US20140035603A1 - Printed Stretch Sensor - Google Patents

Printed Stretch Sensor Download PDF

Info

Publication number
US20140035603A1
US20140035603A1 US13/566,726 US201213566726A US2014035603A1 US 20140035603 A1 US20140035603 A1 US 20140035603A1 US 201213566726 A US201213566726 A US 201213566726A US 2014035603 A1 US2014035603 A1 US 2014035603A1
Authority
US
United States
Prior art keywords
nonconductive substrate
article according
ink
stretchable ink
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/566,726
Inventor
Elton T. Ray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US13/566,726 priority Critical patent/US20140035603A1/en
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAY, ELTON T.
Publication of US20140035603A1 publication Critical patent/US20140035603A1/en
Priority to US15/159,030 priority patent/US10161736B2/en
Priority to US15/159,013 priority patent/US10156431B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body

Definitions

  • a printed stretch sensor that can be prepared by printing methods such as ink jet printing.
  • Stretch sensors typically come in a one-dimensional form (only stretching across a single axis). By weaving or knitting stretch sensors into a fabric, multiple degrees of freedom can be achieved. Stretch-sensitive material can also be glued onto an elastic surface, but these techniques are labor-intensive and result in limited range of motion. By creating printed stretch sensors on an elastic surface, one can achieve high range of motion, and manufacture is as simple as printing a material onto a surface.
  • Conductive elastomers are used in applications requiring deformability and electrical conductivity, such as for gaskets used in EMI-shielding.
  • One notable feature of conductive elastomers is that they change conductivity as they are stretched. By measuring the electrical resistance through such a material, one can calculate the degree of stretch.
  • Conductive stretchable inks are known, as disclosed in, for example, “Inkjet-Printed Stretchable Silver Electrode on Wave Structured Elastomeric Substrate,” Seungjun Chung, Jaemyon Lee, Hyunsoo Song, Sangwoo Kim, Jaewook Jeong, and Yongtaek Hong, Applied Physics Letters, 98, 153110 (2011) and Copending application Ser. No. 13/182,579, filed Jul. 14, 2011, entitled “Stretchable Ink Composition,” with the named inventors Yiliang Wu, Qi Zhang, Ke Zhou, Yu Qi, and Nan-Xing Hu, the disclosures of each of which are totally incorporated herein by reference.
  • a stretch sensor which stretches in two dimension (i.e., along two axes) that can be prepared by printing a conductive ink in an imagewise pattern onto a deformable nonconductive substrate in such a way that both materials can stretch and return back to their original shape is desirable.
  • a patterned article comprising: (1) a deformable nonconductive substrate; (2) an imagewise pattern thereon of a conductive stretchable ink; and (3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
  • a patterned article comprising: (1) a deformable nonconductive substrate having a resistivity of at least about 1.8 ⁇ 10 5 ⁇ m and an elasticity in the direction of elongation of at least about 0.0008 MPa; (2) an imagewise pattern thereon of a conductive stretchable ink having a conductivity of from about 0.01 ⁇ S to about 100 MS and comprising a fluoroelastomer; and (3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
  • a process which comprises: (a) applying to a deformable nonconductive substrate in an imagewise pattern a conductive stretchable ink; (b) connecting the imagewise pattern with an external circuit; and (c) measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
  • FIGS. 1A and 1B illustrate a first embodiment of the articles and apparatus disclosed herein.
  • FIGS. 2A and 2B , 3 , 4 , and 5 A, 5 B, and 5 C illustrate a second embodiment of the articles and apparatus disclosed herein wherein a pressure-sensitive touch sensor is demonstrated.
  • FIGS. 6 and 7A and 7 B illustrate a third embodiment of the articles and apparatus disclosed herein wherein a pressure-sensitive weighing device is demonstrated.
  • nonconductive is meant herein a substrate having a resistivity of in one embodiment at least about 1.8 ⁇ 10 5 ⁇ m, in another embodiment at least about 100 M ⁇ m (100 mega ⁇ m; 1 ⁇ 10 6 ⁇ m), in yet another embodiment at least about 1 G ⁇ m (1 giga ⁇ m; 1 ⁇ 10 9 ⁇ m), and in still another embodiment at least about 100 G ⁇ m, with no upper limit on resistivity, although the value can be outside of these ranges.
  • the substrate is deformable.
  • deformable is meant herein a substrate having high elasticity in the direction of deformation, in one embodiment at least about 0.0008 MPa (megaPascals), in another embodiment at least about 0.0009 MPa, in yet another embodiment at least about 0.001 PMa, in still another embodiment at least about 0.008 MPa, in yet another embodiment at least about 0.009 MPa, and in still another embodiment at least about 0.01 MPa, and in one embodiment no more than about 0.1 MPa, in another embodiment no more than about 0.09 MPa, in yet another embodiment no more than about 0.08 MPa, and in still another embodiment no more than about 0.01 MPa, although the value can be outside of these ranges.
  • suitable substrates include (but are not limited to) rubber, such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-butadiene rubber, silicon rubber, nitrile rubber (which is a copolymer of butadiene and acrylonitrile), ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, ethylene-vinyl acetate, polyether block amides, polysulfide rubber, chlorosulfonated polyethylene as HYPALON, or the like.
  • rubber such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-butadiene rubber,
  • the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be stretched in one axial direction (i.e., along the x-axis, as opposed to both the x-axis and the y-axis) to in one embodiment at least 110%, in another embodiment at least 150%, and in yet another embodiment at least 200%, of the length of its original dimension in one embodiment at least about 50 times, in another embodiment at least about 100 times, and in yet another embodiment at least about 500 times, without exhibiting cracks or delamination.
  • An imagewise pattern is printed onto the deformable substrate with a conductive stretchable ink.
  • conductive is meant herein a conductivity of in one embodiment at least about 0.01 ⁇ S (microSiemen), and in another embodiment at least about 0.05 S (Siemen), and in one embodiment no more than about 100 MS (megaSiemens), although the value can be outside of these ranges.
  • the ink is one suitable for ink jet printing onto the substrate.
  • the ink composition is a low-viscosity composition.
  • low-viscosity is used in contrast to conventional high-viscosity inks such as screen printing inks, which tend to have a viscosity of at least 1,000 centipoise (cps).
  • the ink disclosed herein has a viscosity of in one embodiment no more than about 100 cps, in another embodiment no more than about 50 cps, and in yet another embodiment no more than about 20 cps, although the viscosity can be outside of these ranges.
  • the ink compositions are generally of a viscosity suitable for use in said ink jet printing processes.
  • the ink viscosity is in one embodiment at least about lcps and in one embodiment is no more than about 10 cps, in another embodiment no more than about 7 cps, and in yet another embodiment no more than about 5 cps, although the viscosity can be outside of these ranges.
  • the ink viscosity is in one embodiment at least about 2 cps, and in another embodiment at least about 3 cps, and in one embodiment is no more than about 20 cps, in another embodiment no more than about 15 cps, and in yet another embodiment no more than about 10 cps, although the viscosity can be outside of these ranges.
  • the jetting temperature can be as low as about 20 to 25° C., and can be in one embodiment as high as about 90° C., in another embodiment as high as about 60° C., and in yet another embodiment as high as about 40° C., although the jetting temperature can be outside of these ranges.
  • the ink contains a fluoroelastomer as disclosed in Copending application Ser. No. 13/182,579, the disclosure of which is totally incorporated herein by reference.
  • An elastomer is defined by the Collins English Dictionary as any material, such as natural or synthetic rubber, that is able to resume its original shape when a deforming force is removed.
  • a fluoroelastomer for the purposes of the present disclosure, is a fluoropolymer that behaves according to this definition of an elastomer.
  • the elastomeric fluoropolymer can be a perfluoropolymer or it can contain atoms other than carbon and fluorine, such as hydrogen, chlorine and other halogens, oxygen, nitrogen, sulfur, silicon, and the like, as well as mixtures thereof.
  • fluoropolymer is intended to denote any polymer comprising more than 25 percent by weight of recurring monomer units derived from at least one ethylenically unsaturated monomer comprising at least one fluorine atom (hereinafter, fluorinated monomer).
  • fluorinated monomer When the fluorinated monomer is free of hydrogen atoms and contains other halogen atoms, it is referred to as a per(halo)fluoromonomer.
  • fluorinated monomer When the fluorinated monomer contains hydrogen atoms, it is referred to as a hydrogen-containing fluorinated monomer.
  • fluorinated monomers include, but are not limited to, tetrafluoroethylene (TFE); C 3 -C 8 perfluoroolefins, such as hexafluoropropene (HFP); C 2 -C 8 hydrogenated monofluoroolefins, such as vinyl fluoride; vinylidene fluoride (VdF); 1,2-difluoroethylene and trifluoroethylene; perfluoroalkylethylenes complying with formula CH 2 ⁇ CH—R f0 , in which R f0 is a C 1 -C 6 perfluoroalkyl, chloro- and/or bromo- and/or iodo-C 2 -C 6 fluoroolefins, like chlorotrifluoroethylene (CTFE); (per)fluoroalkylvin
  • CF 3 C 2 F 5 , C 3 F 7 ;
  • CF 2 ⁇ CFOX 0 (per)fluoro-oxyalkylvinylethers, in which X 0 is a C 1 -C 12 alkyl, or a C 1 -C 12 oxyalkyl, or a C 1 -C 12 (per)fluorooxyalkyl having one or more ether groups, like perfluoro-2-propoxy-propyl; (per)fluoromethoxyalkylvinylethers complying with formula CF 2 ⁇ CFOCF 2 OR f2 in which R f2 is a C 1 -C 6 fluoro- or perfluoroalkyl, e.g.
  • CF 3 C 2 F 5 , C 3 F 7 or a C 1 -C 6 (per)fluorooxyalkyl having one or more ether groups, like —C 2 F 5 —O—CF 3 ; functional (per)fluoroalkylvinylethers complying with formula CF 2 ⁇ CFOY 0 , in which Y 0 is a C 1 -C 12 alkyl or (per)fluoroalkyl, or a C 1 -C 12 oxyalkyl, or a C 1 -C 12 (per)fluorooxyalkyl having one or more ether groups and Y 0 comprising a carboxylic or sulfonic acid group, in its acid, acid halide or salt form; fluorodioxoles, especially perfluorodioxoles; and the like. Copolymers of two or more fluorinated monomers are also possible.
  • the fluoropolymer can be a copolymer containing fluorinated monomers as well as hydrogenated monomers (a term referring to monomers free of fluorine atoms for the purposes of the present disclosure).
  • suitable hydrogenated monomers include, but are not limited to, ethylene, propylene, vinyl monomers such as vinyl acetate, acrylic monomers, such as methyl methacrylate, acrylic acid, methacrylic acid, ethylacrylate, n-butylacrylate, hydroxypropylacrylate, (hydroxy)ethylhexylacrylate, and hydroxyethyl acrylate, and the like, styrene monomers, like styrene and p-methylstyrene, vinyl ethers, such as propylvinylether, cyclohexylvinylether, vinyl-4-hydroxybutylether, unsaturated carboxylic acids, such as vinylacetic acid, and the like, as well as mixtures thereof.
  • fluoroelastomers include (but are not limited to) fluoro rubbers of the polymethylene type that use vinylidene fluoride as a comonomer and have substituent fluoro, alkyl, perfluoroalkyl, or perfluoroalkyoxy groups in the polymer chain, with or without a curesite monomer, such as copolymers of vinylidene fluoride and hexafluoropropylene; terpolymers of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene; copolymers of vinylidene fluoride and (per)fluoromethoxyalkylvinylethers; terpolymers of vinylidene fluoride, hexafluoropropylene, and polyperfluoromethylvinylether; terpolymers of vinylidene fluoride, tetrafluoroethylene, and a fluorinated vinyl ether;
  • TECNOFLON® TN latex from Solvay Solexis.
  • Other commercially available fluoroelastomers such as VITON® from DuPont, DYNEONTM from 3 M, AFLAS®, DAI-ELTM from Daikin, and the like can be used as well.
  • the fluoroelastomer has a fluorine content of at least about 5 weight %, in another embodiment at least about 10 weight %, and in yet another embodiment at least about 30 weight %, and in one embodiment no more than about 76 weight % (perfluoroelastomer), in another embodiment no more than about 70 weight %, and in yet another embodiment no more than about 68 weight %, although the fluorine content can be outside of these ranges.
  • the fluoroelastomer has a tensile strength of at least about 3 MPa, in another embodiment at least about 4 MPa, and in yet another embodiment at least about 7 MPa, and in one embodiment no more than about 25 MPa, in another embodiment no more than about 20 MPa, and in yet another embodiment no more than about 18 MPa, as measured by ASTM D412C, although the tensile strength can be outside of these ranges.
  • the fluoroelastomer has an elongation at break of at least about 150%, in another embodiment at least about 200%, and in yet another embodiment at least about 400%, and in one embodiment no more than about 1100%, in another embodiment no more than about 1000%, and in yet another embodiment no more than about 800%, as measured by ASTM D412C, although the elongation at break can be outside of these ranges.
  • the fluoroelastomer has a hardness (Shore A) value of at least about 20, in another embodiment at least about 30, and in yet another embodiment at least about 40, and in one embodiment no more than about 90, in another embodiment no more than about 85, and in yet another embodiment no more than about 80, as measured by ASTM 2240, although the hardness can be outside of these ranges.
  • the fluoroelastomer has a glass transition temperature of at least about ⁇ 70° C., in another embodiment at least about ⁇ 50° C., and in yet another embodiment at least about ⁇ 40° C., and in one embodiment no more than about 25° C., in another embodiment no more than about 0° C., and in yet another embodiment no more than about ⁇ 10° C., although the Tg can be outside of these ranges.
  • the fluoroelastomer is present in the ink in any desired or effective amount, in one embodiment at least about 0.1 percent by weight of the ink, in another embodiment at least about 1 percent by weight of the ink, and in yet another embodiment at least about 2 percent by weight of the ink, and in one embodiment no more than about 25 percent by weight of the ink, in another embodiment no more than about 20 percent by weight of the ink, and in yet another embodiment no more than about 15 percent by weight of the ink, although the amount can be outside of these ranges.
  • the inks disclosed herein also contain a surfactant.
  • a surfactant Any surfactant that forms an emulsion of the fluoroelastomer in the ink can be employed.
  • suitable surfactants include anionic surfactants, cationic surfactants, nonionic surfactants, zwitterionic surfactants, and the like, as well as mixtures thereof.
  • surfactants include alkyl polyethylene oxides, alkyl phenyl polyethylene oxides, polyethylene oxide block copolymers, acetylenic polyethylene oxides, polyethylene oxide (di)esters, polyethylene oxide amines, protonated polyethylene oxide amines, protonated polyethylene oxide amides, dimethicone copolyols, substituted amine oxides, and the like, with specific examples including primary, secondary, and tertiary amine salt compounds such as hydrochloric acid salts, acetic acid salts of laurylamine, coconut amine, stearylamine, rosin amine; quaternary ammonium salt type compounds such as lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, benzyltributylammonium chloride, benzalkonium chloride, etc.; pyridinium salty type compounds such as cetylpyridinium chloride, cetylpyridinium bromide, etc
  • nonionic surfactants include polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy)ethanol, available from Rhone-Poulenc as IGEPAL CA-210TM IGEPAL CA-520TM, IGEPAL CA-720TM, IGEPAL CO-890TM, IGEPAL CO-720TM, IGEPAL CO-290TM, IGEPAL CA-210TM, ANTAROX 890TM, and ANTAROX 897TM.
  • nonionic surfactants include a block copolymer of polyethylene oxide and polypropylene oxide, including those commercially available as SYNPERONIC PE/F, such as SYNPERONIC PE/F 108.
  • suitable anionic surfactants include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abitic acid available from Aldrich, NEOGEN RTM, NEOGEN SCTM available from Daiichi Kogyo Seiyaku, combinations thereof, and the like.
  • anionic surfactants include DOWFAXTM 2A1, an alkyldiphenyloxide disulfonate from Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates.
  • Suitable cationic surfactants which are usually positively charged, include alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C 12 , C 15 , C 17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOLTM and ALKAQUATTM, available from Alkaril Chemical Company, SANIZOLTM (benzalkonium chloride), available from Kao Chemicals, and the like, as well as mixtures thereof.
  • alkylbenzyl dimethyl ammonium chloride dialkyl benzenealkyl ammonium chloride, lauryl trimethyl am
  • the surfactant is present in any desired or effective amount, in one embodiment at least about 0.01 percent by weight of the ink, and in one embodiment no more than about 5 percent by weight of the ink, although the amount can be outside of these ranges.
  • the ink further contains a conductive component.
  • a conductive component Any desired or effective conductive component can be employed. Examples include (but are not limited to) carbon black, polypyrrole, polyacetylene, polyaniline, polyphenylene vinylene, polythiophene, polyphenylene sulfide, graphene, silver nanoparticles, copper nanoparticles, or the like, as well as mixtures thereof.
  • the ink is of a material that contains substantially no silver nanoparticles. In another specific embodiment, the ink is of a material that contains substantially no copper nanoparticles.
  • nanoparticles is meant particles having an average particle diameter of no more than about 100 nm.
  • the conductive component is present in the ink in any desired or effective amount, in one embodiment at least about 52 percent by volume of the dried or cured ink, in another embodiment at least about 56 percent by volume of the dried or cured ink, and in yet another embodiment at least about 61 percent by volume of the dried or cured ink, and in one embodiment no more than about 74 percent by volume of the dried or cured ink, in another embodiment no more than about 70 percent by volume of the dried or cured ink, and in yet another embodiment no more than about 65 percent by volume of the dried or cured ink, although the amount can be outside of these ranges.
  • the ink composition can further comprise crosslinkers.
  • the crosslinker is an organoamine, a dihydroxy aromatic compound, a peroxide, a metal oxide, or the like, as well as mixtures thereof. Crosslinking can further enhance the physical properties of the images generated from the ink composition.
  • the crosslinker can be present in any desired or effective amount, in one embodiment at least about 0.1 percent by weight of the ink, in another embodiment at least about 1 percent by weight of the ink, and in yet another embodiment at least about 5 percent by weight of the ink, and in one embodiment no more than about 20 percent by weight of the ink, in another embodiment no more than about 15 percent by weight of the ink, and in yet another embodiment no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges.
  • the conductive ink is printed onto the deformable substrate in an image pattern.
  • the ink compositions can be used in a process which entails incorporating the ink composition into an ink jet printing apparatus and causing droplets of the ink to be ejected in an imagewise pattern onto a substrate.
  • the printing apparatus employs a thermal ink jet process wherein the ink in the nozzles is selectively heated in an imagewise pattern, thereby causing droplets of the ink to be ejected in imagewise pattern.
  • the printing apparatus employs an acoustic ink jet process wherein droplets of the ink are caused to be ejected in imagewise pattern by acoustic beams.
  • the printing apparatus employs a piezoelectric ink jet process, wherein droplets of the ink are caused to be ejected in imagewise pattern by oscillations of piezoelectric vibrating elements.
  • the inks disclosed herein can be printed on a rubber substrate, such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-butadiene rubber, silicon rubber, nitrile rubber (which is a copolymer of butadiene and acrylonitrile), ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, ethylene-vinyl acetate, polyether block amides, polysulfide rubber, chlorosulfonated polyethylene as HYPALON, or the like.
  • a rubber substrate such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-
  • the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be stretched in one axial direction (i.e., along the x-axis, as opposed to both the x-axis and the y-axis) to in one embodiment at least 110%, in another embodiment at least 150%, and in yet another embodiment at least 200%, of the length of its original dimension in one embodiment at least about 50 times, in another embodiment at least about 100 times, and in yet another embodiment at least about 500 times, without exhibiting cracks or delamination.
  • the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be submerged in water for in one embodiment at least about 1 day, in another embodiment for at least about 1 week, and in yet another embodiment for at least about 1 month, without exhibiting damage to the imagewise pattern.
  • the images generated with the inks disclosed herein are highly water-resistant.
  • images generated with the inks exhibit a water droplet contact angle of at least about 80°, in another embodiment at least about 90°, and in yet another embodiment at least about 95°, although the contact angle can be outside of these ranges.
  • the water-resistant characteristic renders the ink disclosed herein suitable for outdoor applications or printing on water-related products such vehicle wrap, swimming suits, and the like.
  • the images generated with the inks disclosed herein have a good chemical resistance.
  • they can exhibit good to excellent resistance toward alcohols, acetic acid, acetamide, allyl bromide, allyl chloride, benzoyl chloride, ethers, esters, hydrocarbons, blood, salt solutions, and the like.
  • the images generated with the inks disclosed herein have a tensile strength of at least about 3 MPa, in another embodiment at least about 4 MPa, and in yet another embodiment at least about 8 MPa, and in one embodiment no more than about 25 MPa, in another embodiment no more than about 20 MPa, and in yet another embodiment no more than about 18 MPa, as measured by ASTM D412C, although the tensile strength can be outside of these ranges.
  • the images generated with the inks disclosed herein have an elongation at break of at least about 150%, in another embodiment at least about 200%, and in yet another embodiment at least about 400%, and in one embodiment no more than about 1000%, in another embodiment no more than about 800%, and in yet another embodiment no more than about 700%, as measured by ASTM D412C, although the elongation at break can be outside of these ranges.
  • the images have a larger elongation at break than that of the deformable substrate.
  • the images generated with the inks disclosed herein have a hardness (Shore A) value of at least about 20, in another embodiment at least about 30, and in yet another embodiment at least about 40, and in one embodiment no more than about 100, in another embodiment no more than about 90, and in yet another embodiment no more than about 85, as measured by ASTM 2240, although the hardness can be outside of these ranges.
  • An external circuit connects the imagewise pattern.
  • the external circuit is capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
  • a single line 1 of the conductive stretchable ink is printed onto the deformable nonconductive substrate 3 and the distal ends 5 and 7 of line 1 are connected with an external circuit 9 and ohmmeter 11 to measure the resistivity across line 1 .
  • the resistivity of line 1 is lower than it is on the “stretched” image and substrate in FIG. 1B .
  • the degree of resistivity for the specific ink material can be correlated to the degree of stretch. The correlation between degree of stretch and resistivity will vary depending on the selected materials and formulation, and can be determined experimentally for the selected article.
  • a touch sensitive array 100 is provided that can pinpoint the precise location of a touch on a surface.
  • a deformable nonconductive substrate 103 On opposite sides A and B of a deformable nonconductive substrate 103 are printed lines 101 (shown as 101 a on surface A and 101 b on surface B) of a conductive stretchable ink in alternating orientations so that the resulting configuration forms a grid. Lines 101 a do not cross each other. Lines 101 b do not cross each other. At least some of lines 101 a cross at least some of lines 101 b . In one specific embodiment, the grid lines 101 a are substantially perpendicular to lines 101 b .
  • Each line of printed conductive stretchable ink 101 is configured as a loop in a resistance measuring circuit.
  • a touch is taking place, depicted by sphere 113 deforming the deformable nonconductive substrate 103 .
  • two sets of loops one for the X-coordinate and one for the Y-coordinate, one can pinpoint the exact location of the touch as indicated by the plots shown in FIGS. 5B and 5C .
  • the loops are attached to an external circuit that measures resistance and processes the data to come up with a derived value such as the mass of an object or a value that can be compared with values from adjacent loops to determine the locality of maximum deformation.
  • a derived value such as the mass of an object or a value that can be compared with values from adjacent loops to determine the locality of maximum deformation.
  • Such a material can be stretched across a springy foam backing to create a fingertip-like device that will register touches, when deformed, and then return back to its original shape and resistance signature, when not.
  • This device can be used, for example, in industrial robotics applications, where a sensitive touch response would allow equipment to operate more effectively. For example, in applications wherein a robot lifts an article, this device can be employed to detect whether the robot is holding the article securely or not.
  • a printed weighing device 200 is provided on a deformable nonconductive substrate 203 .
  • lines here includes straight lines as well as wavy lines, curves, or the like, provided that the printed article provides measurable, continuous changes in resistance when deformed.
  • pads 205 and 207 At each end of the conductive line or lines 201 are enlarged pads 205 and 207 to facilitate electrical connections (not shown). Circuitry can be completed as shown in FIG. 1 .
  • Articles of varying mass 215 a and 215 b are placed on the deformable nonconductive substrate 203 printed with a pattern 201 of conductive material, the conductivity of which decreases with the degree of stretch, and the conductive material 201 stretches to a different degree with different amounts of mass.
  • the measured resistance through the conductive pattern will increase in a repeatable way relative to the degree of stretch so that a particular mass will correspond to a specific resistance measurement, and one can deduce the mass of an object by measuring the resistance through the conductive printed material.
  • the correlation between degree of stretch and resistivity will vary depending on the selected materials and formulation, and can be determined experimentally for the selected article.
  • a fluoroelastomer emulsion (TECNOFLON® TN latex, Solvay Solexis Inc., West Deptford, N.J., solids content 64.91 wt %) is mixed with carbon black (solid contents 19.96%, also containing sodium dodecyl benzene sulfonate surfactant in an amount of 2 wt. %) to form a homogenous dispersion in which the solids content contains 5 wt. % pigment.
  • the mixture is first diluted with distilled water until a suitable viscosity ( ⁇ 5 cps) is achieved for ink jet printing.
  • Ethylene glycol is then added into the diluted mixture at a 1:9 ratio (1 part by weight ethylene glycol per 9 parts by weight mixture) to prevent the dispersion from drying in the nozzle.
  • This jettable ink is printed on a natural latex rubber substrate (latex glove) using a DMP-2800 ink jet printer (Fuji Film Dimatix, Santa Clara, Calif.) equipped with 10 pL cartridges (DMC-11610). After printing, the ink solvents are dried at 60° C. for about 5 min.
  • the images thus generated will be able to be stretched in both directions up to 500% (which is the limit of the substrate), and that after hundreds of stretch-relaxation cycles, the images will stay firmly on the substrate without any damage such as cracks or de-lamination. It is also believed that the printed images, when tested against water exposure by brushing them under water, will exhibit no visible damage.
  • Example I The process of Example I is repeated except that a polydimethylsiloxane (PDMS) silicon rubber substrate is used.
  • PDMS substrate is made in the laboratory using Dow Corning SYLGARD 184 kit. It is believed that similar results will be obtained, and that the printed image will be able to be stretched up to 200% (limit of the PDMS substrate) for hundreds of cycles without visible damage.
  • Example I The process of Example I is repeated except that another fluoroelastomer, DYNEONTM FX 10180 fluoroelastomer (terpolymer latex of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) is used instead of the TECNOFLON® TN. It is believe that similar results will be observed.
  • DYNEONTM FX 10180 fluoroelastomer terpolymer latex of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene
  • Example I The process of Example I is repeated except that another conductive pigment, polypyrrole, is used instead of the carbon black. It is believe that similar results will be observed.
  • Example I The process of Example I is repeated except that another conductive pigment, polyacetylene, is used instead of the carbon black. It is believe that similar results will be observed.
  • Example I The process of Example I is repeated except that another conductive pigment, polyphenylene sulfide, is used instead of the carbon black. It is believe that similar results will be observed.

Abstract

Disclosed is a patterned article comprising: (1) a deformable nonconductive substrate; (2) an imagewise pattern thereon of a conductive stretchable ink; and (3) an external circuit connecting the imagewise pattern, the external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Reference is made to Copending application Ser. No. 13/182,579, filed Jul. 14, 2011, entitled “Stretchable Ink Composition,” with the named inventors Yiliang Wu, Qi Zhang, Ke Zhou, Yu Qi, and Nan-Xing Hu, the disclosure of which is totally incorporated herein by reference.
  • BACKGROUND
  • Disclosed herein is a printed stretch sensor that can be prepared by printing methods such as ink jet printing.
  • Stretch sensors typically come in a one-dimensional form (only stretching across a single axis). By weaving or knitting stretch sensors into a fabric, multiple degrees of freedom can be achieved. Stretch-sensitive material can also be glued onto an elastic surface, but these techniques are labor-intensive and result in limited range of motion. By creating printed stretch sensors on an elastic surface, one can achieve high range of motion, and manufacture is as simple as printing a material onto a surface.
  • Conductive elastomers are used in applications requiring deformability and electrical conductivity, such as for gaskets used in EMI-shielding. One notable feature of conductive elastomers is that they change conductivity as they are stretched. By measuring the electrical resistance through such a material, one can calculate the degree of stretch.
  • Conductive stretchable inks are known, as disclosed in, for example, “Inkjet-Printed Stretchable Silver Electrode on Wave Structured Elastomeric Substrate,” Seungjun Chung, Jaemyon Lee, Hyunsoo Song, Sangwoo Kim, Jaewook Jeong, and Yongtaek Hong, Applied Physics Letters, 98, 153110 (2011) and Copending application Ser. No. 13/182,579, filed Jul. 14, 2011, entitled “Stretchable Ink Composition,” with the named inventors Yiliang Wu, Qi Zhang, Ke Zhou, Yu Qi, and Nan-Xing Hu, the disclosures of each of which are totally incorporated herein by reference.
  • Much of the work related to conductive elastomers has attempted to overcome the challenge of conductivity loss during deformation. In contrast, the articles disclosed herein take advantage of this property.
  • Accordingly, while known articles and compositions are suitable for their intended purposes, a stretch sensor which stretches in two dimension (i.e., along two axes) that can be prepared by printing a conductive ink in an imagewise pattern onto a deformable nonconductive substrate in such a way that both materials can stretch and return back to their original shape is desirable.
  • SUMMARY
  • Disclosed herein is a patterned article comprising: (1) a deformable nonconductive substrate; (2) an imagewise pattern thereon of a conductive stretchable ink; and (3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof. Also disclosed herein is a patterned article comprising: (1) a deformable nonconductive substrate having a resistivity of at least about 1.8×105 Ωm and an elasticity in the direction of elongation of at least about 0.0008 MPa; (2) an imagewise pattern thereon of a conductive stretchable ink having a conductivity of from about 0.01 μS to about 100 MS and comprising a fluoroelastomer; and (3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof. Further disclosed herein is a process which comprises: (a) applying to a deformable nonconductive substrate in an imagewise pattern a conductive stretchable ink; (b) connecting the imagewise pattern with an external circuit; and (c) measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B illustrate a first embodiment of the articles and apparatus disclosed herein.
  • FIGS. 2A and 2B, 3, 4, and 5A, 5B, and 5C illustrate a second embodiment of the articles and apparatus disclosed herein wherein a pressure-sensitive touch sensor is demonstrated.
  • FIGS. 6 and 7A and 7B illustrate a third embodiment of the articles and apparatus disclosed herein wherein a pressure-sensitive weighing device is demonstrated.
  • DETAILED DESCRIPTION
  • The articles and apparatus disclosed herein comprise conductive inks printed onto nonconductive deformable substrates. By “nonconductive” is meant herein a substrate having a resistivity of in one embodiment at least about 1.8×105 Ωm, in another embodiment at least about 100 MΩm (100 megaΩm; 1×106 Ωm), in yet another embodiment at least about 1 GΩm (1 gigaΩm; 1×109 Ωm), and in still another embodiment at least about 100 GΩm, with no upper limit on resistivity, although the value can be outside of these ranges.
  • The substrate is deformable. By “deformable” is meant herein a substrate having high elasticity in the direction of deformation, in one embodiment at least about 0.0008 MPa (megaPascals), in another embodiment at least about 0.0009 MPa, in yet another embodiment at least about 0.001 PMa, in still another embodiment at least about 0.008 MPa, in yet another embodiment at least about 0.009 MPa, and in still another embodiment at least about 0.01 MPa, and in one embodiment no more than about 0.1 MPa, in another embodiment no more than about 0.09 MPa, in yet another embodiment no more than about 0.08 MPa, and in still another embodiment no more than about 0.01 MPa, although the value can be outside of these ranges.
  • Examples of suitable substrates include (but are not limited to) rubber, such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-butadiene rubber, silicon rubber, nitrile rubber (which is a copolymer of butadiene and acrylonitrile), ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, ethylene-vinyl acetate, polyether block amides, polysulfide rubber, chlorosulfonated polyethylene as HYPALON, or the like. In a specific embodiment, the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be stretched in one axial direction (i.e., along the x-axis, as opposed to both the x-axis and the y-axis) to in one embodiment at least 110%, in another embodiment at least 150%, and in yet another embodiment at least 200%, of the length of its original dimension in one embodiment at least about 50 times, in another embodiment at least about 100 times, and in yet another embodiment at least about 500 times, without exhibiting cracks or delamination.
  • An imagewise pattern is printed onto the deformable substrate with a conductive stretchable ink. By “conductive is meant herein a conductivity of in one embodiment at least about 0.01 μS (microSiemen), and in another embodiment at least about 0.05 S (Siemen), and in one embodiment no more than about 100 MS (megaSiemens), although the value can be outside of these ranges.
  • The ink is one suitable for ink jet printing onto the substrate. In one embodiment, the ink composition is a low-viscosity composition. The term “low-viscosity” is used in contrast to conventional high-viscosity inks such as screen printing inks, which tend to have a viscosity of at least 1,000 centipoise (cps). In specific embodiments, the ink disclosed herein has a viscosity of in one embodiment no more than about 100 cps, in another embodiment no more than about 50 cps, and in yet another embodiment no more than about 20 cps, although the viscosity can be outside of these ranges. When used in ink jet printing applications, the ink compositions are generally of a viscosity suitable for use in said ink jet printing processes. For example, for thermal ink jet printing applications, at room temperature (i.e., about 25° C.), the ink viscosity is in one embodiment at least about lcps and in one embodiment is no more than about 10 cps, in another embodiment no more than about 7 cps, and in yet another embodiment no more than about 5 cps, although the viscosity can be outside of these ranges. For example, for piezoelectric ink jet printing, at the jetting temperature, the ink viscosity is in one embodiment at least about 2 cps, and in another embodiment at least about 3 cps, and in one embodiment is no more than about 20 cps, in another embodiment no more than about 15 cps, and in yet another embodiment no more than about 10 cps, although the viscosity can be outside of these ranges. The jetting temperature can be as low as about 20 to 25° C., and can be in one embodiment as high as about 90° C., in another embodiment as high as about 60° C., and in yet another embodiment as high as about 40° C., although the jetting temperature can be outside of these ranges.
  • In one specific embodiment, the ink contains a fluoroelastomer as disclosed in Copending application Ser. No. 13/182,579, the disclosure of which is totally incorporated herein by reference. An elastomer is defined by the Collins English Dictionary as any material, such as natural or synthetic rubber, that is able to resume its original shape when a deforming force is removed. A fluoroelastomer, for the purposes of the present disclosure, is a fluoropolymer that behaves according to this definition of an elastomer.
  • The elastomeric fluoropolymer can be a perfluoropolymer or it can contain atoms other than carbon and fluorine, such as hydrogen, chlorine and other halogens, oxygen, nitrogen, sulfur, silicon, and the like, as well as mixtures thereof. The term “fluoropolymer” is intended to denote any polymer comprising more than 25 percent by weight of recurring monomer units derived from at least one ethylenically unsaturated monomer comprising at least one fluorine atom (hereinafter, fluorinated monomer). When the fluorinated monomer is free of hydrogen atoms and contains other halogen atoms, it is referred to as a per(halo)fluoromonomer. When the fluorinated monomer contains hydrogen atoms, it is referred to as a hydrogen-containing fluorinated monomer. Examples of common fluorinated monomers include, but are not limited to, tetrafluoroethylene (TFE); C3-C8 perfluoroolefins, such as hexafluoropropene (HFP); C2-C8 hydrogenated monofluoroolefins, such as vinyl fluoride; vinylidene fluoride (VdF); 1,2-difluoroethylene and trifluoroethylene; perfluoroalkylethylenes complying with formula CH2═CH—Rf0, in which Rf0 is a C1-C6 perfluoroalkyl, chloro- and/or bromo- and/or iodo-C2-C6 fluoroolefins, like chlorotrifluoroethylene (CTFE); (per)fluoroalkylvinylethers (PAVE) complying with formula CF2═CFORf1 in which Rf1 is a C1-C6 fluoro- or perfluoroalkyl, e.g. CF3, C2F5, C3F7; CF2═CFOX0 (per)fluoro-oxyalkylvinylethers, in which X0 is a C1-C12 alkyl, or a C1-C12 oxyalkyl, or a C1-C12 (per)fluorooxyalkyl having one or more ether groups, like perfluoro-2-propoxy-propyl; (per)fluoromethoxyalkylvinylethers complying with formula CF2═CFOCF2ORf2 in which Rf2 is a C1-C6 fluoro- or perfluoroalkyl, e.g. CF3, C2F5, C3F7 or a C1-C6 (per)fluorooxyalkyl having one or more ether groups, like —C2F5—O—CF3; functional (per)fluoroalkylvinylethers complying with formula CF2═CFOY0, in which Y0 is a C1-C12 alkyl or (per)fluoroalkyl, or a C1-C12 oxyalkyl, or a C1-C12 (per)fluorooxyalkyl having one or more ether groups and Y0 comprising a carboxylic or sulfonic acid group, in its acid, acid halide or salt form; fluorodioxoles, especially perfluorodioxoles; and the like. Copolymers of two or more fluorinated monomers are also possible.
  • The fluoropolymer can be a copolymer containing fluorinated monomers as well as hydrogenated monomers (a term referring to monomers free of fluorine atoms for the purposes of the present disclosure). Examples of suitable hydrogenated monomers include, but are not limited to, ethylene, propylene, vinyl monomers such as vinyl acetate, acrylic monomers, such as methyl methacrylate, acrylic acid, methacrylic acid, ethylacrylate, n-butylacrylate, hydroxypropylacrylate, (hydroxy)ethylhexylacrylate, and hydroxyethyl acrylate, and the like, styrene monomers, like styrene and p-methylstyrene, vinyl ethers, such as propylvinylether, cyclohexylvinylether, vinyl-4-hydroxybutylether, unsaturated carboxylic acids, such as vinylacetic acid, and the like, as well as mixtures thereof.
  • Some specific examples of suitable fluoroelastomers include (but are not limited to) fluoro rubbers of the polymethylene type that use vinylidene fluoride as a comonomer and have substituent fluoro, alkyl, perfluoroalkyl, or perfluoroalkyoxy groups in the polymer chain, with or without a curesite monomer, such as copolymers of vinylidene fluoride and hexafluoropropylene; terpolymers of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene; copolymers of vinylidene fluoride and (per)fluoromethoxyalkylvinylethers; terpolymers of vinylidene fluoride, hexafluoropropylene, and polyperfluoromethylvinylether; terpolymers of vinylidene fluoride, tetrafluoroethylene, and a fluorinated vinyl ether; terpolymer of vinylidene fluoride, tetrafluoroethylene, and propylene; tetrapolymers of vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, and polyperfluoromethylvinylether; terpolymers of tetrafluoroethylene, propylene, and vinylidene fluoride; pentapolymers of tetrafluoroethylene, hexafluoroethylene, vinylidene fluoride, ethylene, and polyperfluoromethylvinylether; perfluoro rubbers of the polymethylene type having all substituent groups on the polymer chain either fluoro, perfluoroalkyl, or perfluoroalkyoxyl groups; fluoro rubbers of the polymethylene type containing one or more of the monomeric alkyl, perfluoroalkyl, and/or perfluoroalkoxy groups with or without a curesite monomer; and the like, as well as mixtures thereof. One specific example of a suitable fluoroelastomer is commercially available as TECNOFLON® TN latex from Solvay Solexis. Other commercially available fluoroelastomers such as VITON® from DuPont, DYNEON™ from 3 M, AFLAS®, DAI-EL™ from Daikin, and the like can be used as well.
  • In one embodiment, the fluoroelastomer has a fluorine content of at least about 5 weight %, in another embodiment at least about 10 weight %, and in yet another embodiment at least about 30 weight %, and in one embodiment no more than about 76 weight % (perfluoroelastomer), in another embodiment no more than about 70 weight %, and in yet another embodiment no more than about 68 weight %, although the fluorine content can be outside of these ranges.
  • In one embodiment, the fluoroelastomer has a tensile strength of at least about 3 MPa, in another embodiment at least about 4 MPa, and in yet another embodiment at least about 7 MPa, and in one embodiment no more than about 25 MPa, in another embodiment no more than about 20 MPa, and in yet another embodiment no more than about 18 MPa, as measured by ASTM D412C, although the tensile strength can be outside of these ranges.
  • In one embodiment, the fluoroelastomer has an elongation at break of at least about 150%, in another embodiment at least about 200%, and in yet another embodiment at least about 400%, and in one embodiment no more than about 1100%, in another embodiment no more than about 1000%, and in yet another embodiment no more than about 800%, as measured by ASTM D412C, although the elongation at break can be outside of these ranges.
  • In one embodiment, the fluoroelastomer has a hardness (Shore A) value of at least about 20, in another embodiment at least about 30, and in yet another embodiment at least about 40, and in one embodiment no more than about 90, in another embodiment no more than about 85, and in yet another embodiment no more than about 80, as measured by ASTM 2240, although the hardness can be outside of these ranges.
  • In one embodiment, the fluoroelastomer has a glass transition temperature of at least about −70° C., in another embodiment at least about −50° C., and in yet another embodiment at least about −40° C., and in one embodiment no more than about 25° C., in another embodiment no more than about 0° C., and in yet another embodiment no more than about −10° C., although the Tg can be outside of these ranges.
  • The fluoroelastomer is present in the ink in any desired or effective amount, in one embodiment at least about 0.1 percent by weight of the ink, in another embodiment at least about 1 percent by weight of the ink, and in yet another embodiment at least about 2 percent by weight of the ink, and in one embodiment no more than about 25 percent by weight of the ink, in another embodiment no more than about 20 percent by weight of the ink, and in yet another embodiment no more than about 15 percent by weight of the ink, although the amount can be outside of these ranges.
  • When the inks contain a fluoroelastomer, the inks disclosed herein also contain a surfactant. Any surfactant that forms an emulsion of the fluoroelastomer in the ink can be employed. Examples of suitable surfactants include anionic surfactants, cationic surfactants, nonionic surfactants, zwitterionic surfactants, and the like, as well as mixtures thereof. Examples of suitable surfactants include alkyl polyethylene oxides, alkyl phenyl polyethylene oxides, polyethylene oxide block copolymers, acetylenic polyethylene oxides, polyethylene oxide (di)esters, polyethylene oxide amines, protonated polyethylene oxide amines, protonated polyethylene oxide amides, dimethicone copolyols, substituted amine oxides, and the like, with specific examples including primary, secondary, and tertiary amine salt compounds such as hydrochloric acid salts, acetic acid salts of laurylamine, coconut amine, stearylamine, rosin amine; quaternary ammonium salt type compounds such as lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, benzyltributylammonium chloride, benzalkonium chloride, etc.; pyridinium salty type compounds such as cetylpyridinium chloride, cetylpyridinium bromide, etc.; nonionic surfactant such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, acetylene alcohols, acetylene glycols; and other surfactants such as 2-heptadecenyl-hydroxyethylimidazoline, dihydroxyethylstearylamine, stearyldimethylbetaine, and lauryldihydroxyethylbetaine; fluorosurfactants; and the like, as well as mixtures thereof. Additional examples of nonionic surfactants include polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy)ethanol, available from Rhone-Poulenc as IGEPAL CA-210™ IGEPAL CA-520™, IGEPAL CA-720™, IGEPAL CO-890™, IGEPAL CO-720™, IGEPAL CO-290™, IGEPAL CA-210™, ANTAROX 890™, and ANTAROX 897™. Other examples of suitable nonionic surfactants include a block copolymer of polyethylene oxide and polypropylene oxide, including those commercially available as SYNPERONIC PE/F, such as SYNPERONIC PE/F 108. Other examples of suitable anionic surfactants include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abitic acid available from Aldrich, NEOGEN R™, NEOGEN SC™ available from Daiichi Kogyo Seiyaku, combinations thereof, and the like. Other examples of suitable anionic surfactants include DOWFAX™ 2A1, an alkyldiphenyloxide disulfonate from Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates. Other examples of suitable cationic surfactants, which are usually positively charged, include alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C12, C15, C17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOL™ and ALKAQUAT™, available from Alkaril Chemical Company, SANIZOL™ (benzalkonium chloride), available from Kao Chemicals, and the like, as well as mixtures thereof. Mixtures of any two or more surfactants can be used. The surfactant is present in any desired or effective amount, in one embodiment at least about 0.01 percent by weight of the ink, and in one embodiment no more than about 5 percent by weight of the ink, although the amount can be outside of these ranges.
  • The ink further contains a conductive component. Any desired or effective conductive component can be employed. Examples include (but are not limited to) carbon black, polypyrrole, polyacetylene, polyaniline, polyphenylene vinylene, polythiophene, polyphenylene sulfide, graphene, silver nanoparticles, copper nanoparticles, or the like, as well as mixtures thereof.
  • In one specific embodiment, the ink is of a material that contains substantially no silver nanoparticles. In another specific embodiment, the ink is of a material that contains substantially no copper nanoparticles. By “nanoparticles” is meant particles having an average particle diameter of no more than about 100 nm.
  • The conductive component is present in the ink in any desired or effective amount, in one embodiment at least about 52 percent by volume of the dried or cured ink, in another embodiment at least about 56 percent by volume of the dried or cured ink, and in yet another embodiment at least about 61 percent by volume of the dried or cured ink, and in one embodiment no more than about 74 percent by volume of the dried or cured ink, in another embodiment no more than about 70 percent by volume of the dried or cured ink, and in yet another embodiment no more than about 65 percent by volume of the dried or cured ink, although the amount can be outside of these ranges.
  • The ink composition can further comprise crosslinkers. In embodiments, the crosslinker is an organoamine, a dihydroxy aromatic compound, a peroxide, a metal oxide, or the like, as well as mixtures thereof. Crosslinking can further enhance the physical properties of the images generated from the ink composition. The crosslinker can be present in any desired or effective amount, in one embodiment at least about 0.1 percent by weight of the ink, in another embodiment at least about 1 percent by weight of the ink, and in yet another embodiment at least about 5 percent by weight of the ink, and in one embodiment no more than about 20 percent by weight of the ink, in another embodiment no more than about 15 percent by weight of the ink, and in yet another embodiment no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges.
  • The conductive ink is printed onto the deformable substrate in an image pattern. The ink compositions can be used in a process which entails incorporating the ink composition into an ink jet printing apparatus and causing droplets of the ink to be ejected in an imagewise pattern onto a substrate. In a specific embodiment, the printing apparatus employs a thermal ink jet process wherein the ink in the nozzles is selectively heated in an imagewise pattern, thereby causing droplets of the ink to be ejected in imagewise pattern. In another embodiment, the printing apparatus employs an acoustic ink jet process wherein droplets of the ink are caused to be ejected in imagewise pattern by acoustic beams. In yet another embodiment, the printing apparatus employs a piezoelectric ink jet process, wherein droplets of the ink are caused to be ejected in imagewise pattern by oscillations of piezoelectric vibrating elements.
  • In one embodiment, the inks disclosed herein can be printed on a rubber substrate, such as natural polyisoprene, polybutadiene rubber, chloroprene rubber, neoprene rubber, butyl rubber (copolymer of isobutylene and isoprene), styrene-butadiene rubber, silicon rubber, nitrile rubber (which is a copolymer of butadiene and acrylonitrile), ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, ethylene-vinyl acetate, polyether block amides, polysulfide rubber, chlorosulfonated polyethylene as HYPALON, or the like. In a specific embodiment, the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be stretched in one axial direction (i.e., along the x-axis, as opposed to both the x-axis and the y-axis) to in one embodiment at least 110%, in another embodiment at least 150%, and in yet another embodiment at least 200%, of the length of its original dimension in one embodiment at least about 50 times, in another embodiment at least about 100 times, and in yet another embodiment at least about 500 times, without exhibiting cracks or delamination.
  • In one embodiment, the inks disclosed herein can be printed on a silicon rubber, polyacrylic rubber, butyl rubber, or neoprene rubber substrate and the imaged substrate can be submerged in water for in one embodiment at least about 1 day, in another embodiment for at least about 1 week, and in yet another embodiment for at least about 1 month, without exhibiting damage to the imagewise pattern.
  • In a specific embodiment, the images generated with the inks disclosed herein are highly water-resistant. In one embodiment, images generated with the inks exhibit a water droplet contact angle of at least about 80°, in another embodiment at least about 90°, and in yet another embodiment at least about 95°, although the contact angle can be outside of these ranges. The water-resistant characteristic renders the ink disclosed herein suitable for outdoor applications or printing on water-related products such vehicle wrap, swimming suits, and the like.
  • In a specific embodiment, the images generated with the inks disclosed herein have a good chemical resistance. For example, they can exhibit good to excellent resistance toward alcohols, acetic acid, acetamide, allyl bromide, allyl chloride, benzoyl chloride, ethers, esters, hydrocarbons, blood, salt solutions, and the like.
  • In one embodiment, the images generated with the inks disclosed herein have a tensile strength of at least about 3 MPa, in another embodiment at least about 4 MPa, and in yet another embodiment at least about 8 MPa, and in one embodiment no more than about 25 MPa, in another embodiment no more than about 20 MPa, and in yet another embodiment no more than about 18 MPa, as measured by ASTM D412C, although the tensile strength can be outside of these ranges.
  • In one embodiment, the images generated with the inks disclosed herein have an elongation at break of at least about 150%, in another embodiment at least about 200%, and in yet another embodiment at least about 400%, and in one embodiment no more than about 1000%, in another embodiment no more than about 800%, and in yet another embodiment no more than about 700%, as measured by ASTM D412C, although the elongation at break can be outside of these ranges. Generally, the images have a larger elongation at break than that of the deformable substrate.
  • In one embodiment, the images generated with the inks disclosed herein have a hardness (Shore A) value of at least about 20, in another embodiment at least about 30, and in yet another embodiment at least about 40, and in one embodiment no more than about 100, in another embodiment no more than about 90, and in yet another embodiment no more than about 85, as measured by ASTM 2240, although the hardness can be outside of these ranges.
  • An external circuit connects the imagewise pattern. The external circuit is capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof. In its simplest embodiment, illustrated in FIGS. 1A and 1B, a single line 1 of the conductive stretchable ink is printed onto the deformable nonconductive substrate 3 and the distal ends 5 and 7 of line 1 are connected with an external circuit 9 and ohmmeter 11 to measure the resistivity across line 1. As shown on the “relaxed” image and substrate in FIG. 1A, the resistivity of line 1 is lower than it is on the “stretched” image and substrate in FIG. 1B. The degree of resistivity for the specific ink material can be correlated to the degree of stretch. The correlation between degree of stretch and resistivity will vary depending on the selected materials and formulation, and can be determined experimentally for the selected article.
  • In another embodiment, as illustrated in FIGS. 2A and 2B, 3, 4, and 5A, 5B, and 5C, a touch sensitive array 100 is provided that can pinpoint the precise location of a touch on a surface. On opposite sides A and B of a deformable nonconductive substrate 103 are printed lines 101 (shown as 101 a on surface A and 101 b on surface B) of a conductive stretchable ink in alternating orientations so that the resulting configuration forms a grid. Lines 101 a do not cross each other. Lines 101 b do not cross each other. At least some of lines 101 a cross at least some of lines 101 b. In one specific embodiment, the grid lines 101 a are substantially perpendicular to lines 101 b. Opposite sides are used so that the electrically conductive traces do not cross one another and form a short. At each end of the conductive lines 101 are enlarged pads 105 and 107 (shown as 105 a on surface A and 105 b on surface B, and 107 a on surface A and 107 b on surface B) to facilitate electrical connections. As shown in FIG. 4, permanent connections can be made by securely gluing on flexible ribbon cables 109 with conductive adhesive 110.
  • Each line of printed conductive stretchable ink 101 is configured as a loop in a resistance measuring circuit. As shown in FIG. 5A, a touch is taking place, depicted by sphere 113 deforming the deformable nonconductive substrate 103. In this state, one can sample the resistance in each loop and determine which loops are experiencing peak resistance. These loops will be the ones intersecting with the touch location. Using two sets of loops, one for the X-coordinate and one for the Y-coordinate, one can pinpoint the exact location of the touch as indicated by the plots shown in FIGS. 5B and 5C. The loops are attached to an external circuit that measures resistance and processes the data to come up with a derived value such as the mass of an object or a value that can be compared with values from adjacent loops to determine the locality of maximum deformation. Such a material can be stretched across a springy foam backing to create a fingertip-like device that will register touches, when deformed, and then return back to its original shape and resistance signature, when not. This device can be used, for example, in industrial robotics applications, where a sensitive touch response would allow equipment to operate more effectively. For example, in applications wherein a robot lifts an article, this device can be employed to detect whether the robot is holding the article securely or not.
  • In yet another embodiment, as illustrated in FIGS. 6 and 7A and 7B, a printed weighing device 200 is provided. On a deformable nonconductive substrate 203 is printed one or more lines 201 of a conductive stretchable ink. The term “lines” here includes straight lines as well as wavy lines, curves, or the like, provided that the printed article provides measurable, continuous changes in resistance when deformed. At each end of the conductive line or lines 201 are enlarged pads 205 and 207 to facilitate electrical connections (not shown). Circuitry can be completed as shown in FIG. 1. Articles of varying mass 215 a and 215 b are placed on the deformable nonconductive substrate 203 printed with a pattern 201 of conductive material, the conductivity of which decreases with the degree of stretch, and the conductive material 201 stretches to a different degree with different amounts of mass. Likewise, the measured resistance through the conductive pattern will increase in a repeatable way relative to the degree of stretch so that a particular mass will correspond to a specific resistance measurement, and one can deduce the mass of an object by measuring the resistance through the conductive printed material. The correlation between degree of stretch and resistivity will vary depending on the selected materials and formulation, and can be determined experimentally for the selected article.
  • Specific embodiments will now be described in detail. These examples are intended to be illustrative, and the claims are not limited to the materials, conditions, or process parameters set forth in these embodiments. All parts and percentages are by weight unless otherwise indicated.
  • Example I
  • A fluoroelastomer emulsion (TECNOFLON® TN latex, Solvay Solexis Inc., West Deptford, N.J., solids content 64.91 wt %) is mixed with carbon black (solid contents 19.96%, also containing sodium dodecyl benzene sulfonate surfactant in an amount of 2 wt. %) to form a homogenous dispersion in which the solids content contains 5 wt. % pigment. The mixture is first diluted with distilled water until a suitable viscosity (˜5 cps) is achieved for ink jet printing. Ethylene glycol is then added into the diluted mixture at a 1:9 ratio (1 part by weight ethylene glycol per 9 parts by weight mixture) to prevent the dispersion from drying in the nozzle. This jettable ink is printed on a natural latex rubber substrate (latex glove) using a DMP-2800 ink jet printer (Fuji Film Dimatix, Santa Clara, Calif.) equipped with 10 pL cartridges (DMC-11610). After printing, the ink solvents are dried at 60° C. for about 5 min. It is believed that the images thus generated will be able to be stretched in both directions up to 500% (which is the limit of the substrate), and that after hundreds of stretch-relaxation cycles, the images will stay firmly on the substrate without any damage such as cracks or de-lamination. It is also believed that the printed images, when tested against water exposure by brushing them under water, will exhibit no visible damage.
  • Example II
  • The process of Example I is repeated except that a polydimethylsiloxane (PDMS) silicon rubber substrate is used. The PDMS substrate is made in the laboratory using Dow Corning SYLGARD 184 kit. It is believed that similar results will be obtained, and that the printed image will be able to be stretched up to 200% (limit of the PDMS substrate) for hundreds of cycles without visible damage.
  • Example III
  • The process of Example I is repeated except that another fluoroelastomer, DYNEON™ FX 10180 fluoroelastomer (terpolymer latex of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) is used instead of the TECNOFLON® TN. It is believe that similar results will be observed.
  • Example IV
  • The process of Example I is repeated except that another conductive pigment, polypyrrole, is used instead of the carbon black. It is believe that similar results will be observed.
  • Example V
  • The process of Example I is repeated except that another conductive pigment, polyacetylene, is used instead of the carbon black. It is believe that similar results will be observed.
  • Example VI
  • The process of Example I is repeated except that another conductive pigment, polyphenylene sulfide, is used instead of the carbon black. It is believe that similar results will be observed.
  • Other embodiments and modifications of the present invention may occur to those of ordinary skill in the art subsequent to a review of the information presented herein; these embodiments and modifications, as well as equivalents thereof, are also included within the scope of this invention.
  • The recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefor, is not intended to limit a claimed process to any order except as specified in the claim itself.

Claims (20)

What is claimed is:
1. A patterned article comprising:
(1) a deformable nonconductive substrate;
(2) an imagewise pattern thereon of a conductive stretchable ink; and
(3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
2. An article according to claim 1 wherein the deformable nonconductive substrate has a resistivity of at least about 1.8×105 Ωm.
3. An article according to claim 1 wherein the deformable nonconductive substrate has an elasticity in the direction of elongation of at least about 0.0008 MPa.
4. An article according to claim 1 wherein the conductive stretchable ink has a conductivity of from about 0.01 μS to about 100 MS.
5. An article according to claim 1 wherein the conductive stretchable ink comprises a fluoroelastomer.
6. An article according to claim 5 wherein the fluoroelastomer is (a) a copolymer of vinylidene fluoride and hexafluoropropylene; (b) a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene; (c) a copolymer of vinylidene fluoride and (per)fluoromethoxyalkylvinylether (d) a terpolymer of vinylidene fluoride, hexafluoropropylene, and polyperfluoromethylvinylether; (e) a terpolymer of vinylidene fluoride, tetrafluoroethylene, and a fluorinated vinyl ether; (f) a terpolymer of vinylidene fluoride, tetrafluoroethylene, and propylene; (g) a tetrapolymer of vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, and polyperfluoromethylvinylether; (h) a terpolymer of tetrafluoroethylene, propylene, and vinylidene fluoride; (i) a pentapolymer of tetrafluoroethylene, hexafluoroethylene, vinylidene fluoride, ethylene, and polyperfluoromethylvinylether; or (j) a mixture thereof.
7. An article according to claim 5 wherein the ink further comprises a surfactant.
8. An article according to claim 1 wherein the conductive stretchable ink comprises a conductive pigment selected from carbon black, polypyrrole, polyacetylene, polyaniline, polyphenylene vinylene, polythiophene, polyphenylene sulfide, graphene, silver nanoparticles, copper nanoparticles, or mixtures thereof.
9. An article according to claim 1 wherein the conductive stretchable ink is substantially free of silver nanoparticles and copper nanoparticles.
10. An article according to claim 1 wherein the conductive stretchable ink is substantially free of silver nanoparticles.
11. An article according to claim 1 wherein the imagewise pattern comprises:
(a) a first set of at least two non-crossing lines of a conductive stretchable ink on a first surface of the deformable nonconductive substrate; and
(b) a second set of at least two non-crossing lines of a conductive stretchable ink on a second surface of the deformable nonconductive substrate;
wherein at least some of the first set of lines on the first surface cross at least some of the second set of lines on the second surface; and
wherein the external circuit connecting the imagewise pattern enables determination of the location of deformation on a surface of the deformable nonconductive substrate.
12. An article according to claim 11 wherein the conductive stretchable ink comprises a fluoroelastomer.
13. An article according to claim 11 wherein the conductive stretchable ink comprises a conductive pigment selected from carbon black, polypyrrole, polyacetylene, polyaniline, polyphenylene vinylene, polythiophene, polyphenylene sulfide, graphene, silver nanoparticles, copper nanoparticles, or mixtures thereof.
14. An article according to claim 1 wherein the imagewise pattern comprises at least one line of the conductive stretchable ink on at least one surface of the deformable nonconductive substrate, and wherein the external circuit connecting the imagewise pattern enables determination of the mass of an object situated on the deformable nonconductive substrate.
15. An article according to claim 14 wherein the conductive stretchable ink comprises a fluoroelastomer.
16. An article according to claim 14 wherein the conductive stretchable ink comprises a conductive pigment selected from carbon black, polypyrrole, polyacetylene, polyaniline, polyphenylene vinylene, polythiophene, polyphenylene sulfide, graphene, silver nanoparticles, copper nanoparticles, or mixtures thereof.
17. A patterned article comprising:
(1) a deformable nonconductive substrate having a resistivity of at least about 1.8×105 Ωm and an elasticity in the direction of elongation of at least about 0.0008 MPa;
(2) an imagewise pattern thereon of a conductive stretchable ink having a conductivity of from about 0.01 μS to about 100 MS and comprising a fluoroelastomer; and
(3) an external circuit connecting the imagewise pattern, said external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
18. A process which comprises:
(a) applying to a deformable nonconductive substrate in an imagewise pattern a conductive stretchable ink;
(b) connecting the imagewise pattern with an external circuit; and
(c) measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
19. A process according to claim 18 wherein the imagewise pattern comprises:
(a) a first set of at least two non-crossing lines of a conductive stretchable ink on a first surface of the deformable nonconductive substrate; and
(b) a second set of at least two non-crossing lines of a conductive stretchable ink on a second surface of the deformable nonconductive substrate;
wherein at least some of the first set of lines on the first surface cross at least some of the second set of lines on the second surface; and
wherein measuring the electrical resistance across regions of the deformable nonconductive substrate enables determination of the location of deformation on a surface of the deformable nonconductive substrate.
20. A process according to claim 18 wherein the imagewise pattern comprises at least one line of the conductive stretchable ink on at least one surface of the deformable nonconductive substrate, and wherein measuring the electrical resistance across regions of the deformable nonconductive substrate enables determination of the mass of an object situated on the deformable nonconductive substrate.
US13/566,726 2011-07-14 2012-08-03 Printed Stretch Sensor Abandoned US20140035603A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/566,726 US20140035603A1 (en) 2012-08-03 2012-08-03 Printed Stretch Sensor
US15/159,030 US10161736B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor
US15/159,013 US10156431B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/566,726 US20140035603A1 (en) 2012-08-03 2012-08-03 Printed Stretch Sensor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/159,030 Continuation US10161736B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor
US15/159,013 Continuation US10156431B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor

Publications (1)

Publication Number Publication Date
US20140035603A1 true US20140035603A1 (en) 2014-02-06

Family

ID=50024865

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/566,726 Abandoned US20140035603A1 (en) 2011-07-14 2012-08-03 Printed Stretch Sensor
US15/159,013 Active 2032-12-28 US10156431B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor
US15/159,030 Active 2032-12-28 US10161736B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/159,013 Active 2032-12-28 US10156431B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor
US15/159,030 Active 2032-12-28 US10161736B2 (en) 2011-07-14 2016-05-19 Printed stretch sensor

Country Status (1)

Country Link
US (3) US20140035603A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165625A1 (en) * 2013-12-12 2015-06-18 Beatbots, LLC Robot
WO2015144324A1 (en) * 2014-03-28 2015-10-01 Contitech Ag Flexible sensor assembly for sensing a pressure distribution
US20170048965A1 (en) * 2015-03-11 2017-02-16 Seoul National University R&Db Foundation Deformation sensing flexible substrate using pattern formed of conductive material
JPWO2015174505A1 (en) * 2014-05-16 2017-04-20 国立研究開発法人産業技術総合研究所 Stretchable conductive circuit and manufacturing method thereof
US9942979B2 (en) 2014-11-03 2018-04-10 Samsung Electronics Co., Ltd. Flexible printed circuit board
US20180113003A1 (en) * 2016-10-21 2018-04-26 Taiwan Alpha Electronic Co., Ltd. Bend sensor
TWI623732B (en) * 2016-12-29 2018-05-11 台灣艾華電子工業股份有限公司 Lamination type stretch sensor for making different layers generates displacement along different directions when stretched
US20180255637A1 (en) * 2017-03-01 2018-09-06 Microsoft Technology Licensing, Llc Printing electrically conductive ink on fabric
CN109021620A (en) * 2018-07-26 2018-12-18 中国科学院上海硅酸盐研究所 A kind of high performance graphite alkenyl Electro-conductive pearlescent pigment composite material and preparation method
WO2019105623A1 (en) * 2017-11-30 2019-06-06 Contitech Elastomer-Beschichtungen Gmbh Method for printing a flexible product
JP2020016444A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
WO2021145184A1 (en) * 2020-01-15 2021-07-22 ミネベアミツミ株式会社 Tire
JP2022177203A (en) * 2018-07-23 2022-11-30 ミネベアミツミ株式会社 tactile sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035603A1 (en) * 2012-08-03 2014-02-06 Xerox Corporation Printed Stretch Sensor
EP3267847A4 (en) * 2015-03-13 2018-12-05 Emfit Oy Mattress for resting or sleeping of a person
US10444912B2 (en) * 2016-12-30 2019-10-15 Industrial Technology Research Institute Sensing method of sensing device and stretchable sensor device
CN107167070A (en) * 2017-06-26 2017-09-15 厦门大学 A kind of resistance strain sensor and its manufacture method
CN109631743A (en) * 2018-12-25 2019-04-16 东南大学 A kind of flexible strain transducer and preparation method thereof based on graphene nano silver
US10823626B2 (en) 2019-04-01 2020-11-03 General Electric Company Strain sensor printing
CN110057429A (en) * 2019-04-25 2019-07-26 伟创力电子设备(深圳)有限公司 Circuit board assemblies detection method, device and electronic equipment
DE102020132212A1 (en) 2020-08-27 2022-03-03 Faurecia Autositze Gmbh motor vehicle seat

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060527A (en) * 1990-02-14 1991-10-29 Burgess Lester E Tactile sensing transducer
US5086785A (en) * 1989-08-10 1992-02-11 Abrams/Gentille Entertainment Inc. Angular displacement sensors
US5886564A (en) * 1994-11-29 1999-03-23 Advantest Corp. Temperature compensation circuit for IC chip
US20030044704A1 (en) * 2000-10-04 2003-03-06 Arun Chowdry Sleeved photoconductive member and method of making
US6701296B1 (en) * 1988-10-14 2004-03-02 James F. Kramer Strain-sensing goniometers, systems, and recognition algorithms
US20070030111A1 (en) * 2005-08-02 2007-02-08 Beck David B Humidity sensor
US20070285868A1 (en) * 2006-06-08 2007-12-13 Suunto Oy Sensor arrangement
US20100033196A1 (en) * 2008-08-08 2010-02-11 Tokai Rubber Industries, Ltd. Capacitive sensor
US7703342B2 (en) * 2005-03-30 2010-04-27 Xiroku, Inc. Pressure distribution detection device
US7785704B2 (en) * 2003-05-14 2010-08-31 Tekscan, Inc. High temperature pressure sensitive devices and methods thereof
US20100247817A1 (en) * 2009-03-26 2010-09-30 Fujifilm Corporation Inkjet recording medium and method for producing the same and recording medium support and method for producing the same
US20110023604A1 (en) * 2009-07-31 2011-02-03 Stmicroelectronics S.R.L. Microelectromechanical z-axis detection structure with low thermal drifts
US20110307214A1 (en) * 2009-11-24 2011-12-15 Tokai Rubber Industries, Ltd. Distortion sensor and deformed shape measuring method
US20120123373A1 (en) * 2010-11-12 2012-05-17 David Harry Melik Elastomeric compositions that resist force loss and disintegration
US8256123B2 (en) * 2008-04-11 2012-09-04 Rambus Inc. Displacement sensing using a flexible substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993842A (en) * 1973-04-24 1976-11-23 E. I. Du Pont De Nemours And Company Electrically conductive elastomeric ink
US8672842B2 (en) * 2010-08-24 2014-03-18 Evacusled Inc. Smart mattress
US20140035603A1 (en) * 2012-08-03 2014-02-06 Xerox Corporation Printed Stretch Sensor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701296B1 (en) * 1988-10-14 2004-03-02 James F. Kramer Strain-sensing goniometers, systems, and recognition algorithms
US5086785A (en) * 1989-08-10 1992-02-11 Abrams/Gentille Entertainment Inc. Angular displacement sensors
US5060527A (en) * 1990-02-14 1991-10-29 Burgess Lester E Tactile sensing transducer
US5886564A (en) * 1994-11-29 1999-03-23 Advantest Corp. Temperature compensation circuit for IC chip
US20030044704A1 (en) * 2000-10-04 2003-03-06 Arun Chowdry Sleeved photoconductive member and method of making
US7785704B2 (en) * 2003-05-14 2010-08-31 Tekscan, Inc. High temperature pressure sensitive devices and methods thereof
US7703342B2 (en) * 2005-03-30 2010-04-27 Xiroku, Inc. Pressure distribution detection device
US20070030111A1 (en) * 2005-08-02 2007-02-08 Beck David B Humidity sensor
US20070285868A1 (en) * 2006-06-08 2007-12-13 Suunto Oy Sensor arrangement
US8256123B2 (en) * 2008-04-11 2012-09-04 Rambus Inc. Displacement sensing using a flexible substrate
US20100033196A1 (en) * 2008-08-08 2010-02-11 Tokai Rubber Industries, Ltd. Capacitive sensor
US20100247817A1 (en) * 2009-03-26 2010-09-30 Fujifilm Corporation Inkjet recording medium and method for producing the same and recording medium support and method for producing the same
US20110023604A1 (en) * 2009-07-31 2011-02-03 Stmicroelectronics S.R.L. Microelectromechanical z-axis detection structure with low thermal drifts
US20110307214A1 (en) * 2009-11-24 2011-12-15 Tokai Rubber Industries, Ltd. Distortion sensor and deformed shape measuring method
US20120123373A1 (en) * 2010-11-12 2012-05-17 David Harry Melik Elastomeric compositions that resist force loss and disintegration

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421688B2 (en) * 2013-12-12 2016-08-23 Beatbots, LLC Robot
US20150165625A1 (en) * 2013-12-12 2015-06-18 Beatbots, LLC Robot
WO2015144324A1 (en) * 2014-03-28 2015-10-01 Contitech Ag Flexible sensor assembly for sensing a pressure distribution
JPWO2015174505A1 (en) * 2014-05-16 2017-04-20 国立研究開発法人産業技術総合研究所 Stretchable conductive circuit and manufacturing method thereof
US9942979B2 (en) 2014-11-03 2018-04-10 Samsung Electronics Co., Ltd. Flexible printed circuit board
US20170048965A1 (en) * 2015-03-11 2017-02-16 Seoul National University R&Db Foundation Deformation sensing flexible substrate using pattern formed of conductive material
US9699894B2 (en) * 2015-03-11 2017-07-04 Seoul National University R&Db Foundation Deformation sensing flexible substrate using pattern formed of conductive material
US20180113003A1 (en) * 2016-10-21 2018-04-26 Taiwan Alpha Electronic Co., Ltd. Bend sensor
US10302459B2 (en) * 2016-10-21 2019-05-28 Taiwan Alpha Electronic Co., Ltd. Bend sensor
TWI623732B (en) * 2016-12-29 2018-05-11 台灣艾華電子工業股份有限公司 Lamination type stretch sensor for making different layers generates displacement along different directions when stretched
US10274305B2 (en) 2016-12-29 2019-04-30 Taiwan Alpha Electronic Co., Ltd. Lamination type stretch sensor for making different layers generates displacement along different directions when stretched
US20180255637A1 (en) * 2017-03-01 2018-09-06 Microsoft Technology Licensing, Llc Printing electrically conductive ink on fabric
WO2019105623A1 (en) * 2017-11-30 2019-06-06 Contitech Elastomer-Beschichtungen Gmbh Method for printing a flexible product
WO2020022011A1 (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
JP2020016444A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
JP2022177203A (en) * 2018-07-23 2022-11-30 ミネベアミツミ株式会社 tactile sensor
JP7193262B2 (en) 2018-07-23 2022-12-20 ミネベアミツミ株式会社 tactile sensor
JP7332770B2 (en) 2018-07-23 2023-08-23 ミネベアミツミ株式会社 tactile sensor
US11796402B2 (en) 2018-07-23 2023-10-24 Minebea Mitsumi Inc. Tactile sensor
CN109021620A (en) * 2018-07-26 2018-12-18 中国科学院上海硅酸盐研究所 A kind of high performance graphite alkenyl Electro-conductive pearlescent pigment composite material and preparation method
WO2021145184A1 (en) * 2020-01-15 2021-07-22 ミネベアミツミ株式会社 Tire
JP2021110704A (en) * 2020-01-15 2021-08-02 ミネベアミツミ株式会社 Tyre
JP7402060B2 (en) 2020-01-15 2023-12-20 ミネベアミツミ株式会社 tire

Also Published As

Publication number Publication date
US10161736B2 (en) 2018-12-25
US20160265897A1 (en) 2016-09-15
US10156431B2 (en) 2018-12-18
US20160265896A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US10161736B2 (en) Printed stretch sensor
US10358584B2 (en) Fluoropolymer blend and articles thereof
JP5955259B2 (en) Bio-nano hybrid fuser topcoat containing nano-sized cellulose particles
JP5544800B2 (en) Surface protection film
JP5749146B2 (en) Fuser member and method of manufacturing fuser member
CA2788947C (en) Core-shell particles and fuser member made therefrom
JPH11323054A (en) Fluorinated carbon-filled fluorocarbon elastomer latex composition
KR101819780B1 (en) Method for producing charge retention medium
JP5474331B2 (en) Dielectric film, and actuator, sensor, and transducer using the same
JP6225726B2 (en) Conductive fluorine-containing polymer composition
US20180097338A1 (en) Method and apparatus for producing a polarized resin film
JP2014106536A5 (en)
JP2008239670A (en) Acrylic rubber for electrostrictive actuator and electrostrictive actuator using the same
US20190055382A1 (en) Fluororubber composition and molded article
JP5067466B2 (en) Fluorine-containing elastomer blend
JP5739355B2 (en) Method for manufacturing a fuser member
US20060263536A1 (en) Process for coating fluoroelastomer fuser member using blend of deflocculant material and polydimethylsiloxane additive
US8696105B1 (en) Thermally switchable transfix blanket made of blended polymers for indirect printing methods
CN110178091B (en) Developing roller for electrophotographic apparatus
JP7029999B2 (en) Development roll for electrophotographic equipment
JP2021096377A (en) Conductive roll for electrophotographic apparatus
US8995897B2 (en) Fuser member
JP3901380B2 (en) Charging member and charging device
JP2013222198A5 (en)
JP2013163807A (en) Acrylic rubber composition, acrylic rubber molded product, and method for producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAY, ELTON T.;REEL/FRAME:028723/0437

Effective date: 20120803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION