedures. In these embodiments, the anticipated increase in urine output, decrease in renin levels, increase in urinary sodium excretion and/or control of blood pressure provided by the renal PEF therapy is expected to reduce the load on the heart to inhibit expansion of the infarct and prevent CHF.
  • Several embodiments of extravascular pulsed electric field systems described herein may denervate or reduce the activity of the renal nervous supply immediately post-infarct, or at any time thereafter, without leaving behind a permanent implant in the patient. These embodiments are expected to increase urine output, decrease renin levels, increase urinary sodium excretion and/or control blood pressure for a period of several months during which the patient's heart can heal. If it is determined that repeat and/or chronic neuromodulation would be beneficial after this period of healing, renal PEF treatment can be repeated as needed and/or a permanent implant may be provided.
  • In addition to efficaciously treating AMI, several embodiments of systems described herein are also expected to treat CHF, hypertension, renal failure, and other renal or cardio-renal diseases influenced or affected by increased renal sympathetic nervous activity. For example, the systems may be used to treat CHF at any time by extravascularly advancing the PEF system to a treatment site, for example, under CT-guidance. Once properly positioned, a PEF therapy may be delivered to the treatment site. This may, for example, modify a level of fluid offload.
  • The use of PEF therapy for the treatment of CHF, hypertension, end-stage renal disease and other cardio-renal diseases is described in detail hereinafter in several different extravascular system embodiments. The systems can be introduced into the area of the renal neural tissue under, for example, CT, ultrasonic, angiographic or laparoscopic guidance, or the systems can be surgically implanted using a combination of these or other techniques. The various elements of the system may be placed in a single operative session, or in two or more staged sessions. For instance, a percutaneous therapy might be conducted under CT or CTI/angiographic guidance. For a partially or fully implantable system, a combination of CT, angiographic or laparoscopic implantation of leads and nerve contact elements might be paired with a surgical implantation of the subcutaneous contact element or control unit. The systems may be employed unilaterally or bilaterally as desired for the intended clinical effect. The systems can be used to modulate efferent or afferent nerve signals, as well as combinations of efferent and afferent signals.
  • In one variation, PEF therapy is delivered at a treatment site to create a nonthermal nerve block, reduce neural signaling, or otherwise modulate neural activity. Alternatively or additionally, cooling, cryogenic, pulsed RF, thermal RF, thermal or nonthermal microwave, focused or unfocused ultrasound, thermal or non-thermal DC, as well as any combination thereof, may be employed to reduce or otherwise control neural signaling.
  • Several embodiments of the PEF systems may completely block or denervate the target neural structures, or the PEF systems may otherwise modulate the renal nervous activity. As opposed to a full neural blockade such as denervation, other neuromodulation produces a less-than-complete change in the level of renal nervous activity between the kidney(s) and the rest of the body. Accordingly, varying the pulsed electric field parameters will produce different effects on the nervous activity.
  • Any of the embodiments of the present invention described herein optionally may be configured for infusing agents into the treatment area before, during or after energy application. The infused agents may create a working space for introduction of PEF system elements, such as electrodes. Additionally or alternatively, the infused agents may be selected to enhance or modify the neuromodulatory effect of the energy application. The agents also may protect or temporarily displace non-target cells, and/or facilitate visualization.
  • Several embodiments of the present invention may comprise detectors or other elements that facilitate identification of locations for treatment and/or that measure or confirm the success of treatment. For example, temporary nerve-block agents, such as lidocaine, bupivacaine or the like, might be infused through a percutaneous needle injection or through an infusion port built into a partially or fully implantable system to ensure proper location of neural contact elements prior to delivering PEF therapy. Alternatively or additionally, the system can be configured to also deliver stimulation waveforms and monitor physiological parameters known to respond to stimulation of the renal nerves. Based on the results of the monitored parameters, the system can determine the location of renal nerves and/or whether denervation has occurred. Detectors for monitoring of such physiological responses include, for example, Doppler elements, thermocouples, pressure sensors, and imaging modalities (e.g., fluoroscopy, intravascular ultrasound, etc.). Alternatively, electroporation may be monitored directly using, for example, Electrical Impedance Tomography (“EIT”) or other electrical impedance measurements or sensors. Additional monitoring techniques and elements will be apparent. Such detector(s) may be integrated with the PEF systems or they may be separate elements.
  • In some embodiments, stimulation of the nerve plexus may be utilized to determine whether repeat therapy is required. For example, stimulation may be used to elicit a pain response from the renal nerves. If the patient senses this stimulation, then it is apparent that nerve conduction has returned, and repeat therapy is warranted. This method optionally may be built into any of the systems described hereinafter—percutaneous, partially implantable or fully implantable.
  • Still other specific embodiments include electrodes configured to align the electric field with the longer dimension of the target cells. For instance, nerve cells tend to be elongate structures with lengths that greatly exceed their lateral dimensions (e.g., diameter). By aligning an electric field so that the directionality of field propagation preferentially affects the longitudinal aspect of the cell rather than the lateral aspect of the cell, it is expected that lower field strengths can be used to kill or disable target cells. This is expected to conserve the battery life of implantable devices, reduce collateral effects on adjacent structures, and otherwise enhance the ability to modulate the neural activity of target cells.
  • Other embodiments of the invention are directed to applications in which the longitudinal dimensions of cells in tissues overlying or underlying the nerve are transverse (e.g., orthogonal or otherwise at an angle) with respect to the longitudinal direction of the nerve cells. Another aspect of these embodiments is to align the directionality of the PEF such that the field aligns with the longer dimensions of the target cells and the shorter dimensions of the non-target cells. More specifically, arterial smooth muscle cells are typically elongate cells which surround the arterial circumference in a generally spiraling orientation so that their longer dimensions are circumferential rather than running longitudinally along the artery. Nerves of the renal plexus, on the other hand, run along the outside of the artery generally in the longitudinal direction of the artery. Therefore, applying a PEF which is generally aligned with the longitudinal direction of the artery is expected to preferentially cause electroporation in the target nerve cells without affecting at least some of the non-target arterial smooth muscle cells to the same degree. This may enable preferential denervation of nerve cells (target cells) in the adventitia or periarterial region without affecting the smooth muscle cells of the vessel to an undesirable extent.
  • It should be understood that the PEF systems described in this application are not necessarily required to make physical contact with the tissue or neural fibers to be treated. Electrical energy, such as thermal RF energy and non-thermal pulsed RF, may be conducted to tissue to be treated from a short distance away from the tissue itself. Thus, it may be appreciated that “nerve contact” comprises both physical contact of a system element with the nerve, as well as electrical contact alone without physical contact, or as a combination of the two.
  • In one embodiment of an extravascular pulsed electric field system, a laparoscopic or percutaneous system is utilized. For example, a percutaneous probe may be inserted in proximity to the track of the renal neural supply along the renal artery or vein and/or within the Gerota's fascia, under, e.g., CT or radiographic guidance. Once properly positioned, pulsed electric field therapy may be applied to target neural fibers via the probe, after which the probe may be removed from the patient to conclude the procedure.
  • It is expected that such therapy would reduce or alleviate clinical symptoms of CHF, hypertension, renal disease and/or other cardio-renal diseases, for several months (e.g., potentially up to six months or more). This time period might be sufficient to allow the body to heal, for example, this period might reduce a risk of CHF onset after an acute myocardial infarction, thereby alleviating a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient might return to the physician or self-administer a repeat therapy. As another alternative, repeat therapy might be fully automated.
  • The need for a repeat therapy optionally might be predicted by monitoring of physiologic parameters, for example, by monitoring specific neurohormones (plasma renin levels, etc.) that are indicative of increased sympathetic nervous activity. Alternatively, provocative maneuvers known to increase sympathetic nervous activity, such as head-out water immersion testing, may be conducted to determine the need for repeat therapy.
  • In addition or as an alternative to laparoscopic or percutaneous PEF systems, partially implantable PEF systems may be utilized. For example, an external control box may connect through or across the patient's skin to a subcutaneous element. Leads may be tunneled from the subcutaneous element to a nerve cuff or a nerve contact element in proximity to Gerota's fascia, the renal artery, vein and/or hilum. PEF therapy may be conducted from the external control box across or through the skin to the subcutaneous element and to the nerve cuff or nerve contact element to modulate neural fibers that contribute to renal function.
  • The PEF may be transmitted across or through the skin via direct methods, such as needles or trocars, or via indirect methods such as transcutaneous energy transfer (“TET”) systems. TET systems are used clinically to recharge batteries in rechargeable implantable stimulation or pacing devices, left ventricular assist devices, etc. In one TET embodiment of the present invention, the subcutaneous system may have a receiving coil to gather transmitted energy, a capacitor or temporary storage device to collect the charge, control electronics to create a waveform, as well as leads and nerve electrode(s) to deliver the energy waveform to the renal nerves.
  • In another TET embodiment, a PEF signal itself may be transmitted telemetrically through the skin to a subcutaneous receiving element. Passive leads connecting the subcutaneous receiving element to nerve electrodes may conduct the signal to the nerves for treatment, thereby eliminating a need for a receiving battery or capacitor, as well as signal processing circuitry, in the implanted portion of the PEF system.
  • In other partially implanted embodiments, the implanted subcutaneous elements may be entirely passive. The subcutaneous elements may include an implantable electrical connector that is easily accessible via a simple needle, leads to the nerve electrodes, and the nerve electrodes themselves. The implanted system might also incorporate an infusion lumen to allow drugs to be introduced from a subcutaneous port to the treatment area. A control box, a lead and a transcutaneous needle or trocar electrical connector may be disposed external to the patient.
  • In addition or as an alternative to non-implanted PEF systems, or partially implantable PEF systems, fully implantable PEF systems may be utilized. An implantable control housing containing signal generation circuitry and energy supply circuitry may be attached to leads which are tunneled to a renal nerve cuff or renal nerve contact electrodes. Power may be provided by a battery included with the implantable housing. The battery may, for example, require surgical replacement after a period of months or years, or may be rechargeable via a TET system. When therapy is required, a PEF signal is applied to the nerves using the contact electrodes, with the control housing serving as the return electrode.
  • The need for repeat therapy may be tested by the implantable system. For example, a lower-frequency stimulation signal may be applied to the nerves periodically by the system. When the nerve has returned toward baseline function, the test signal would be felt by the patient, and the system then would be instructed to apply another course of PEF therapy. This repeat treatment optionally might be patient or physician initiated. If the patient feels the test signal, the patient or physician might operate the implantable system via electronic telemetry, magnetic switching or other means to apply the required therapeutic PEF.
  • Alternatively, the system could be programmed in an open-loop fashion to apply another PEF treatment periodically, for example, once every six months. In still another embodiment, monitoring methods that assess parameters or symptoms of the patient's clinical status may be used to determine the need for repeat therapy.
  • The nerve contact elements of any of the percutaneous, partially implantable or fully implantable systems may comprise a variety of embodiments. For instance, the implanted elements might be in the form of a cuff, basket, cupped contact, fan-shaped contact, space-filling contact, spiral contact or the like. Implantable nerve contact elements may incorporate elements that facilitate anchoring and/or tissue in-growth. For instance, fabric or implantable materials such as Dacron or ePTFE might be incorporated into the design of the contact elements to facilitate in-growth into areas of the device that would help anchor the system in place, but repel tissue in-growth in undesired areas, such as the electrical contacts. Similarly, coatings, material treatments, drug coatings or drug elution might be used alone or in combination to facilitate or retard tissue in-growth into various segments of the implanted system as desired.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Several embodiments of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
  • FIG. 1 is a schematic view illustrating human renal anatomy.
  • FIG. 2 is a schematic detail view showing the location of the renal nerves relative to the renal artery.
  • FIGS. 3A and 3B are schematic side- and end-views, respectively, illustrating a direction of electrical current flow for selectively affecting renal nerves.
  • FIG. 4 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation.
  • FIG. 5 is a schematic view illustrating another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode for at least partially surrounding renal vasculature.
  • FIG. 6 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spiral electrode configured to surround renal vasculature.
  • FIG. 7 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a ring electrode configured to at least partially surround renal vasculature.
  • FIG. 8 is a schematic view illustrating another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode configured for positioning near the renal hilum.
  • FIG. 9 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a space-occupying electrode configured for positioning near the renal hilum.
  • FIG. 10 is a schematic view illustrating a percutaneous or laparoscopic method and apparatus for accessing Gerota's fascia.
  • FIGS. 11A and 11B are schematic views illustrating methods and apparatus for mechanically anchoring a delivery system or electrode within Gerota's fascia.
  • FIG. 12 is a schematic view illustrating a method and apparatus for positioning electrodes along a patient's renal artery within an annular space between the artery and Gerota's fascia in order to achieve renal neuromodulation.
  • FIGS. 13A-13C are schematic detail views of various embodiments of the electrodes of FIG. 12.
  • FIGS. 14A-14C are schematic views and a detail view illustrating another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIGS. 15A and 158 are a schematic view and a detail view illustrating yet another method and apparatus for positioning electrodes.
  • FIG. 16 is a schematic view illustrating still another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIGS. 17A and 17B are schematic views illustrating another method and apparatus for positioning electrodes along the patient's renal artery.
  • FIG. 18 is a schematic view illustrating a method and apparatus for positioning implantable electrodes along the patient's renal artery.
  • FIGS. 19A and 19B are schematic views illustrating methods and apparatus for renal neuromodulation via partially implantable systems.
  • FIG. 20 is a schematic view illustrating a method and apparatus for renal neuromodulation via a fully implantable system.
  • FIGS. 21A and 21B are schematic views illustrating a method and apparatus for positioning electrodes relative to a renal neural structure in accordance with another embodiment of the invention.
  • FIGS. 22A and 22B are schematic views illustrating a method and apparatus for positioning electrodes relative to a patient's renal neural structure in accordance with still another embodiment of the invention.
  • FIG. 23 is a schematic view illustrating a method and apparatus for positioning electrodes relative to a patient's renal neural structure in accordance with yet another embodiment of the invention.
  • DETAILED DESCRIPTION A. Overview
  • The present invention relates to methods and apparatus for renal neuromodulation and/or other neuromodulation. More particularly, the present invention relates to methods and apparatus for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. As used herein, electroporation and electropermeabilization are methods of manipulating the cell membrane or intracellular apparatus. For example, short high-energy pulses cause pores to open in cell membranes. The extent of porosity in the cell membrane (e.g., size and number of pores) and the duration of the pores (e.g., temporary or permanent) are a function of the field strength, pulse width, duty cycle, field orientation, cell type and other parameters. In general, pores will generally close spontaneously upon termination of lower strength fields or shorter pulse widths (herein defined as “reversible electroporation”). Each cell type has a critical threshold above which pores do not close such that pore formation is no longer reversible; this result is defined as “irreversible electroporation,” “irreversible breakdown” or “irreversible damage.” At this point, the cell membrane ruptures and/or irreversible chemical imbalances caused by the high porosity occur. Such high porosity can be the result of a single large hole and/or a plurality of smaller holes. Certain types of electroporation energy parameters also appropriate for use in renal neuromodulation are high voltage pulses with a duration in the sub-microsecond range (nanosecond pulsed electric fields, or nsPEF) which may leave the cellular membrane intact, but alter the intracellular apparatus or function of the cell in ways which cause cell death or disruption. Certain applications of nsPEF have been shown to cause cell death by inducing apoptosis, or programmed cell death, rather than acute cell death. Also, the term “comprising” is used throughout to mean including at least the recited feature such that any greater number of the same feature and/or additional types features are not precluded.
  • Several embodiments of the present invention provide extravascular devices or systems for inducing renal neuromodulation, such as a temporary change in target nerves that dissipates over time, continuous control over neural function, and/or denervation. The apparatus and methods described herein may utilize any suitable electrical signal or field parameters, e.g., any electric field, that will achieve the desired neuromodulation (e.g., electroporative effect). To better understand the structures of the extravascular devices and the methods of using these devices for neuromodulation, it is useful to understand the renal anatomy in humans.
  • B. Selected Embodiments of Methods for Neuromodulation
  • With reference now to FIG. 1, the human renal anatomy includes kidneys K that are supplied with oxygenated blood by renal arteries RA, which are connected to the heart by the abdominal aorta AA. Deoxygenated blood flows from the kidneys to the heart via renal veins RV and the inferior vena cava IVC. FIG. 2 illustrates a portion of the renal anatomy in greater detail. More specifically, the renal anatomy also includes renal nerves RN extending longitudinally along the lengthwise dimension L of renal artery RA generally within the adventitia of the artery. The renal artery RA has smooth muscle cells SMC that surround the arterial circumference and spiral around the angular axis θ of the artery. The smooth muscle cells of the renal artery accordingly have a lengthwise or longer dimension extending transverse (i.e., non-parallel) to the lengthwise dimension of the renal artery. The misalignment of the lengthwise dimensions of the renal nerves and the smooth muscle cells is defined as “cellular misalignment.”
  • Referring to FIG. 3, the cellular misalignment of the renal nerves and the smooth muscle cells may be exploited to selectively affect renal nerve cells with reduced effect on smooth muscle cells. More specifically, because larger cells require less energy to exceed the irreversibility threshold of electroporation, several embodiments of electrodes of the present invention are configured to align at least a portion of an electric field generated by the electrodes with or near the longer dimensions of the cells to be affected. In specific embodiments, the extravascular device has electrodes configured to create an electrical field aligned with or near the lengthwise dimension L of the renal artery RA to affect renal nerves RN. By aligning an electric field so that the field preferentially affects the lengthwise aspect of the cell rather than the diametric or radial aspect of the cell, lower field strengths may be used to necrose cells. As mentioned above, this is expected to reduce power consumption and mitigate effects on non-target cells in the electric field.
  • Similarly, the lengthwise or longer dimensions of tissues overlying or underlying the target nerve are orthogonal or otherwise off-axis (e.g., transverse) with respect to the longer dimensions of the nerve cells. Thus, in addition to aligning the PEF with the lengthwise or longer dimensions of the target cells, the PEF may propagate along the lateral or shorter dimensions of the non-target cells (i.e., such that the PEF propagates at least partially out of alignment with non-target smooth muscle cells SMC). Therefore, as seen in FIG. 3, applying a PEF with propagation lines Li generally aligned with the longitudinal dimension L of the renal artery RA is expected to preferentially cause electroporation, electrofusion, denervation or other neuromodulation in cells of the target renal nerves RN without unduly affecting the non-target arterial smooth muscle cells SMC. The pulsed electric field may propagate in a single plane along the longitudinal axis of the renal artery, or may propagate in the longitudinal direction along any angular segment 9 through a range of 0″-360″.
  • Embodiments of the method shown in FIG. 3 may have particular application with the extravascular methods and apparatus of the present invention. For instance, a PEF system placed exterior to the renal artery may propagate an electric field having a longitudinal portion that is aligned to run with the longitudinal dimension of the artery in the region of the renal nerves RN and the smooth muscle cell SMC of the vessel wall so that the wall of the artery remains at least substantially intact while the outer nerve cells are destroyed.
  • C. Embodiments of Systems and Additional Methods for Neuromodulation
  • FIG. 4 shows one embodiment of an extravascular pulsed electric field apparatus 200 in accordance with the present invention that includes one or more electrodes configured to deliver a pulsed electric field to renal neural fibers to achieve renal neuromodulation. Apparatus 200 comprises a laparoscopic or percutaneous PEF system having -probe 210 configured for insertion in proximity to the track of the renal neural supply along the renal artery or vein or hilum and/or within Gerota's fascia under, e.g., CT or radiographic guidance. The proximal section of probe 210 generally has an electrical connector to couple the probe to pulse generator 100, and the distal section has at least one electrode 212.
  • Pulsed electric field generator 100 is located external to the patient, and the electrode(s) 212 are electrically coupled to the generator via probe 210 and wires 211. The generator 100, as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention described hereinafter for delivery of a PEF with desired field parameters. It should be understood that electrodes of embodiments described hereinafter may be electronically connected to the generator, even if the generator is not explicitly shown or described with each embodiment.
  • The electrode(s) 212 can be individual electrodes, a common but segmented electrode, or a common and continuous electrode. A common but segmented electrode may, for example, be formed by providing a slotted tube fitted onto the electrode, or by electrically connecting a series of individual electrodes. Individual electrodes or groups of electrodes 212 may be configured to provide a bipolar signal. Electrodes 212 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and external ground pad 214. Ground pad 214 may, for example, be attached externally to the patient's skin, e.g., to the patient's leg or flank.
  • As seen in FIG. 4, electrode 212 may comprise a single electrode that is used in conjunction with separate patient ground pad 214 located external to the patient and coupled to generator 100 for monopolar use. Probe 210 optionally may comprise a conductive material that is insulated in regions other than its distal tip, thereby forming distal tip electrode 212. Alternatively, electrode 212 may, for example, be delivered through a lumen of probe 210. Probe 210 and electrode 212 may be of the standard needle or trocar-type used clinically for pulsed RF nerve block, such as those sold by Valleylab (a division of Tyco Healthcare Group LP) of Boulder, Colo. Alternatively, apparatus 200 may comprise a flexible and/or custom-designed probe for the renal application described herein.
  • In FIG. 4, percutaneous probe 210 has been advanced through percutaneous access site P into proximity within renal artery RA. Once properly positioned, pulsed electric field therapy may be applied to target neural fibers across electrode 212 and ground pad 214. After treatment, apparatus 200 may be removed from the patient to conclude the procedure.
  • It is expected that such therapy will alleviate clinical symptoms of CHF, hypertension, renal disease and/or other cardio-renal diseases for a period of months, potentially up to six months or more. This time period might be sufficient to allow the body to heal, for example, this period might reduce the risk of CHF onset after an acute myocardial infarction, thereby alleviating a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient might return to the physician for a repeat therapy.
  • The need for a repeat therapy optionally might be predicted by monitoring of physiologic parameters, for example, by monitoring specific neurohormones (plasma renin levels, etc.) that are indicative of increased sympathetic nervous activity. Alternatively, provocative maneuvers known to increase sympathetic nervous activity, such as head-out water immersion testing, may be conducted to determine the need for repeat therapy.
  • In some embodiments, apparatus 200 may comprise a probe having an introducer with an expandable distal segment having one or more electrodes. After insertion in proximity to target neural fibers, the distal segment may be opened or expanded into an expanded configuration. In one embodiment, this expanded configuration would follow a contour of the renal artery and/or vein to treat a number of neural fibers with a single application of PEF therapy. For example, in the expanded configuration, the distal segment may partially or completely encircle the renal artery and/or vein. In another embodiment, the expanded configuration may facilitate mechanical dissection, for example, to expand Gerota's fascia and create a working space for placement of the electrodes and/or for delivery of PEF therapy. The distal segment optionally may be translated independently of the probe or introducer.
  • When utilized as an electrode, the distal segment may, for example, be extended out of an introducer placed near the treatment area. The conducting distal segment maybe advanced out of the sheath until a desired amount of renal neural tissue is contacted; and then PEF therapy may be delivered via the distal segment electrode. Alternatively, the conducting distal segment may be allowed to reform or expand into a spiral of one or more loops, a random space-occupying shape, or another suitable configuration. Mesh, braid, or conductive gels or liquids could be employed in a similar manner.
  • FIG. 5 illustrates another embodiment of apparatus 200 comprising an expandable distal segment. In FIG. 5, apparatus 200 comprises introducer probe 220 and electrode element 230 with a distal segment 232 that may be expandable. Probe 220 may, for example, comprise a standard, needle or trocar. Electrode element 230 is proximally coupled to generator 100 and is configured for advancement through probe 220. Distal segment 232 of the electrode element may be delivered to a treatment site in a closed or contracted configuration within probe 220 and then opened or .expanded to a treatment configuration at or near the treatment site. For example, the distal segment 232 can be expanded by advancing segment 232 out of probe 220 and/or by retracting the probe relative to the distal segment. The embodiment of the distal segment 232 shown in FIG. 5 comprises a basket or cup-shaped element in a deployed configuration 234 for delivering treatment. The distal segment 232 preferably self-expands to the treatment configuration. The apparatus 200 can further include one or more electrodes 233 coupled to distal segment 232.
  • As seen in FIG. 5, distal segment 232 partially or completely encircles or surrounds renal artery RA in the deployed configuration 234. PEF therapy delivered through electrode element 230 to electrodes 233 in a bipolar or monopolar fashion may achieve a more thorough or complete renal neuromodulation than a PEF therapy delivered from electrodes along only one side of the artery or at an electrode at a single point along the artery. Electrode element 230 optionally may be electrically isolated from probe 220 such that the probe and electrodes 233 form two parts of a bipolar system in which the probe 220 is a return electrode.
  • With reference to FIG. 6, distal segment 232 alternatively may comprise a spiral element 236 in the treatment configuration. The distal segment may, for example, be pre-formed into a spiral configuration. The spiral might be straightened through a number of different mechanisms (e.g., positioning within probe 220, pull wires to actuate segment 232 between straight and spiraled, a shape-memory material, etc.) for insertion into proximity, e.g., with the renal vasculature. Once near a target vessel, the spiral may be actuated or allowed to reform in order to more fully encircle the vessel, thereby facilitating treatment of a greater number of neural fibers with a single application of PEF therapy.
  • The spiral or helical element 236 of distal segment 232 is configured to appose the vessel wall and bring electrode(s) 233 into close proximity to renal neural structures. The pitch of the helix can be varied to provide a longer treatment zone or to minimize circumferential overlap of adjacent treatments zones, e.g., in order to reduce a risk of stenosis formation. This pitch change can be achieved, for example, via (a) a heatset, (b) combining a plurality of segments of different pitches to form segment 232, (c) adjusting the pitch of segment 232 through the use of internal pull wires, (d) adjusting mandrels inserted into the segment, (e) shaping sheaths placed over the segment, or (f) any other suitable means for changing the pitch either in-situ or before introduction into the body.
  • As with previous embodiments, the electrode(s) 233 along the length of distal segment 232 can be individual electrodes, a common but segmented electrode, or a common and continuous electrode. A common and continuous electrode may, for example, comprise a conductive coil formed into or placed over the helix of distal segment 232. Individual electrodes or groups of electrodes 233 may be configured to provide a bipolar signal, or any configuration of the electrodes may be used together at a common potential in conjunction with a separate external patient ground for monopolar use. Electrodes 233 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and an external ground. Distal segment 232 optionally may be insulated on a side facing away from the renal artery such that at least portions of the side of the segment configured to face the renal artery are exposed to form electrode(s) 233.
  • Distal segment 232 of electrode element 230 may be delivered in proximity to renal artery RA in a low profile delivery configuration within probe 220. Once positioned in proximity to the artery, distal segment 232 may self-expand or may be expanded actively, e.g., via a pull wire or a balloon, into the spiral configuration 236 about the wall of the artery. The distal segment may, for example, be guided around the vessel, e.g., via steering and blunt dissection, and activated to take on the tighter-pitch coil of the spiral configuration 236. Alternatively or additionally, the distal segment might be advanced relative to probe 220 and snaked around the artery via its predisposition to assume the spiral configuration. Positioning the distal segment within Gerota's fascia might facilitate placement of distal segment 232 around the artery.
  • Once properly positioned, a pulsed electric field then may be generated by the PEF generator 100, transferred through electrode element 230 to electrodes 233, and delivered via the electrodes to renal nerves located along the artery. In many applications, the electrodes are arranged so that the pulsed electric field is aligned with the longitudinal dimension of the artery to modulate the neural activity along the renal nerves (e.g., denervation). This may be achieved, for example, via irreversible electroporation, electrofusion and/or inducement of apoptosis in the nerve cells.
  • Referring to FIG. 7, another percutaneous or laparoscopic method and apparatus for renal neuromodulation is described. In FIG. 7, distal segment 232 of electrode element 230 of apparatus 200 comprises electrode 233 having ring or cuff configuration 238. The ring electrode may partially surround renal artery RA, as shown. Electrode 233 optionally may comprise retractable pin 239 for closing the ring to more fully or completely encircle the artery once the electrode has been placed about the artery. A PEF therapy may be delivered via the electrode to achieve renal neuromodulation. As an alternative to laparoscopic placement, ring electrode 238 optionally may be surgically placed.
  • FIG. 8 illustrates another percutaneous or laparoscopic method and apparatus for renal neuromodulation comprising a spreading electrode configured for positioning near the renal hilum. As seen in FIG. 8, distal segment 232 of electrode element 230 may comprise fan-shaped member 240 having a plurality of fingers that may be collapsed or constrained within probe 220 during percutaneous introduction to, and/or retraction from, a treatment site. One or more electrodes 233 may be positioned along the fingers of the distal segment. Once in the area of the renal vasculature and/or renal hilum HI the fan may be extended, or probe 220 may be retracted, to deploy distal segment 232. The fingers, for example, spread out to cover a larger treatment area along the vasculature or renal hilum that facilitates treatment of a greater number of target neural fibers and/or creates a working space for subsequent introduction of electrodes 233.
  • In FIG. 8, a distal region of probe 220 is positioned in proximity to renal hilum HI and the fan-shaped distal segment 232 has been expanded to the deployed configuration. PEF therapy then may be delivered via electrodes 233 to neural fibers in that region for renal neuromodulation.
  • With reference to FIG. 9, distal segment 232 alternatively may comprise a tufted element 242 having one or more strands with electrodes 233. Distal segment 232 may be positioned in proximity to renal hilum H within probe 220, and then the tufted element 242 can be expanded to a space-occupying configuration. Electrodes 233 then may deliver PEF therapy to renal nerves.
  • With reference to FIG. 10, probe 220 optionally may pierce fascia F (e.g. Gerota's fascia) that surrounds kidney K and/or renal artery RA. Distal segment 232 may be advanced through probe 220 between the fascia and renal structures, such as hilum H and artery RA. This may position electrodes 233 into closer proximity with target renal neural structures. For example, when distal segment 232 comprises the fan-shaped member 240 of FIG. 8 or the tufted element 242 of FIG. 9, expansion of the distal segment within fascia F may place electrodes 233 into proximity with more target renal neural structures and/or may create a working space for delivery of one or more electrodes 233 or of conducting gels or liquids, etc.
  • Referring to FIGS. 11A and 118, methods and apparatus for mechanically anchoring probe 220, distal segment 232 of electrode element 230, and/or electrode(s) 233 within fascia F are described. FIGS. 11A and 11B illustrate mechanical anchoring element 250 in combination with distal segment 232 of electrode element 230, but this should in no way be construed as limiting because the apparatus 200 does not need to include the anchoring element 250. In embodiments with the anchoring element, distal segment 232 may be expandable or non-expansile.
  • In the embodiment of FIG. 11A, distal segment 232 comprises anchoring element 250 having collar 252 disposed about the distal segment. Self-expanding wire loops 254 of the anchoring element extend from the collar. The loops 254 may be collapsed against the shaft of distal segment 232 while the distal segment is disposed within probe 220 (as illustrated in dotted profile in FIG. 11A). Probe 220 may pierce the fascia near a treatment site, thereby positioning a distal tip of the probe within the fascia. The probe then may be retracted relative to electrode element 230 (and/or the electrode element may be advanced relative to the probe) to position distal segment 232 distal of the probe. The loops 254 self-expand in a manner that mechanically anchors distal segment 232 within the fascia. Alternatively, anchoring element 250 may be actively expanded, e.g., in a mechanical fashion.
  • The loops 254 optionally may be covered with an elastic polymer, such as silicone, CFlex, urethane, etc., such that the anchoring element 250 at least partially seals an entry site into fascia F. This may facilitate immediate infusion of fluids through probe 220 or electrode element 230 without leakage or with reduced leakage. Additionally or alternatively, when electrode element 230 is configured for longer-term implantation, anchoring element 250 may be covered in a porous material, such as a polyester fabric or mesh, that allows or promotes tissue in-growth. Tissue in-growth may enhance the anchoring providing by element 250 for maintaining the position of distal segment 232 and/or electrode(s) 233. Tissue in-growth may also enhance sealing at the entry site into the fascia.
  • In the embodiment of FIG. 11B, distal segment 232 is cut in the longitudinal direction to create a series of flaps 256 around the catheter that form an alternative anchoring element 250. Pull-wire 258 may, for example, extend along the exterior of electrode element 230 or may be disposed within a lumen of the electrode element, and is coupled to distal segment 232 distal of flaps 256. Once distal segment 232 is positioned within fascia F, pull-wire 258 is moved proximally to extend the flaps 256 and anchor the distal segment within the fascia. Alternatively, other expandable members incorporating wires, baskets, meshes, braids or the like may be mechanically expanded to provide anchoring.
  • With anchoring element 250 expanded, an infusate optionally may be infused through slits 256. Furthermore, as with the embodiment of FIG. 11A, anchoring element 250 of FIG. 11B optionally may be covered with an elastic polymer covering to create a gasket for sealing the entry site into the fascia. In such a configuration, infusion holes may be provided distal of the anchoring element. Alternatively, a proximal portion of the slit section of anchoring element 250 may be covered with the elastic polymer, while a distal portion remains uncovered, for example, to facilitate infusion through slits 256. In another embodiment, anchoring element 250 of FIG. 11B may comprise a porous material to facilitate tissue in-growth, as described previously. As with the elastic polymer, the porous material optionally may cover only a portion of the anchoring element to facilitate, for example, both tissue in-growth and infusion.
  • FIG. 12 shows a method and apparatus for renal neuromodulation in which electrodes are positioned along a patient's renal vasculature within an annular space between the vasculature and the surrounding fascia. The electrodes may be positioned in proximity to the renal artery and/or the renal vein by guiding a needle within fascia F using, for example, Computed Tomography (“CT”) guidance. The needle may comprise introducer probe 220, or the probe may be advanced over and exchanged for the needle after placement of the needle within the fascia.
  • When the probe 220 is within the Gerota's fascia, the electrode element 230 is delivered through the probe in close proximity to renal vasculature (e.g., the renal artery RA). The electrode element optionally may be advanced along the length of the artery toward the patient's aorta to bluntly dissect a space for the electrode element as the electrode element is advanced. The electrode element 230 may comprise a catheter, and electrodes 233 coupled to the electrode element 230 may deliver PEF therapy or other types of therapy to renal neural structures located along the renal artery. Bipolar or monopolar electrode(s) may be provided as desired.
  • With reference to FIGS. 13A-C, various additional embodiments of electrodes 233 and distal segment 232 of electrode element 230 are described. In FIG. 13A, electrodes 233 comprise a pair of bipolar electrode coils disposed about distal segment 232. In FIG. 136, electrodes 233 comprise a pair of bipolar electrodes having contoured metal plates disposed on the side of distal segment 232 facing renal artery RA to face target renal neural structures. This is expected to preferentially direct PEF therapy delivered between electrodes 233 towards the renal artery. As seen in FIG. 13C, distal segment 232 and/or electrodes 233 may comprise a concave profile so that more surface area of the electrodes is juxtaposed with the wall of the renal artery. When the pulsed electric field delivered by electrodes 233 is strong enough, suitably directed and/or in close enough proximity to target neural structures, it is expected that the electrodes may achieve a desired level of renal neuromodulation without fully encircling the renal artery.
  • FIGS. 14A-C show another method and apparatus for positioning electrodes along the patient's renal artery. In addition to probe 220 and electrode element 230, apparatus 200 of FIGS. 14A-C comprises catheter 300. Electrode element 230 is positioned within catheter 300 and optionally may comprise an atraumatic tip of the catheter. As seen in FIG. 14A, catheter 300 may be advanced through probe 220 within the annular space between the fascia F and the renal vasculature shown as renal artery RA. The catheter and/or the probe optionally may be advanced over a guidewire. Various agents may be infused through the catheter to create a working space for advancement of the catheter and/or to facilitate placement of electrodes 233.
  • Once positioned as desired at a treatment site, the catheter may be retracted relative to the electrode element to expose electrodes 233 along distal segment 232 of the electrode element, as in FIG. 140. The electrodes 233 in FIGS. 14A-C may comprise a bipolar pair of expandable electrodes that may be collapsed for delivery within catheter 300. The electrodes may, for example, be fabricated from a self-expanding material, such as spring steel or Nitinol. Although electrodes 233 illustratively are on a common electrode element 230, it should be understood that multiple electrode elements 230 each having one or more electrodes 233 may be delivered through catheter 300 and positioned as desired along the renal vasculature.
  • In the expanded configuration of FIG. 146, electrodes 233 at least partially surround or encircle renal artery RA. It is expected that at least partially encircling the renal artery during PEF therapy will enhance the efficacy of renal neuromodulation or denervation. The electrodes may be used to deliver PEF therapy and/or to stimulate a physiologic response to test or to challenge an extent of neuromodulation, as well as to apply energy to disrupt, modulate or block renal nerve function. Various agents may be infused in the vicinity of electrodes 233 prior to, during or after energy delivery, for example, to aid in conduction (e.g., saline and hypertonic saline), to improve electroporative effect (e.g., heated solutions) or to provide protection to non-target cells (e.g., cooling solutions or Poloxamer-188).
  • Electrodes 233 may, for example, comprise coils, wires, ribbons, polymers, braids or composites. Polymers may be used in combination with conductive materials to direct a pulsed electric field into and/or along target tissue while insulating surrounding tissue. With reference to FIG. 14C, distal segment 232 of electrode element 230 may comprise insulation I that is locally removed or omitted along an inner surface of electrodes 233 where the electrodes face or contact renal vasculature.
  • Referring now to FIGS. 15A-B, another embodiment of the apparatus and method of FIGS. 14A-C is described. As seen in FIG. 15A, electrode(s) 233 may comprise an undulating or sinusoidal configuration that extends along the renal vasculature. The sinusoidal configuration of electrodes 233 may provide for greater contact area along the vessel wall than do electrodes 233 of FIGS. 14A-C, while still facilitating sheathing of electrode element 230 within catheter 300 for delivery and/or retrieval. Electrode(s) 233 may comprise a unitary electrode configured for monopolar energy delivery, or distal segment 232 of electrode element 230 may comprise insulation that is locally removed or omitted to expose electrodes 233. Alternatively, as seen in FIG. 15B, the electrodes may comprise discrete wire coils or other conductive sections attached to the undulating distal segment 232. Electrodes 233 may be energized in any combination to form a bipolar electrode pair.
  • FIG. 16 is a schematic view illustrating yet another embodiment of the method and apparatus of FIGS. 14A-C. In FIG. 16, catheter 300 comprises multiple lumens 304 through which electrode elements 230 may be advanced and electrodes 233 may be collapsed for delivery. When positioned at a treatment site, electrode elements 230 may be advanced relative to catheter 300 and/or the catheter 300 may be retracted relative to the electrode elements, such that electrodes 233 expand to the configuration of FIG. 16 for at least partially encircling renal vasculature. In FIG. 16, apparatus 200 illustratively comprises two electrode elements 230, each having an expandable electrode 233. The two electrodes 233 may be used as a bipolar electrode pair during PEF therapy. Electrode elements 230 may be translated independently, such that a separation distance between electrodes 233 may be altered dynamically, as desired.
  • FIGS. 17A-B show still another embodiment of the method and apparatus of FIGS. 14A-C. In FIG. 17A, electrode 233 comprises a panel that may be rolled into scroll for low-profile delivery within catheter 300. As seen in FIG. 178, the catheter may be retracted relative to the electrode, and/or the electrode may be advanced relative to the catheter, such that panel unfurls or unrolls, preferably in a self-expanding fashion, to partially or completely encircle renal artery RA. PEF therapy may be delivered through electrode 233 in a monopolar fashion, or the electrode may be segmented to facilitate bipolar use. Alternatively, a second electrode may be delivery in proximity to electrode 233 for bipolar PEF therapy.
  • Any of the electrode embodiments 212 or 233 of FIGS. 5-17B may be configured for use in a single PEF therapy session, or may be configured for implantation for application of follow-on PEF therapy sessions. In implantable embodiments, leads may, for example, extend from electrodes 212 or 233 to a subcutaneous element controllable through the skin or to an implantable controller.
  • With reference to FIG. 18, when electrodes 233 are configured for implantation, distal segment 232 of electrode element 230 may, for example, be detachable at a treatment site, such that electrodes 233 are implanted in the annular space between renal artery RA and fascia F, while a proximal portion of electrode element 230 is removed from the patient. As seen in FIG. 18, electrode element 230 may comprise leads 260 for tunneling to a subcutaneous element or to an implantable controller. The electrode element further comprises detachment mechanism 270 disposed just proximal of distal segment 232 for detachment of the distal segment at the treatment site. Distal segment 232 optionally may comprise elements configured to promote tissue in-growth in the vicinity of electrodes 233.
  • With reference to FIGS. 19A-20, partially and completely implantable PEF systems are described. FIGS. 19A-B illustrate partially implantable systems having a pulsed electric field generator 100 connected either directly or indirectly to a subcutaneous element 400 through or across the patient's skin. Subcutaneous element 400 may be placed, for example, posteriorly, e.g., in the patient's lower back. In FIGS. 19A-B, the subcutaneous element 400 is attached to leads 260, and the leads 260 are electrically coupled to implanted electrodes 233 positioned in proximity to the renal artery, renal vein, renal hilum, Gerota's fascia or other suitable structures. Electrodes 233 can be located bilaterally, i.e., in proximity to both the right and left renal vasculature, but alternatively may be positioned unilaterally. Furthermore, multiple electrodes may be positioned in proximity to either or both kidneys for bipolar PEF therapy, or monopolar electrodes may be provided and used in combination with a return electrode, such as external ground pad 214 or a return electrode integrated with subcutaneous element 400.
  • As seen in FIG. 19A, subcutaneous element 400 may comprise a subcutaneous port 402 having an electrical contact 403 comprising one or more connecting or docking points for coupling the electrical contact(s) to generator 100. In a direct method of transmitting a PEF across the patient's skin, a transcutaneous needle, trocar, probe or other element 410 that is electrically coupled to generator 100 pierces the patient's skin and releasably couples to contact 403. Transcutaneous element 410 conducts PEF therapy from the generator 100 across or through the patient's skin to , subcutaneous contact 403 and to electrodes 233 for modulating neural fibers that contribute to renal function. The implanted system might also incorporate an infusion lumen to allow drugs to be introduced from subcutaneous port 402 to the treatment area.
  • In addition to direct methods of transmitting PEF signals across the patient's skin, such as via transcutaneous element 410, indirect methods alternatively may be utilized, such as transcutaneous energy transfer (“TET”) systems. TET systems are used clinically to recharge batteries in rechargeable implantable stimulation or paving devices, left ventricular assist devices, etc. In the TET embodiment of FIG. 19B, subcutaneous element 400 comprises subcutaneous receiving element 404, and external TET transmitting element 420 is coupled to generator 100. A PEF signal may be transmitted telemetrically through the skin from external transmitting element 420 to subcutaneous receiving element 404. Passive leads 260 connect the subcutaneous receiving element to nerve electrodes 233 and may conduct the signal to the nerves for treatment.
  • With reference to FIG. 20, a fully implantable PEF system is described. In FIG. 20, subcutaneous receiving element 404 is coupled to a capacitor or other energy storage element 430, such as a battery, which in turn is coupled to implanted controller 440 that connects via leads 260 to electrodes 233. External transmitting element 420 is coupled to external charger and programmer 450 for transmitting energy to the implanted system and/or to program the implanted system. Charger and programmer 450 need not supply energy in the form of a PEF for transmission across the patient's skin from external element 420 to receiving element 404. Rather, controller 440 may create a PEF waveform from energy stored within storage element 430. The controller optionally may serve as a return electrode for monopolar-type PEF therapy.
  • The embodiment of FIG. 20 illustratively is rechargeable and/or reprogrammable. However, it should be understood that the fully implanted PEF system alternatively may be neither rechargeable nor programmable. Rather, the system may be powered via storage element 430, which, if necessary, may be configured for surgical replacement after a period of months or years after which energy stored in the storage element has been depleted.
  • When using a percutaneous or implantable PEF system, the need for repeat therapy, the location for initial therapy and/or the efficacy of therapy, optionally may be determined by the system. For example, an implantable system periodically may apply a lower-frequency stimulation signal to renal nerves; when the nerve has returned toward baseline function, the test signal would be felt by the patient, and the system would apply another course of PEF therapy. This repeat treatment optionally might be patient initiated: when the patient feels the test signal, the patient would operate the implantable system via electronic telemetry, magnetic switching or other means to apply the required therapeutic PEF.
  • As an alternative or in addition to eliciting a pain response, the responses of physiologic parameters known to be affected by stimulation of the renal nerves may be monitored. Such parameters comprise, for example, renin levels, sodium levels, renal blood flow and blood pressure. When using stimulation to challenge denervation and monitor treatment efficacy, the known physiologic responses to stimulation should no longer occur in response to such stimulation.
  • Efferent nerve stimulation waveforms may, for example, comprise frequencies of about 1-10 Hz, while afferent nerve stimulation waveforms may, for example, comprise frequencies of up to about 50 Hz. Waveform amplitudes may, for example, range up to about 50V1 while pulse durations may, for example, range up to about 20 milliseconds. Although exemplary parameters for stimulation waveforms have been described, it should be understood that any alternative parameters may be utilized as desired.
  • The electrodes used to deliver PEFs in any of the previously described variations of the present invention also may be used to deliver stimulation waveforms to the renal vasculature. Alternatively, the variations may comprise independent electrodes configured for stimulation. As another alternative, a separate stimulation apparatus may be provided.
  • As mentioned, one way to use stimulation to identify renal nerves is to stimulate the nerves such that renal blood flow is affected—or would be affected if the renal nerves had not been denervated or modulated. As stimulation acts to reduce renal blood flow, this response may be attenuated or abolished with denervation. Thus, stimulation prior to neural modulation would be expected to reduce blood flow, while stimulation after neural modulation would not be expected to reduce blood flow to the same degree when utilizing similar stimulation parameters and location(s) as prior to neural modulation. This phenomenon may be utilized to quantify an extent of renal neuromodulation.
  • Embodiments of the present invention may comprise elements for monitoring renal blood flow or for monitoring any of the other physiological parameters known to be affected by renal stimulation. Renal blood flow optionally may be visualized through the skin (e.g., using an ultrasound transducer). An extent of electroporation additionally or alternatively may be monitored directly using Electrical Impedance Tomography (“EIT”) or other electrical impedance measurements or sensors, such as an electrical impedance index.
  • In addition or as an alternative to stimulation, other monitoring methods which check for measures of the patient's clinical status may be used to determine the need for repeat therapy. These monitoring methods could be completely or partially implantable, or they could be external measurements which communicate telemetrically with implantable elements. For instance, an implantable pressure sensor of the kind known in the field (e.g., sensors developed by CardioMEMS of Atlanta, Ga.) could measure right atrial pressure. Increasing right atrial pressure is a sign of fluid overload and improper CHF management. If an increase in right atrial pressure is detected by the sensor, a signal might be sent to controller 440 and another PEF treatment would delivered. Similarly, arterial pressure might be monitored and/or used as a control signal in other disease conditions, such as the treatment of high blood pressure. Alternatively, invasive or non-invasive measures of cardiac output might be utilized. Non-invasive measures include, for example, thoracic electrical bioimpedance.
  • In yet another embodiment, weight fluctuation is correlated with percentage body fat to determine a need for repeat therapy. It is known that increasing patient weight, especially in the absence of an increase in percent body fat, is a sign of increasing volume overload. Thus, the patient's weight and percentage body fat may be monitored, e.g., via a specially-designed scale that compares the weight gain to percentage body fat. If it is determined that weight gain is due fluid overload, the scale or other monitoring element(s) could signal controller 440, e.g., telemetrically, to apply another PEF treatment.
  • When using partially or completely implantable PEF systems, a thermocouple, other temperature or impedance monitoring elements, or other sensors, might be incorporated into subcutaneous elements 400. External elements of the PEF system might be designed to connect with and/or receive information from the sensor elements. For example, in one embodiment, transcutaneous element 410 connects to subcutaneous electrical contact 403 of port 402 and can deliver stimulation signals to interrogate target neural tissue to determine a need, or parameters, for therapy, as well as to determine impedance of the nerve and nerve electrodes. Additionally, a separate connector to mate with a sensor lead may be extended through or alongside transcutaneous element 410 to contact a corresponding subcutaneous sensor lead.
  • Alternatively, subcutaneous electrical contact 403 may have multiple target zones placed next to one another, but electrically isolated from one another. A lead extending from an external controller, e.g., external generator 100, would split into several individual transcutaneous needles, or individual needle points coupled within a larger probe, which are inserted through the skin to independently contact their respective subcutaneous target zones. For example, energy delivery, impedance measurement, interrogative stimulation and temperature each might have its own respective target zone arranged on the subcutaneous system. Diagnostic electronics within the external controller optionally may be designed to ensure that the correct needle is in contact with each corresponding subcutaneous target zone.
  • Elements may be incorporated into the implanted elements of PEF systems to facilitate anchoring and/or tissue in-growth. For instance, fabric or implantable materials, such as Dacron or ePTFE, might be incorporated into the design of the subcutaneous elements 400 to facilitate in-growth into areas of the elements that would facilitate anchoring of the elements in place, while optionally repelling tissue in-growth in undesired areas, such as along electrodes 233. Similarly, coatings, material treatments, drug coatings or drug elution might be used alone or in combination to facilitate or retard tissue in-growth into various elements of the implanted PEF system, as desired.
  • Any of the embodiments of the present invention described herein optionally may be configured for infusion of agents into the treatment area before, during or after energy application, for example, to create a working space to facilitate electrode placement, to enhance or modify the neurodestructive or neuromodulatory effect of applied energy, to protect or temporarily displace non-target cells, and/or to facilitate visualization. Additional applications for infused agents will be apparent. If desired, uptake of infused agents by cells may be enhanced via initiation of reversible electroporation in the cells in the presence of the infused agents. The infusate may comprise, for example, fluids (e.g., heated or chilled fluids), air, CO2, saline, heparinized saline, hypertonic saline, contrast agents, gels, conductive materials, space-occupying materials (gas, solid or liquid), protective agents, such as Poloxamer-188, anti-proliferative agents, or other drugs and/or drug delivery elements. Variations of the present invention additionally or alternatively may be configured for aspiration.
  • FIGS. 21A and 21B illustrate another embodiment of the apparatus 200 in accordance with the invention. Referring to FIG. 21A, the apparatus 200 includes the probe 220 and a catheter 300 received within the probe 220. The catheter 300 includes an anchoring mechanism 251 having a first collar 280, a second collar 282 located distally relative to the first collar 280, and an expandable member 284 connected to the first and second collars 280 and 282. The expandable member 284 can be a braid, mesh, woven member or other device that expands as the distance between the first and second collars 280 and 282 is reduced. The expandable member 284 can include polyesters, Nitinol, elgiloy, stainless steel, composites and/or other suitable materials. The collars 280 and 282, and/or the expandable member 284, may be at least partially covered in an expandable polymer to form a seal with the patient. The apparatus 200 can further include a plurality of electrodes 230 located at the expandable member 284 and/or the first or second collars 280 or 282.
  • The anchoring mechanism 250 operates by moving at least one of the collars 280 and 282 toward the other to reduce the distance between the collars. For example, the first collar 280 can be slidable along the catheter 300, and the second collar 282 can be fixed to the catheter 300. Referring to FIG. 21B, the expandable member 284 can be expanded by pulling back on the catheter 300 to engage the proximal collar 280 with the distal end of the probe 220. As the catheter 300 is withdrawn proximally relative to the probe 220, the distal end of the probe 220 drives the first collar 280 toward the second collar 282 to move the anchoring mechanism 251 from a collapsed position shown in FIG. 21A to an expanded configuration illustrated in FIG. 218. Alternatively, the apparatus 200 can include an actuator that can be advanced distally to drive the first collar 280 toward the second collar 282. The actuator, for example, can be a coaxial sleeve around the catheter 300 that may be operated from the proximal end of the probe 220.
  • FIGS. 22A and 22B illustrate another embodiment of the apparatus 200 in accordance with the invention. In this embodiment, the apparatus 200 includes a probe 220 and a catheter 300 that moves through the probe 220 as described above with reference to FIGS. 11A-B. The apparatus 200 of this embodiment further includes an anchoring mechanism 253 having a first collar 281, a second collar 283 located distally along the catheter 300 relative to the first collar 281, and an expandable member 285 attached to the first and second collars 281 and 283. In one embodiment, the first collar 281 is slidably movable along the catheter 300, and the second collar 283 is fixed to the catheter 300. Alternatively, the first collar 281 can be fixed to the catheter 300 and the second collar 283 can be movable along the catheter 300. The expandable member 285 is a self-contracting member that is actively stretched into a collapsed configuration to be contained within the probe 220 for delivery to the desired treatment site in the patient. FIG. 22A illustrates the expandable member 285 stretched into an elongated state to be constrained within the probe 220. Referring to FIG. 22B, the apparatus 200 is deployed in the patient by moving the probe 220 proximally relative to the catheter 300 and/or moving the catheter 300 distally relative to the probe 220 until the expandable member 285 is outside of the probe 220. Once the expandable member 285 is outside of the probe 220, the expandable member 285 draws the movable collar toward the fixed collar to allow the expandable member 285 to expand outwardly relative to the radius of the catheter shaft 300.
  • The expandable member 285 can be a spring formed from a polyester, stainless steel, composites or other suitable materials with sufficient elasticity to inherently move into the expanded configuration shown in FIG. 228. Alternatively, the expandable member can be formed from a shaped memory metal, such as Nitinol or elgiloy, that moves from the collapsed configuration illustrated in FIG. 22A to the expanded configuration illustrated in FIG. 226 at a given temperature. In either embodiment the apparatus 200 can further include electrodes (not shown) located along the expandable member for delivering the pulsed electric field to the renal nerve or other structure related to renallcardio activity.
  • FIG. 23 illustrates yet another embodiment of a method and apparatus for positioning an electrode relative to a renal structure to deliver a PEF for neuromodulation. In this embodiment, the apparatus includes a first percutaneous member 510, a second percutaneous member 520, an electrode assembly 530, and a retriever 540. The first percutaneous member 510 can be a first trocar through which the electrode assembly 530 is delivered to the renal artery RA or other renal structure, and the second percutaneous member 520 can be a second trocar through which the retriever 540 is delivered to the general region of the electrode assembly 530. In the embodiment shown in FIG. 23, the electrode assembly 530 includes an electrode 532, and the retriever 540 is a snare configured to capture the electrode assembly. In operation, the first percutaneous member 510 is inserted into the patient and the electrode assembly 530 is passed through the first percutaneous member 510 until the electrode 532 is at or near a desired location relative to the renal structure. The second percutaneous member 520 is also inserted into the patient so that the retriever 540 can engage the electrode assembly 530. The retriever 540 can be used to hold the electrode 532 at the desired location during delivery of a PEF to the patient and/or to remove the electrode assembly 530 after delivering the PEF.
  • Although preferred illustrative variations of the present invention are described above, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. For example, although the variations primarily have been described for use in combination with pulsed electric fields, it should be understood that any other electric field may be delivered as desired. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims (41)

1. An apparatus for renal neuromodulation, the apparatus comprising:
an electric field generator; and
an electrode configured for extravascular placement proximate a renal nerve in a patient,
wherein the electrode is electrically coupled to the electric field generator, and wherein the electrode is configured to deliver an electric field to the renal nerve while the electrode is located proximate the renal nerve.
2. The apparatus of claim 1, wherein the electrode is configured for placement adjacent to a renal vasculature.
3. The apparatus of claim 2, wherein the electrode is configured for percutaneous placement adjacent to the renal vasculature.
4. The apparatus of claim 2, wherein the electrode is configured to be arranged in (a) a reduced delivery configuration for placement adjacent to the renal vasculature and (b) an expanded treatment configuration for delivering the electric field to the renal nerve.
5. The apparatus of claim 4, wherein the electrode is configured to at least partially encircle the renal vasculature in the expanded treatment configuration.
6. The apparatus of claim 1, wherein the electrode is configured to at least partially encircle a renal artery of the patient.
7. The apparatus of claim 2, wherein the electrode is configured for placement in an annular space between renal fascia and renal vasculature.
8. The apparatus of claim 2, wherein the apparatus is configured to orient a longitudinal portion of the electric field with a longitudinal dimension of at least one of the renal nerve and the renal vasculature.
9. The apparatus of claim 1, wherein the electrode comprises a bipolar electrode pair.
10. The apparatus of claim 1, wherein the electrode comprises an active electrode, and wherein the apparatus further comprises a ground electrode located remote the renal nerve, such that the active electrode is configured to deliver the electric field to the renal nerve in a monopolar fashion.
11. The apparatus of claim 10, wherein the ground electrode is configured for exterior attachment to the patient.
12. The apparatus of claim 1, wherein the electric field generator is configured to produce a pulsed electric field that induces irreversible electroporation in the renal nerve.
13. The apparatus of claim 1, wherein the electric field generator is configured to produce a pulsed electric field that induces electrofusion in the renal nerve.
14. The apparatus of claim 1, wherein the electrode and the electric field generator are further configured to deliver a stimulation electric field to the renal nerve.
15. The apparatus of claim 1, wherein the apparatus comprises an element for monitoring the response of at least one physiological parameter to stimulation of the renal nerve.
16. The apparatus of claim 15, wherein the element is chosen from the group consisting of ultrasound sensors, electrodes, thermocouples, pressure sensors, imaging modalities, electrical impedence sensors and combinations thereof.
17. The apparatus of claim 1, wherein the electrode is chosen from the group consisting of basket-shaped electrodes, cup-shaped electrodes, spiral electrodes, helical electrodes, ring electrodes, cuff electrodes, fan-shaped electrodes, space-occupying electrodes, undulating electrodes, sinusoidal electrodes, coil electrodes, wire electrodes, arcuate electrodes, concave electrodes, curved electrodes, ribbon electrodes, braid electrodes, composite electrodes, expandable electrodes and combinations thereof.
18. The apparatus of claim 1, wherein the apparatus further comprises an infusion element configured to create a working space to facilitate placement of the electrode.
19. The apparatus of claim 1 further comprising an implanted subcutaneous element electrically coupled to the electrode via tunneled leads.
20. The apparatus of claim 19, wherein the implanted subcutaneous element comprises a subcutaneous electrical contact, the apparatus further comprising a transcutaneous probe electrically coupled to the electric field generator and configured for reversible placement across skin of the patient for electrically coupling the transcutaneous probe to the subcutaneous electrical contact.
21. The apparatus of claim 19, wherein the implanted subcutaneous element comprises a transcutaneous energy transfer receiving element, the apparatus further comprising a transcutaneous energy transfer transmission element electrically coupled to the pulse electric field generator and configured to non-invasively transmit energy transcutaneously to the receiving element.
22. The apparatus of claim 19, wherein the implanted subcutaneous element comprises the electric field generator.
23. The apparatus of claim 22, wherein the implanted subcutaneous element further comprises an energy storage device electrically coupled to the electric field generator.
24. The apparatus of claim 23, wherein the energy storage device is configured for recharging.
25. The apparatus of claim 24 further comprising an external charger configured to transcutaneously recharge the energy storage device.
26. The apparatus of claim 23, wherein the implanted subcutaneous element further comprises a controller.
27. The apparatus of claim 26, wherein the controller further comprises a programmable controller.
28. The apparatus of claim 27 further comprising an external programmer configured to transcutaneously program the controller.
29. The apparatus of claim 1 further comprising a probe configured for percutaneous insertion in proximity to the renal nerve under guidance.
30. The apparatus of claim 29, wherein the guidance comprises guidance chosen from the group consisting of visual, computed tomographic, radiographic, ultrasonic, angiographic, laparoscopic and combinations thereof.
31. The apparatus of claim 29, wherein the probe is electrically coupled to the electric field generator, and wherein the electrode is attached to the probe.
32. The apparatus of claim 29, wherein the electrode is configured for extravascular placement through the probe proximate the renal nerve.
33. The apparatus of claim 29, wherein the probe is chosen from the group consisting of needles, trocars and combinations thereof.
34. The apparatus of claim 29 further comprising a catheter configured for advancement through the probe, wherein the electrode is attached to the catheter.
35-57. (canceled)
58. An apparatus for renal neuromodulation, the apparatus comprising:
an electric field generator; and
a device configured for percutaneous placement under Computed Tomography-guidance at an extravascular location within a patient proximate to a sympathetic neural path associated with renal function,
wherein the device comprises an electrode electrically coupled to the electric field generator for delivering a pulsed electric field to the sympathetic neural path while the device is at the extravascular location.
59. (canceled)
60. The apparatus of claim 1, wherein the apparatus further comprises a mechanical element configured to create a working space to facilitate placement of the electrode.
61. The apparatus of claim 1, wherein the electrode further comprises at least three electrodes.
62. The apparatus of claim 61, wherein at least one of the electrodes is configured for monitoring.
63-65. (canceled)
US13/361,542 2002-04-08 2012-01-30 Apparatuses for renal neuromodulation Abandoned US20120197252A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/361,542 US20120197252A1 (en) 2002-04-08 2012-01-30 Apparatuses for renal neuromodulation
US13/942,223 US9072527B2 (en) 2002-04-08 2013-07-15 Apparatuses and methods for renal neuromodulation
US14/279,023 US9186213B2 (en) 2002-04-08 2014-05-15 Methods for renal neuromodulation
US14/878,898 US9463066B2 (en) 2002-04-08 2015-10-08 Methods for renal neuromodulation
US15/254,340 US9731132B2 (en) 2002-04-08 2016-09-01 Methods for renal neuromodulation
US15/636,381 US9956410B2 (en) 2002-04-08 2017-06-28 Methods and apparatus for renal neuromodulation
US15/937,729 US10272246B2 (en) 2002-04-08 2018-03-27 Methods for extravascular renal neuromodulation
US16/368,487 US20190282816A1 (en) 2002-04-08 2019-03-28 Methods and apparatus for renal neuromodulation

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US37019002P 2002-04-08 2002-04-08
US41557502P 2002-10-03 2002-10-03
US44297003P 2003-01-29 2003-01-29
US10/408,665 US7162303B2 (en) 2002-04-08 2003-04-08 Renal nerve stimulation method and apparatus for treatment of patients
US10/900,199 US6978174B2 (en) 2002-04-08 2004-07-28 Methods and devices for renal nerve blocking
US61625404P 2004-10-05 2004-10-05
US62479304P 2004-11-02 2004-11-02
US11/129,765 US7653438B2 (en) 2002-04-08 2005-05-13 Methods and apparatus for renal neuromodulation
US11/189,563 US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation
US13/361,542 US20120197252A1 (en) 2002-04-08 2012-01-30 Apparatuses for renal neuromodulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/189,563 Division US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/942,223 Continuation US9072527B2 (en) 2002-04-08 2013-07-15 Apparatuses and methods for renal neuromodulation

Publications (1)

Publication Number Publication Date
US20120197252A1 true US20120197252A1 (en) 2012-08-02

Family

ID=36148656

Family Applications (9)

Application Number Title Priority Date Filing Date
US11/189,563 Active 2026-09-12 US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation
US13/361,542 Abandoned US20120197252A1 (en) 2002-04-08 2012-01-30 Apparatuses for renal neuromodulation
US13/942,223 Expired - Lifetime US9072527B2 (en) 2002-04-08 2013-07-15 Apparatuses and methods for renal neuromodulation
US14/279,023 Expired - Fee Related US9186213B2 (en) 2002-04-08 2014-05-15 Methods for renal neuromodulation
US14/878,898 Expired - Lifetime US9463066B2 (en) 2002-04-08 2015-10-08 Methods for renal neuromodulation
US15/254,340 Expired - Fee Related US9731132B2 (en) 2002-04-08 2016-09-01 Methods for renal neuromodulation
US15/636,381 Expired - Fee Related US9956410B2 (en) 2002-04-08 2017-06-28 Methods and apparatus for renal neuromodulation
US15/937,729 Expired - Lifetime US10272246B2 (en) 2002-04-08 2018-03-27 Methods for extravascular renal neuromodulation
US16/368,487 Abandoned US20190282816A1 (en) 2002-04-08 2019-03-28 Methods and apparatus for renal neuromodulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/189,563 Active 2026-09-12 US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation

Family Applications After (7)

Application Number Title Priority Date Filing Date
US13/942,223 Expired - Lifetime US9072527B2 (en) 2002-04-08 2013-07-15 Apparatuses and methods for renal neuromodulation
US14/279,023 Expired - Fee Related US9186213B2 (en) 2002-04-08 2014-05-15 Methods for renal neuromodulation
US14/878,898 Expired - Lifetime US9463066B2 (en) 2002-04-08 2015-10-08 Methods for renal neuromodulation
US15/254,340 Expired - Fee Related US9731132B2 (en) 2002-04-08 2016-09-01 Methods for renal neuromodulation
US15/636,381 Expired - Fee Related US9956410B2 (en) 2002-04-08 2017-06-28 Methods and apparatus for renal neuromodulation
US15/937,729 Expired - Lifetime US10272246B2 (en) 2002-04-08 2018-03-27 Methods for extravascular renal neuromodulation
US16/368,487 Abandoned US20190282816A1 (en) 2002-04-08 2019-03-28 Methods and apparatus for renal neuromodulation

Country Status (2)

Country Link
US (9) US8145316B2 (en)
WO (1) WO2006041847A1 (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9131983B2 (en) 2011-04-22 2015-09-15 Ablative Solutions, Inc. Methods ablating tissue using a catheter-based injection system
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9179962B2 (en) 2012-10-29 2015-11-10 Ablative Solutions, Inc. Transvascular methods of treating extravascular tissue
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9254360B2 (en) 2012-10-29 2016-02-09 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with deflection surface support structures
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9278196B2 (en) 2011-08-24 2016-03-08 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9615875B2 (en) 2000-12-09 2017-04-11 Tsunami Med Tech, LLC Medical instruments and techniques for thermally-mediated therapies
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10118004B2 (en) 2011-08-24 2018-11-06 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10485951B2 (en) 2011-08-24 2019-11-26 Ablative Solutions, Inc. Catheter systems and packaged kits for dual layer guide tubes
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10736656B2 (en) 2012-10-29 2020-08-11 Ablative Solutions Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10849685B2 (en) 2018-07-18 2020-12-01 Ablative Solutions, Inc. Peri-vascular tissue access catheter with locking handle
US10881458B2 (en) 2012-10-29 2021-01-05 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery

Families Citing this family (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7620451B2 (en) * 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US20110207758A1 (en) * 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US20080213331A1 (en) * 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US8150519B2 (en) * 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US6978174B2 (en) * 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US8150520B2 (en) * 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20070135875A1 (en) * 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US7844338B2 (en) 2003-02-03 2010-11-30 Enteromedics Inc. High frequency obesity treatment
US20040172084A1 (en) 2003-02-03 2004-09-02 Knudson Mark B. Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US7167750B2 (en) * 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US7937143B2 (en) * 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US9707071B2 (en) 2004-11-24 2017-07-18 Contego Medical Llc Percutaneous transluminal angioplasty device with integral embolic filter
US9510930B2 (en) 2008-10-22 2016-12-06 Contego Medical, Llc Angioplasty device with embolic filter
CN101076290B (en) 2004-12-09 2011-11-23 铸造品股份有限公司 Aortic valve repair
US7553284B2 (en) * 2005-02-02 2009-06-30 Vaitekunas Jeffrey J Focused ultrasound for pain reduction
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US7672727B2 (en) * 2005-08-17 2010-03-02 Enteromedics Inc. Neural electrode treatment
US7822486B2 (en) 2005-08-17 2010-10-26 Enteromedics Inc. Custom sized neural electrodes
US10716749B2 (en) * 2005-11-03 2020-07-21 Palo Alto Investors Methods and compositions for treating a renal disease condition in a subject
US8812112B2 (en) * 2005-11-10 2014-08-19 ElectroCore, LLC Electrical treatment of bronchial constriction
JP5032500B2 (en) * 2006-01-03 2012-09-26 アルコン,インコーポレイティド System for dissociation and removal of proteinaceous tissue
GB0600953D0 (en) * 2006-01-18 2006-02-22 Algotec Ltd Implantable elongate member with distal tip anchor
EP1981584B1 (en) * 2006-02-03 2015-05-13 Interventional Autonomics Corporation Intravascular device for neuromodulation
US8571650B2 (en) 2006-03-03 2013-10-29 Palo Alto Investors Methods and compositions for treating a renal associated condition in a subject
US9020597B2 (en) 2008-11-12 2015-04-28 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
CN101610735B (en) * 2006-06-28 2015-07-01 美敦力Af卢森堡公司 Methods and systems for thermally-induced renal neuromodulation
US11577077B2 (en) 2006-10-09 2023-02-14 Endostim, Inc. Systems and methods for electrical stimulation of biological systems
US9345879B2 (en) 2006-10-09 2016-05-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US20080119907A1 (en) * 2006-11-22 2008-05-22 Cardiac Pacemakers, Inc. Renal function modulation via application of electrical energy stimulation
US20080140113A1 (en) * 2006-12-07 2008-06-12 Cierra, Inc. Method for sealing a pfo using an energy delivery device
WO2008128070A2 (en) 2007-04-11 2008-10-23 The Cleveland Clinic Foundation Method and apparatus for renal neuromodulation
US20080281365A1 (en) * 2007-05-09 2008-11-13 Tweden Katherine S Neural signal duty cycle
WO2008141221A1 (en) * 2007-05-09 2008-11-20 Old Dominion University Research Foundation Suction electrode-based medical instrument and system including the medical instrument for therapeutic electrotherapy
DE102007026645A1 (en) * 2007-06-05 2008-12-18 Universität Rostock Electrode assembly and measuring device for measuring the electrical activity in an electrically active tissue
ATE556667T1 (en) 2007-08-23 2012-05-15 Aegea Medical Inc UTERUS THERAPY DEVICE
US8489190B2 (en) 2007-10-08 2013-07-16 Ais Gmbh Aachen Innovative Solutions Catheter device
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
US7925352B2 (en) * 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
AU2015202019B2 (en) * 2008-08-08 2017-05-18 Reshape Lifesciences, Inc. Systems for regulation of blood pressure and heart rate
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
EP2341859B1 (en) 2008-10-06 2017-04-05 Virender K. Sharma Apparatus for tissue ablation
US9561068B2 (en) * 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US8386053B2 (en) * 2008-10-31 2013-02-26 Medtronic, Inc. Subclavian ansae stimulation
US7910193B2 (en) * 2008-11-10 2011-03-22 Mkp Structural Design Associates, Inc. Three-dimensional auxetic structures and applications thereof
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
JP5726084B2 (en) * 2008-11-11 2015-05-27 シファメド・ホールディングス・エルエルシー Thin electrode assembly
US8725249B2 (en) 2008-12-09 2014-05-13 Nephera Ltd. Stimulation of the urinary system
US8923970B2 (en) 2008-12-09 2014-12-30 Nephera Ltd. Stimulation of the urinary system
US20100152725A1 (en) * 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8808345B2 (en) * 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100168739A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
EP2376011B1 (en) * 2009-01-09 2019-07-03 ReCor Medical, Inc. Apparatus for treatment of mitral valve insufficiency
JP5199487B2 (en) * 2009-01-14 2013-05-15 カーディアック ペースメイカーズ, インコーポレイテッド Promotion system of diuresis and natriuresis by applying electric field
IT1394143B1 (en) * 2009-05-04 2012-05-25 Igea S P A DEVICE FOR REVERSIBLE ELECTROPORATION ACTING TO CURE CELLULAR APOPTOSIS
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
EP2445568B1 (en) * 2009-06-24 2020-09-23 Kalila Medical, Inc. Steerable medical delivery devices
US8224449B2 (en) * 2009-06-29 2012-07-17 Boston Scientific Neuromodulation Corporation Microstimulator with flap electrodes
CN102596320B (en) 2009-10-30 2016-09-07 瑞蔻医药有限公司 Method and apparatus by percutaneous ultrasound ripple Renal denervation treatment hypertension
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US8900223B2 (en) * 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US20110118729A1 (en) * 2009-11-13 2011-05-19 Alcon Research, Ltd High-intensity pulsed electric field vitrectomy apparatus with load detection
WO2011060339A1 (en) 2009-11-13 2011-05-19 St. Jude Medical, Inc. Assembly of staggered ablation elements
US20110118734A1 (en) * 2009-11-16 2011-05-19 Alcon Research, Ltd. Capsularhexis device using pulsed electric fields
US20110135626A1 (en) * 2009-12-08 2011-06-09 Alcon Research, Ltd. Localized Chemical Lysis of Ocular Tissue
US20110144562A1 (en) * 2009-12-14 2011-06-16 Alcon Research, Ltd. Localized Pharmacological Treatment of Ocular Tissue Using High-Intensity Pulsed Electrical Fields
US20110144641A1 (en) * 2009-12-15 2011-06-16 Alcon Research, Ltd. High-Intensity Pulsed Electric Field Vitrectomy Apparatus
EP2525715A4 (en) * 2010-01-19 2014-06-04 Medtronic Ardian Luxembourg S R L Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
CN102892454B (en) 2010-01-26 2016-01-20 迈克尔·A·埃文斯 For the method for denervation, device and medicament
US8447403B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US11717681B2 (en) 2010-03-05 2023-08-08 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
CA2793737A1 (en) 2010-03-24 2011-09-29 Shifamed Holdings, Llc Intravascular tissue disruption
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
WO2011143468A2 (en) 2010-05-12 2011-11-17 Shifamed, Llc Low profile electrode assembly
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US8546979B2 (en) 2010-08-11 2013-10-01 Alcon Research, Ltd. Self-matching pulse generator with adjustable pulse width and pulse frequency
US8805519B2 (en) 2010-09-30 2014-08-12 Nevro Corporation Systems and methods for detecting intrathecal penetration
US9566456B2 (en) 2010-10-18 2017-02-14 CardioSonic Ltd. Ultrasound transceiver and cooling thereof
JP2013543423A (en) 2010-10-18 2013-12-05 カーディオソニック リミテッド Tissue treatment
US8585601B2 (en) 2010-10-18 2013-11-19 CardioSonic Ltd. Ultrasound transducer
US9028417B2 (en) 2010-10-18 2015-05-12 CardioSonic Ltd. Ultrasound emission element
CN106377312B (en) 2010-10-25 2019-12-10 美敦力Af卢森堡有限责任公司 Microwave catheter apparatus, systems, and methods for renal neuromodulation
EP2632373B1 (en) 2010-10-25 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. System for evaluation and feedback of neuromodulation treatment
ES2912362T3 (en) 2010-11-09 2022-05-25 Aegea Medical Inc Method of placement and apparatus for delivering steam to the uterus
US10016233B2 (en) * 2010-12-06 2018-07-10 Biosense Webster (Israel) Ltd. Treatment of atrial fibrillation using high-frequency pacing and ablation of renal nerves
US20120232409A1 (en) * 2010-12-15 2012-09-13 Stahmann Jeffrey E System and method for renal artery occlusion during renal denervation therapy
WO2012161875A1 (en) 2011-04-08 2012-11-29 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
WO2012151396A2 (en) 2011-05-03 2012-11-08 Shifamed Holdings, Llc Steerable delivery sheaths
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
US20120296232A1 (en) * 2011-05-18 2012-11-22 St. Jude Medical, Inc. Method and apparatus of assessing transvascular denervation
US9980645B1 (en) * 2011-06-21 2018-05-29 Case Western Reserve University High-contact density electrode and fabrication technique for an implantable cuff design
US9387031B2 (en) * 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
CN104135960B (en) 2011-10-07 2017-06-06 埃杰亚医疗公司 A kind of uterine therapy device
ITPD20110383A1 (en) * 2011-12-05 2013-06-06 Cardiac Impulse Srl ELECTROCATETER FOR NEUROSTIMULATION
KR102067583B1 (en) 2011-12-09 2020-01-17 메타벤션, 인크. Therapeutic neuromodulation of the hepatic system
US9005100B2 (en) 2011-12-15 2015-04-14 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
EP2790773B1 (en) 2012-01-25 2020-10-14 Nevro Corporation Lead anchor
WO2013116380A1 (en) 2012-01-30 2013-08-08 Vytronus, Inc. Tissue necrosis methods and apparatus
AU2013202803C1 (en) * 2012-03-07 2016-06-23 Reshape Lifesciences, Inc. Devices for regulation of blood pressure and heart rate
EP3348220A1 (en) 2012-03-08 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. Biomarker sampling in the context of neuromodulation devices and associated systems
US9750568B2 (en) 2012-03-08 2017-09-05 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
EP2822646B1 (en) 2012-03-09 2023-10-18 Mayo Foundation For Medical Education And Research Modulating afferent signals to treat medical conditions
US8934988B2 (en) 2012-03-16 2015-01-13 St. Jude Medical Ab Ablation stent with meander structure
US9439598B2 (en) 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues
US8961550B2 (en) 2012-04-17 2015-02-24 Indian Wells Medical, Inc. Steerable endoluminal punch
US10357304B2 (en) 2012-04-18 2019-07-23 CardioSonic Ltd. Tissue treatment
US9113929B2 (en) 2012-04-19 2015-08-25 St. Jude Medical, Cardiology Division, Inc. Non-electric field renal denervation electrode
US20130289650A1 (en) * 2012-04-25 2013-10-31 Pacesetter, Inc. Neuromodulation for Hypertension Control
US10258791B2 (en) 2012-04-27 2019-04-16 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods
WO2013165935A1 (en) * 2012-05-03 2013-11-07 Sound Interventions, Inc. Apparatus and method for uniform renal denervation
CA3158197A1 (en) 2012-05-29 2013-12-05 Autonomix Medical, Inc. Endoscopic sympathectomy systems and methods
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
AU2013305543A1 (en) 2012-08-23 2015-03-19 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9849025B2 (en) 2012-09-07 2017-12-26 Yale University Brain cooling system
WO2014047355A1 (en) 2012-09-19 2014-03-27 Denervx LLC Cooled microwave denervation
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
CN104902836B (en) 2012-11-05 2017-08-08 毕达哥拉斯医疗有限公司 Controlled tissue melts
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
CN102908191A (en) 2012-11-13 2013-02-06 陈绍良 Multipolar synchronous pulmonary artery radiofrequency ablation catheter
US9827036B2 (en) 2012-11-13 2017-11-28 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US10272269B2 (en) * 2012-11-13 2019-04-30 Silk Road Medical, Inc. Devices and methods for endoluminal delivery of either fluid or energy for denervation
US11241267B2 (en) 2012-11-13 2022-02-08 Pulnovo Medical (Wuxi) Co., Ltd Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
EP3964151A3 (en) 2013-01-17 2022-03-30 Virender K. Sharma Apparatus for tissue ablation
AU2014207265B2 (en) 2013-01-21 2017-04-20 Cala Health, Inc. Devices and methods for controlling tremor
US9888956B2 (en) 2013-01-22 2018-02-13 Angiodynamics, Inc. Integrated pump and generator device and method of use
US9498619B2 (en) * 2013-02-26 2016-11-22 Endostim, Inc. Implantable electrical stimulation leads
US9179997B2 (en) 2013-03-06 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Thermochromic polyvinyl alcohol based hydrogel artery
US10076384B2 (en) 2013-03-08 2018-09-18 Symple Surgical, Inc. Balloon catheter apparatus with microwave emitter
EP2777741A3 (en) 2013-03-12 2015-01-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
EP2777740A3 (en) 2013-03-12 2015-01-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US10716914B2 (en) 2013-03-12 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
WO2014159273A1 (en) 2013-03-14 2014-10-02 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
CN106178294B (en) 2013-03-14 2018-11-20 瑞蔻医药有限公司 A kind of endovascular ablation system based on ultrasound
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
WO2014150441A2 (en) 2013-03-15 2014-09-25 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
CN110141177B (en) 2013-04-08 2021-11-23 阿帕玛医疗公司 Ablation catheter
US10350002B2 (en) 2013-04-25 2019-07-16 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
EP3620201B1 (en) * 2013-05-03 2023-06-28 C. R. Bard, Inc. Peelable protective sheath
WO2014188430A2 (en) 2013-05-23 2014-11-27 CardioSonic Ltd. Devices and methods for renal denervation and assessment thereof
EP3003470B8 (en) 2013-06-03 2017-10-04 Pulse Biosciences, Inc. Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
US9872728B2 (en) 2013-06-28 2018-01-23 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for affixing electrodes to an intravascular balloon
US20150011991A1 (en) 2013-07-03 2015-01-08 St. Jude Medical, Cardiology Division, Inc. Electrode Assembly For Catheter System
US10154869B2 (en) 2013-08-02 2018-12-18 Gary M. Onik System and method for creating radio-frequency energy electrical membrane breakdown for tissue ablation
CN105848708A (en) 2013-09-03 2016-08-10 恩多斯蒂姆股份有限公司 Methods and systems of electrode polarity switching in electrical stimulation therapy
USD914883S1 (en) 2013-10-23 2021-03-30 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10856936B2 (en) 2013-10-23 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including thermoplastic-based struts
USD774043S1 (en) 2013-10-23 2016-12-13 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
USD747491S1 (en) 2013-10-23 2016-01-12 St. Jude Medical, Cardiology Division, Inc. Ablation generator
WO2015061052A1 (en) 2013-10-24 2015-04-30 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
WO2015061034A1 (en) 2013-10-24 2015-04-30 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10034705B2 (en) 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
EP3062722B1 (en) 2013-10-28 2019-03-20 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including interlinked struts
US9861433B2 (en) 2013-11-05 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Helical-shaped ablation catheter and methods of use
US10390874B2 (en) 2013-11-14 2019-08-27 Rm2 Technology Llc Methods, systems, and apparatuses for tissue ablation using electrolysis and permeabilization
EA201691073A1 (en) 2013-12-05 2016-12-30 РФЕМБ ХОЛДИНГС, ЭлЭлСи CANCER IMMUNOTHERAPY USING RADIO-FREQUENCY ELECTRICAL BREAKDOWN MEMBRANE (RF-EMB)
US20160331447A1 (en) * 2013-12-20 2016-11-17 The Johns Hopkins University Method and apparatus for selective treatment inside a body lumen
US20150209107A1 (en) 2014-01-24 2015-07-30 Denervx LLC Cooled microwave denervation catheter configuration
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
EP2937053A1 (en) 2014-04-24 2015-10-28 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
WO2015179666A1 (en) 2014-05-22 2015-11-26 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
CN114768093A (en) 2014-06-02 2022-07-22 卡拉健康公司 Systems and methods for peripheral nerve stimulation to treat tremor
US10231778B2 (en) * 2014-10-20 2019-03-19 Biosense Webster (Israel) Ltd. Methods for contemporaneous assessment of renal denervation
EP3220841B1 (en) 2014-11-19 2023-01-25 EPiX Therapeutics, Inc. High-resolution mapping of tissue with pacing
CA2967824A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Ablation devices, systems and methods of using a high-resolution electrode assembly
EP3808298B1 (en) 2014-11-19 2023-07-05 EPiX Therapeutics, Inc. Systems for high-resolution mapping of tissue
US9724155B2 (en) 2014-12-01 2017-08-08 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US10292805B2 (en) 2015-01-23 2019-05-21 Contego Medical, Llc Interventional device having an integrated embolic filter and associated methods
WO2016123608A2 (en) 2015-01-30 2016-08-04 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of high risk and recurrent prostate cancer, unresectable pancreatic cancer, tumors of the breast, melanoma or other skin malignancies, sarcoma, soft tissue tumors, ductal carcinoma, neoplasia, and intra and extra luminal abnormal tissue
US20160256218A1 (en) * 2015-03-04 2016-09-08 The Board Of Trustees Of The Leland Stanford Junior University Perivascular Electroporation Device and Method for Extending Vascular Patency
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
WO2016160694A1 (en) 2015-03-27 2016-10-06 Shifamed Holdings, Llc Steerable medical devices, systems, and methods of use
GB201506760D0 (en) * 2015-04-21 2015-06-03 Ucl Business Plc Detecting activity in peripheral nerves
EP3285849A4 (en) 2015-04-24 2018-12-26 Shifamed Holdings, LLC Steerable medical devices, systems, and methods of use
WO2016178697A1 (en) * 2015-05-01 2016-11-10 Inter Science Gmbh Methods, systems, and apparatuses for tissue ablation using pulse shape designs
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
CN112914514A (en) 2015-06-10 2021-06-08 卡拉健康公司 System and method for peripheral nerve stimulation to treat tremor with a detachable treatment and monitoring unit
US11547480B2 (en) * 2015-07-21 2023-01-10 Koninklijke Philips N.V. System for stimulating renal nerves
WO2017053847A1 (en) 2015-09-23 2017-03-30 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
WO2017083257A1 (en) 2015-11-09 2017-05-18 Shifamed Holdings, Llc Steering assemblies for medical devices, and methods of use
WO2017087549A1 (en) 2015-11-16 2017-05-26 Apama Medical, Inc. Energy delivery devices
US20170150922A1 (en) 2015-11-30 2017-06-01 Palo Alto Investors Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
IL286747B1 (en) 2016-01-21 2024-01-01 Cala Health Inc Wearable device for treating urinary symptoms
CN114983553A (en) 2016-02-19 2022-09-02 埃杰亚医疗公司 Method and apparatus for determining the integrity of a body cavity
US10874451B2 (en) 2016-02-29 2020-12-29 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
EP3429462B1 (en) 2016-03-15 2022-08-03 EPiX Therapeutics, Inc. Improved devices and systems for irrigated ablation
EP3457976A4 (en) 2016-05-16 2019-12-11 Pulse Biosciences, Inc. Pulse applicator
US11678932B2 (en) 2016-05-18 2023-06-20 Symap Medical (Suzhou) Limited Electrode catheter with incremental advancement
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
WO2017223264A1 (en) 2016-06-23 2017-12-28 St. Jude Medical, Cardiology Division, Inc. Catheter system and electrode assembly for intraprocedural evaluation of renal denervation
DK3474760T3 (en) 2016-06-27 2023-03-20 Galvanize Therapeutics Inc Generator and a catheter with an electrode for treating a lung passage
CN109689151A (en) 2016-07-08 2019-04-26 卡拉健康公司 With lucky N number of electrode and the system and method for improving the dry N number of nerve of electrode stimulating
US11259859B2 (en) * 2016-09-07 2022-03-01 Deepqure Inc. Systems and methods for renal denervation
US10543357B2 (en) 2016-09-19 2020-01-28 Pulse Biosciences, Inc. High voltage connectors for pulse generators
US11382513B2 (en) 2016-11-08 2022-07-12 Palo Alto Investors Methods and compositions for treating a condition in a subject
US10806942B2 (en) 2016-11-10 2020-10-20 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
WO2018094207A1 (en) 2016-11-17 2018-05-24 Endostim, Inc. Modular stimulation system for the treatment of gastrointestinal disorders
US11717337B2 (en) * 2016-11-29 2023-08-08 St. Jude Medical, Cardiology Division, Inc. Electroporation systems and catheters for electroporation systems
US10946193B2 (en) 2017-02-28 2021-03-16 Pulse Biosciences, Inc. Pulse generator with independent panel triggering
US10980999B2 (en) 2017-03-09 2021-04-20 Nevro Corp. Paddle leads and delivery tools, and associated systems and methods
GB2560511A (en) * 2017-03-12 2018-09-19 Rachel Rajiah Ida Electrotransfer device and uses thereof
US20200094080A1 (en) 2017-03-20 2020-03-26 Sonivie Ltd. Method for treating heart failure by improving ejection fraction of a patient
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
WO2018200865A1 (en) 2017-04-27 2018-11-01 Epix Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
WO2018226991A1 (en) 2017-06-07 2018-12-13 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
AU2018204841B2 (en) * 2017-07-05 2023-08-10 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating post-traumatic stress disorder in patients via renal neuromodulation
WO2019020983A1 (en) * 2017-07-28 2019-01-31 Galvani Bioelectronics Limited Electrode devices for neurostimulation
EP3658223A1 (en) 2017-07-28 2020-06-03 Galvani Bioelectronics Limited Electrode devices for neurostimulation
US11395915B2 (en) 2017-07-28 2022-07-26 Galvani Bioelectronics Limited Electrode devices and methods of manufacturing
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
CN111479610A (en) * 2017-10-23 2020-07-31 梅约医学教育与研究基金会 System and method for electroporation
WO2019094963A1 (en) 2017-11-13 2019-05-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
CN112004563A (en) 2018-02-01 2020-11-27 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
EP3758793A4 (en) 2018-03-29 2021-12-08 Nevro Corp. Leads having sidewall openings, and associated systems and methods
WO2019232432A1 (en) 2018-06-01 2019-12-05 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11389627B1 (en) 2018-10-02 2022-07-19 Lutonix Inc. Balloon protectors, balloon-catheter assemblies, and methods thereof
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
EP4034192A4 (en) 2019-09-25 2023-11-29 Shifamed Holdings, LLC Intravascular blood pump systems and methods of use and control thereof
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
US20210299440A1 (en) * 2020-03-30 2021-09-30 Novocure Gmbh Intravenous / Intra-Spinal / Intra-Cavity / Intraventricular Delivery of TTFields (Tumor Treating Fields) for Treating Cancer and Metastases
WO2022060425A1 (en) * 2020-09-16 2022-03-24 Neuronoff, Inc System and method for minimally invasive treatment with injectable electrodes
EP4108197A1 (en) 2021-06-24 2022-12-28 Gradient Denervation Technologies Systems for treating tissue
CN113856052B (en) * 2021-09-28 2022-10-14 江苏海莱新创医疗科技有限公司 Active heat absorption type electrode, tumor electric field treatment system and temperature control method

Family Cites Families (582)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1026407A (en) 1908-12-21 1912-05-14 Steel Shoe Company Footwear.
US1017857A (en) 1910-03-25 1912-02-20 Amphion Piano Player Company Valve for pneumatic actions.
US2130758A (en) 1935-06-01 1938-09-20 E J Rose Mfg Company Of Califo Electrode for diathermy treatment and the like
US2276995A (en) 1938-01-22 1942-03-17 A J Ginsberg Electrotherapy
US2276996A (en) 1940-11-30 1942-03-17 A J Ginsberg Non-radio-interfering therapeutic apparatus
US3181535A (en) 1957-10-04 1965-05-04 Diapulse Mfg Corp Of America Athermapeutic apparatus
US3043310A (en) 1959-04-24 1962-07-10 Diapulse Mfg Corp Of America Treatment head for athermapeutic apparatus
US3127895A (en) 1962-07-02 1964-04-07 Dynapower System Corp Therapeutic pulse generation and control circuit
US3270746A (en) 1963-08-26 1966-09-06 Dynapower Systems Corp High-performance electrotherapeutic treatment head
US3329149A (en) 1964-10-28 1967-07-04 Dynapower Systems Corp Of Cali Supporting arm for electrotherapeutic treatment head
US3563246A (en) 1967-04-24 1971-02-16 Intelectron Corp Method and apparatus for improving neural performance in human subjects by electrotherapy
US3522811A (en) 1969-02-13 1970-08-04 Medtronic Inc Implantable nerve stimulator and method of use
SE346468B (en) * 1969-02-24 1972-07-10 Lkb Medical Ab
US3670737A (en) 1970-07-02 1972-06-20 Diapulse Corp Of America Ultra-short wave athermapeutic apparatus
US3760812A (en) 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
US3774620A (en) 1971-06-14 1973-11-27 Nemectron Gmbh Electromedicinal apparatus for interference current therapy
US3895639A (en) 1971-09-07 1975-07-22 Rodler Ing Hans Apparatus for producing an interference signal at a selected location
US3800802A (en) 1972-01-07 1974-04-02 Int Medical Electronics Ltd Short-wave therapy apparatus
US3794022A (en) 1972-06-30 1974-02-26 E Nawracaj Dual oscillator, variable pulse duration electrotherapeutic device
US3803463A (en) 1972-07-10 1974-04-09 J Cover Weapon for immobilization and capture
US3897789A (en) 1973-09-13 1975-08-05 Stanley J Blanchard Acupuncture apparatus
US3894532A (en) 1974-01-17 1975-07-15 Acupulse Inc Instruments for transcutaneous and subcutaneous investigation and treatment
US3911930A (en) 1974-03-01 1975-10-14 Stimulation Tech Method and structure of preventing and treating ileus, and reducing acute pain by electrical pulse stimulation
US4011861A (en) 1974-04-03 1977-03-15 Case Western Reserve University Implantable electric terminal for organic tissue
US4055190A (en) 1974-12-19 1977-10-25 Michio Tany Electrical therapeutic apparatus
US3952751A (en) 1975-01-08 1976-04-27 W. Denis Kendall High-performance electrotherapeutic apparatus
US4026300A (en) 1975-03-14 1977-05-31 Liberty Mutual Method and apparatus for interfacing to nerves
US3987790A (en) 1975-10-01 1976-10-26 Alza Corporation Osmotically driven fluid dispenser
US4266532A (en) 1976-11-17 1981-05-12 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4315503A (en) 1976-11-17 1982-02-16 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4105017A (en) 1976-11-17 1978-08-08 Electro-Biology, Inc. Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment
US4071033A (en) 1976-12-20 1978-01-31 Nawracaj Edward P Electrotherapeutic device with modulated dual signals
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4305115A (en) 1979-03-14 1981-12-08 Harry H. Leveen Electrostatic shield
US4692147A (en) 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4341221A (en) 1980-10-07 1982-07-27 Medtronic, Inc. Shielded recording electrode system
US4405305A (en) 1980-10-27 1983-09-20 University Of Utah Research Foundation Subcutaneous peritoneal injection catheter
US4379462A (en) 1980-10-29 1983-04-12 Neuromed, Inc. Multi-electrode catheter assembly for spinal cord stimulation
CS226514B1 (en) 1981-01-28 1984-04-16 Petr Ing Csc Slovak Apparatus for stimulating live tissues
US4454883A (en) 1982-02-16 1984-06-19 Therafield Holdings Limited Electrotherapeutic apparatus
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4467808A (en) 1982-09-17 1984-08-28 Biolectron, Inc. Method for preventing and treating osteoporosis in a living body by using electrical stimulation non-invasively
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
FR2541902B1 (en) 1983-03-04 1986-02-07 Cofrem International Sa THERMAL THERAPEUTIC APPARATUS
DE3483160D1 (en) 1983-09-14 1990-10-11 Jacob Zabara NEUROCYBERNETIC PROSTHESIS.
JPS60100516A (en) 1983-11-04 1985-06-04 Takeda Chem Ind Ltd Preparation of sustained release microcapsule
US4816016A (en) 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4587975A (en) * 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4674482A (en) 1984-09-12 1987-06-23 Irt, Inc. Pulse electro-magnetic field therapy device with auto bias circuit
US4608985A (en) 1984-10-11 1986-09-02 Case Western Reserve University Antidromic pulse generating wave form for collision blocking
US4649936A (en) 1984-10-11 1987-03-17 Case Western Reserve University Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
US4602624A (en) 1984-10-11 1986-07-29 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
US4865845A (en) 1986-03-21 1989-09-12 Alza Corporation Release rate adjustment of osmotic or diffusional delivery devices
US4709698A (en) 1986-05-14 1987-12-01 Thomas J. Fogarty Heatable dilation catheter
US4998532A (en) 1986-05-23 1991-03-12 Lti Biomedical, Inc. Portable electro-therapy system
US5014699A (en) 1986-05-23 1991-05-14 Trustees Of The University Of Pennsylvania Electromagnetic method and apparatus for healing living tissue
US4715852A (en) 1986-07-21 1987-12-29 Eaton Corporation Implanted medication infusion device
US4774967A (en) 1986-09-09 1988-10-04 American Biointerface Corporation Method and apparatus for mammalian nerve regeneration
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
DE68925030T2 (en) * 1988-01-21 1996-07-25 Massachusetts Inst Technology MOLECULE TRANSPORT THROUGH FABRICS WITH THE USE OF ELECTROPORATION.
US5389069A (en) 1988-01-21 1995-02-14 Massachusetts Institute Of Technology Method and apparatus for in vivo electroporation of remote cells and tissue
US4890623A (en) 1988-03-14 1990-01-02 C. R. Bard, Inc. Biopotential sensing device and method for making
CA1319174C (en) 1988-04-21 1993-06-15 Lawrence E. Bertolucci Electrical nerve stimulation device for nausea control
US4955377A (en) 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US5094242A (en) * 1988-11-07 1992-03-10 Regents Of The University Of California Implantable nerve stimulation device
US5059423A (en) 1988-12-13 1991-10-22 Alza Corporation Delivery system comprising biocompatible beneficial agent formulation
US5057318A (en) 1988-12-13 1991-10-15 Alza Corporation Delivery system for beneficial agent over a broad range of rates
AU4945490A (en) 1989-01-06 1990-08-01 Angioplasty Systems Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US5458631A (en) 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US5779698A (en) 1989-01-18 1998-07-14 Applied Medical Resources Corporation Angioplasty catheter system and method for making same
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5125928A (en) * 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5006119A (en) * 1989-05-25 1991-04-09 Engineering & Research Associates, Inc. Hollow core coaxial catheter
US20030220521A1 (en) 1989-07-27 2003-11-27 G.D. Searle & Co. Renal-selective prodrugs for control of renal sympathetic nerve activity in the treatment of hypertension
US5112614A (en) 1989-09-14 1992-05-12 Alza Corporation Implantable delivery dispenser
RU1785710C (en) 1989-10-06 1993-01-07 Vremennyj Nauchnyj Kollektiv O Microwave resonant therapeutic device
US4979511A (en) 1989-11-03 1990-12-25 Cyberonics, Inc. Strain relief tether for implantable electrode
US5188837A (en) 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5193048A (en) 1990-04-27 1993-03-09 Kaufman Dennis R Stun gun with low battery indicator and shutoff timer
US5184617A (en) 1990-06-05 1993-02-09 Staodyn, Inc. Output pulse compensation for therapeutic-type electronic devices
US5095905A (en) 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
US5499971A (en) * 1990-06-15 1996-03-19 Cortrak Medical, Inc. Method for iontophoretically delivering drug adjacent to a heart
WO1991019529A1 (en) * 1990-06-15 1991-12-26 Cortrak Medical, Inc. Drug delivery apparatus and method
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5234692A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5234693A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5058584A (en) 1990-08-30 1991-10-22 Medtronic, Inc. Method and apparatus for epidural burst stimulation for angina pectoris
US5111815A (en) 1990-10-15 1992-05-12 Cardiac Pacemakers, Inc. Method and apparatus for cardioverter/pacer utilizing neurosensing
EP0491979A1 (en) 1990-12-22 1992-07-01 Peter Dr. Ing. Osypka Pacemaker catheter with two poles
US5324255A (en) * 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
US5263480A (en) 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5425364A (en) 1991-02-15 1995-06-20 Cardiac Pathways Corporation Flexible strip assembly without feedthrough holes and device utilizing the same
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5199428A (en) 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
WO1992020291A1 (en) 1991-05-24 1992-11-26 Applied Medical Resources, Inc. Articulating tissue cutter assembly
US5458568A (en) 1991-05-24 1995-10-17 Cortrak Medical, Inc. Porous balloon for selective dilatation and drug delivery
US5137727A (en) 1991-06-12 1992-08-11 Alza Corporation Delivery device providing beneficial agent stability
US5213098A (en) * 1991-07-26 1993-05-25 Medtronic, Inc. Post-extrasystolic potentiation stimulation with physiologic sensor feedback
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5231988A (en) 1991-08-09 1993-08-03 Cyberonics, Inc. Treatment of endocrine disorders by nerve stimulation
EP0606390A4 (en) 1991-10-03 1994-12-07 Gen Hospital Corp Apparatus and method for vasodilation.
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
DE69233091T2 (en) 1991-11-08 2004-05-06 Boston Scientific Ltd., St. Michael ABLATION ELECTRODE WITH INSULATED TEMPERATURE MEASURING ELEMENT
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5193539A (en) * 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5203326A (en) * 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5193540A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US5697882A (en) * 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
AU682146B2 (en) 1992-03-09 1997-09-25 St. George's Hospital Medical School Image neurography and diffusion anisotropy imaging
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5370680A (en) 1992-05-27 1994-12-06 Magnetic Resonance Therapeutics, Inc. Athermapeutic apparatus employing electro-magnetic fields
JP3493196B2 (en) 1992-06-24 2004-02-03 サイベロニクス,インク. Treatment of neuropsychiatric disorders by nerve stimulation
US5772590A (en) * 1992-06-30 1998-06-30 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire
US5304120A (en) * 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
US5507724A (en) * 1992-07-01 1996-04-16 Genetronics, Inc. Electroporation and iontophoresis apparatus and method for insertion of drugs and genes into cells
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5484400A (en) * 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
DE4229693A1 (en) 1992-09-05 1994-03-10 Achim Dr Hansjuergens Electrotherapeutic device
US5700485A (en) 1992-09-10 1997-12-23 Children's Medical Center Corporation Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid
US5922340A (en) 1992-09-10 1999-07-13 Children's Medical Center Corporation High load formulations and methods for providing prolonged local anesthesia
US5618563A (en) 1992-09-10 1997-04-08 Children's Medical Center Corporation Biodegradable polymer matrices for sustained delivery of local anesthetic agents
US5478303A (en) 1992-09-18 1995-12-26 Foley-Nolan; Darragh Electromagnetic apparatus for use in therapy
US5338662A (en) 1992-09-21 1994-08-16 Bio-Preserve Medical Corporation Organ perfusion device
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
US5634899A (en) * 1993-08-20 1997-06-03 Cortrak Medical, Inc. Simultaneous cardiac pacing and local drug delivery method
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
CA2109980A1 (en) 1992-12-01 1994-06-02 Mir A. Imran Steerable catheter with adjustable bend location and/or radius and method
US5256141A (en) * 1992-12-22 1993-10-26 Nelson Gencheff Biological material deployment method and apparatus
US5317155A (en) 1992-12-29 1994-05-31 The Electrogesic Corporation Corona discharge apparatus
US5429634A (en) 1993-09-09 1995-07-04 Pdt Systems Biogenic implant for drug delivery and method
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5397338A (en) 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5439440A (en) 1993-04-01 1995-08-08 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
FR2704151B1 (en) * 1993-04-21 1995-07-13 Klotz Antoine Olivier Electronic device intended for the adrenergic stimulation of the sympathetic system relating to the venous media.
WO1994024298A1 (en) 1993-04-21 1994-10-27 Institut Pasteur Biocompatible implant for the expression and secretion in vivo of a therapeutical compound
US6517811B2 (en) * 1993-05-06 2003-02-11 Research Corporation Technologies, Inc. Compounds for cancer imaging and therapy
US5584863A (en) 1993-06-24 1996-12-17 Electropharmacology, Inc. Pulsed radio frequency electrotherapeutic system
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
DE69432148T2 (en) 1993-07-01 2003-10-16 Boston Scient Ltd CATHETER FOR IMAGE DISPLAY, DISPLAY OF ELECTRICAL SIGNALS AND ABLATION
US5402367A (en) * 1993-07-19 1995-03-28 Texas Instruments, Incorporated Apparatus and method for model based process control
US5507791A (en) 1993-08-31 1996-04-16 Sit'ko; Sergei P. Microwave resonance therapy
US5582609A (en) * 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5397308A (en) * 1993-10-22 1995-03-14 Scimed Life Systems, Inc. Balloon inflation measurement apparatus
US5470352A (en) 1993-10-29 1995-11-28 Northeastern University Balloon angioplasty device
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5571147A (en) 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
JPH07157424A (en) 1993-12-03 1995-06-20 Lintec Corp Gel formulation for local anesthesia
US5730127A (en) * 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
US5458626A (en) 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US5697975A (en) 1994-02-09 1997-12-16 The University Of Iowa Research Foundation Human cerebral cortex neural prosthetic for tinnitus
US6858024B1 (en) 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
GB9407135D0 (en) 1994-04-11 1994-06-01 Aberdeen University And Plasma Treatment of osteoporosis
US5505201A (en) 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
WO1995033514A1 (en) 1994-06-09 1995-12-14 Magnetic Resonance Therapeutics, Inc. Electro-therapeutic method
US5505700A (en) * 1994-06-14 1996-04-09 Cordis Corporation Electro-osmotic infusion catheter
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6009877A (en) * 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
JP3578460B2 (en) 1994-06-27 2004-10-20 ボストン サイエンティフィック リミテッド Systems and methods for sensing body temperature
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5454782A (en) 1994-08-11 1995-10-03 Perkins; Rodney C. Translumenal circumferential energy delivery device
WO1996004957A1 (en) 1994-08-17 1996-02-22 Electropharmacology, Inc. Electrotherapeutic system
DE4433111A1 (en) 1994-09-16 1996-03-21 Fraunhofer Ges Forschung Cuff electrode
US5531778A (en) 1994-09-20 1996-07-02 Cyberonics, Inc. Circumneural electrode assembly
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
WO1996011723A1 (en) 1994-10-17 1996-04-25 Australasian Medical Technology Limited Devices and methods for implementation of pulsed electromagnetic field therapy
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US5660848A (en) 1994-11-02 1997-08-26 The Population Council, Center For Biomedical Research Subdermally implantable device
CA2204789C (en) 1994-11-10 2002-11-12 Paul Ashton Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
ATE308930T1 (en) * 1995-05-04 2005-11-15 Sherwood Serv Ag THERMO-SURGERY SYSTEM WITH COLD ELECTRIC TIP
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
WO1996039993A1 (en) 1995-06-07 1996-12-19 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical device and method for loading and reloading the device therein
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US6041252A (en) * 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US6322558B1 (en) 1995-06-09 2001-11-27 Engineering & Research Associates, Inc. Apparatus and method for predicting ablation depth
HUP9700322A3 (en) 1995-06-09 2001-03-28 Euro Celtique Sa Formulations and methods for providing prolonged local anesthesia
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
US5672174A (en) 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5711326A (en) 1995-08-25 1998-01-27 Whirlpool Corporation Dishwasher accumulator soil removal grating for a filter system
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
EP0955883B1 (en) 1995-09-20 2002-07-31 Texas Heart Institute Detecting thermal discrepancies in vessel walls
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
DE69633411T2 (en) 1995-10-13 2005-10-20 Transvascular, Inc., Menlo Park METHOD AND DEVICE FOR PREVENTING ARTERIAL ATTRACTIONS AND / OR FOR CARRYING OUT OTHER TRANSVASCULAR INTERVENTIONS
US5755750A (en) 1995-11-13 1998-05-26 University Of Florida Method and apparatus for selectively inhibiting activity in nerve fibers
US6073048A (en) 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
CN2291164Y (en) 1996-12-23 1998-09-16 祝强 Instrument for bringing high blood pressure down
AU733341B2 (en) * 1996-02-02 2001-05-10 Transvascular, Inc. A device, system and method for interstitial transvascular intervention
DK1238657T3 (en) 1996-02-02 2005-01-17 Alza Corp Sustained release of an active agent using an implantable system
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
WO1997029802A2 (en) 1996-02-20 1997-08-21 Advanced Bionics Corporation Improved implantable microstimulator and systems employing the same
US6036687A (en) 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US5747060A (en) 1996-03-26 1998-05-05 Euro-Celtique, S.A. Prolonged local anesthesia with colchicine
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US6735471B2 (en) 1996-04-30 2004-05-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6449507B1 (en) 1996-04-30 2002-09-10 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US5824026A (en) 1996-06-12 1998-10-20 The Spectranetics Corporation Catheter for delivery of electric energy and a process for manufacturing same
US5861021A (en) * 1996-06-17 1999-01-19 Urologix Inc Microwave thermal therapy of cardiac tissue
US5944710A (en) 1996-06-24 1999-08-31 Genetronics, Inc. Electroporation-mediated intravascular delivery
US20020040204A1 (en) 1996-06-24 2002-04-04 Dev Nagendu B. Electroporation-enhanced inhibition of vascular neointimal hyperplasia
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US5924997A (en) 1996-07-29 1999-07-20 Campbell; Thomas Henderson Catheter and method for the thermal mapping of hot spots in vascular lesions of the human body
US6245026B1 (en) * 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US6058328A (en) * 1996-08-06 2000-05-02 Pacesetter, Inc. Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof
US6135999A (en) 1997-02-12 2000-10-24 Oratec Internationals, Inc. Concave probe for arthroscopic surgery
US5906636A (en) * 1996-09-20 1999-05-25 Texas Heart Institute Heat treatment of inflamed tissue
US5800464A (en) 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
US5814079A (en) 1996-10-04 1998-09-29 Medtronic, Inc. Cardiac arrhythmia management by application of adnodal stimulation for hyperpolarization of myocardial cells
US5704908A (en) 1996-10-10 1998-01-06 Genetronics, Inc. Electroporation and iontophoresis catheter with porous balloon
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
US5871449A (en) * 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
ATE274974T1 (en) 1997-01-13 2004-09-15 Neurodan As IMPLANTABLE ELECTRODE FOR NERVE STIMULATION
US6026326A (en) * 1997-01-13 2000-02-15 Medtronic, Inc. Apparatus and method for treating chronic constipation
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
JP2001513679A (en) 1997-02-26 2001-09-04 アルフレッド イー マン ファウンデーション フォア サイエンティフィック リサーチ Battery powered patient subcutaneous insertion device
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
JP4157168B2 (en) 1997-03-27 2008-09-24 アルフレッド イー マン ファウンデーション フォア サイエンティフィック リサーチ Implantable device system for monitoring and / or acting on body parameters
US6261281B1 (en) 1997-04-03 2001-07-17 Electrofect As Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US5971983A (en) * 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
AU7389098A (en) 1997-05-16 1998-12-08 Brigham And Women's Hospital Local anesthetic formulations
JP2002505596A (en) 1997-05-23 2002-02-19 トランサージカル,インコーポレイテッド MRI guided therapy device and method
US6161048A (en) 1997-06-26 2000-12-12 Radionics, Inc. Method and system for neural tissue modification
WO1999000060A1 (en) 1997-06-26 1999-01-07 Advanced Coronary Intervention Electrosurgical catheter for resolving obstructions by radio frequency ablation
IL129951A0 (en) 1997-07-02 2000-02-29 Euro Celtique Sa Prolonged anesthesia in joints and body spaces
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
AU3458197A (en) * 1997-07-16 1999-02-10 Impulse Dynamics N.V. Smooth muscle controller
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US6917834B2 (en) 1997-12-03 2005-07-12 Boston Scientific Scimed, Inc. Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates
US6093197A (en) 1997-12-08 2000-07-25 Axon Engineering, Inc. Spiral nerve cuff electrode implantation tool
WO1999033407A1 (en) 1997-12-31 1999-07-08 Heartport, Inc. Methods and apparatus for perfusion of isolated tissue structure
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
DE69941557D1 (en) 1998-01-15 2009-12-03 Regenesis Biomedical Inc IMPROVED DEVICE FOR TREATMENT BY PULSED ELECTROMAGNETIC ENERGY
US6251130B1 (en) * 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6522932B1 (en) 1998-02-10 2003-02-18 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and tools for use therewith
US6205361B1 (en) 1998-02-10 2001-03-20 Advanced Bionics Corporation Implantable expandable multicontact electrodes
US6415187B1 (en) 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
US6258087B1 (en) 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US6086527A (en) 1998-04-02 2000-07-11 Scimed Life Systems, Inc. System for treating congestive heart failure
US6314325B1 (en) 1998-04-07 2001-11-06 William R. Fitz Nerve hyperpolarization method and apparatus for pain relief
US6219577B1 (en) 1998-04-14 2001-04-17 Global Vascular Concepts, Inc. Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
NZ507185A (en) 1998-04-14 2002-09-27 Gmp Drug Delivery Inc Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US5916154A (en) * 1998-04-22 1999-06-29 Nellcor Puritan Bennett Method of enhancing performance in pulse oximetry via electrical stimulation
US6269269B1 (en) 1998-04-23 2001-07-31 Medtronic Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US6058331A (en) 1998-04-27 2000-05-02 Medtronic, Inc. Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6192889B1 (en) 1998-05-05 2001-02-27 Woodside Biomedical, Inc. Method of suppression and prevention of the gag reflex
AU3973599A (en) * 1998-05-08 1999-11-29 Genetronics, Inc. Electrically induced vessel vasodilation
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
WO1999065561A1 (en) 1998-06-19 1999-12-23 Cordis Webster, Inc. Method and apparatus for transvascular treatment of tachycardia and fibrillation
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
US6972013B1 (en) 1998-07-13 2005-12-06 Genetronics, Inc. Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
EP2428249B1 (en) 1998-07-13 2015-10-07 Inovio Pharmaceuticals, Inc. Skin and muscle-targeted gene therapy by pulsed electrical field
US7599736B2 (en) * 2001-07-23 2009-10-06 Dilorenzo Biomedical, Llc Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease
US6304787B1 (en) 1998-08-26 2001-10-16 Advanced Bionics Corporation Cochlear electrode array having current-focusing and tissue-treating features
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6146230A (en) 1998-09-24 2000-11-14 Samsung Display Devices Co., Ltd. Composition for electron emitter of field emission display and method for producing electron emitter using the same
US6123718A (en) 1998-11-02 2000-09-26 Polymerex Medical Corp. Balloon catheter
US7313444B2 (en) * 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US20070066972A1 (en) * 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6077227A (en) 1998-12-28 2000-06-20 Medtronic, Inc. Method for manufacture and implant of an implantable blood vessel cuff
US7329236B2 (en) 1999-01-11 2008-02-12 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US7780628B1 (en) * 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
US7481803B2 (en) 2000-11-28 2009-01-27 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US6749598B1 (en) 1999-01-11 2004-06-15 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US7122019B1 (en) 2000-11-28 2006-10-17 Flowmedica Inc. Intra-aortic renal drug delivery catheter
US6461314B1 (en) 1999-02-02 2002-10-08 Transurgical, Inc. Intrabody hifu applicator
US6464687B1 (en) 1999-03-09 2002-10-15 Ball Semiconductor, Inc. Implantable drug delivery system
US6508774B1 (en) 1999-03-09 2003-01-21 Transurgical, Inc. Hifu applications with feedback control
ES2240078T3 (en) 1999-03-09 2005-10-16 Thermage, Inc. APPARATUS FOR TREATMENT OF FABRICS.
US6678558B1 (en) * 1999-03-25 2004-01-13 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US6178349B1 (en) 1999-04-15 2001-01-23 Medtronic, Inc. Drug delivery neural stimulation device for treatment of cardiovascular disorders
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6292692B1 (en) 1999-04-30 2001-09-18 Medical Research Laboratories, Inc. Medical treatment device with functions, operated under passcode control
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
AU4696100A (en) 1999-05-04 2000-11-17 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
US6178352B1 (en) 1999-05-07 2001-01-23 Woodside Biomedical, Inc. Method of blood pressure moderation
US6304777B1 (en) 1999-05-26 2001-10-16 Impulse Dynamics N.V. Induction of cardioplegia applied electrical signals
US6442424B1 (en) 1999-05-26 2002-08-27 Impulse Dynamics N.V. Local cardiac motion control using applied electrical signals
US7092753B2 (en) 1999-06-04 2006-08-15 Impulse Dynamics Nv Drug delivery device
US7171263B2 (en) 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
WO2001000273A1 (en) 1999-06-25 2001-01-04 Emory University Devices and methods for vagus nerve stimulation
US6272383B1 (en) 1999-06-28 2001-08-07 Woodside Biomedical, Inc. Electro-acupuncture method using an electrical stimulator
US6927049B2 (en) 1999-07-21 2005-08-09 The Regents Of The University Of California Cell viability detection using electrical measurements
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US7053063B2 (en) 1999-07-21 2006-05-30 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes in tissue
US6326177B1 (en) 1999-08-04 2001-12-04 Eastern Virginia Medical School Of The Medical College Of Hampton Roads Method and apparatus for intracellular electro-manipulation
US6450942B1 (en) 1999-08-20 2002-09-17 Cardiorest International Ltd. Method for reducing heart loads in mammals
US6599256B1 (en) 1999-09-10 2003-07-29 Transurgical, Inc. Occlusion of tubular anatomical structures by energy application
US7510536B2 (en) 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
EP1244392A1 (en) 1999-09-28 2002-10-02 Novasys Medical, Inc. Treatment of tissue by application of energy and drugs
US6272377B1 (en) 1999-10-01 2001-08-07 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia prediction and prevention
US6473644B1 (en) 1999-10-13 2002-10-29 Cyberonics, Inc. Method to enhance cardiac capillary growth in heart failure patients
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6669655B1 (en) 1999-10-20 2003-12-30 Transurgical, Inc. Sonic element and catheter incorporating same
WO2001033172A1 (en) 1999-10-29 2001-05-10 Universität Zürich Method of volumetric blood flow measurement
US6436091B1 (en) 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
US6542781B1 (en) 1999-11-22 2003-04-01 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6711444B2 (en) 1999-11-22 2004-03-23 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
EP1106202A3 (en) * 1999-11-30 2004-03-31 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Electrode for intravascular stimulation, cardioversion and /or defibrillation
EP1106206B1 (en) 1999-11-30 2007-06-27 BIOTRONIK GmbH & Co. KG Apparatus for controlling the rate and the pumping action of the heart
US6592567B1 (en) 1999-12-07 2003-07-15 Chf Solutions, Inc. Kidney perfusion catheter
US6415183B1 (en) 1999-12-09 2002-07-02 Cardiac Pacemakers, Inc. Method and apparatus for diaphragmatic pacing
US20030150464A1 (en) 1999-12-17 2003-08-14 Casscells S. Ward Inducing apoptosis of atrial myocytes to treat atrial fibrillation
US6328699B1 (en) 2000-01-11 2001-12-11 Cedars-Sinai Medical Center Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6356786B1 (en) 2000-01-20 2002-03-12 Electrocore Techniques, Llc Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain
US20060085046A1 (en) * 2000-01-20 2006-04-20 Ali Rezai Methods of treating medical conditions by transvascular neuromodulation of the autonomic nervous system
US6356787B1 (en) 2000-02-24 2002-03-12 Electro Core Techniques, Llc Method of treating facial blushing by electrical stimulation of the sympathetic nerve chain
WO2001055212A2 (en) 2000-01-27 2001-08-02 The General Hospital Corporation Delivery of therapeutic biological from implantable tissue matrices
US6514226B1 (en) 2000-02-10 2003-02-04 Chf Solutions, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
US7565205B2 (en) 2000-02-17 2009-07-21 Standen Ltd. Treating a tumor or the like with electric fields at different orientations
US6536949B1 (en) * 2000-03-07 2003-03-25 Richard R. Heuser Catheter for thermal evaluation of arteriosclerotic plaque
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
EP1265674B1 (en) 2000-03-24 2008-09-17 ProRhythm, Inc. Apparatus for intrabody thermal treatment
US6287608B1 (en) 2000-04-11 2001-09-11 Intellicardia, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney by infusion of a vasodilator
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
WO2001087172A1 (en) 2000-05-12 2001-11-22 Cardima, Inc. Multi-channel rf energy delivery with coagulum reduction
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
WO2001095820A1 (en) 2000-06-13 2001-12-20 Atrionix, Inc. Surgical ablation probe for forming a circumferential lesion
EP1299035B1 (en) 2000-07-13 2013-02-13 ReCor Medical, Inc. Thermal treatment apparatus with focussed energy application
EP2277586B1 (en) 2000-07-26 2013-06-26 Boston Scientific Neuromodulation Corporation Regarcheable spinal cord stimulator system
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6697670B2 (en) 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6862479B1 (en) * 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction
ES2289619T3 (en) * 2000-09-07 2008-02-01 Covidien Ag APPARATUS FOR THE TREATMENT OF INTERVERTEBRAL DISCS.
US6405079B1 (en) 2000-09-22 2002-06-11 Mehdi M. Ansarinia Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions
US6850801B2 (en) 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US6985774B2 (en) 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7158832B2 (en) 2000-09-27 2007-01-02 Cvrx, Inc. Electrode designs and methods of use for cardiovascular reflex control devices
US6845267B2 (en) 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6640120B1 (en) 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US7104987B2 (en) * 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
JP2004512105A (en) 2000-10-26 2004-04-22 メドトロニック・インコーポレーテッド Method and apparatus for protecting heart tissue from seizures
US8417334B2 (en) 2000-10-26 2013-04-09 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US6616624B1 (en) 2000-10-30 2003-09-09 Cvrx, Inc. Systems and method for controlling renovascular perfusion
DE10055462C2 (en) 2000-11-09 2003-07-31 Daimler Chrysler Ag Device for a vehicle lighting system and use of the device
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
US6681136B2 (en) * 2000-12-04 2004-01-20 Science Medicus, Inc. Device and method to modulate blood pressure by electrical waveforms
US6676657B2 (en) 2000-12-07 2004-01-13 The United States Of America As Represented By The Department Of Health And Human Services Endoluminal radiofrequency cauterization system
WO2002053207A2 (en) 2001-01-04 2002-07-11 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
US6666845B2 (en) 2001-01-04 2003-12-23 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
WO2002054941A2 (en) 2001-01-11 2002-07-18 Rita Medical Systems Inc Bone-treatment instrument and method
US6600954B2 (en) 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
US6672312B2 (en) 2001-01-31 2004-01-06 Transurgical, Inc. Pulmonary vein ablation with myocardial tissue locating
US6564096B2 (en) 2001-02-28 2003-05-13 Robert A. Mest Method and system for treatment of tachycardia and fibrillation
AU2002250250A1 (en) 2001-03-01 2002-09-19 Three Arch Partners Intravascular device for treatment of hypertension
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US20020177846A1 (en) 2001-03-06 2002-11-28 Mulier Peter M.J. Vaporous delivery of thermal energy to tissue sites
US6786904B2 (en) 2002-01-10 2004-09-07 Triton Biosystems, Inc. Method and device to treat vulnerable plaque
US20030009145A1 (en) 2001-03-23 2003-01-09 Struijker-Boudier Harry A.J. Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space
WO2002085448A2 (en) 2001-04-20 2002-10-31 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
AU2002258990A1 (en) 2001-04-23 2002-11-05 Transurgical, Inc. Improvements in ablation therapy
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6972016B2 (en) 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
WO2002096512A1 (en) 2001-05-29 2002-12-05 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US7127284B2 (en) 2001-06-11 2006-10-24 Mercator Medsystems, Inc. Electroporation microneedle and methods for its use
US20060167498A1 (en) 2001-07-23 2006-07-27 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease
US20060116736A1 (en) 2001-07-23 2006-06-01 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of obesity
DE50202789D1 (en) * 2001-07-27 2005-05-19 Impella Cardiotech Ag NEUROSTIMULATION UNIT FOR THE IMMOBILIZATION OF THE HEART DURING CARDIOSURGICAL OPERATIONS
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US6600956B2 (en) 2001-08-21 2003-07-29 Cyberonics, Inc. Circumneural electrode assembly
US6622041B2 (en) 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20030050635A1 (en) 2001-08-22 2003-03-13 Csaba Truckai Embolization systems and techniques for treating tumors
CA2458610C (en) 2001-08-31 2011-08-16 Cyto Pulse Sciences, Inc. Non-linear amplitude dielectrophoresis waveform for cell fusion
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
WO2003028802A2 (en) 2001-10-01 2003-04-10 Am Discovery, Incorporated Devices for treating atrial fibrilation
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US6745079B2 (en) 2001-11-07 2004-06-01 Medtronic, Inc. Electrical tissue stimulation apparatus and method
US7488313B2 (en) 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US20030125790A1 (en) 2001-12-27 2003-07-03 Vitaly Fastovsky Deployment device, system and method for medical implantation
US20060189941A1 (en) 2002-01-22 2006-08-24 Mercator Medsystems, Inc. Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation
US7155284B1 (en) 2002-01-24 2006-12-26 Advanced Bionics Corporation Treatment of hypertension
WO2003066153A2 (en) 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Neural stimulation delivery device with independently moveable delivery structures
JP2005515819A (en) 2002-02-01 2005-06-02 ザ クリーブランド クリニック ファウンデイション A transmission device that stimulates the sympathetic nerve chain
AU2003212870A1 (en) 2002-02-01 2003-09-02 The Cleveland Clinic Foundation Methods of affecting hypothalamic-related conditions
US7236821B2 (en) 2002-02-19 2007-06-26 Cardiac Pacemakers, Inc. Chronically-implanted device for sensing and therapy
JP2005519680A (en) 2002-03-14 2005-07-07 ブレインズゲート リミティド Blood pressure control technology
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
AU2003220599A1 (en) 2002-03-27 2003-10-13 Cvrx, Inc. Devices and methods for cardiovascular reflex control via coupled electrodes
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8145316B2 (en) * 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7191015B2 (en) 2002-04-11 2007-03-13 Medtronic Vascular, Inc. Devices and methods for transluminal or transthoracic interstitial electrode placement
JP4499427B2 (en) * 2002-04-16 2010-07-07 サイト パルス サイエンシズ、インコーポレイテッド A method of treating biomaterials by moving electric fields and reversing electrode polarity.
US20030199768A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199747A1 (en) 2002-04-19 2003-10-23 Michlitsch Kenneth J. Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199767A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030204161A1 (en) 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US6748953B2 (en) 2002-06-11 2004-06-15 Scimed Life Systems, Inc. Method for thermal treatment of type II endoleaks in arterial aneurysms
US20040193228A1 (en) 2003-03-31 2004-09-30 Gerber Martin T. Method, system and device for treating various disorders of the pelvic floor by electrical stimulation of the left and right pudendal nerves
EP1585572A4 (en) 2002-09-20 2010-02-24 Flowmedica Inc Method and apparatus for intra aortic substance delivery to a branch vessel
JP2006513809A (en) 2002-09-20 2006-04-27 フローメディカ,インコーポレイテッド Apparatus and method for inserting an intra-aortic catheter through a delivery sheath
WO2004026371A2 (en) 2002-09-20 2004-04-01 Flowmedica, Inc. Method and apparatus for selective drug infusion via an intraaortic flow diverter delivery catheter
US7150741B2 (en) 2002-09-20 2006-12-19 Advanced Neuromodulation Systems, Inc. Programmable dose control module
AU2003276903A1 (en) 2002-09-20 2004-05-04 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
WO2004107965A2 (en) 2002-09-20 2004-12-16 Flowmedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7063679B2 (en) 2002-09-20 2006-06-20 Flowmedica, Inc. Intra-aortic renal delivery catheter
US7993325B2 (en) * 2002-09-20 2011-08-09 Angio Dynamics, Inc. Renal infusion systems and methods
US7585836B2 (en) 2004-05-14 2009-09-08 Goodson Iv Harry Burt Bi-lateral local renal delivery for treating congestive heart failure and for BNP therapy
EP1551499A1 (en) 2002-10-04 2005-07-13 Microchips, Inc. Medical device for neural stimulation and controlled drug delivery
EP1551505B1 (en) 2002-10-04 2010-02-24 Microchips, Inc. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US20040162590A1 (en) 2002-12-19 2004-08-19 Whitehurst Todd K. Fully implantable miniature neurostimulator for intercostal nerve stimulation as a therapy for angina pectoris
AU2004204674A1 (en) 2003-01-03 2004-07-29 Advanced Neuromodulation Systems, Inc. System and method for stimulation of a person's brain stem
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US7837676B2 (en) 2003-02-20 2010-11-23 Recor Medical, Inc. Cardiac ablation devices
US6923808B2 (en) 2003-02-24 2005-08-02 Boston Scientific Scimed, Inc. Probes having helical and loop shaped inflatable therapeutic elements
EP1599240A4 (en) 2003-02-24 2007-06-06 Plc Medical Systems Inc A method and catheter system applicable to acute renal failure
US7004911B1 (en) * 2003-02-24 2006-02-28 Hosheng Tu Optical thermal mapping for detecting vulnerable plaque
US20040176699A1 (en) 2003-03-03 2004-09-09 Volcano Therapeutics, Inc. Thermography catheter with improved wall contact
US7097643B2 (en) 2003-03-03 2006-08-29 Sinus Rhythm Technologies, Inc. Electrical block positioning devices and methods of use therefor
US7517342B2 (en) 2003-04-29 2009-04-14 Boston Scientific Scimed, Inc. Polymer coated device for electrically medicated drug delivery
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
JP2006526464A (en) 2003-06-05 2006-11-24 フローメディカ,インコーポレイテッド System and method for performing bilateral intervention or diagnosis in a branched body lumen
US7738952B2 (en) 2003-06-09 2010-06-15 Palo Alto Investors Treatment of conditions through modulation of the autonomic nervous system
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
US20060167437A1 (en) 2003-06-17 2006-07-27 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
DE10328816A1 (en) 2003-06-21 2005-01-05 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Implantable stimulation electrode with a coating to increase tissue compatibility
US20060269531A1 (en) 2003-07-18 2006-11-30 Eastern Virginia Medical School Apparatus for generating electrical pulses and methods of using the same
WO2005016165A1 (en) 2003-08-05 2005-02-24 Flowmedica, Inc. System and method for prevention of radiocontrast induced nephropathy
US7742809B2 (en) 2003-08-25 2010-06-22 Medtronic, Inc. Electroporation catheter with sensing capabilities
JP2007504910A (en) 2003-09-12 2007-03-08 ミノウ・メディカル・エルエルシイ Selectable biased reshaping and / or excision of atherosclerotic material
US7502650B2 (en) 2003-09-22 2009-03-10 Cvrx, Inc. Baroreceptor activation for epilepsy control
US7435248B2 (en) 2003-09-26 2008-10-14 Boston Scientific Scimed, Inc. Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US7186209B2 (en) * 2003-10-09 2007-03-06 Jacobson Jerry I Cardioelectromagnetic treatment
US7416549B2 (en) * 2003-10-10 2008-08-26 Boston Scientific Scimed, Inc. Multi-zone bipolar ablation probe assembly
US7480532B2 (en) 2003-10-22 2009-01-20 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
ES2729378T3 (en) 2003-12-24 2019-11-04 Univ California Tissue ablation with irreversible electroporation
US20080015659A1 (en) * 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US8396560B2 (en) * 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
JP2007526817A (en) 2004-03-02 2007-09-20 シーブイアールエックス, インコーポレイテッド Activation of baroreflex from outside
WO2005091910A2 (en) 2004-03-04 2005-10-06 Flowmedica, Inc. Sheath for use in peripheral interventions
US20050209548A1 (en) 2004-03-19 2005-09-22 Dev Sukhendu B Electroporation-mediated intravascular delivery
EP1750799A2 (en) * 2004-05-04 2007-02-14 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the sympathetic nervous system
US8412348B2 (en) 2004-05-06 2013-04-02 Boston Scientific Neuromodulation Corporation Intravascular self-anchoring integrated tubular electrode body
US20050261672A1 (en) 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
WO2005123183A2 (en) 2004-06-11 2005-12-29 University Of South Florida Electroporation device and method for delivery to ocular tissue
US20060067972A1 (en) * 2004-06-23 2006-03-30 Flowmedica, Inc. Devices for renal-based heart failure treatment
WO2006012050A2 (en) 2004-06-30 2006-02-02 Cvrx, Inc. Connection structures for extra-vascular electrode lead body
US20060004417A1 (en) 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
FR2873385B1 (en) 2004-07-23 2006-10-27 Centre Nat Rech Scient Cnrse MONITORING AND CONTROL OF ELECTROPORATION
US7373204B2 (en) * 2004-08-19 2008-05-13 Lifestim, Inc. Implantable device and method for treatment of hypertension
US20060085054A1 (en) 2004-09-09 2006-04-20 Zikorus Arthur W Methods and apparatus for treatment of hollow anatomical structures
EP1804902A4 (en) 2004-09-10 2008-04-16 Cleveland Clinic Foundation Intraluminal electrode assembly
US20060069323A1 (en) * 2004-09-24 2006-03-30 Flowmedica, Inc. Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060074453A1 (en) * 2004-10-04 2006-04-06 Cvrx, Inc. Baroreflex activation and cardiac resychronization for heart failure treatment
EP1804905B1 (en) 2004-10-05 2016-02-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus for renal neuromodulation
EP1809272A4 (en) 2004-10-18 2008-01-02 Maroon Biotech Corp Methods and compositions for treatment of free radical injury
US7524318B2 (en) * 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20070083239A1 (en) 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
WO2006052905A2 (en) 2004-11-08 2006-05-18 Cardima, Inc. System and method for performing ablation and other medical procedures using an electrode array with flex circuit
US8332047B2 (en) 2004-11-18 2012-12-11 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US20060116720A1 (en) * 2004-12-01 2006-06-01 Penny Knoblich Method and apparatus for improving renal function
EP1835964B1 (en) 2004-12-21 2016-03-09 EBR Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
EP3666328B1 (en) 2004-12-27 2022-04-06 Novocure GmbH Treating a tumor or the like with electric fields at different orientations
US9833618B2 (en) 2005-02-04 2017-12-05 Palo Alto Investors Methods and compositions for treating a disease condition in a subject
US7548780B2 (en) 2005-02-22 2009-06-16 Cardiac Pacemakers, Inc. Cell therapy and neural stimulation for cardiac repair
EP2438877B1 (en) 2005-03-28 2016-02-17 Vessix Vascular, Inc. Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US20070021803A1 (en) * 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
WO2007013065A2 (en) 2005-07-25 2007-02-01 Rainbow Medical Ltd. Electrical stimulation of blood vessels
US7686768B2 (en) 2005-11-23 2010-03-30 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US20070156200A1 (en) 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
US8571650B2 (en) 2006-03-03 2013-10-29 Palo Alto Investors Methods and compositions for treating a renal associated condition in a subject
US7894905B2 (en) 2006-03-13 2011-02-22 Neuropace, Inc. Implantable system enabling responsive therapy for pain
US20080004673A1 (en) * 2006-04-03 2008-01-03 Cvrx, Inc. Implantable extravascular electrostimulation system having a resilient cuff
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US7647101B2 (en) 2006-06-09 2010-01-12 Cardiac Pacemakers, Inc. Physical conditioning system, device and method
CN101610735B (en) * 2006-06-28 2015-07-01 美敦力Af卢森堡公司 Methods and systems for thermally-induced renal neuromodulation
US20080039904A1 (en) * 2006-08-08 2008-02-14 Cherik Bulkes Intravascular implant system
US7869874B2 (en) 2006-09-25 2011-01-11 G&L Consulting, Llc Methods and apparatus to stimulate heart atria
US20080091255A1 (en) * 2006-10-11 2008-04-17 Cardiac Pacemakers Implantable neurostimulator for modulating cardiovascular function
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
US7744618B2 (en) 2006-12-07 2010-06-29 Cardiac Pacemakers, Inc. Device and method for modulating renal function
US8052610B2 (en) 2006-12-28 2011-11-08 Medtronic, Inc. Event registration for automatic threshold setting
WO2008128070A2 (en) 2007-04-11 2008-10-23 The Cleveland Clinic Foundation Method and apparatus for renal neuromodulation
US8630704B2 (en) 2007-06-25 2014-01-14 Cardiac Pacemakers, Inc. Neural stimulation with respiratory rhythm management
US8147416B2 (en) 2007-08-31 2012-04-03 Pacesetter, Inc. Implantable systemic blood pressure measurement systems and methods
US8676322B2 (en) 2008-01-30 2014-03-18 Boston Scientific Neuromodulation Corporation Methods and systems of treating pancreatitis pain
WO2009099550A1 (en) 2008-02-07 2009-08-13 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
JP2010021134A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for manufacturing lithium complex metal oxide
AU2009282740A1 (en) 2008-08-21 2010-02-25 Med-El Elektromedizinische Geraete Gmbh Multipath stimulation hearing systems
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US20100168739A1 (en) 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8350846B2 (en) 2009-01-28 2013-01-08 International Business Machines Corporation Updating ray traced acceleration data structures between frames based on changing perspective
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US20110264116A1 (en) 2009-12-31 2011-10-27 Gordon Kocur Compressive Denervation Apparatus for Innervated Renal Vasculature
EP2525715A4 (en) 2010-01-19 2014-06-04 Medtronic Ardian Luxembourg S R L Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
EP2717795A4 (en) 2011-06-06 2015-01-28 St Jude Medical Renal denervation system and method
CN103987334A (en) 2011-07-12 2014-08-13 沃夫医药公司 Renal nerve denervation via the renal pelvis
US20130053732A1 (en) 2011-08-24 2013-02-28 Richard R. Heuser Devices and methods for treating hypertension with energy
US8805512B1 (en) 2011-08-30 2014-08-12 Valencia Technologies Corporation Implantable electroacupuncture device and method for reducing hypertension
US8965511B2 (en) 2011-08-30 2015-02-24 Valencia Technologies Corporation Implantable electroacupuncture system and method for reducing hypertension
US9066845B2 (en) 2012-03-06 2015-06-30 Valencia Technologies Corporation Electrode configuration for an implantable electroacupuncture device
US8938297B2 (en) 2011-09-23 2015-01-20 Valencia Technologies Corporation Implantable electroacupuncture device and method for treating cardiovascular disease
US8996125B2 (en) 2011-09-23 2015-03-31 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating cardiovascular disease
US9173811B2 (en) 2011-09-29 2015-11-03 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating depression and similar mental conditions
US9198828B2 (en) 2011-09-29 2015-12-01 Valencia Technologies Corporation Implantable electroacupuncture device and method for treating depression, bipolar disorder and anxiety
JP2015504321A (en) 2011-10-19 2015-02-12 シンパラ メディカル インコーポレイテッドSympara Medical Inc. Hypertension treatment method and apparatus
US20130218029A1 (en) 2012-02-16 2013-08-22 Pacesetter, Inc. System and method for assessing renal artery nerve density
US9078801B2 (en) 2012-03-06 2015-07-14 Valencia Technologies Corporation Implantable electroacupuncture device and method for treating erectile dysfunction
US9314399B2 (en) 2012-03-06 2016-04-19 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating dyslipidemia and obesity
US9433786B2 (en) 2012-03-06 2016-09-06 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating Parkinson's disease and essential tremor
US8954143B2 (en) 2012-03-06 2015-02-10 Valencia Technologies Corporation Radial feed through packaging for an implantable electroacupuncture device
US9364390B2 (en) 2012-03-06 2016-06-14 Valencia Technologies Corporation Implantable electroacupuncture device and method for treating obesity
US8942816B2 (en) 2012-03-06 2015-01-27 Valencia Technologies Corporation Implantable electroacupuncture device and method for treating dyslipidemia
AU2013202803C1 (en) 2012-03-07 2016-06-23 Reshape Lifesciences, Inc. Devices for regulation of blood pressure and heart rate
US9327134B2 (en) 2012-03-12 2016-05-03 Valencia Technologies Corporation Implantable electroacupuncture device and method
US9089716B2 (en) 2012-03-12 2015-07-28 Valencia Technologies Corporation Circuits and methods for using a high impedance, thin, coin-cell type battery in an implantable electroacupuncture device
US8942808B2 (en) 2012-03-12 2015-01-27 Valencia Technologies Corporation Stimulation paradigm to improve blood pressure dipping in an implantable electroacupuncture device
US9827421B2 (en) 2012-03-12 2017-11-28 Valencia Technologies Corporation Methods and systems for treating a chronic low back pain condition using an implantable electroacupuncture device
US20140214134A1 (en) 2012-03-12 2014-07-31 Valencia Technologies Corporation Closed Loop Chronic Electroacupuncture System Using Changes in Body Temperature or Impedance
US20130289650A1 (en) 2012-04-25 2013-10-31 Pacesetter, Inc. Neuromodulation for Hypertension Control
US20150094787A1 (en) 2012-05-08 2015-04-02 Mayo Foundation For Medical Education And Research Methods and materials for treating syncope
US20140067003A1 (en) 2012-07-31 2014-03-06 Abhi Vase System and method for autonomic blood pressure regulation
US9724512B2 (en) 2012-09-28 2017-08-08 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating parkinson's disease and essential tremor through application of stimului at or near an acupoint on the chorea line
US20150305974A1 (en) 2014-04-24 2015-10-29 Sympara Medical, Inc. Methods and devices for treating hypertension

Cited By (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204889B2 (en) 1998-03-27 2015-12-08 Tsunami Medtech, Llc Medical instrument and method of use
US10524847B2 (en) 2000-12-09 2020-01-07 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US9615875B2 (en) 2000-12-09 2017-04-11 Tsunami Med Tech, LLC Medical instruments and techniques for thermally-mediated therapies
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US9731132B2 (en) 2002-04-08 2017-08-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US10272246B2 (en) 2002-04-08 2019-04-30 Medtronic Adrian Luxembourg S.a.r.l Methods for extravascular renal neuromodulation
US9186213B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9463066B2 (en) 2002-04-08 2016-10-11 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US9956410B2 (en) 2002-04-08 2018-05-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US10595925B2 (en) 2008-02-20 2020-03-24 Tsunami Medtech, Llc Medical system and method of use
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US11141210B2 (en) 2008-05-31 2021-10-12 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11478291B2 (en) 2008-05-31 2022-10-25 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11129664B2 (en) 2008-05-31 2021-09-28 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11284932B2 (en) 2008-05-31 2022-03-29 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11179187B2 (en) 2008-05-31 2021-11-23 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9616231B2 (en) 2008-08-08 2017-04-11 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US9095711B2 (en) 2008-08-08 2015-08-04 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US11457969B2 (en) 2010-08-13 2022-10-04 Tsunami Medtech, Llc Medical system and method of use
US10499973B2 (en) 2010-08-13 2019-12-10 Tsunami Medtech, Llc Medical system and method of use
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9131983B2 (en) 2011-04-22 2015-09-15 Ablative Solutions, Inc. Methods ablating tissue using a catheter-based injection system
US9795441B2 (en) 2011-04-22 2017-10-24 Ablative Solutions, Inc. Methods of ablating tissue using a catheter injection system
US11717345B2 (en) 2011-04-22 2023-08-08 Ablative Solutions, Inc. Methods of ablating tissue using a catheter injection system
US11007346B2 (en) 2011-04-22 2021-05-18 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US11007008B2 (en) 2011-04-22 2021-05-18 Ablative Solutions, Inc. Methods of ablating tissue using a catheter injection system
US10172663B2 (en) 2011-04-22 2019-01-08 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9278196B2 (en) 2011-08-24 2016-03-08 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US10485951B2 (en) 2011-08-24 2019-11-26 Ablative Solutions, Inc. Catheter systems and packaged kits for dual layer guide tubes
US11759608B2 (en) 2011-08-24 2023-09-19 Ablative Solutions, Inc. Intravascular fluid catheter with minimal internal fluid volume
US11752303B2 (en) 2011-08-24 2023-09-12 Ablative Solutions, Inc. Catheter systems and packaged kits for dual layer guide tubes
US10576246B2 (en) 2011-08-24 2020-03-03 Ablative Solutions, Inc. Intravascular fluid catheter with minimal internal fluid volume
US10118004B2 (en) 2011-08-24 2018-11-06 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US11007329B2 (en) 2011-08-24 2021-05-18 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9402684B2 (en) 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10881458B2 (en) 2012-10-29 2021-01-05 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US11202889B2 (en) 2012-10-29 2021-12-21 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US9179962B2 (en) 2012-10-29 2015-11-10 Ablative Solutions, Inc. Transvascular methods of treating extravascular tissue
US10736656B2 (en) 2012-10-29 2020-08-11 Ablative Solutions Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9539047B2 (en) 2012-10-29 2017-01-10 Ablative Solutions, Inc. Transvascular methods of treating extravascular tissue
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9301795B2 (en) 2012-10-29 2016-04-05 Ablative Solutions, Inc. Transvascular catheter for extravascular delivery
US10350392B2 (en) 2012-10-29 2019-07-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US9320850B2 (en) 2012-10-29 2016-04-26 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with unique injection fitting
US10405912B2 (en) 2012-10-29 2019-09-10 Ablative Solutions, Inc. Transvascular methods of treating extravascular tissue
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9254360B2 (en) 2012-10-29 2016-02-09 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with deflection surface support structures
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US11672584B2 (en) 2013-03-15 2023-06-13 Tsunami Medtech, Llc Medical system and method of use
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10307591B2 (en) 2013-05-30 2019-06-04 Neurostim Solutions, Llc Topical neurological stimulation
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US10918853B2 (en) 2013-05-30 2021-02-16 Neurostim Solutions, Llc Topical neurological stimulation
US10946185B2 (en) 2013-05-30 2021-03-16 Neurostim Solutions, Llc Topical neurological stimulation
US11291828B2 (en) 2013-05-30 2022-04-05 Neurostim Solutions LLC Topical neurological stimulation
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10022059B2 (en) 2013-10-25 2018-07-17 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US11510729B2 (en) 2013-10-25 2022-11-29 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10736524B2 (en) 2013-10-25 2020-08-11 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US11751787B2 (en) 2013-10-25 2023-09-12 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US10881312B2 (en) 2013-10-25 2021-01-05 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10420481B2 (en) 2013-10-25 2019-09-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US10849685B2 (en) 2018-07-18 2020-12-01 Ablative Solutions, Inc. Peri-vascular tissue access catheter with locking handle
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery

Also Published As

Publication number Publication date
US20180311503A1 (en) 2018-11-01
US9956410B2 (en) 2018-05-01
WO2006041847A1 (en) 2006-04-20
US20160100883A1 (en) 2016-04-14
US9072527B2 (en) 2015-07-07
US20190282816A1 (en) 2019-09-19
US20140336638A1 (en) 2014-11-13
US9731132B2 (en) 2017-08-15
US8145316B2 (en) 2012-03-27
US10272246B2 (en) 2019-04-30
US9463066B2 (en) 2016-10-11
US20060041277A1 (en) 2006-02-23
US9186213B2 (en) 2015-11-17
US20170080230A1 (en) 2017-03-23
US20170361100A1 (en) 2017-12-21
US20140018879A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
US10272246B2 (en) Methods for extravascular renal neuromodulation
EP1804905B1 (en) Apparatus for renal neuromodulation
EP2561903B1 (en) Use of a catheter for renal neuromodulation

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC ARDIAN LLC, DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:ARDIAN, INC.;REEL/FRAME:030531/0816

Effective date: 20110121

Owner name: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L., LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC ARDIAN LLC;REEL/FRAME:030531/0717

Effective date: 20120203

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION