US20130255986A1 - Hose for Conveying Fluid - Google Patents

Hose for Conveying Fluid Download PDF

Info

Publication number
US20130255986A1
US20130255986A1 US13/848,753 US201313848753A US2013255986A1 US 20130255986 A1 US20130255986 A1 US 20130255986A1 US 201313848753 A US201313848753 A US 201313848753A US 2013255986 A1 US2013255986 A1 US 2013255986A1
Authority
US
United States
Prior art keywords
hose
cable
user definable
fluid
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/848,753
Inventor
Timothy Denzil Price
Calvin Tan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icon Polymer Group Ltd
Original Assignee
Icon Polymer Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icon Polymer Group Ltd filed Critical Icon Polymer Group Ltd
Assigned to Icon Polymer Group Limited reassignment Icon Polymer Group Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRICE, TIMOTHY DENZIL, TAN, CALVIN
Publication of US20130255986A1 publication Critical patent/US20130255986A1/en
Priority to US15/278,071 priority Critical patent/US10267439B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/04Adaptations of hose construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/06Connecting hose to aircraft; Disconnecting hose therefrom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/127Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/22Multi-channel hoses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/77Coupling devices for flexible printed circuits, flat or ribbon cables or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/005Electrical coupling combined with fluidic coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This invention relates to a hose for conveying a fluid and to a method of configuring a hose for conveying a fluid.
  • Flexible hoses are used to transfer fluid from one place to another and common applications are for transferring water, pressurised air, hydraulic fluid or any other fluid from one piece of equipment to another.
  • fluid at one end of the hose is pressurised, possibly by a pump or header tank, and each end of the hose is provided with a connector that sealably connects the hose to the equipment. It is known to provide a hose for connecting one aircraft to another for the purpose of in-flight refuelling.
  • In-flight refuelling systems involve moving aviation fuel from a tanker aircraft to a receiving aircraft to increase the operating range and time of the receiving aircraft by overcoming the maximum fuel load limitation.
  • the probe and drogue arrangement involves a flexible hose with a valve and a drogue at the distal end of the hose.
  • the hose is extended from the tanker aircraft and is pulled behind the tanker aircraft by the aerodynamic force created by the drogue, which also provides some positional stability.
  • the receiving aircraft comprises a probe extending forwardly from the nose or fuselage of the aircraft, and also has a valve at its distal end.
  • the pilot of the aircraft to be refuelled controls and manoeuvres the aircraft to align the probe with the valve and the drogue and then moves the aircraft towards the tanker aircraft so that the probe connects with the valve on the hose. Once connection has been made, the valves can be opened to establish a fluid path, thereby allowing fuel to flow into the fuel tanks of the receiving aircraft.
  • Flying boom refuelling systems have a rigid boom that is deployed from the tanker aircraft, the position of which is typically controlled by an operator in the tanker aircraft.
  • the boom can carry a hose which has a valve at its distal end.
  • the receiving aircraft comprises a docking port that may be within the fuselage, or extending from the fuselage.
  • the pilot of the receiving aircraft again flies their aircraft into contact with the boom.
  • the boom operator can control the finite position of the boom so there is a two-way process for making the connection.
  • UAV's Unmanned Aerial Vehicles
  • AUAV's Autonomous Unmanned Aerial Vehicles
  • a limitation of UAV's and AUAV's is the power that can be carried by onboard batteries which are recharged before each use.
  • Aircraft currently communicate via radio or satellite communications which can place a large strain on the bandwidth of such systems.
  • UAV's and AUAV's that are deployed as observers can collect and store large amounts of data that is either transmitted over the communication channels or stored onboard the aircraft for later retrieval. Transmission over the communication channels requires more bandwidth which means more satellites, transmitters and receivers that can add considerable cost.
  • communication channels may not be fast or secure enough to carry out some operations such as system diagnostics. Storing data onboard the aircraft delays the retrieval of that information and requires the aircraft to return to the ground. Therefore, the data storage capacity of an aircraft may also limit the aircraft's maximum operational time.
  • the present invention seeks to provide a hose for conveying fluids that seeks to alleviate or substantially overcome the problems with conventional fluid carrying hoses, including those mentioned above.
  • a hose for conveying fluids comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall.
  • the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be positioned between the inner fluid carrying tube and the outer protective sheath.
  • the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be embedded within the outer protective sheath.
  • the cable may be wound around the inner fluid carrying tube to define a helical path along the hose.
  • Helically winding the cable around the inner fluid carrying tube means that the cable is always at an angle to any bending of the hose, thereby reducing the stress induced in the cable.
  • the cable comprises a plurality of spaced insulated wires encased in a sleeve of low friction material to allow movement of the wires relative to the sleeve when the cable is subject to bending.
  • the low friction casing reduces the stress placed on the wires as they move around within the casing. Also, allowing the wires to move within the casing means that the wires will move to the position of least stress during bending of the hose.
  • the hose has a distal end and a user definable module, the user definable module being removably attachable to said distal end and including a connector for electrical connection to said cable.
  • the user definable module may be tubular and may surround the distal end of the hose.
  • the user definable module comprises at least one or more components for determining a measurable parameter at the distal end of the hose.
  • the user definable module may comprise at least one of a position sensor, an accelerometer, a temperature sensor, a pressure sensor, a proximity sensor and a flow rate sensor.
  • the hose may also comprise an intermediate connecting collar, attachable to the distal end of the hose proximal to the user definable module, the collar comprising first electrical terminals to connect the cable to conductors in the collar and second electrical terminals spaced from the first electrical terminals to connect the conductors in the collar to the user definable module.
  • the conductors in the collar may extend from the first electrical terminal in a helical path and terminate at the second electrical terminal in a plane extending substantially at right angles to a longitudinal axis of the hose.
  • the intermediate collar has an angled cut out that defines a face which is substantially perpendicular to the helical path of the cable, said first electrical terminal being mounted on said face.
  • the angled cut out allows the helically wound cable to easily connect to the collar without having to bend the cable.
  • the intermediate collar may comprise an end face which lies in a plane substantially at right angles to the longitudinal axis of the hose, said second electrical terminal being mounted to said end face.
  • the user definable module comprises two half tubular portions or shells that are attachable to each other to surround the distal end of the hose.
  • the two part construction of the user definable module allows the user definable module to be easily removed from the hose for interchanging.
  • the user definable module may be attachable to the collar.
  • the user definable module comprises a connector configured to connect to the second electrical terminals, when the user definable module is attached to the distal end of the hose.
  • a connector may extend from the distal end of the hose to receive a probe, the connector extending distally beyond the user defined module.
  • the user definable module comprises a terminal connector configured to electrically connect to a mating terminal connector on a receiving probe, when the connector is connected to said receiving probe.
  • a user definable module removably attachable to the distal end of a fluid conveying hose that is releasably connectable to a fluid receiving entity to provide fluid to said entity, the fluid conveying hose comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the user definable module being connectable to said cable and comprising components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along said hose via said user definable interface.
  • a method of configuring a hose for fluid transfer said hose being releasably connectable to a fluid receiving entity to provide fluid to said entity and comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the method comprising the step of selecting a user definable module according to claim 19 and attaching said selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
  • FIG. 1 shows a view of a refuelling tanker aircraft and an aircraft that is to be refuelled
  • FIG. 2 shows a view of the distal end of a refuelling hose according to an embodiment of the invention
  • FIG. 3 shows a perspective view of the refuelling hose of FIG. 2 , but omitting part of the outer protective sheath for the purposes of clarity;
  • FIG. 4 shows a view of the termination collar and electrical connector of FIG. 2 ;
  • FIG. 5 shows a view of the user definable interface module (UDI) for attachment to the refuelling hose;
  • UMI user definable interface module
  • FIGS. 6 a and 6 b show views of the two portions of the UDI module.
  • FIG. 7 shows a view of an example configuration of the UDI module with the casing portions removed for clarity.
  • FIG. 1 shows a tanker aircraft 2 with a refuelling hose 1 in a deployed position, trailing behind the aircraft.
  • the refuelling hose 1 is flexible and is mounted on a reel assembly within the tanker aircraft 2 so that operation of the reel assembly will deploy and retract the refuelling hose 1 .
  • the distal end 3 of the refuelling hose 1 comprises a valve connector 4 that mates with a probe 5 on the receiving aircraft 6 and a drogue 7 that provides a stabilising aerodynamic force.
  • the drag created by the drogue 7 as the tanker aircraft 2 moves through the air provides a backwards force that drags the distal end 3 of the refuelling hose 1 behind the tanker aircraft 2 and in a position and orientation that is suitable for mating with the receiving aircraft 6 .
  • the drogue 7 also helps reduce oscillations in the hose that would otherwise cause the distal end of the refuelling hose to move around.
  • FIG. 2 shows the distal end 3 of the refuelling hose 1 without a drogue attachment.
  • the distal end 3 comprises a mating connector 4 that provides the sealed mechanical connection between the hose 1 and the probe of the receiving aircraft.
  • a user definable interface (UDI) module 11 is mounted to the distal end of the refuelling hose 1 so that the connector 4 protrudes from one end of the module 11 .
  • the UDI module 11 allows a user to configure the end of the refuelling hose 1 with different functionality for different applications as will become apparent from the description that follows below.
  • a data and/or power transmission cable 9 is wound around and embedded into the refuelling hose and terminates in an end connector 10 that connects the cable 9 to the UDI module 11 via an intermediate collar 18 (see below).
  • FIG. 3 shows a perspective view of the refuelling hose 1 showing the cable 9 embedded within the refuelling hose 1 .
  • the hose 1 comprises an inner fuel carrying hose 12 and an outer protective sheath 13 as well as a reinforcing sheath 14 that provides both increased strength and protection against electrical charges such as lightning strikes (part of the outer protective sheath 13 is removed in FIG. 3 for clarity and to enable the path of the cable 9 to be seen).
  • the cable 9 is flat and flexible and comprises a plurality of conducting wires 15 to carry power, data or any other electrical signals.
  • the cable 9 is wrapped helically around the inner fuel carrying hose 12 and the reinforcing sheath 14 and is then covered by the outer protective sheath 13 so that the cable 9 is located between the reinforcing sheath 14 and the outer protective sheath 13 .
  • the cable 9 may be embedded within the outer protective sheath 13 .
  • the wires 15 themselves may be of any type, for example 4AWG wires for carrying power, wires for carrying data and/or power and/or fibre optic cables.
  • the wires 15 may be copper, aluminium or optical wave guides or other suitable conductors.
  • the cable 9 should be configured to carry both power and/or data signals with a degree of flexibility so that the hose 1 and cable 9 can be used with a variety of UDI modules, as explained in more detail hereinafter.
  • the flexible hose 1 During normal duty the flexible hose 1 is exposed to bending forces caused by winding the hose 1 on and off a storage reel on the tanker aircraft and also from turbulence during operation, as the hose moves around in the air.
  • the cable 9 is embedded within the hose 1 so will also be subject to those bending forces and there is a need to protect the cable 9 , particularly the wires 15 , from fatigue stresses. Bending the hose 1 and the cable 9 will exert tensile stress on one side of the wires 15 and compressive stress on the opposite side. Also, the direction of bending will change during operation, resulting in fatigue stress effects. The bending and fatigue stresses can alter the conductive properties of the wires 15 and affect the performance of the cable 9 , possibly even causing the wires 15 to fail.
  • each wire is provided with low friction insulation, made from a fluoropolymer or thermoplastic material, and the insulated wires 15 are contained within a low friction sleeve 17 , also made from a fluoropolymer or thermoplastic material. This allows the insulated wires 15 to move around within the sleeve 17 .
  • the low friction contact between the insulated wires 15 and the sleeve 17 allows the wires 15 to move around within the sleeve 17 to the position of least stress as the hose 1 bends, thereby reducing the bending and fatigue stresses induced in the power, signal and fibre optic wires 15 .
  • the outer surface of the sleeve 17 is treated to allow it to be bonded to the outer protective sheath 13 or reinforcing sheath 14 of the hose 1 .
  • the treatment process could be chemical etching, plasma arc or bespoke RF surface modification that allows adhesive to bond to the sleeve 17 .
  • EMI Electromagnetic Impulse
  • An EMI may occur naturally, such as from a lightning strike or as a result of the systems themselves, for example a build up of static electricity or short circuits.
  • EMI may be used intentionally as weapon and the systems of the aircraft and the refuelling apparatus need to be protected from any such attack.
  • FIG. 4 shows a termination collar 18 that is fixed to the distal end of the refuelling hose to provide an electrical terminal and connection between the cable 9 and the UDI module 11 (see FIG. 5 ).
  • the termination collar 18 is attached to the outer wall 13 (see FIG. 3 ) of the refuelling hose 1 to securely and rigidly attach the termination collar 18 to the hose 1 .
  • the termination collar 18 comprises a ring portion 19 with an inner diameter that is larger than and extends around the inner refuelling hose 12 and the mechanical connector 4 without interfering with the function of these components.
  • the termination collar 18 comprises an angled cut out 20 at the end of the termination collar 18 facing along the hose 1 towards the tanker aircraft.
  • the cut out has a face 47 that extends perpendicularly to the helix path of the cable 9 such that the face 47 is at 90 degrees relative to the helix angle of the cable 9 .
  • the face 47 comprises an electrical connector 21 configured to receive the end 23 of the helically wound cable 9 and the sleeve 17 is adhered or bonded to the termination collar 18 .
  • the angled cut out 20 and the face 47 allow the end 23 of the cable 9 to be easily received in the connector 21 without having to flex the cable 9 or disturb the helical path.
  • the angled cut out 20 extends from the face 47 at an angle that is closely matched to the helix angle of the cable 9 so that the termination collar 18 is shaped to allow the cable 9 to freely connect with the connector 21 .
  • the end 23 of the cable 9 may be removably or permanently attached to the connector 21 on the termination collar 18 .
  • the connector 21 may be a zero insertion force type connector with a clamping element to prevent disconnection.
  • Conductors 24 are embedded within the ring portion 19 of the termination collar 18 to connect the electrical connector 21 on angled face 47 to an electrical terminal 25 on the distal end 26 of the termination collar 18 , facing away from the tanker aircraft.
  • the conductors 24 initially follow the helical path through the collar 18 but then turn so that they extend in an axial direction of the hose and terminate at the end face of the collar 18 , which lies in a plane extending at right-angles to the longitudinal axis of the hose.
  • the conductors 24 may be copper, aluminium or optical wave guides. In this way, when the cable 9 is attached to the electrical connector 21 , the cable 9 is in electrical contact with the terminal 25 on the end face 26 of the termination collar 18 , so that electrical connection can then be made to the UDI module 11 , as explained below with reference to FIG. 5 .
  • FIG. 5 shows the distal end 3 of the refuelling hose 1 with the cable 9 , termination collar 18 and the User Definable Interface (UDI) module 11 attached to the termination collar 18 .
  • the UDI module 11 and collar 18 are shown as being partially transparent for the purposes of clarity only.
  • the UDI module 11 comprises two half-cylindrical portions or shells 27 , 28 that are attachable to each other surrounding the refuelling hose 1 .
  • the UDI module 11 may also be attachable to the end 26 of the termination collar 18 .
  • the two parts 27 , 28 of the UDI module 11 may be attachable to each other by a magnetic clamping system comprising a plurality of magnets, such as neodymium magnets, embedded in the mating faces of the two parts 27 , 28 .
  • the magnets in each part 27 , 28 have opposing poles such that they attract each other and clamp the two parts 27 , 28 together.
  • the magnets in one of the two parts 27 , 28 are moveable so that the magnets can be moved from an aligned position for clamping to an unaligned positioned for separating the two parts 27 , 28 of the UDI module 11 .
  • the magnets may be moveable by a manual lever or other actuator.
  • the two parts 27 , 28 of the UDI module are attachable by means of locking elements, fasteners, or any other suitable attachment that allows the UDI module 11 to be easily clamped and separated.
  • the UDI module 11 may also be attached to the outer face 26 of the termination collar 18 by any of the attachment means described above.
  • the UDI module 11 is easily removable from the refuelling hose 1 and can be changed during flight when the hose is retracted into the tanker aircraft 2 .
  • Different UDI modules 11 may be configured in different ways for different applications, for example refuelling of different aircraft or in different conditions.
  • the UDI module 11 comprises an electrical connector 30 on the end face 31 of one of the half-cylindrical portions 27 that connects with the electrical terminal 25 on the end face 26 of the termination collar 18 to electrically connect the termination collar 18 to the UDI module 11 .
  • Conductors or wires 32 are embedded into, or mounted to, the UDI module 11 to connect any devices that are mounted in the UDI module 11 to the connector 30 and therefore to the tanker aircraft 2 via the cable 9 .
  • Some examples of components that the UDI module 11 may comprise are position sensors, accelerometers, pressure, temperature, flow rate sensors, connection sensors (to detect if the probe and hose are suitably mated) and so forth.
  • the UDI module 11 is able to provide whatever functionality is required for each individual refuelling aircraft, or even each individual operation.
  • the cable 9 provides the connectivity and the UDI module provides a platform for using any type of electrical equipment desired at the connection between the refuelling hose and the receiving aircraft.
  • FIGS. 6 a and 6 b show the two portions 27 , 28 of the UDI module 11 that are attachable to each other and to the end 26 of the termination collar 18 .
  • the UDI module 11 is fully configurable to change the connectivity and function of the refuelling hose 1 depending on the requirements of the user and the operation.
  • Components such as sensors and connectors can be embedded within or attached to the UDI modules 11 and different UDI modules 11 can be provided for different applications.
  • Each different UDI module 11 may utilise the wires 15 in the cable 9 differently so different connections will be required at the tanker end of the cable 9 as well.
  • a user onboard the tanker aircraft 2 may change the UDI module 11 by removing the two portions 27 , 28 and swapping them for a different UDI module 11 , thereby changing the functionality and capabilities of the refuelling hose 1 .
  • FIG. 7 shows an example configuration of the UDI module 11 without the body of the UDI module 11 showing, for purposes of clarity.
  • the UDI module comprises a power transfer unit 33 , accelerometers 34 and heat and pressure sensors 35 .
  • the power transfer unit 33 is positioned on an outer face of the UDI module it and power is provided to the unit from the tanker aircraft 2 along the cable 9 in the refuelling hose 1 .
  • the receiving aircraft 2 will have a similar power transfer unit positioned on or near the probe 5 that connects with the refuelling hose 1 so that when the probe and the hose are connected, the two power transfer units are proximate to each other and power can be transferred from one aircraft to the other via induction.
  • the accelerometers 34 can be used to determine the position and/or stability of the distal end 3 of the refuelling hose 1 which may be useful for informing the operators or systems about the condition of the connection or if the hose 1 is stable enough for a connection to be made in the first place. For example, high acceleration during fuel transfer may trigger the fuel transfer operation to be stopped as a safety precaution. Temperature and pressure sensors 35 in the UDI module 11 can inform operators or systems about the state of the fuel being transferred and therefore if the systems are working effectively or if there might be a blockage or other problem. Low or high temperatures caused by the high altitudes or malfunctioning systems may be dangerous so temperature sensors may be used to determine if fuel transfer is safe and inform an operator or system when the fuel temperature is outside a safe range.
  • a further optional component for the UDI module 11 may include providing an electrical terminal (not shown) at the distal end 36 (see FIG. 5 ) of the UDI module 11 that is configured to electrically connect to a connector on the receiving aircraft 6 when the refuelling connection is made.
  • the receiving aircraft may comprise an electrical connector assembly either on, or near, the probe 5 that connects to the UDI module, allowing power and/or data to be transferred between the tanker aircraft 2 and the receiving aircraft 6 via the cable 9 in the refuelling hose 1 .
  • the connectors may magnetically orientate and/or lock together to ensure alignment before a connection is made.
  • concentric slip rings may be used on the distal end of the UDI module that connect to a compatible slip ring arrangement on the receiving aircraft.
  • the electrical connection along the hose 1 allows power and/or electrical signals to be carried from the tanker aircraft 2 to the receiving aircraft 6 and vice versa. Therefore, it is possible to provide power to the aircraft 6 being refuelled to recharge the batteries and extend the operating life of UAV's and AUAV's which carry limited life batteries. Furthermore, the tanker aircraft 2 is able to securely communicate with the receiving aircraft 6 to download data, such as surveillance images, or to upload instructions or perform diagnostic analysis on faulty or out of date systems. The data connection is more secure than a wireless alternative because it is direct, can not be intercepted and is protected from EMI and other such attacks.
  • the UDI module 11 may be fitted with a drogue that functions in the conventional manner.
  • the UDI module 11 may have aerodynamic control surfaces and an actuator to control the wings from the tanker aircraft 2 such that an operator onboard the tanker aircraft may control the attitude of the distal end of the refuelling hose 1 to facilitate the connection between the probe 5 and the distal end 3 of the hose 1 .
  • the UDI module 11 is changeable so a tanker aircraft will be able to switch between these applications during flight, depending on the requirements of each refuelling operation and the equipment onboard the receiving aircraft.

Abstract

A hose is disclosed for conveying fluids. The hose has a wall defining a fluid carrying tube and a power and/or data transmission cable is integrated into said wall. Also disclosed is a user definable module that is removably attachable to the distal end of a fluid conveying hose. The hose being releasably connectable to a fluid receiving entity to provide fluid to said entity. The fluid conveying hose has a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into that wall. The user definable module is connectable to the cable and has components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along the hose via said user definable interface. Also disclosed is a method of configuring a hose for fluid transfer. The method includes the step of selecting a user definable module and attaching the selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.

Description

    FIELD OF THE INVENTION
  • This invention relates to a hose for conveying a fluid and to a method of configuring a hose for conveying a fluid.
  • BACKGROUND TO THE INVENTION
  • Flexible hoses are used to transfer fluid from one place to another and common applications are for transferring water, pressurised air, hydraulic fluid or any other fluid from one piece of equipment to another. Usually, fluid at one end of the hose is pressurised, possibly by a pump or header tank, and each end of the hose is provided with a connector that sealably connects the hose to the equipment. It is known to provide a hose for connecting one aircraft to another for the purpose of in-flight refuelling.
  • In-flight refuelling systems involve moving aviation fuel from a tanker aircraft to a receiving aircraft to increase the operating range and time of the receiving aircraft by overcoming the maximum fuel load limitation.
  • Currently, there are two main known methods of in-flight refuelling—‘probe and drogue’ and ‘flying boom’. The probe and drogue arrangement involves a flexible hose with a valve and a drogue at the distal end of the hose. The hose is extended from the tanker aircraft and is pulled behind the tanker aircraft by the aerodynamic force created by the drogue, which also provides some positional stability. The receiving aircraft comprises a probe extending forwardly from the nose or fuselage of the aircraft, and also has a valve at its distal end. The pilot of the aircraft to be refuelled controls and manoeuvres the aircraft to align the probe with the valve and the drogue and then moves the aircraft towards the tanker aircraft so that the probe connects with the valve on the hose. Once connection has been made, the valves can be opened to establish a fluid path, thereby allowing fuel to flow into the fuel tanks of the receiving aircraft.
  • Flying boom refuelling systems have a rigid boom that is deployed from the tanker aircraft, the position of which is typically controlled by an operator in the tanker aircraft. The boom can carry a hose which has a valve at its distal end. The receiving aircraft comprises a docking port that may be within the fuselage, or extending from the fuselage. The pilot of the receiving aircraft again flies their aircraft into contact with the boom. However, in this case, the boom operator can control the finite position of the boom so there is a two-way process for making the connection.
  • Developments in aviation mean that the industry is changing to favour Unmanned Aerial Vehicles (UAV's) and Autonomous Unmanned Aerial Vehicles (AUAV's) and the refuelling requirements of these aircraft are very different to those of conventional aircraft. A limitation of UAV's and AUAV's is the power that can be carried by onboard batteries which are recharged before each use.
  • Aircraft currently communicate via radio or satellite communications which can place a large strain on the bandwidth of such systems. UAV's and AUAV's that are deployed as observers can collect and store large amounts of data that is either transmitted over the communication channels or stored onboard the aircraft for later retrieval. Transmission over the communication channels requires more bandwidth which means more satellites, transmitters and receivers that can add considerable cost. Furthermore, communication channels may not be fast or secure enough to carry out some operations such as system diagnostics. Storing data onboard the aircraft delays the retrieval of that information and requires the aircraft to return to the ground. Therefore, the data storage capacity of an aircraft may also limit the aircraft's maximum operational time.
  • SUMMARY OF THE INVENTION
  • The present invention seeks to provide a hose for conveying fluids that seeks to alleviate or substantially overcome the problems with conventional fluid carrying hoses, including those mentioned above.
  • According to the invention, there is provided a hose for conveying fluids comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall.
  • In one embodiment, the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be positioned between the inner fluid carrying tube and the outer protective sheath.
  • In an alternative embodiment, the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be embedded within the outer protective sheath.
  • Advantageously, the cable may be wound around the inner fluid carrying tube to define a helical path along the hose.
  • Helically winding the cable around the inner fluid carrying tube means that the cable is always at an angle to any bending of the hose, thereby reducing the stress induced in the cable.
  • Preferably, the cable comprises a plurality of spaced insulated wires encased in a sleeve of low friction material to allow movement of the wires relative to the sleeve when the cable is subject to bending.
  • The low friction casing reduces the stress placed on the wires as they move around within the casing. Also, allowing the wires to move within the casing means that the wires will move to the position of least stress during bending of the hose.
  • Preferably, the hose has a distal end and a user definable module, the user definable module being removably attachable to said distal end and including a connector for electrical connection to said cable.
  • The user definable module may be tubular and may surround the distal end of the hose.
  • Preferably, the user definable module comprises at least one or more components for determining a measurable parameter at the distal end of the hose.
  • The user definable module may comprise at least one of a position sensor, an accelerometer, a temperature sensor, a pressure sensor, a proximity sensor and a flow rate sensor.
  • The hose may also comprise an intermediate connecting collar, attachable to the distal end of the hose proximal to the user definable module, the collar comprising first electrical terminals to connect the cable to conductors in the collar and second electrical terminals spaced from the first electrical terminals to connect the conductors in the collar to the user definable module.
  • The conductors in the collar may extend from the first electrical terminal in a helical path and terminate at the second electrical terminal in a plane extending substantially at right angles to a longitudinal axis of the hose.
  • Advantageously, the intermediate collar has an angled cut out that defines a face which is substantially perpendicular to the helical path of the cable, said first electrical terminal being mounted on said face.
  • The angled cut out allows the helically wound cable to easily connect to the collar without having to bend the cable.
  • The intermediate collar may comprise an end face which lies in a plane substantially at right angles to the longitudinal axis of the hose, said second electrical terminal being mounted to said end face.
  • Preferably, the user definable module comprises two half tubular portions or shells that are attachable to each other to surround the distal end of the hose.
  • The two part construction of the user definable module allows the user definable module to be easily removed from the hose for interchanging.
  • The user definable module may be attachable to the collar.
  • Preferably, the user definable module comprises a connector configured to connect to the second electrical terminals, when the user definable module is attached to the distal end of the hose.
  • A connector may extend from the distal end of the hose to receive a probe, the connector extending distally beyond the user defined module.
  • In one embodiment, the user definable module comprises a terminal connector configured to electrically connect to a mating terminal connector on a receiving probe, when the connector is connected to said receiving probe.
  • In this way, an electrical connection is made between the hose and the receiving probe which may be used for transmitting power and/or data.
  • According to another aspect of the invention, there is provided a user definable module removably attachable to the distal end of a fluid conveying hose that is releasably connectable to a fluid receiving entity to provide fluid to said entity, the fluid conveying hose comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the user definable module being connectable to said cable and comprising components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along said hose via said user definable interface.
  • According to anther aspect of the invention there is provided a method of configuring a hose for fluid transfer, said hose being releasably connectable to a fluid receiving entity to provide fluid to said entity and comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the method comprising the step of selecting a user definable module according to claim 19 and attaching said selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will now be described, by way of example only and with reference to the accompanying drawings, in which;
  • FIG. 1 shows a view of a refuelling tanker aircraft and an aircraft that is to be refuelled;
  • FIG. 2 shows a view of the distal end of a refuelling hose according to an embodiment of the invention;
  • FIG. 3 shows a perspective view of the refuelling hose of FIG. 2, but omitting part of the outer protective sheath for the purposes of clarity;
  • FIG. 4 shows a view of the termination collar and electrical connector of FIG. 2;
  • FIG. 5 shows a view of the user definable interface module (UDI) for attachment to the refuelling hose;
  • FIGS. 6 a and 6 b show views of the two portions of the UDI module; and,
  • FIG. 7 shows a view of an example configuration of the UDI module with the casing portions removed for clarity.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a tanker aircraft 2 with a refuelling hose 1 in a deployed position, trailing behind the aircraft. The refuelling hose 1 is flexible and is mounted on a reel assembly within the tanker aircraft 2 so that operation of the reel assembly will deploy and retract the refuelling hose 1. The distal end 3 of the refuelling hose 1 comprises a valve connector 4 that mates with a probe 5 on the receiving aircraft 6 and a drogue 7 that provides a stabilising aerodynamic force. The drag created by the drogue 7 as the tanker aircraft 2 moves through the air provides a backwards force that drags the distal end 3 of the refuelling hose 1 behind the tanker aircraft 2 and in a position and orientation that is suitable for mating with the receiving aircraft 6. The drogue 7 also helps reduce oscillations in the hose that would otherwise cause the distal end of the refuelling hose to move around.
  • FIG. 2 shows the distal end 3 of the refuelling hose 1 without a drogue attachment. The distal end 3 comprises a mating connector 4 that provides the sealed mechanical connection between the hose 1 and the probe of the receiving aircraft. As will be described in more detail with reference to FIGS. 2 to 8, a user definable interface (UDI) module 11 is mounted to the distal end of the refuelling hose 1 so that the connector 4 protrudes from one end of the module 11. The UDI module 11 allows a user to configure the end of the refuelling hose 1 with different functionality for different applications as will become apparent from the description that follows below. To electrically connect the UDI module 11 to the tanker aircraft, a data and/or power transmission cable 9 is wound around and embedded into the refuelling hose and terminates in an end connector 10 that connects the cable 9 to the UDI module 11 via an intermediate collar 18 (see below).
  • FIG. 3 shows a perspective view of the refuelling hose 1 showing the cable 9 embedded within the refuelling hose 1. The hose 1 comprises an inner fuel carrying hose 12 and an outer protective sheath 13 as well as a reinforcing sheath 14 that provides both increased strength and protection against electrical charges such as lightning strikes (part of the outer protective sheath 13 is removed in FIG. 3 for clarity and to enable the path of the cable 9 to be seen). The cable 9 is flat and flexible and comprises a plurality of conducting wires 15 to carry power, data or any other electrical signals. The cable 9 is wrapped helically around the inner fuel carrying hose 12 and the reinforcing sheath 14 and is then covered by the outer protective sheath 13 so that the cable 9 is located between the reinforcing sheath 14 and the outer protective sheath 13. Alternatively, the cable 9 may be embedded within the outer protective sheath 13. The wires 15 themselves may be of any type, for example 4AWG wires for carrying power, wires for carrying data and/or power and/or fibre optic cables. The wires 15 may be copper, aluminium or optical wave guides or other suitable conductors. The cable 9 should be configured to carry both power and/or data signals with a degree of flexibility so that the hose 1 and cable 9 can be used with a variety of UDI modules, as explained in more detail hereinafter.
  • During normal duty the flexible hose 1 is exposed to bending forces caused by winding the hose 1 on and off a storage reel on the tanker aircraft and also from turbulence during operation, as the hose moves around in the air. The cable 9 is embedded within the hose 1 so will also be subject to those bending forces and there is a need to protect the cable 9, particularly the wires 15, from fatigue stresses. Bending the hose 1 and the cable 9 will exert tensile stress on one side of the wires 15 and compressive stress on the opposite side. Also, the direction of bending will change during operation, resulting in fatigue stress effects. The bending and fatigue stresses can alter the conductive properties of the wires 15 and affect the performance of the cable 9, possibly even causing the wires 15 to fail.
  • Helically winding the cable 9 along the length of the hose reduces the stress in the wires 15 during operation because the wires 15 are always at an angle to the bending direction of the hose 1. Furthermore, each wire is provided with low friction insulation, made from a fluoropolymer or thermoplastic material, and the insulated wires 15 are contained within a low friction sleeve 17, also made from a fluoropolymer or thermoplastic material. This allows the insulated wires 15 to move around within the sleeve 17. The low friction contact between the insulated wires 15 and the sleeve 17 allows the wires 15 to move around within the sleeve 17 to the position of least stress as the hose 1 bends, thereby reducing the bending and fatigue stresses induced in the power, signal and fibre optic wires 15. The outer surface of the sleeve 17 is treated to allow it to be bonded to the outer protective sheath 13 or reinforcing sheath 14 of the hose 1. The treatment process could be chemical etching, plasma arc or bespoke RF surface modification that allows adhesive to bond to the sleeve 17.
  • In addition to stress protection, the cable 9 is fully sheathed in a protective layer 16 to protect the cable 9 and the systems attached to the cable from an Electromagnetic Impulse (EMI). An EMI may occur naturally, such as from a lightning strike or as a result of the systems themselves, for example a build up of static electricity or short circuits. Alternatively, EMI may be used intentionally as weapon and the systems of the aircraft and the refuelling apparatus need to be protected from any such attack.
  • FIG. 4 shows a termination collar 18 that is fixed to the distal end of the refuelling hose to provide an electrical terminal and connection between the cable 9 and the UDI module 11 (see FIG. 5). The termination collar 18 is attached to the outer wall 13 (see FIG. 3) of the refuelling hose 1 to securely and rigidly attach the termination collar 18 to the hose 1. The termination collar 18 comprises a ring portion 19 with an inner diameter that is larger than and extends around the inner refuelling hose 12 and the mechanical connector 4 without interfering with the function of these components.
  • As shown in FIG. 4 the termination collar 18 comprises an angled cut out 20 at the end of the termination collar 18 facing along the hose 1 towards the tanker aircraft. The cut out has a face 47 that extends perpendicularly to the helix path of the cable 9 such that the face 47 is at 90 degrees relative to the helix angle of the cable 9. The face 47 comprises an electrical connector 21 configured to receive the end 23 of the helically wound cable 9 and the sleeve 17 is adhered or bonded to the termination collar 18. The angled cut out 20 and the face 47 allow the end 23 of the cable 9 to be easily received in the connector 21 without having to flex the cable 9 or disturb the helical path. The angled cut out 20 extends from the face 47 at an angle that is closely matched to the helix angle of the cable 9 so that the termination collar 18 is shaped to allow the cable 9 to freely connect with the connector 21. The end 23 of the cable 9 may be removably or permanently attached to the connector 21 on the termination collar 18. 3o The connector 21 may be a zero insertion force type connector with a clamping element to prevent disconnection. Conductors 24 are embedded within the ring portion 19 of the termination collar 18 to connect the electrical connector 21 on angled face 47 to an electrical terminal 25 on the distal end 26 of the termination collar 18, facing away from the tanker aircraft. The conductors 24 initially follow the helical path through the collar 18 but then turn so that they extend in an axial direction of the hose and terminate at the end face of the collar 18, which lies in a plane extending at right-angles to the longitudinal axis of the hose. The conductors 24 may be copper, aluminium or optical wave guides. In this way, when the cable 9 is attached to the electrical connector 21, the cable 9 is in electrical contact with the terminal 25 on the end face 26 of the termination collar 18, so that electrical connection can then be made to the UDI module 11, as explained below with reference to FIG. 5.
  • FIG. 5 shows the distal end 3 of the refuelling hose 1 with the cable 9, termination collar 18 and the User Definable Interface (UDI) module 11 attached to the termination collar 18. The UDI module 11 and collar 18 are shown as being partially transparent for the purposes of clarity only. The UDI module 11 comprises two half-cylindrical portions or shells 27, 28 that are attachable to each other surrounding the refuelling hose 1. The UDI module 11 may also be attachable to the end 26 of the termination collar 18.
  • The two parts 27, 28 of the UDI module 11 may be attachable to each other by a magnetic clamping system comprising a plurality of magnets, such as neodymium magnets, embedded in the mating faces of the two parts 27, 28. The magnets in each part 27, 28 have opposing poles such that they attract each other and clamp the two parts 27, 28 together. The magnets in one of the two parts 27, 28 are moveable so that the magnets can be moved from an aligned position for clamping to an unaligned positioned for separating the two parts 27, 28 of the UDI module 11. The magnets may be moveable by a manual lever or other actuator. Alternatively, the two parts 27, 28 of the UDI module are attachable by means of locking elements, fasteners, or any other suitable attachment that allows the UDI module 11 to be easily clamped and separated. Similarly, the UDI module 11 may also be attached to the outer face 26 of the termination collar 18 by any of the attachment means described above.
  • The UDI module 11 is easily removable from the refuelling hose 1 and can be changed during flight when the hose is retracted into the tanker aircraft 2. Different UDI modules 11 may be configured in different ways for different applications, for example refuelling of different aircraft or in different conditions.
  • The UDI module 11 comprises an electrical connector 30 on the end face 31 of one of the half-cylindrical portions 27 that connects with the electrical terminal 25 on the end face 26 of the termination collar 18 to electrically connect the termination collar 18 to the UDI module 11. Conductors or wires 32 are embedded into, or mounted to, the UDI module 11 to connect any devices that are mounted in the UDI module 11 to the connector 30 and therefore to the tanker aircraft 2 via the cable 9. Some examples of components that the UDI module 11 may comprise are position sensors, accelerometers, pressure, temperature, flow rate sensors, connection sensors (to detect if the probe and hose are suitably mated) and so forth. The UDI module 11 is able to provide whatever functionality is required for each individual refuelling aircraft, or even each individual operation. The cable 9 provides the connectivity and the UDI module provides a platform for using any type of electrical equipment desired at the connection between the refuelling hose and the receiving aircraft.
  • FIGS. 6 a and 6 b show the two portions 27, 28 of the UDI module 11 that are attachable to each other and to the end 26 of the termination collar 18. As explained above, the UDI module 11 is fully configurable to change the connectivity and function of the refuelling hose 1 depending on the requirements of the user and the operation. Components such as sensors and connectors can be embedded within or attached to the UDI modules 11 and different UDI modules 11 can be provided for different applications. Each different UDI module 11 may utilise the wires 15 in the cable 9 differently so different connections will be required at the tanker end of the cable 9 as well. Before or between refuelling operations a user onboard the tanker aircraft 2 may change the UDI module 11 by removing the two portions 27, 28 and swapping them for a different UDI module 11, thereby changing the functionality and capabilities of the refuelling hose 1.
  • FIG. 7 shows an example configuration of the UDI module 11 without the body of the UDI module 11 showing, for purposes of clarity. In this case, the UDI module comprises a power transfer unit 33, accelerometers 34 and heat and pressure sensors 35. The power transfer unit 33 is positioned on an outer face of the UDI module it and power is provided to the unit from the tanker aircraft 2 along the cable 9 in the refuelling hose 1. The receiving aircraft 2 will have a similar power transfer unit positioned on or near the probe 5 that connects with the refuelling hose 1 so that when the probe and the hose are connected, the two power transfer units are proximate to each other and power can be transferred from one aircraft to the other via induction. The accelerometers 34 can be used to determine the position and/or stability of the distal end 3 of the refuelling hose 1 which may be useful for informing the operators or systems about the condition of the connection or if the hose 1 is stable enough for a connection to be made in the first place. For example, high acceleration during fuel transfer may trigger the fuel transfer operation to be stopped as a safety precaution. Temperature and pressure sensors 35 in the UDI module 11 can inform operators or systems about the state of the fuel being transferred and therefore if the systems are working effectively or if there might be a blockage or other problem. Low or high temperatures caused by the high altitudes or malfunctioning systems may be dangerous so temperature sensors may be used to determine if fuel transfer is safe and inform an operator or system when the fuel temperature is outside a safe range.
  • A further optional component for the UDI module 11 may include providing an electrical terminal (not shown) at the distal end 36 (see FIG. 5) of the UDI module 11 that is configured to electrically connect to a connector on the receiving aircraft 6 when the refuelling connection is made. The receiving aircraft may comprise an electrical connector assembly either on, or near, the probe 5 that connects to the UDI module, allowing power and/or data to be transferred between the tanker aircraft 2 and the receiving aircraft 6 via the cable 9 in the refuelling hose 1. The connectors may magnetically orientate and/or lock together to ensure alignment before a connection is made. Alternatively, concentric slip rings may be used on the distal end of the UDI module that connect to a compatible slip ring arrangement on the receiving aircraft.
  • The electrical connection along the hose 1 allows power and/or electrical signals to be carried from the tanker aircraft 2 to the receiving aircraft 6 and vice versa. Therefore, it is possible to provide power to the aircraft 6 being refuelled to recharge the batteries and extend the operating life of UAV's and AUAV's which carry limited life batteries. Furthermore, the tanker aircraft 2 is able to securely communicate with the receiving aircraft 6 to download data, such as surveillance images, or to upload instructions or perform diagnostic analysis on faulty or out of date systems. The data connection is more secure than a wireless alternative because it is direct, can not be intercepted and is protected from EMI and other such attacks.
  • Furthermore, the UDI module 11 may be fitted with a drogue that functions in the conventional manner. Alternatively, the UDI module 11 may have aerodynamic control surfaces and an actuator to control the wings from the tanker aircraft 2 such that an operator onboard the tanker aircraft may control the attitude of the distal end of the refuelling hose 1 to facilitate the connection between the probe 5 and the distal end 3 of the hose 1. Again, the UDI module 11 is changeable so a tanker aircraft will be able to switch between these applications during flight, depending on the requirements of each refuelling operation and the equipment onboard the receiving aircraft.
  • The components, systems and methods described herein are applicable to any in-flight refuelling system including, but not limited to, ‘manned tanker to manned aircraft’, ‘manned tanker to unmanned aircraft’ and ‘unmanned tanker to unmanned aircraft’. Furthermore, it will be appreciated that the invention as defined in the claims is applicable to other similar applications where a transfer of fluid is required from one moveable place to another. For example, ship-to-ship or ship-to-helicopter fluid transfer, or connections between oil and gas exploration and production equipment both on land and subsea.

Claims (22)

1. A hose for conveying fluids comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall.
2. The hose of claim 1, wherein the wall comprises an inner fluid carrying tube and an outer protective sheath, wherein the cable is positioned between the inner fluid carrying tube and the outer protective sheath.
3. The hose of claim 1, wherein the wall comprises an inner fluid carrying tube and an outer protective sheath, wherein the cable is embedded within the outer protective sheath.
4. The hose of claim 2, wherein the cable is wound around the inner fluid carrying tube to define a helical path along the hose.
5. The hose of claim 4, wherein the cable comprises a plurality of spaced insulated wires encased in a sleeve of low friction material to allow movement of the wires relative to the sleeve when the cable is subject to bending.
6. The hose of claim 1, wherein the hose has a distal end and a user definable module, the user definable module being removably attachable to said distal end and including a connector for electrical connection to said cable.
7. The hose of claim 6, wherein the user definable module is tubular and surrounds the distal end of the hose.
8. The hose of claim 6, wherein the user definable module comprises at least one or more components for determining a measurable parameter at the distal end of the hose.
9. The hose of claim 8, wherein the user definable module comprises at least one of a position sensor, an accelerometer, a temperature sensor, a pressure sensor, a proximity sensor and a flow rate sensor.
10. The hose of claim 6, further comprising an intermediate connecting collar, attachable to the distal end of the hose proximal to the user definable module, the collar comprising first electrical terminals to connect the cable to conductors in the collar and second electrical terminals spaced from the first electrical terminals to connect the conductors in the collar to the user definable module.
11. The hose of claim 10, wherein the conductors in the collar extend from the first electrical terminal in a helical path and terminate at the second electrical terminal in a plane extending substantially at right angles to a longitudinal axis of the hose.
12. The hose of claim 11, wherein the intermediate collar has an angled cut out that defines a face which is substantially perpendicular to the helical path of the cable, said first electrical terminal being mounted on said face.
13. The hose of claim 11, wherein the intermediate collar comprises an end face which lies in a plane substantially at right angles to the longitudinal axis of the hose, said second electrical terminal being mounted to said end face.
14. The hose of claim 6, wherein the user definable module comprises two half tubular portions or shells that are attachable to each other to surround the distal end of the hose.
15. The hose of claim 14, wherein the user definable module is attachable to the collar.
16. The hose of claim 10, wherein the user definable module comprises a connector configured to connect to the second electrical terminals, when the user definable module is attached to the distal end of the hose.
17. The hose of claim 6, wherein a connector extends from the distal end of the hose to receive a probe, the connector extending distally beyond the user defined module.
18. The hose of claim 17, wherein the user definable module comprises a terminal connector configured to electrically connect to a mating terminal connector on a receiving probe, when the connector is connected to said receiving probe.
19. A user definable module removably attachable to the distal end of a fluid conveying hose that is releasably connectable to a fluid receiving entity to provide fluid to said entity, the fluid conveying hose comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the user definable module being connectable to said cable and comprising components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along said hose via said user definable module.
20. A method of configuring a hose for fluid transfer, said hose being releasably connectable to a fluid receiving entity to provide fluid to said entity and comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the method comprising the step of selecting a user definable module according to claim 19 and attaching said selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
21. canceled
22. canceled
US13/848,753 2012-03-29 2013-03-22 Hose for Conveying Fluid Abandoned US20130255986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/278,071 US10267439B2 (en) 2012-03-29 2016-09-28 Hose for conveying fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1205551.3 2012-03-29
GB1205551.3A GB2500669B (en) 2012-03-29 2012-03-29 Hose for conveying fluid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/278,071 Continuation US10267439B2 (en) 2012-03-29 2016-09-28 Hose for conveying fluid

Publications (1)

Publication Number Publication Date
US20130255986A1 true US20130255986A1 (en) 2013-10-03

Family

ID=46087336

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/848,753 Abandoned US20130255986A1 (en) 2012-03-29 2013-03-22 Hose for Conveying Fluid
US15/278,071 Active 2033-05-16 US10267439B2 (en) 2012-03-29 2016-09-28 Hose for conveying fluid

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/278,071 Active 2033-05-16 US10267439B2 (en) 2012-03-29 2016-09-28 Hose for conveying fluid

Country Status (3)

Country Link
US (2) US20130255986A1 (en)
EP (1) EP2644509B1 (en)
GB (1) GB2500669B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843179B1 (en) * 2013-04-16 2017-12-12 The United States Of America As Represented By The Secretary Of The Navy Corrosion resistant termination connector for steel wire rope/minesweeping cable
US20190078304A1 (en) * 2014-12-12 2019-03-14 Delta Faucet Company Sprayer hose assembly
US10267439B2 (en) 2012-03-29 2019-04-23 Icon Polymer Group Limited Hose for conveying fluid

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876052A1 (en) * 2013-11-25 2015-05-27 EADS Construcciones Aeronauticas S.A. A hose and drogue in-flight refueling system with an active fuel pressure control
EP2915751B1 (en) 2014-03-07 2016-09-28 Airbus Defence and Space SA A hose & drogue in-flight refueling method and system with an improved control of the hose & drogue motion
CN104896206A (en) * 2015-05-13 2015-09-09 王丽 Airflow air supply pipe of freezing type drying machine
US10099799B2 (en) * 2015-09-15 2018-10-16 The Boeing Company Articulated boom nozzle with torsion cable reel
GB2557648A (en) * 2016-12-14 2018-06-27 Polimer Kaucuk Sanayi Ve Pazarlama A S Hose for guiding a fluid
GB2561524A (en) * 2016-12-22 2018-10-24 Linde Ag A hose for connection to a gas cylinder
CN108267260B (en) * 2016-12-30 2019-05-17 北京金风科创风电设备有限公司 Electric connector, fluid state testing device and fluid heat exchange system
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
EP3418201A1 (en) 2017-06-22 2018-12-26 Airbus Defence and Space SA In-flight electric reloading system
US11124314B2 (en) * 2018-04-12 2021-09-21 The Boeing Company Systems and methods for transferring electric power to an aircraft during flight
EP3584167B1 (en) * 2018-06-19 2022-04-06 Airbus Defence and Space, S.A.U. Air to air refuelling hose and method for detecting damages in air to air refuelling hose
US11545280B2 (en) 2018-08-23 2023-01-03 The Esab Group Inc. Cable hose with embedded features
GB2574078B (en) * 2018-09-27 2020-05-20 pitman James Methods and systems for in-flight fuelling of aircraft
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3191280A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
CN111942188B (en) * 2020-08-11 2022-04-12 北京京东乾石科技有限公司 Unmanned aerial vehicle aerial charging system, charging method, device, equipment and medium
RU2748810C1 (en) * 2020-10-16 2021-05-31 Акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" In-flight refueling unit fuel hose
RU203665U1 (en) * 2020-12-04 2021-04-15 Акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" IN-FLIGHT FUEL HOSE
RU2749470C1 (en) * 2020-12-04 2021-06-11 Акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" Fuel hose of the in-flight refueling unit
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
GB2620987A (en) * 2022-07-29 2024-01-31 Baker Hughes Energy Tech Uk Limited Pipe cable assembly

Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US482181A (en) * 1892-09-06 Electric connector for hose
US2438146A (en) * 1945-06-07 1948-03-23 American Brass Co Flexible metal hose
US2663523A (en) * 1949-08-02 1953-12-22 Boeing Co Aircraft interconnecting mechanism
US2949265A (en) * 1954-03-22 1960-08-16 Boeing Co Articulated aircraft refueling boom
US2973163A (en) * 1956-02-03 1961-02-28 Flight Refueling Inc Apparatus for trailing a fluid-transmitting hose or tow-line from an aircraft
US3034085A (en) * 1959-12-09 1962-05-08 Whirlpool Co Combined fluid and electrical connector
US3285544A (en) * 1964-02-26 1966-11-15 Industrial Nucleonics Corp Mid-air refueling system
US3780208A (en) * 1972-06-05 1973-12-18 Moore & Co Samuel Composite hose having a grounding wire enclosed in a sleeve and wrapped about the core tube of the hose
US4059847A (en) * 1976-09-01 1977-11-22 Dayco Corporation Hose having an electrically conductive layer for dissipating static electricity and method of making same
US4063790A (en) * 1976-10-15 1977-12-20 Dayco Corporation Fluid conduit assembly
US4108701A (en) * 1977-06-01 1978-08-22 The Goodyear Tire & Rubber Company Method for making hose incorporating an embedded static ground conductor
US4129270A (en) * 1977-06-13 1978-12-12 The Boeing Company Air refueling boom pivot gimbal arrangements
US4162370A (en) * 1977-06-24 1979-07-24 Automation Industries, Inc. Current carrying hose assembly
US4167645A (en) * 1977-11-14 1979-09-11 Dayco Corporation Electrical current-carrying fluid hose construction
US4196464A (en) * 1978-02-23 1980-04-01 Eaton Corporation Semi-conductive layer-containing reinforced pressure hose and method of making same
US4405969A (en) * 1981-10-02 1983-09-20 The Polymer Corporation Anti-static hose assemblies
US4462649A (en) * 1980-05-05 1984-07-31 Dayco Corporation Hose construction and method of making same
USH297H (en) * 1985-08-12 1987-07-07 The United States Of America As Represented By The Secretary Of The Air Force Robotic refueling system for tactical and strategic aircraft
US4781255A (en) * 1984-12-08 1988-11-01 British Aerospace Public Limited Company Cable conduit system for vehicles
US4815816A (en) * 1987-05-12 1989-03-28 Rts Laboratories, Inc. Image transportation device using incoherent fiber optics bundles and method of using same
US4870535A (en) * 1987-11-16 1989-09-26 Tokyo Sen-I Kogyo Co., Ltd. Antistatic hose
US4964692A (en) * 1982-07-21 1990-10-23 Smith & Nephew Dyonics, Inc. Fiber bundle illumination system
US5102012A (en) * 1990-08-31 1992-04-07 Dayco Products, Inc. Fuel dispensing system having a flexible hose with a static dissipater and a fuel leak detector
US5170011A (en) * 1991-09-25 1992-12-08 Teleflex Incorporated Hose assembly
US5243128A (en) * 1990-03-07 1993-09-07 Caoutchouc Manufacture Et Plastioues S.A. Sewer cleaning apparatus
US5428706A (en) * 1990-05-17 1995-06-27 Coflexip Flexible tubular conduit with heating means and stiffening means for transporting pressurized fluids
US5539624A (en) * 1995-01-17 1996-07-23 Durodyne, Inc. Illuminated hose
US5573206A (en) * 1994-08-19 1996-11-12 Able Corporation Hose and drogue boom refueling system, for aircraft
US5600752A (en) * 1994-03-11 1997-02-04 Industrial Design Laboratories, Inc. Flexible gas hose assembly with concentric helical tube members having reinforcement spring coils
US5921285A (en) * 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
US6061490A (en) * 1997-08-01 2000-05-09 Mitsubishi Rayon Co., Ltd. Optical fiber bundle with bundling member
US20020162674A1 (en) * 1999-09-07 2002-11-07 Utilx Corporation Flow-through cable
US20030011982A1 (en) * 2000-02-25 2003-01-16 Intel Corporation, A Delaware Corporation Tilt mounted hard drive bay
US6604711B1 (en) * 2000-11-20 2003-08-12 Sargent Fletcher, Inc. Autonomous system for the aerial refueling or decontamination of unmanned airborne vehicles
US6710243B2 (en) * 2002-06-27 2004-03-23 Capativa Tech, Inc. Structure of signal line
US20040089639A1 (en) * 2002-11-12 2004-05-13 Raymond Terry N. Apparatus and methods for connecting a plasma arc torch lead to a power supply
US6786455B1 (en) * 2002-09-05 2004-09-07 Asher Bartov Method for engaging a probe and drogue for aerial refueling
US20050060838A1 (en) * 2003-09-22 2005-03-24 Scott Walter Vacuum cleaner current-carrying hose connection system
US6901191B2 (en) * 2001-11-12 2005-05-31 Corning Cable Systems Llc High density fiber optic cable
US20060000950A1 (en) * 2004-06-18 2006-01-05 The Boeing Company In-flight refueling system and method for extending and retracting an in-flight refueling device
US20060011782A1 (en) * 2004-07-14 2006-01-19 The Boeing Company In-flight refueling system and method for facilitating emergency separation of in-flight refueling system components
US20060060709A1 (en) * 2004-08-26 2006-03-23 The Boeing Company In-flight refueling system, sensor system and method for damping oscillations in in-flight refueling system components
US20060137880A1 (en) * 2003-06-16 2006-06-29 Arild Figenschou Subsea umbilical
US7097139B2 (en) * 2004-07-22 2006-08-29 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US7152828B1 (en) * 2002-11-01 2006-12-26 Sargent Fletcher, Inc. Method and apparatus for the hookup of unmanned/manned (“hum”) multi purpose vehicles with each other
US7172444B1 (en) * 2005-07-28 2007-02-06 Jui-Shu Huang Hard drive contact pin connector device
US20070144756A1 (en) * 2003-11-12 2007-06-28 Huberag Hose for conveying media that generate electrostatic charges, especially powdery media
US7516762B2 (en) * 2006-07-21 2009-04-14 Ivg Colbachini, S.P.A. Corrugated flexible pipe with a built-in electric cable
US20090292406A1 (en) * 2008-05-22 2009-11-26 Eads Construcciones Aeronauticas, S.A., Methods and systems for reducing the phenomenon of structural coupling in the control system of an in-flight refuelling boom
US7637458B2 (en) * 2005-06-08 2009-12-29 The Boeing Company Systems and methods for providing back-up hydraulic power for aircraft, including tanker aircraft
US20100009564A1 (en) * 2008-07-08 2010-01-14 Adtron Corporation Connector Clamp
US7837151B1 (en) * 2003-11-01 2010-11-23 Sargent Fletcher, Inc. Method and apparatus for the hookup of unmanned/manned (“HUM”) multi purpose air vehicles with each other
US7887010B2 (en) * 2005-06-20 2011-02-15 The Boeing Company Controllable refueling drogues and associated systems and methods
US7891383B2 (en) * 2006-07-05 2011-02-22 Delfingen Fr-Anteuil S.A. Ringed tubular sheath and device for making such a sheath
US7900866B2 (en) * 2007-10-18 2011-03-08 The Boeing Company System and methods for airborne launch and recovery of aircraft
US8110741B2 (en) * 1995-09-28 2012-02-07 Fiberspar Corporation Composite coiled tubing end connector
US20120160536A1 (en) * 2010-12-23 2012-06-28 Mike Beining Fluid connector with hose cutting ring
US8220746B1 (en) * 2009-05-29 2012-07-17 The Boeing Company Broad speed range inflatable drogue canopy
US8231083B2 (en) * 2007-10-18 2012-07-31 The Boeing Company System and methods for airborne launch and recovery of aircraft
US8399767B2 (en) * 2009-08-21 2013-03-19 Titeflex Corporation Sealing devices and methods of installing energy dissipative tubing
US8590846B2 (en) * 2009-05-27 2013-11-26 Airbus Operations Gmbh Device for laying a cable harness in an aircraft
US8650706B2 (en) * 2008-10-21 2014-02-18 Makita Corporation Corded hose and dust collector
US9150311B2 (en) * 2012-01-04 2015-10-06 Israel Aerospace Industries Ltd. Systems and methods for air vehicles

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023267A (en) * 1959-03-05 1962-02-27 Gen Cable Corp Combination power and communication cable
NL273812A (en) * 1961-02-27
US3387319A (en) * 1965-06-28 1968-06-11 Electrolux Corp Airflow-electric coupling for vacuum cleaner
DE1750392A1 (en) * 1968-04-11 1970-11-12 Gossler Kg Oscar Device for connecting an electrical line to a hose
IT957531B (en) * 1971-03-10 1973-10-20 Dornier Ag MOORING ROPE FOR AERODINE
NL7414546A (en) * 1973-11-15 1975-05-20 Rhone Poulenc Sa SMOOTH HEATING TUBE AND PROCESS FOR MANUFACTURING IT.
SE7401692L (en) * 1974-02-08 1975-08-11 Electrolux Ab
JPS617809U (en) * 1984-06-19 1986-01-17 住友電気工業株式会社 shielded wire
US5220130A (en) * 1991-08-06 1993-06-15 Cooper Industries, Inc. Dual insulated data cable
FR2714708B1 (en) * 1994-01-05 1996-03-08 Giat Ind Sa Flexible tubular conduit comprising an information transmission cable.
CA2163702C (en) * 1995-11-24 2000-05-30 Mark Beauchamp Flame resistant electric cable
US6441308B1 (en) * 1996-06-07 2002-08-27 Cable Design Technologies, Inc. Cable with dual layer jacket
US6114632A (en) * 1998-03-05 2000-09-05 Planas, Sr.; Alberto E. Integrated power and data communication hybrid cable assembly for local area computer network
GB2345199B (en) * 1998-12-22 2003-06-04 Philip Head Tubing and conductors or conduits
US6811427B2 (en) * 2002-11-15 2004-11-02 Western Digital Technologies, Inc. Robust serial advanced technology attachment (SATA) cable connector
US7313000B2 (en) * 2003-12-05 2007-12-25 Ultra Products, Inc. Power distribution system for a personal computer
GB2443671B (en) * 2006-11-13 2011-03-09 Steven Martin Hudson Data transmission between electro-statically charged bodies
US20080250632A1 (en) * 2007-02-12 2008-10-16 Dayton Douglas C System and method of a conformable cable
JP5592394B2 (en) * 2008-12-17 2014-09-17 ザ・ボーイング・カンパニー Automatic reduction of the force applied to the refueling boom
US8083536B2 (en) * 2009-08-31 2011-12-27 Ocz Technology Group Inc Connector assembly and method for SATA drives
US8763955B1 (en) * 2009-08-31 2014-07-01 The Boeing Company Method and apparatus for controlling a refueling drogue
US7972167B2 (en) * 2009-09-14 2011-07-05 Better Place GmbH Electrical connector with a flexible blade-shaped housing with a handle with an opening
JP5679553B2 (en) * 2010-11-24 2015-03-04 矢崎総業株式会社 Wire harness
US20130037323A1 (en) * 2011-08-12 2013-02-14 Jaime Smith Electroluminescent systems
GB2500669B (en) 2012-03-29 2016-03-30 Icon Polymer Group Hose for conveying fluid

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US482181A (en) * 1892-09-06 Electric connector for hose
US2438146A (en) * 1945-06-07 1948-03-23 American Brass Co Flexible metal hose
US2663523A (en) * 1949-08-02 1953-12-22 Boeing Co Aircraft interconnecting mechanism
US2949265A (en) * 1954-03-22 1960-08-16 Boeing Co Articulated aircraft refueling boom
US2973163A (en) * 1956-02-03 1961-02-28 Flight Refueling Inc Apparatus for trailing a fluid-transmitting hose or tow-line from an aircraft
US3034085A (en) * 1959-12-09 1962-05-08 Whirlpool Co Combined fluid and electrical connector
US3285544A (en) * 1964-02-26 1966-11-15 Industrial Nucleonics Corp Mid-air refueling system
US3780208A (en) * 1972-06-05 1973-12-18 Moore & Co Samuel Composite hose having a grounding wire enclosed in a sleeve and wrapped about the core tube of the hose
US4059847A (en) * 1976-09-01 1977-11-22 Dayco Corporation Hose having an electrically conductive layer for dissipating static electricity and method of making same
US4063790A (en) * 1976-10-15 1977-12-20 Dayco Corporation Fluid conduit assembly
US4108701A (en) * 1977-06-01 1978-08-22 The Goodyear Tire & Rubber Company Method for making hose incorporating an embedded static ground conductor
US4129270A (en) * 1977-06-13 1978-12-12 The Boeing Company Air refueling boom pivot gimbal arrangements
US4162370A (en) * 1977-06-24 1979-07-24 Automation Industries, Inc. Current carrying hose assembly
US4167645A (en) * 1977-11-14 1979-09-11 Dayco Corporation Electrical current-carrying fluid hose construction
US4196464A (en) * 1978-02-23 1980-04-01 Eaton Corporation Semi-conductive layer-containing reinforced pressure hose and method of making same
US4462649A (en) * 1980-05-05 1984-07-31 Dayco Corporation Hose construction and method of making same
US4405969A (en) * 1981-10-02 1983-09-20 The Polymer Corporation Anti-static hose assemblies
US4964692A (en) * 1982-07-21 1990-10-23 Smith & Nephew Dyonics, Inc. Fiber bundle illumination system
US4781255A (en) * 1984-12-08 1988-11-01 British Aerospace Public Limited Company Cable conduit system for vehicles
USH297H (en) * 1985-08-12 1987-07-07 The United States Of America As Represented By The Secretary Of The Air Force Robotic refueling system for tactical and strategic aircraft
US4815816A (en) * 1987-05-12 1989-03-28 Rts Laboratories, Inc. Image transportation device using incoherent fiber optics bundles and method of using same
US4870535A (en) * 1987-11-16 1989-09-26 Tokyo Sen-I Kogyo Co., Ltd. Antistatic hose
US5243128A (en) * 1990-03-07 1993-09-07 Caoutchouc Manufacture Et Plastioues S.A. Sewer cleaning apparatus
US5428706A (en) * 1990-05-17 1995-06-27 Coflexip Flexible tubular conduit with heating means and stiffening means for transporting pressurized fluids
US5102012A (en) * 1990-08-31 1992-04-07 Dayco Products, Inc. Fuel dispensing system having a flexible hose with a static dissipater and a fuel leak detector
US5170011A (en) * 1991-09-25 1992-12-08 Teleflex Incorporated Hose assembly
US5600752A (en) * 1994-03-11 1997-02-04 Industrial Design Laboratories, Inc. Flexible gas hose assembly with concentric helical tube members having reinforcement spring coils
US5573206A (en) * 1994-08-19 1996-11-12 Able Corporation Hose and drogue boom refueling system, for aircraft
US5539624A (en) * 1995-01-17 1996-07-23 Durodyne, Inc. Illuminated hose
US8066033B2 (en) * 1995-09-28 2011-11-29 Fiberspar Corporation Composite spoolable tube
US5921285A (en) * 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
US8110741B2 (en) * 1995-09-28 2012-02-07 Fiberspar Corporation Composite coiled tubing end connector
US6061490A (en) * 1997-08-01 2000-05-09 Mitsubishi Rayon Co., Ltd. Optical fiber bundle with bundling member
US20020162674A1 (en) * 1999-09-07 2002-11-07 Utilx Corporation Flow-through cable
US20030011982A1 (en) * 2000-02-25 2003-01-16 Intel Corporation, A Delaware Corporation Tilt mounted hard drive bay
US6604711B1 (en) * 2000-11-20 2003-08-12 Sargent Fletcher, Inc. Autonomous system for the aerial refueling or decontamination of unmanned airborne vehicles
US6901191B2 (en) * 2001-11-12 2005-05-31 Corning Cable Systems Llc High density fiber optic cable
US6710243B2 (en) * 2002-06-27 2004-03-23 Capativa Tech, Inc. Structure of signal line
US6786455B1 (en) * 2002-09-05 2004-09-07 Asher Bartov Method for engaging a probe and drogue for aerial refueling
US7152828B1 (en) * 2002-11-01 2006-12-26 Sargent Fletcher, Inc. Method and apparatus for the hookup of unmanned/manned (“hum”) multi purpose vehicles with each other
US20040089639A1 (en) * 2002-11-12 2004-05-13 Raymond Terry N. Apparatus and methods for connecting a plasma arc torch lead to a power supply
US20060137880A1 (en) * 2003-06-16 2006-06-29 Arild Figenschou Subsea umbilical
US7226302B2 (en) * 2003-09-22 2007-06-05 Scotech Systems Inc. Vacuum cleaner current-carrying hose connection system
US20050060838A1 (en) * 2003-09-22 2005-03-24 Scott Walter Vacuum cleaner current-carrying hose connection system
US7837151B1 (en) * 2003-11-01 2010-11-23 Sargent Fletcher, Inc. Method and apparatus for the hookup of unmanned/manned (“HUM”) multi purpose air vehicles with each other
US20070144756A1 (en) * 2003-11-12 2007-06-28 Huberag Hose for conveying media that generate electrostatic charges, especially powdery media
US20060000950A1 (en) * 2004-06-18 2006-01-05 The Boeing Company In-flight refueling system and method for extending and retracting an in-flight refueling device
US20060011782A1 (en) * 2004-07-14 2006-01-19 The Boeing Company In-flight refueling system and method for facilitating emergency separation of in-flight refueling system components
US7097139B2 (en) * 2004-07-22 2006-08-29 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US20060060709A1 (en) * 2004-08-26 2006-03-23 The Boeing Company In-flight refueling system, sensor system and method for damping oscillations in in-flight refueling system components
US7637458B2 (en) * 2005-06-08 2009-12-29 The Boeing Company Systems and methods for providing back-up hydraulic power for aircraft, including tanker aircraft
US7887010B2 (en) * 2005-06-20 2011-02-15 The Boeing Company Controllable refueling drogues and associated systems and methods
US7172444B1 (en) * 2005-07-28 2007-02-06 Jui-Shu Huang Hard drive contact pin connector device
US7891383B2 (en) * 2006-07-05 2011-02-22 Delfingen Fr-Anteuil S.A. Ringed tubular sheath and device for making such a sheath
US7516762B2 (en) * 2006-07-21 2009-04-14 Ivg Colbachini, S.P.A. Corrugated flexible pipe with a built-in electric cable
US7900866B2 (en) * 2007-10-18 2011-03-08 The Boeing Company System and methods for airborne launch and recovery of aircraft
US8231083B2 (en) * 2007-10-18 2012-07-31 The Boeing Company System and methods for airborne launch and recovery of aircraft
US20090292406A1 (en) * 2008-05-22 2009-11-26 Eads Construcciones Aeronauticas, S.A., Methods and systems for reducing the phenomenon of structural coupling in the control system of an in-flight refuelling boom
US20100009564A1 (en) * 2008-07-08 2010-01-14 Adtron Corporation Connector Clamp
US8650706B2 (en) * 2008-10-21 2014-02-18 Makita Corporation Corded hose and dust collector
US8590846B2 (en) * 2009-05-27 2013-11-26 Airbus Operations Gmbh Device for laying a cable harness in an aircraft
US8220746B1 (en) * 2009-05-29 2012-07-17 The Boeing Company Broad speed range inflatable drogue canopy
US8399767B2 (en) * 2009-08-21 2013-03-19 Titeflex Corporation Sealing devices and methods of installing energy dissipative tubing
US20120160536A1 (en) * 2010-12-23 2012-06-28 Mike Beining Fluid connector with hose cutting ring
US9150311B2 (en) * 2012-01-04 2015-10-06 Israel Aerospace Industries Ltd. Systems and methods for air vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267439B2 (en) 2012-03-29 2019-04-23 Icon Polymer Group Limited Hose for conveying fluid
US9843179B1 (en) * 2013-04-16 2017-12-12 The United States Of America As Represented By The Secretary Of The Navy Corrosion resistant termination connector for steel wire rope/minesweeping cable
US20190078304A1 (en) * 2014-12-12 2019-03-14 Delta Faucet Company Sprayer hose assembly
US10662625B2 (en) * 2014-12-12 2020-05-26 Delta Faucet Company Sprayer hose assembly

Also Published As

Publication number Publication date
US10267439B2 (en) 2019-04-23
EP2644509A3 (en) 2015-08-26
GB2500669A (en) 2013-10-02
EP2644509B1 (en) 2024-03-27
US20170241576A1 (en) 2017-08-24
EP2644509A2 (en) 2013-10-02
GB2500669B (en) 2016-03-30
GB201205551D0 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US10267439B2 (en) Hose for conveying fluid
EP2892109B1 (en) Systems and methods for electrical harness construction
US7185854B2 (en) In-flight refueling system and method for extending and retracting an in-flight refueling device
US8985219B2 (en) System and method for connection and installation of underwater lines
AU2014200597B2 (en) Autonomous aircraft
EP2759478B1 (en) Tip with nozzle load sensing and wireless communication functionality for refueling boom
US9296486B2 (en) In-flight refueling systems with a digital communication sub-system
US20120168567A1 (en) Electrical power transfer assembly
EP2531695B1 (en) Spoolable signal conduction and connection line and method
EP2835313B1 (en) Multipurpose flying boom
US6786455B1 (en) Method for engaging a probe and drogue for aerial refueling
EP3137725A2 (en) A latching connector system and associated method
US10099799B2 (en) Articulated boom nozzle with torsion cable reel
EP3221933B1 (en) Automated cable breakout assembly and method
EP2370317B1 (en) Automatically alleviating forces on a refueling boom
EP3870510B1 (en) Fuel hose assembly for in-flight fuelling of aircraft
EP2528820B1 (en) A hoist cable management system for a refueling boom
CN217787430U (en) Aerial light path interfacing apparatus
RU2784626C1 (en) Method for transmitting electrical signals from the electrical system of the launcher to the electrical system of the separated object
EP4336088A1 (en) Extendible mast with integrated transmission element
EP4098543A1 (en) Underwater charging
AU2022286693A1 (en) Underwater charging
CN108657451A (en) A kind of air communications unmanned plane telescopic protection device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ICON POLYMER GROUP LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRICE, TIMOTHY DENZIL;TAN, CALVIN;SIGNING DATES FROM 20130314 TO 20130318;REEL/FRAME:030067/0694

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION