US20140055251A1 - Mobile terminal and controlling method thereof - Google Patents

Mobile terminal and controlling method thereof Download PDF

Info

Publication number
US20140055251A1
US20140055251A1 US14/010,339 US201314010339A US2014055251A1 US 20140055251 A1 US20140055251 A1 US 20140055251A1 US 201314010339 A US201314010339 A US 201314010339A US 2014055251 A1 US2014055251 A1 US 2014055251A1
Authority
US
United States
Prior art keywords
mobile terminal
controller
control
touchscreen
external device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/010,339
Inventor
Jiyen Son
Younghoon Song
Choonjae LEE
Minjeong LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to US14/010,339 priority Critical patent/US20140055251A1/en
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, CHOONJAE, Lee, Minjeong, Son, Jiyen, SONG, YOUNGHOON
Publication of US20140055251A1 publication Critical patent/US20140055251A1/en
Priority to US15/059,236 priority patent/US9844096B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72415User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories for remote control of appliances
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/30User interface
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/50Receiving or transmitting feedback, e.g. replies, status updates, acknowledgements, from the controlled devices
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/92Universal remote control
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/93Remote control using other portable devices, e.g. mobile phone, PDA, laptop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/66Substation equipment, e.g. for use by subscribers with means for preventing unauthorised or fraudulent calling
    • H04M1/667Preventing unauthorised calls from a telephone set
    • H04M1/67Preventing unauthorised calls from a telephone set by electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/06Details of telephonic subscriber devices including a wireless LAN interface

Definitions

  • the present invention relates to a mobile terminal, and more particularly, to a mobile terminal and controlling method thereof.
  • the present invention is suitable for a wide scope of applications, it is particularly suitable for controlling an operation of an external device remotely.
  • a mobile terminal is a device which may be configured to perform various functions. Examples of such functions include data and voice communications, capturing images and video via a camera, recording audio, playing music files and outputting music via a speaker system, and displaying images and video on a display.
  • terminals can be classified into mobile terminals and stationary terminals according to a presence or non-presence of mobility. And, the mobile terminals can be further classified into handheld terminals and vehicle mount terminals according to availability for hand-carry.
  • a mobile terminal As functions of a terminal tend to expand, many attempts to use the terminal for everyday life are increasing.
  • One of the attempts is to utilize a mobile terminal as a TV remote controller.
  • a user In order to utilize a mobile terminal as a TV remote controller, a user installs a remote controller application on the mobile terminal, thereby utilizing the mobile terminal as a remote controller of a TV, an air conditioner and the like.
  • a remote controller application is installed on a mobile terminal, it is inconvenient for a user to activate the remote controller application each time intending to use the mobile terminal as a remote controller.
  • the present invention is directed to a mobile terminal and controlling method thereof that substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • One object of the present invention is to provide a mobile terminal and controlling method thereof, by which user's convenience in using the mobile terminal is enhanced.
  • a mobile terminal according to the present invention enters a preset network, the mobile terminal can automatically function as a remote controller for controlling operations of an external terminal
  • Another object of the present invention is to provide a mobile terminal and controlling method thereof, by which an operation of an external terminal can be easily controlled while a screen of the mobile terminal is locked or another job is being performed via the mobile terminal
  • a mobile terminal includes a touchscreen; a memory configured to store access point (AP) information; a 1 st wireless communication unit configured to perform a communication with an AP (access point); and a controller configured to control a user interface for remotely controlling an external device to be displayed on the touchscreen or to be in a displayable state when the AP connected to the 1 st wireless communication unit matches the stored AP information.
  • AP access point
  • 1 st wireless communication unit configured to perform a communication with an AP (access point)
  • controller configured to control a user interface for remotely controlling an external device to be displayed on the touchscreen or to be in a displayable state when the AP connected to the 1 st wireless communication unit matches the stored AP information.
  • a method of controlling a mobile terminal includes the steps of saving access point (AP) information, requesting an access to an AP (access point), determining whether the AP matches the AP information, and if the AP matches the AP information, displaying a user interface for remotely controlling an operation of an external device or enabling the user interface to be in a displayable state.
  • AP access point
  • FIG. 1 is a block diagram of a mobile terminal according to one embodiment of the present invention.
  • FIG. 2 is a front perspective diagram of a mobile terminal according to one embodiment of the present invention.
  • FIG. 3 is a rear perspective diagram of a mobile terminal according to one embodiment of the present invention.
  • FIGS. 4A to 4D are diagrams for one example to describe a remote controller program according to the present invention.
  • FIG. 5 is a diagram for one example of a screen provided to specify a manufacturer of an external device
  • FIG. 6 is a flowchart for controlling a mobile terminal according to the present invention.
  • FIG. 7 is a diagram for one example to describe an AP registering process
  • FIG. 8 is a diagram for one example to describe a process for displaying a control board on a status bar.
  • FIGS. 9A to 9C are diagrams for one example to describe a process for displaying a locked screen including a control board.
  • the suffixes ‘module’, ‘unit’ and ‘part’ are used for elements in order to facilitate the disclosure only. Therefore, significant meanings or roles are not given to the suffixes themselves and it is understood that the ‘module’, ‘unit’ and ‘part’ can be used together or interchangeably.
  • the present invention can be applicable to a various types of mobile terminals.
  • mobile terminals include mobile phones, user equipments, smart phones, digital broadcast receivers, personal digital assistants, laptop computers, portable multimedia players (PMP), navigators and the like.
  • PMP portable multimedia players
  • FIG. 1 is a block diagram of a mobile terminal 100 in accordance with an embodiment of the present invention.
  • FIG. 1 shows the mobile terminal 100 according to one embodiment of the present invention includes a wireless communication unit 110 , an A/V (audio/video) input unit 120 , a user input unit 130 , a sensing unit 140 , an output unit 150 , a memory 160 , an interface unit 170 , a controller 180 , a power supply unit 190 and the like.
  • FIG. 1 shows the mobile terminal 100 having various components, but it is understood that implementing all of the illustrated components is not a requirement. Greater or fewer components may alternatively be implemented.
  • the wireless communication unit 110 typically includes one or more components which permits wireless communication between the mobile terminal 100 and a wireless communication system or network within which the mobile terminal 100 is located.
  • the wireless communication unit 110 can include a broadcast receiving module 111 , a mobile communication module 112 , a wireless internet module 113 , a short-range communication module 114 , a position-location module 115 and the like.
  • the broadcast receiving module 111 receives a broadcast signal and/or broadcast associated information from an external broadcast managing server via a broadcast channel.
  • the broadcast channel may include a satellite channel and a terrestrial channel.
  • At least two broadcast receiving modules 111 can be provided to the mobile terminal 100 in pursuit of simultaneous receptions of at least two broadcast channels or broadcast channel switching facilitation.
  • the broadcast managing server generally refers to a server which generates and transmits a broadcast signal and/or broadcast associated information or a server which is provided with a previously generated broadcast signal and/or broadcast associated information and then transmits the provided signal or information to a terminal
  • the broadcast signal may be implemented as a TV broadcast signal, a radio broadcast signal, and a data broadcast signal, among others. If desired, the broadcast signal may further include a broadcast signal combined with a TV or radio broadcast signal.
  • the broadcast associated information includes information associated with a broadcast channel, a broadcast program, a broadcast service provider, etc. And, the broadcast associated information can be provided via a mobile communication network. In this case, the broadcast associated information can be received by the mobile communication module 112 .
  • broadcast associated information can be implemented in various forms.
  • broadcast associated information may include an electronic program guide (EPG) of digital multimedia broadcasting (DMB) and electronic service guide (ESG) of digital video broadcast-handheld (DVB-H).
  • EPG electronic program guide
  • ESG electronic service guide
  • DMB digital multimedia broadcasting
  • DVB-H digital video broadcast-handheld
  • the broadcast receiving module 111 may be configured to receive broadcast signals transmitted from various types of broadcast systems.
  • broadcasting systems include digital multimedia broadcasting-terrestrial (DMB-T), digital multimedia broadcasting-satellite (DMB-S), digital video broadcast-handheld (DVB-H), Convergence of Broadcasting and Mobile Service (DVB-CBMS), Open Mobile Alliance-BroadCAST (OMA-BCAST), China Multimedia Mobile Broadcasting (CMMB), Mobile Broadcasting Business Management System (MBBMS), the data broadcasting system known as media forward link only (MediaFLO®) and integrated services digital broadcast-terrestrial (ISDB-T).
  • the broadcast receiving module 111 can be configured suitable for other broadcasting systems as well as the above-explained digital broadcasting systems.
  • the broadcast signal and/or broadcast associated information received by the broadcast receiving module 111 may be stored in a suitable device, such as a memory 160 .
  • the mobile communication module 112 transmits/receives wireless signals to/from one or more network entities (e.g., base station, external terminal, server, etc.) via a mobile network such as GSM (Global System for Mobile communications), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA) and so on.
  • a mobile network such as GSM (Global System for Mobile communications), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA) and so on.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband CDMA
  • the wireless internet module 113 supports Internet access for the mobile terminal 100 .
  • This module may be internally or externally coupled to the mobile terminal 100 .
  • the wireless Internet technology can include WLAN (Wireless LAN) (Wi-Fi), Wibro (Wireless broadband), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), GSM, CDMA, WCDMA, LTE (Long Term Evolution) etc.
  • Wireless internet access by Wibro, HSPDA, GSM, CDMA, WCDMA, LTE or the like is achieved via a mobile communication network.
  • the wireless internet module 113 configured to perform the wireless internet access via the mobile communication network can be understood as a sort of the mobile communication module 112 .
  • the short-range communication module 114 facilitates relatively short-range communications. Suitable technologies for implementing this module include radio frequency identification (RFID), infrared data association (IrDA), ultra-wideband (UWB), as well at the networking technologies commonly referred to as Bluetooth and ZigBee, to name a few.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • the position-location module 115 identifies or otherwise obtains the location of the mobile terminal 100 . If desired, this module may be implemented with a global positioning system (GPS) module. According to the current technology, the GPS module 115 is able to precisely calculate current 3-dimensional position information based on at least one of longitude, latitude and altitude and direction (or orientation) by calculating distance information and precise time information from at least three satellites and then applying triangulation to the calculated information. Currently, location and time informations are calculated using three satellites, and errors of the calculated location position and time informations are then amended using another satellite. Besides, the GPS module 115 is able to calculate speed information by continuously calculating a real-time current location.
  • GPS global positioning system
  • the audio/video (AN) input unit 120 is configured to provide audio or video signal input to the mobile terminal 100 .
  • the AN input unit 120 includes a camera 121 and a microphone 122 .
  • the camera 121 receives and processes image frames of still pictures or video, which are obtained by an image sensor in a video call mode or a photographing mode. And, the processed image frames can be displayed on the display 151 .
  • the image frames processed by the camera 121 can be stored in the memory 160 or can be externally transmitted via the wireless communication unit 110 .
  • at least two cameras 121 can be provided to the mobile terminal 100 according to environment of usage.
  • the microphone 122 receives an external audio signal while the portable device is in a particular mode, such as phone call mode, recording mode and voice recognition. This audio signal is processed and converted into electric audio data. The processed audio data is transformed into a format transmittable to a mobile communication base station via the mobile communication module 112 in case of a call mode.
  • the microphone 122 typically includes assorted noise removing algorithms to remove noise generated in the course of receiving the external audio signal.
  • the user input unit 130 generates input data responsive to user manipulation of an associated input device or devices.
  • Examples of such devices include a button 136 provided to front/rear/lateral side of the mobile terminal 100 and a touch sensor (constant pressure/electrostatic) 137 and may further include a key pad, a dome switch, a jog wheel, a jog switch and the like [not shown in the drawing].
  • the sensing unit 140 provides sensing signals for controlling operations of the mobile terminal 100 using status measurements of various aspects of the mobile terminal For instance, the sensing unit 140 may detect an open/close status of the mobile terminal 100 , relative positioning of components (e.g., a display and keypad) of the mobile terminal 100 , a change of position of the mobile terminal 100 or a component of the mobile terminal 100 , a presence or absence of user contact with the mobile terminal 100 , orientation or acceleration/deceleration of the mobile terminal 100 .
  • such sensing unit 140 include, gyro sensor, accelerate sensor, geomagnetic sensor.
  • the sensing unit 140 may sense whether a sliding portion of the mobile terminal is open or closed.
  • Other examples include the sensing unit 140 sensing the presence or absence of power provided by the power supply 190 , the presence or absence of a coupling or other connection between the interface unit 170 and an external device.
  • the sensing unit 140 can include a proximity sensor 141 .
  • the output unit 150 generates outputs relevant to the senses of sight, hearing, touch and the like. And, the output unit 150 includes the display 151 , an audio output module 152 , an alarm unit 153 , and a haptic module 154 and the like.
  • the display 151 is typically implemented to visually display (output) information associated with the mobile terminal 100 .
  • the display will generally provide a user interface (UI) or graphical user interface (GUI) which includes information associated with placing, conducting, and terminating a phone call.
  • UI user interface
  • GUI graphical user interface
  • the display 151 may additionally or alternatively display images which are associated with these modes, the UI or the GUI.
  • the display module 151 may be implemented using known display technologies including, for example, a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT-LCD), an organic light-emitting diode display (OLED), a flexible display and a three-dimensional display.
  • LCD liquid crystal display
  • TFT-LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode display
  • the mobile terminal 100 may include one or more of such displays.
  • Some of the above displays can be implemented in a transparent or optical transmittive type, which can be named a transparent display.
  • a transparent display there is TOLED (transparent OLED) or the like.
  • a rear configuration of the display 151 can be implemented in the optical transmittive type as well. In this configuration, a user is able to see an object in rear of a terminal body via the area occupied by the display 151 of the terminal body.
  • At least two displays 151 can be provided to the mobile terminal 100 in accordance with the implemented configuration of the mobile terminal 100 .
  • a plurality of displays can be arranged on a single face of the mobile terminal 100 in a manner of being spaced apart from each other or being built in one body.
  • a plurality of displays can be arranged on different faces of the mobile terminal 100 .
  • the display 151 and the touch sensor 137 configures a mutual layer structure (hereinafter called ‘touch screen’), it is able to use the display 151 as an input device as well as an output device.
  • the touch sensor can be configured as a touch film, a touch sheet, a touchpad or the like.
  • the touch sensor 137 can be configured to convert a pressure applied to a specific portion of the display 151 or a variation of a capacitance generated from a specific portion of the display 151 to an electric input signal. Moreover, it is able to configure the touch sensor 137 to detect a pressure of a touch as well as a touched position or size.
  • a touch input is made to the touch sensor 137 , signal(s) corresponding to the touch is transferred to a touch controller.
  • the touch controller processes the signal(s) and then transfers the processed signal(s) to the controller 180 . Therefore, the controller 180 is able to know whether a prescribed portion of the display 151 is touched.
  • a proximity sensor ( 141 ) can be provided to an internal area of the mobile terminal 100 enclosed by the touchscreen or around the touchscreen.
  • the proximity sensor is the sensor that detects a presence or non-presence of an object approaching a prescribed detecting surface or an object existing around the proximity sensor using an electromagnetic field strength or infrared ray without mechanical contact.
  • the proximity sensor has durability longer than that of a contact type sensor and also has utility wider than that of the contact type sensor.
  • the proximity sensor can include one of a transmittive photoelectric sensor, a direct reflective photoelectric sensor, a mirror reflective photoelectric sensor, a radio frequency oscillation proximity sensor, an electrostatic capacity proximity sensor, a magnetic proximity sensor, an infrared proximity sensor and the like.
  • the touchscreen includes the electrostatic capacity proximity sensor, it is configured to detect the proximity of a pointer using a variation of electric field according to the proximity of the pointer.
  • the touchscreen can be classified as the proximity sensor.
  • a proximity-touched position over the touchscreen with the pointer may mean a position at which the pointer vertically opposes the touchscreen when the touchscreen is proximity-touched with the pointer.
  • the proximity sensor detects a proximity touch and a proximity touch pattern (e.g., a proximity touch distance, a proximity touch duration, a proximity touch position, a proximity touch shift state, etc.). And, information corresponding to the detected proximity touch action and the detected proximity touch pattern can be outputted to the touchscreen.
  • a proximity touch and a proximity touch pattern e.g., a proximity touch distance, a proximity touch duration, a proximity touch position, a proximity touch shift state, etc.
  • the audio output module 152 functions in various modes including a call-receiving mode, a call-placing mode, a recording mode, a voice recognition mode, a broadcast reception mode and the like to output audio data which is received from the wireless communication unit 110 or is stored in the memory 160 .
  • the audio output module 152 outputs audio relating to a particular function (e.g., call received, message received, etc.).
  • the audio output module 152 is often implemented using one or more speakers, buzzers, other audio producing devices, and combinations thereof
  • the alarm unit 153 is output a signal for announcing the occurrence of a particular event associated with the mobile terminal 100 .
  • Typical events include a call received event, a message received event and a touch input received event.
  • the alarm unit 153 is able to output a signal for announcing the event occurrence by way of vibration as well as video or audio signal.
  • the video or audio signal can be outputted via the display 151 or the audio output unit 152 .
  • the display 151 or the audio output module 152 can be regarded as a part of the alarm unit 153 .
  • the haptic module 154 generates various tactile effects that can be sensed by a user. Vibration is a representative one of the tactile effects generated by the haptic module 154 . Strength and pattern of the vibration generated by the haptic module 154 are controllable. For instance, different vibrations can be outputted in a manner of being synthesized together or can be outputted in sequence.
  • the haptic module 154 is able to generate various tactile effects as well as the vibration. For instance, the haptic module 154 generates the effect attributed to the arrangement of pins vertically moving against a contact skin surface, the effect attributed to the injection/suction power of air though an injection/suction hole, the effect attributed to the skim over a skin surface, the effect attributed to the contact with electrode, the effect attributed to the electrostatic force, the effect attributed to the representation of hold/cold sense using an endothermic or exothermic device and the like.
  • the haptic module 154 can be implemented to enable a user to sense the tactile effect through a muscle sense of finger, arm or the like as well as to transfer the tactile effect through a direct contact.
  • at least two haptic modules 154 can be provided to the mobile terminal 100 in accordance with the corresponding configuration type of the mobile terminal 100 .
  • the memory unit 160 is generally used to store various types of data to support the processing, control, and storage requirements of the mobile terminal 100 .
  • Examples of such data include program instructions for applications operating on the mobile terminal 100 , contact data, phonebook data, messages, audio, still pictures (or photo), moving pictures, etc.
  • a recent use history or a cumulative use frequency of each data can be stored in the memory unit 160 .
  • data for various patterns of vibration and/or sound outputted in case of a touch input to the touchscreen can be stored in the memory unit 160 .
  • the memory 160 may be implemented using any type or combination of suitable volatile and non-volatile memory or storage devices including hard disk, random access memory (RAM), static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk, multimedia card micro type memory, card-type memory (e.g., SD memory, XD memory, etc.), or other similar memory or data storage device.
  • RAM random access memory
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk
  • multimedia card micro type memory e.g., SD memory, XD memory, etc.
  • multimedia card micro type memory e.g.
  • the interface unit 170 is often implemented to couple the mobile terminal 100 with external devices.
  • the interface unit 170 receives data from the external devices or is supplied with the power and then transfers the data or power to the respective elements of the mobile terminal 100 or enables data within the mobile terminal 100 to be transferred to the external devices.
  • the interface unit 170 may be configured using a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for coupling to a device having an identity module, audio input/output ports, video input/output ports, an earphone port and/or the like.
  • the identity module is the chip for storing various kinds of information for authenticating a use authority of the mobile terminal 100 and can include User Identify Module (UIM), Subscriber Identify Module (SIM), Universal Subscriber Identity Module (USIM) and/or the like.
  • a device having the identity module (hereinafter called ‘identity device’) can be manufactured as a smart card. Therefore, the identity device is connectible to the mobile terminal 100 via the corresponding port.
  • the interface unit 170 When the mobile terminal 110 is connected to an external cradle, the interface unit 170 becomes a passage for supplying the mobile terminal 100 with a power from the cradle or a passage for delivering various command signals inputted from the cradle by a user to the mobile terminal 100 .
  • Each of the various command signals inputted from the cradle or the power can operate as a signal enabling the mobile terminal 100 to recognize that it is correctly loaded in the cradle.
  • the controller 180 typically controls the overall operations of the mobile terminal 100 .
  • the controller 180 performs the control and processing associated with voice calls, data communications, video calls, etc.
  • the controller 180 may include a multimedia module 181 that provides multimedia playback.
  • the multimedia module 181 may be configured as part of the controller 180 , or implemented as a separate component.
  • controller 180 is able to perform a pattern (or image) recognizing process for recognizing a writing input and a picture drawing input carried out on the touchscreen as characters or images, respectively.
  • the power supply unit 190 provides power required by the various components for the mobile terminal 100 .
  • the power may be internal power, external power, or combinations thereof.
  • a battery may include a built-in rechargeable battery and may be detachably attached to the terminal body for a charging and the like.
  • a connecting port may be configured as one example of the interface 170 via which an external charger for supplying a power of a battery charging is electrically connected.
  • Various embodiments described herein may be implemented in a computer-readable medium using, for example, computer software, hardware, or some combination thereof.
  • the embodiments described herein may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a selective combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a selective combination thereof.
  • controller 180 Such embodiments may also be implemented by the controller 180 .
  • the embodiments described herein may be implemented with separate software modules, such as procedures and functions, each of which perform one or more of the functions and operations described herein.
  • the software codes can be implemented with a software application written in any suitable programming language and may be stored in memory such as the memory 160 , and executed by a controller or processor, such as the controller 180 .
  • FIG. 2 is a front perspective diagram of a mobile terminal according to one embodiment of the present invention.
  • the mobile terminal 100 shown in the drawing has a bar type terminal body. Yet, the mobile terminal 100 may be implemented in a variety of different configurations.
  • the mobile terminal 100 includes a case ( 101 , 102 , 103 ) configuring an exterior thereof
  • the case can be divided into a front case 101 and a rear case 102 .
  • Various electric/electronic parts are loaded in a space provided between the front and rear cases 101 and 102 .
  • the electronic part mounted on the surface of the rear case 102 may include such a detachable part as a battery, a USIM card, a memory card and the like.
  • the rear case 102 may further include a backside cover 103 configured to cover the surface of the rear case 102 .
  • the backside cover 103 has a detachable configuration for user's convenience. If the backside cover 103 is detached from the rear case 102 , the surface of the rear case 102 is exposed.
  • the backside cover 103 if the backside cover 103 is attached to the rear case 102 , a lateral side of the rear case 102 may be exposed in part. If a size of the backside cover 103 is decreased, a rear side of the rear case 102 may be exposed in part. If the backside cover 103 covers the whole rear side of the rear case 102 , it may include an opening 103 ′ configured to expose a camera 121 ′ or an audio output unit 152 ′ externally.
  • the cases 101 , 102 and 103 are formed by injection molding of synthetic resin or can be formed of metal substance such as stainless steel (STS), titanium (Ti) or the like for example.
  • STS stainless steel
  • Ti titanium
  • a display 151 , an audio output unit 152 , a camera 121 , user input units 130 / 131 and 132 , a microphone 122 , an interface 180 and the like can be provided to the case 101 or 102 .
  • the display 151 occupies most of a main face of the front case 101 .
  • the audio output unit 152 and the camera 121 are provided to an area adjacent to one of both end portions of the display 151 , while the user input unit 131 and the microphone 122 are provided to another area adjacent to the other end portion of the display 151 .
  • the user input unit 132 and the interface 170 can be provided to lateral sides of the front and rear cases 101 and 102 .
  • the input unit 130 is manipulated to receive a command for controlling an operation of the terminal 100 . And, the input unit 130 is able to include a plurality of manipulating units 131 and 132 .
  • the manipulating units 131 and 132 can be named a manipulating portion and may adopt any mechanism of a tactile manner that enables a user to perform a manipulation action by experiencing a tactile feeling.
  • Content inputted by the first or second manipulating unit 131 or 132 can be diversely set. For instance, such a command as start, end, scroll and the like is inputted to the first manipulating unit 131 . And, a command for a volume adjustment of sound outputted from the audio output unit 152 and the like can be inputted to the second manipulating unit 132 , a command for a switching to a touch recognizing mode of the display 151 and the like can be inputted to the second manipulating unit 133 .
  • FIG. 3 is a perspective diagram of a backside of the terminal shown in FIG. 2 .
  • a camera 121 ′ can be additionally provided to a backside of the terminal body, and more particularly, to the rear case 102 .
  • the camera 121 has a photographing direction that is substantially opposite to that of the former camera 121 shown in FIG. 2 and may have pixels differing from those of the firmer camera 121 .
  • the former camera 121 has low pixels enough to capture and transmit a picture of user's face for a video call, while the latter camera 121 ′ has high pixels for capturing a general subject for photography without transmitting the captured subject.
  • each of the cameras 121 and 121 ′ can be installed at the terminal body to be rotated or popped up.
  • a flash 123 and a mirror 124 are additionally provided adjacent to the camera 121 ′.
  • the flash 123 projects light toward a subject in case of photographing the subject using the camera 121 ′.
  • the mirror 124 enables the user to view user's face reflected by the mirror 124 .
  • An additional audio output unit 152 ′ can be provided to the backside of the terminal body.
  • the additional audio output unit 152 ′ is able to implement a stereo function together with the former audio output unit 152 shown in FIG. 2A and may be used for implementation of a speakerphone mode in talking over the terminal
  • a broadcast signal receiving antenna 116 can be additionally provided to the lateral side of the terminal body as well as an antenna for communication or the like.
  • the antenna 116 constructing a portion of the broadcast receiving module 111 shown in FIG. 1 can be retractably provided to the terminal body.
  • a mobile terminal mentioned in the following description includes at least one of the components shown in FIG. 1 .
  • a mobile terminal 100 according to the present invention includes the wireless communication unit 110 , the display unit 151 , the memory 160 and the controller 180 among the components shown in FIG. 1 .
  • the mobile terminal 100 according to the present invention may include the wireless internet module 113 and the short range communication module 114 configured to perform a short range communication in the wireless communication unit 110 shown in FIG. 1 .
  • the wireless internet module 113 may be configured to perform an access to an access point (AP) and the short range communication module 114 may be configured to deliver a control signal for controlling an operation of an external device.
  • the wireless internet module 113 may include a WLAN communication module configured to perform Wi-Fi communication and the short range communication module 114 may include an infrared communication module configured to perform an infrared communication (IrDA), by which the present invention may be non-limited.
  • IrDA infrared communication
  • the display unit 151 includes a touchscreen, it may facilitate implementation of the present invention. Hence, in the following description, assume that the display unit 151 includes the touchscreen.
  • a remote controller program for remotely controlling an external terminal is described as follows.
  • a remote controller program is configured to remotely control operations of an external device. And, the controller 180 is able to generate a control signal for remotely controlling the external device via the remote controller program.
  • the mobile terminal 100 can be used as a traditional remote controller.
  • the controller 180 can control a control board for controlling operations of the external device externally to be displayed. This is described in detail with reference to FIG. 4 as follows.
  • FIGS. 4A to 4D are diagrams for one example to describe a remote controller program according to the present invention.
  • the controller 180 can control a control board 400 , which is configured to control operations of an external device, to be displayed.
  • the control board 400 may mean a user interface (hereinafter abbreviated UI) in which buttons for remotely controlling the operations of the external device are put together.
  • UI user interface
  • the controller 180 Based on a user input to the control board 400 , the controller 180 generates a control signal for remotely controlling an operation of the external device. The controller 180 then transmits the generated control signal to the external device, thereby controlling the external device to operate based on the corresponding control signal.
  • the control board 400 may include tab button regions 412 , 414 , 416 and 418 for selecting external devices to control remotely and a control button region 420 for controlling operations of the external devices. If a user applies a touch input to one of the tab buttons 412 , 414 , 416 and 418 , the user can specify the external device to remotely control. Once the external device to be remotely controlled is specified, the controller 180 can control the specified external device to be identified through an indicator. In FIGS. 4A to 4D , a star-shape indicator 430 is displayed on an activation tab for example, thereby enabling the specified external device to become identifiable. For instance, in FIGS.
  • the tab buttons 412 , 414 , 416 and 418 of a TV, a settop box, an audio system and an air conditioner are in active states, respectively.
  • the control boards 400 shown in FIGS. 4A to 4D operations of the TV, settop box, audio system and air conditioner can be controlled individually and remotely.
  • control board 400 shown in FIGS. 4A to 4D shall be sequentially described as follows.
  • a power button, a volume adjust button, a channel adjust button, a mute button and an external input button are displayed on the TV control board 400 for controlling the TV for example.
  • the power button shown in FIG. 4A may be understood as provided to remotely control power ON/OFF of the TV
  • the volume adjust button may be understood as provided to remotely control a volume of the TV
  • the channel adjust button may be understood as provided to remotely control a channel of the TV.
  • the mute button may be understood as provided to set the TV to enter a mute state
  • the external input button may be understood as provided to adjust whether to activate a TV external input terminal channel.
  • a power button, a volume adjust button, a channel adjust button, a mute button, an external input button and a numeral button are displayed on the settop box control board 400 for controlling the settop box for example.
  • the power button shown in FIG. 4B may be understood as provided to remotely control power ON/OFF of the settop box
  • the volume adjust button may be understood as provided to remotely control a volume of the settop box
  • the channel adjust button may be understood as provided to remotely control a channel of the settop box.
  • the mute button may be understood as provided to set the settop box to enter a mute state
  • the external input button may be understood as provided to adjust whether to activate a settop box external input terminal channel.
  • the numeral button shown in FIG. 4B may be understood as provided to page a numeral button. If the numeral button is paged, a user can adjust a channel of the settop box by manipulating the numeral button.
  • a power button, a volume adjust button, a mute button, a mode adjust button, a play/pause button, a skip button and a rewinder button are displayed on the audio system control board 400 for controlling the audio system for example.
  • the power button shown in FIG. 4C may be understood as provided to remotely control power ON/OFF of the audio system and the volume adjust button may be understood as provided to remotely control a volume of the audio system.
  • the mute button may be understood as provided to set the audio system to enter a mute state and the mode adjust button may be understood as provided to adjust a play mode of the audio system.
  • the play mode of the audio system may be set to at least one of a tape play mode, a CD play mode, a DVD play mode, a radio mode, an external device connect mode, and a Bluetooth play mode.
  • the play/pause button, the skip button and the rewinder button may be understood as provided to adjust a play/pause, a skip and a rewinder of a multimedia content outputted via the audio system, respectively.
  • a power button, a temperature adjust button, a mode adjust button and an airflow adjust button are displayed on the air conditioner control board 400 for controlling the air conditioner for example.
  • the power button shown in FIG. 4D may be understood as provided to remotely control power ON/OFF of the air conditioner and the temperature adjust button may be understood as provided to remotely adjust a desired temperature in case of activating the air conditioner.
  • the airflow adjust button may be understood as provided to adjust an air conditioner airflow level and the mode adjust button may be understood as provided to adjust an operating mode of the air conditioner.
  • the operating mode of the air conditioner may be set to one of a normal mode and a power-saving mode.
  • buttons different from those shown in FIGS. 4A to 4D can configure the control boards 400 .
  • the mobile terminal 100 according to the present invention may be utilized as a remote controller configured to remotely adjust operations of at least one of an illumination device, a washer, a microwave oven and the like.
  • a keypad for inputting text rings can be displayed on the control board 400 .
  • control board 400 it may be unnecessary for the control board 400 to include the tab button region and the control button region, as shown in FIGS. 4A to 4D .
  • the tab button region can be omitted from being displayed.
  • the number and/or types of control buttons displayable on the control board 400 may be changeable depending on a state of an external device. For instance, if the external device in OFF state, the controller 180 controls the power button to be displayed on the control board 400 . In doing so, if the external device enters ON state, the controller 180 then controls additional control button(s) (e.g., a channel adjust button, a volume adjust button, etc.) to be displayed.
  • additional control button(s) e.g., a channel adjust button, a volume adjust button, etc.
  • a remote controller program explained in the description of the present invention may support widgets.
  • the control board 400 mentioned in the foregoing description may be displayed as a full screen on the touchscreen 151 .
  • the control board 400 may be displayed as a widget in a manner of overlaying a home screen (e.g., a basic screen appearing on pressing a home button of a mobile terminal) or the like.
  • the controller 180 After the external device to be remotely controller has been specified, if a user input is applied via the control board 400 , the controller 180 generates a control signal for controlling an operation of the external device and is then able to remotely control the operation of the external device by transmitting the generated control signal to the external device.
  • the controller 180 can transmit the control signal to the external device via the wireless internet module 113 or the short range communication module 114 .
  • the control signal is transmitted via the wireless internet module 113
  • a network address of the external device is set as a destination to provide the control signal to the external device.
  • the control signal may be transmitted using TCP/IP (transmission control protocol/internet protocol) communication.
  • the mobile terminal 100 may receive feedback information on the control signal from the external device.
  • the feedback information may mean operating state information of the external device and an operating state changed by the control signal may be handled as the feedback information.
  • the feedback information may be related to the power ON/OFF state of the TV.
  • the control signal is the signal for changing a channel of the TV
  • the feedback information may include the information on the changed channel of the TV.
  • the short range communication module 14 of the mobile terminal 100 should be situated to face the external device (particularly, an infrared port of the external device) while the mobile terminal 100 maintains a sufficiently close distance from the external device. If bidirectional IrDA communication is used, the mobile terminal 100 can receive the feedback information on the control signal from the external device.
  • the controller 180 of the present invention can determine a state of an external device based on at least one of a feedback information and a manipulation history of the external device.
  • the controller 180 may be able to determine whether the external device is in ON/OFF based on the received feedback information. Even if the controller 180 does not receive the feedback information from the external device, the controller 180 may be able to determine an operating state of the external device based on a history of user's manipulation on the control board. For instance, if a user initially applies a power ON/OFF input of the control board once, the controller 180 recognizes the initial input as applied to turn on the external device. If the user applies the power ON/OFF input twice, the controller 180 determines it as inputted to turn off the external device. And, the controller 180 can determine that the external device in ON state until receiving the 2 nd power ON/OFF input since the reception of the 1 st power ON/OFF input.
  • FIG. 5 is a diagram for one example of a screen provided to specify a manufacturer of an external device.
  • the controller 180 can control a setting screen of a remote controller program to be displayed [ FIG. 5 ( a )].
  • a device setting tab 520 and a feedback setting tab 530 are displayed together with an auto display setting region 510 for example.
  • An operation of the mobile terminal 100 related to the display setting region 510 shall be described later.
  • the device setting tab 520 shown in FIG. 5 ( a ) enumerates types of external terminals remotely controllable via the mobile terminal 100 and is provided to select at least one of the enumerated external terminals as a target of a remote control. For instance, if a user applies a touch input to each of ‘TV’, ‘settop box’, ‘audio’ and ‘air conditioner’ regions shown in FIG. 5 ( a ), the controller 180 can control outputs of check boxes 521 to 524 each of which whether a corresponding external device is selected. Thereafter, based on the selected external device, the controller 180 can adjust an active tab configuration of the control board. For instance, referring to FIG. 5 ( a ), if the TV and the settop box are selected [cf.
  • the controller 180 can configure the control board to remotely control the TV and the settop box only.
  • the controller 180 can control the activation tabs of the TV and the settop box to be displayed only.
  • a user can select manufacturers of the external devices enumerated on the device setting tab 520 . For instance, if a user input is applied to the TV setting button 525 [ FIG. 5 ( a )], the controller 180 can control a selection screen, on which a list of TV manufacturers is enumerated, to be displayed [ FIG. 5 ( b )]. If the user selects one of the manufacturers from the list, the user can select the corresponding TV manufacturer.
  • the controller 180 can read out an IR code of the selected TV manufacturer from the memory 160 . Thereafter, the controller 180 generates a test control signal using the read-out IR code and is then able to text a presence or non-presence of compatibility between the generated control signal and the external device. In particular, the controller 180 displays a text page of the example shown in FIG. 5 ( c ), generates a text control signal with an IR code that matches the TV manufacturer, and is then able to transmit the generated text control signal to the external device. The user is then able to complete the setting of the IR code by checking whether the text control signal is compatible with the external terminal
  • IR codes are different despite the same manufacturer, a plurality of test control signals may be generated by changing the IR codes.
  • manufacturers can be selected for various external devices including a settop box, an audio system, an air conditioner and the like as well as a TV.
  • the ‘auto display’ region shown in FIG. 5 ( a ) is provided to adjust whether to activate an auto display function.
  • the auto display function is to adjust an auto running of a remote controller program when the mobile terminal 100 enters a preset network. While the auto display function is active, if the mobile terminal 100 enters the preset network, the controller 180 can automatically activate the remote controller program. For instance, when the preset network is a home network, if the mobile terminal 100 enters the preset home network, the controller 180 automatically activates the remote controller program, thereby enabling a user to remotely control an operation of an external device through the mobile terminal 100 .
  • the settings of the home network can be performed in a manner of registering AP information in advance, like the example which will be described with reference to FIG. 6 later.
  • the activation of the auto display function can be triggered after a manufacturer of an external device becoming a target of a remote control has been selected. Before the selection of the external device manufacturer, even if the auto display function is activated, it is unable to secure compatibility of a control signal using IrDA. A user can manually adjust whether to activate the auto display function. If the manufacturer of the external device is selected, the controller 180 can control the auto display function to be automatically activated.
  • the feedback setting tab 530 shown in FIG. 5 ( a ) is provided to adjust a feedback output in response to a user input applied to a control board. While a touch sound item shown in FIG. 5 ( a ) is set active, if a touch input is applied to a control board, the controller 180 can control sound data to be outputted in response to the touch input to the control board. While a vibration item shown in FIG. 5 ( a ) is set active, if a touch input is applied to a control board, the controller 180 can control vibration to be outputted in response to the touch input to the control board.
  • a feedback can be outputted in type of LED flickering, color change of a touched point or the like.
  • a feedback can be outputted in a manner of combining at least two of the above-enumerated feedback types.
  • FIG. 6 is a flowchart for controlling a mobile terminal according to the present invention. For clarity of the following description, assume that a state of an auto display function of a remote controller program is set to an active state.
  • the controller 180 can register an AP (access point) based on a user input [S 601 ].
  • the controller 180 controls AP information to be saved in the memory 160 based on the user input, thereby completing the registration of the AP.
  • the AP information may include at least one of a service set identifier (SSID) of the AP and a network address of the AP, by which the present invention may be non-limited. How the controller 180 registers the AP based on the user input is described with reference to FIG. 7 as follows.
  • FIG. 7 is a diagram for one example to describe an AP registering process.
  • an auto display setting region 710 if a touch input is applied to a setting button 712 for adjusting detailed settings of an auto display function [ FIG. 7 ( a )], the controller 180 can control an AP list to be displayed [ FIG. 7 ( b )].
  • the AP list an AP currently transmitting a beacon signal to the mobile terminal and AP(s) having transmitted a beacon signal to the mobile terminal can be included.
  • FIG. 7 ( b ) shows one example that an AP having an SSID set to AP1 and an AP having an SSID set to AP2 are included in the AP list.
  • the controller 180 saves AP information of the AP selected by a user in the memory 160 , thereby completing AP registration. Since the AP1 is selected in FIG. 7 ( b ), the AP registration may be completed by saving the AP information of the AP1 in the memory 160 .
  • the AP information may include at least one of an SSI of the AP and a network address of the AP.
  • the network address of the AP may include an IP address of the AP and/or a MAC address of the AP.
  • FIG. 7 One example for registering an AP is described with reference to FIG. 7 , by which the present invention may be non-limited. And, it is apparent that the AP registering process can be performed by various methods devisable by those skilled in the art as well as by the process shown in FIG. 7 .
  • the controller 180 can determine whether the AP (hereinafter named an accessed AP) accessed by the wireless internet module 113 is a previously registered AP [S 603 ]. In particular, the controller 180 determines whether an SSID and/or network address of the accessed AP is identical to the previously registered AP information, thereby determining whether the accessed AP matches the previously registered AP information.
  • the controller 180 can control a control board for remotely controlling an external device to be displayed or may control the control board to enter an displayable state [S 604 ].
  • the control board may mean that the control board is displayed as a full screen by activating a remote controller program or that the control board is displayed as a widget of the remote controller program.
  • the control board enters the displayable state it may mean that the control board is in a displayable state by receiving a prescribed user input.
  • the controller 180 can output the control board as the full screen or the widget.
  • the control board of the widget type can be outputted to a home screen, a status board, a locked screen and the like.
  • the status board may be provided to adjust ON/OFF of various modules of the mobile terminal 100 and to display various indication informations.
  • the controller 180 controls the control board of the widget type to be displayed on the status board, thereby increasing user's accessibility to the control board. A process for outputting the control board to the status board is described with reference to FIG. 8 as follows.
  • FIG. 8 is a diagram for one example to describe a process for displaying a control board on a status bar.
  • the controller 180 can control a status bar 810 , which is provided to display an operating state of the mobile terminal 100 , to be displayed on one side (e.g., a top end of the touchscreen 151 shown in FIG. 8 ( a )) of the touchscreen 151 .
  • a status bar 810 On the status bar 810 , such an operating state information of the mobile terminal 100 as an absent call indication, a new text message reception indication, a vibration/sound mode setting indication, a current hour, a remaining battery level, a strength of signal received from a base station and the like can be displayed.
  • a prescribed touch input 820 e.g., an action of dragging the status bar in bottom direction
  • the controller 180 displays a status board [ FIG. 8 ( b )] and then controls a control board 830 , which is provided to adjust an operation of an external device, to be displayed on the status board.
  • the status board can be paged at any time.
  • user's accessibility to the control board 830 can be enhanced. For instance, although such an operation as a web browser display, a music play, a video play, a camera photographing and the like is being performed, if a user applies a prescribed touch input to the status bar 810 , it is able to remotely control an operation of an external device by paging the status board and the above-mentioned control board 830 .
  • the controller 180 may control a control board to be displayed on a locked screen.
  • the locked screen Prior to describing a process for displaying a control board on a locked screen, the locked screen is described as follows.
  • the controller 180 may control the mobile terminal 100 to enter a power saving mode.
  • the power saving mode is to deactivate a touchscreen having high power consumption in order to raise battery power efficiency. For instance, if a touch input is not applied to the touchscreen 151 for a prescribed duration or a user applies a user input to an external button, the controller 180 may control the mobile terminal 100 to enter the power saving mode. While a mode of the mobile terminal 100 is set to the power saving mode, if a prescribed user input is applied, the controller 180 may control a locked screen to be displayed on the touchscreen 151 . The locked screen ignores touch inputs other than a preset meaningful touch input, thereby preventing wrong inputs applied by a user.
  • the controller 180 of the present invention can control a control board to be displayed on a locked screen.
  • a process for displaying a control board on a locked screen is described in detail with reference to FIG. 9 as follows.
  • FIGS. 9A to 9C are diagrams for one example to describe a process for displaying a locked screen including a control board.
  • any information is not displayed [ FIG. 9A ].
  • a prescribed user input 910 is applied to the mobile terminal 100 (e.g., a user input is applied to an external key in FIG. 9A )
  • the controller 180 turns on the touchscreen 151 and is then able to control a locked screen to be outputted [ FIG. 9B ]. In doing so, if the mobile terminal 100 is currently connected to a previously registered AP, the controller 180 can control a control board 920 to be displayed on the locked screen [ FIG. 9B ].
  • the controller 180 handles a user touch input to the control board 920 as a meaningful input, thereby enabling a user to remotely control an operation of an external device without unlocking the touchscreen 151 . And, the user may select a type of an external device to control through a tab button provided to the control board 920 .
  • the controller 180 may control a plurality of control boards to be displayed to control a plurality of remote devices selected as the remote control targets, respectively.
  • the controller 180 can control two control boards 922 and 924 to be displayed.
  • the controller 180 may control N control boards to be simultaneously displayed.
  • the controller 180 may control the control board to stop being displayed. In particular, a user can control the control board to stop being displayed at any time.
  • the controller 180 may control the locked screen of the touchscreen to be cancelled (i.e., unlocked). For instance, referring to FIG. 9B and FIG. 9C , if a touch input for dragging a handler 940 displayed on one end of the control board 920 in a prescribed direction is received, the controller 180 may control the locked screen of the touchscreen 151 to be cancelled.
  • control board 920 it is able to cancel the locked screen of the touchscreen 151 by a conventional method (e.g., a prescribed touch input applied onto a lock icon 950 ).
  • the controller 180 may control a control board to be re-displayed as a widget on the home screen or the status board or may control the control board to be outputted as a full screen.
  • the controller 180 can determine whether to keep running a remote controller program depending on a method of cancelling a locked screen of the touchscreen 151 .
  • the controller discriminates a case of cancelling a locked screen based on a touch input applied to the control board 920 from a case of cancelling a locked screen based on a touch input applied to an outside of the control board 920 and is then able to determine whether to keep running the remote controller program.
  • the controller 180 determines that the control board 920 is intended to keep being used after the cancellation of the locked screen of the touchscreen 151 and may control the control board 920 to keep being displayed.
  • the controller 180 determines that the control board 920 is intended not to keep being used and may control the control board 920 to stop being displayed after the cancellation of the locked screen of the touchscreen 151 .
  • the controller 180 if a prescribed user input is applied to the touchscreen 151 in a power saving state, the controller 180 turns on the touchscreen 151 and a locked screen having the control board 920 displayed thereon is outputted.
  • a locked screen is outputted through the touchscreen 151
  • a prescribed user input e.g., a push to a home button
  • the controller 180 may control the control board 920 to be displayed on the locked screen.
  • the controller 180 can transmit a control signal, which is generated to automatically lower (or mute) a volume of such an audio output device as a TV, an audio system and the like, to an external device. If determining that the phone call is ended, the controller 180 may control the volume of the audio output device such as the TV, the audio system and the like to automatically return to the previous volume. While a phone call is made, the controller 180 may control a voice in the phone call to be outputted through the TV, the audio system or the like.
  • the controller 180 may control the video call to be displayed through such a video output device as a TV and the like.
  • the controller 180 stops displaying the control board and may control the remote controller program to be automatically ended [S 606 ].
  • the activation or termination of the remote controller program is automatically adjusted depending on the access to the previously registered AP or the cancellation of the access. Yet, it may not be mandatory for the activation or termination of the remote controller program to be automatically performed.
  • the controller 180 may control the activation or termination of the remote controller program based on a user's input. In doing so, an activate/end button of the remote controller program may be provided as a quick icon that is paged from the status bar.
  • the controller 180 can control activation and termination of the remote controller program. Even if the mobile terminal 100 is not connected to the previously registered AP, the controller 180 may control the remote controller program to be activated through a touch input to the quick icon button 840 . On the contrary, even if the mobile terminal 100 is currently connected to the previously registered AP, the controller 180 may control the remote controller program to be terminated through a touch input to the quick icon button 840 .
  • the mobile terminal 100 is able to transmit a control signal to an external device using at least one of the wireless internet module 13 and the short range communication module 114 .
  • the short range communication module 114 should face the external device.
  • the short range communication module 114 should face the external device.
  • the wireless internet module 113 there is no such limitation.
  • the controller 180 may control the control signal to be transmitted by selecting one of the communication modules depending on directionality of the mobile terminal 100 .
  • the controller 180 can transmit the control signal via the wireless internet module 113 .
  • the controller 180 can transmit the control signal via the short range communication module 114 .
  • the controller 180 can control the control signal to be transmitted using the wireless internet module 113 .
  • the controller 180 can control the control signal to be transmitted using the short range communication module 114 .
  • the controller 180 determines that the short range communication module 114 of the mobile terminal 100 does not face the external device. Hence, the controller 180 transmits the control signal of no directionality using the wireless internet module 113 .
  • the short range communication module 114 may be set available.
  • the wireless internet module 113 may be set available.
  • the controller 180 can control the remote controller program to be automatically ended. In particular, if the mobile terminal 100 is determined as not facing the external device, the controller 180 determines that the external device is intended not to be remotely controlled any more, the remote controller program can be automatically ended.
  • the above-described method can be implemented in a program recorded medium as processor-readable codes.
  • the processor-readable media include all kinds of recording devices in which data readable by a processor are stored.
  • the processor-readable media include ROM, RAM, CD-ROM, magnetic tapes, floppy discs, optical data storage devices, and the like for example and also include carrier-wave type implementations (e.g., transmission via Internet).
  • the present invention provides the following advantages and/or features.
  • the present invention provides a mobile terminal, by which user's convenience in manipulating the mobile terminal is enhanced.
  • the mobile terminal can automatically function as a remote controller for controlling operations of an external terminal, thereby enhancing user's convenience.
  • the present invention facilitates an operation of an external terminal to be controlled while a screen of the mobile terminal is locked or another job is being performed via the mobile terminal

Abstract

A mobile terminal and controlling method thereof are disclosed. The present invention includes a touchscreen; a memory configured to store access point (AP) information; a 1st wireless communication unit configured to perform a communication with an AP (access point); and a controller configured to control a user interface for remotely controlling an external device to be displayed on the touchscreen or to be in a displayable state when the AP connected to the 1st wireless communication unit matches the stored AP information.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Per 35 U.S.C. §119, this application claims the benefit of U.S. Provisional Application No. 61/693,756, filed on Aug. 27, 2012 and also claims the benefit of earlier filing date and right of priority to Korean Application No. 10-2012-0094585, filed on Aug. 28, 2012, the contents of which are all hereby incorporated by references herein in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a mobile terminal, and more particularly, to a mobile terminal and controlling method thereof. Although the present invention is suitable for a wide scope of applications, it is particularly suitable for controlling an operation of an external device remotely.
  • 2. Discussion of the Related Art
  • A mobile terminal is a device which may be configured to perform various functions. Examples of such functions include data and voice communications, capturing images and video via a camera, recording audio, playing music files and outputting music via a speaker system, and displaying images and video on a display.
  • Generally, terminals can be classified into mobile terminals and stationary terminals according to a presence or non-presence of mobility. And, the mobile terminals can be further classified into handheld terminals and vehicle mount terminals according to availability for hand-carry.
  • There are ongoing efforts to support and increase the functionality of mobile terminals. Such efforts include software and hardware improvements, as well as changes and improvements in the structural components which form the mobile terminal
  • As functions of a terminal tend to expand, many attempts to use the terminal for everyday life are increasing. One of the attempts is to utilize a mobile terminal as a TV remote controller. In order to utilize a mobile terminal as a TV remote controller, a user installs a remote controller application on the mobile terminal, thereby utilizing the mobile terminal as a remote controller of a TV, an air conditioner and the like. However, in case that a remote controller application is installed on a mobile terminal, it is inconvenient for a user to activate the remote controller application each time intending to use the mobile terminal as a remote controller.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a mobile terminal and controlling method thereof that substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • One object of the present invention is to provide a mobile terminal and controlling method thereof, by which user's convenience in using the mobile terminal is enhanced.
  • In particular, if a mobile terminal according to the present invention enters a preset network, the mobile terminal can automatically function as a remote controller for controlling operations of an external terminal
  • Another object of the present invention is to provide a mobile terminal and controlling method thereof, by which an operation of an external terminal can be easily controlled while a screen of the mobile terminal is locked or another job is being performed via the mobile terminal
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a mobile terminal according to the present invention includes a touchscreen; a memory configured to store access point (AP) information; a 1st wireless communication unit configured to perform a communication with an AP (access point); and a controller configured to control a user interface for remotely controlling an external device to be displayed on the touchscreen or to be in a displayable state when the AP connected to the 1st wireless communication unit matches the stored AP information.
  • In another aspect of the present invention, a method of controlling a mobile terminal includes the steps of saving access point (AP) information, requesting an access to an AP (access point), determining whether the AP matches the AP information, and if the AP matches the AP information, displaying a user interface for remotely controlling an operation of an external device or enabling the user interface to be in a displayable state.
  • Effects and/or advantages obtainable from the present invention are non-limited the above mentioned effect. And, other unmentioned effects can be clearly understood from the following description by those having ordinary skill in the technical field to which the present invention pertains.
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • FIG. 1 is a block diagram of a mobile terminal according to one embodiment of the present invention;
  • FIG. 2 is a front perspective diagram of a mobile terminal according to one embodiment of the present invention;
  • FIG. 3 is a rear perspective diagram of a mobile terminal according to one embodiment of the present invention;
  • FIGS. 4A to 4D are diagrams for one example to describe a remote controller program according to the present invention;
  • FIG. 5 is a diagram for one example of a screen provided to specify a manufacturer of an external device;
  • FIG. 6 is a flowchart for controlling a mobile terminal according to the present invention;
  • FIG. 7 is a diagram for one example to describe an AP registering process;
  • FIG. 8 is a diagram for one example to describe a process for displaying a control board on a status bar; and
  • FIGS. 9A to 9C are diagrams for one example to describe a process for displaying a locked screen including a control board.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following detailed description, reference is made to the accompanying drawing figures which form a part hereof, and which show by way of illustration specific embodiments of the invention. It is to be understood by those of ordinary skill in this technological field that other embodiments may be utilized, and structural, electrical, as well as procedural changes may be made without departing from the scope of the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.
  • As used herein, the suffixes ‘module’, ‘unit’ and ‘part’ are used for elements in order to facilitate the disclosure only. Therefore, significant meanings or roles are not given to the suffixes themselves and it is understood that the ‘module’, ‘unit’ and ‘part’ can be used together or interchangeably.
  • The present invention can be applicable to a various types of mobile terminals. Examples of such terminals include mobile phones, user equipments, smart phones, digital broadcast receivers, personal digital assistants, laptop computers, portable multimedia players (PMP), navigators and the like.
  • Yet, it is apparent to those skilled in the art that a configuration according to an embodiment disclosed in this specification is applicable to such a fixed terminal as a digital TV, a desktop computer and the like as well as a mobile terminal
  • FIG. 1 is a block diagram of a mobile terminal 100 in accordance with an embodiment of the present invention. FIG. 1 shows the mobile terminal 100 according to one embodiment of the present invention includes a wireless communication unit 110, an A/V (audio/video) input unit 120, a user input unit 130, a sensing unit 140, an output unit 150, a memory 160, an interface unit 170, a controller 180, a power supply unit 190 and the like. FIG. 1 shows the mobile terminal 100 having various components, but it is understood that implementing all of the illustrated components is not a requirement. Greater or fewer components may alternatively be implemented.
  • In the following description, the above elements of the mobile terminal 100 are explained in sequence.
  • First of all, the wireless communication unit 110 typically includes one or more components which permits wireless communication between the mobile terminal 100 and a wireless communication system or network within which the mobile terminal 100 is located. For instance, the wireless communication unit 110 can include a broadcast receiving module 111, a mobile communication module 112, a wireless internet module 113, a short-range communication module 114, a position-location module 115 and the like.
  • The broadcast receiving module 111 receives a broadcast signal and/or broadcast associated information from an external broadcast managing server via a broadcast channel. The broadcast channel may include a satellite channel and a terrestrial channel. At least two broadcast receiving modules 111 can be provided to the mobile terminal 100 in pursuit of simultaneous receptions of at least two broadcast channels or broadcast channel switching facilitation.
  • The broadcast managing server generally refers to a server which generates and transmits a broadcast signal and/or broadcast associated information or a server which is provided with a previously generated broadcast signal and/or broadcast associated information and then transmits the provided signal or information to a terminal The broadcast signal may be implemented as a TV broadcast signal, a radio broadcast signal, and a data broadcast signal, among others. If desired, the broadcast signal may further include a broadcast signal combined with a TV or radio broadcast signal.
  • The broadcast associated information includes information associated with a broadcast channel, a broadcast program, a broadcast service provider, etc. And, the broadcast associated information can be provided via a mobile communication network. In this case, the broadcast associated information can be received by the mobile communication module 112.
  • The broadcast associated information can be implemented in various forms. For instance, broadcast associated information may include an electronic program guide (EPG) of digital multimedia broadcasting (DMB) and electronic service guide (ESG) of digital video broadcast-handheld (DVB-H).
  • The broadcast receiving module 111 may be configured to receive broadcast signals transmitted from various types of broadcast systems. By nonlimiting example, such broadcasting systems include digital multimedia broadcasting-terrestrial (DMB-T), digital multimedia broadcasting-satellite (DMB-S), digital video broadcast-handheld (DVB-H), Convergence of Broadcasting and Mobile Service (DVB-CBMS), Open Mobile Alliance-BroadCAST (OMA-BCAST), China Multimedia Mobile Broadcasting (CMMB), Mobile Broadcasting Business Management System (MBBMS), the data broadcasting system known as media forward link only (MediaFLO®) and integrated services digital broadcast-terrestrial (ISDB-T). Optionally, the broadcast receiving module 111 can be configured suitable for other broadcasting systems as well as the above-explained digital broadcasting systems.
  • The broadcast signal and/or broadcast associated information received by the broadcast receiving module 111 may be stored in a suitable device, such as a memory 160.
  • The mobile communication module 112 transmits/receives wireless signals to/from one or more network entities (e.g., base station, external terminal, server, etc.) via a mobile network such as GSM (Global System for Mobile communications), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA) and so on. Such wireless signals may represent audio, video, and data according to text/multimedia message transceivings, among others.
  • The wireless internet module 113 supports Internet access for the mobile terminal 100. This module may be internally or externally coupled to the mobile terminal 100. In this case, the wireless Internet technology can include WLAN (Wireless LAN) (Wi-Fi), Wibro (Wireless broadband), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), GSM, CDMA, WCDMA, LTE (Long Term Evolution) etc.
  • Wireless internet access by Wibro, HSPDA, GSM, CDMA, WCDMA, LTE or the like is achieved via a mobile communication network. In this aspect, the wireless internet module 113 configured to perform the wireless internet access via the mobile communication network can be understood as a sort of the mobile communication module 112.
  • The short-range communication module 114 facilitates relatively short-range communications. Suitable technologies for implementing this module include radio frequency identification (RFID), infrared data association (IrDA), ultra-wideband (UWB), as well at the networking technologies commonly referred to as Bluetooth and ZigBee, to name a few.
  • The position-location module 115 identifies or otherwise obtains the location of the mobile terminal 100. If desired, this module may be implemented with a global positioning system (GPS) module. According to the current technology, the GPS module 115 is able to precisely calculate current 3-dimensional position information based on at least one of longitude, latitude and altitude and direction (or orientation) by calculating distance information and precise time information from at least three satellites and then applying triangulation to the calculated information. Currently, location and time informations are calculated using three satellites, and errors of the calculated location position and time informations are then amended using another satellite. Besides, the GPS module 115 is able to calculate speed information by continuously calculating a real-time current location.
  • Referring to FIG. 1, the audio/video (AN) input unit 120 is configured to provide audio or video signal input to the mobile terminal 100. As shown, the AN input unit 120 includes a camera 121 and a microphone 122. The camera 121 receives and processes image frames of still pictures or video, which are obtained by an image sensor in a video call mode or a photographing mode. And, the processed image frames can be displayed on the display 151.
  • The image frames processed by the camera 121 can be stored in the memory 160 or can be externally transmitted via the wireless communication unit 110. Optionally, at least two cameras 121 can be provided to the mobile terminal 100 according to environment of usage.
  • The microphone 122 receives an external audio signal while the portable device is in a particular mode, such as phone call mode, recording mode and voice recognition. This audio signal is processed and converted into electric audio data. The processed audio data is transformed into a format transmittable to a mobile communication base station via the mobile communication module 112 in case of a call mode. The microphone 122 typically includes assorted noise removing algorithms to remove noise generated in the course of receiving the external audio signal.
  • The user input unit 130 generates input data responsive to user manipulation of an associated input device or devices. Examples of such devices include a button 136 provided to front/rear/lateral side of the mobile terminal 100 and a touch sensor (constant pressure/electrostatic) 137 and may further include a key pad, a dome switch, a jog wheel, a jog switch and the like [not shown in the drawing].
  • The sensing unit 140 provides sensing signals for controlling operations of the mobile terminal 100 using status measurements of various aspects of the mobile terminal For instance, the sensing unit 140 may detect an open/close status of the mobile terminal 100, relative positioning of components (e.g., a display and keypad) of the mobile terminal 100, a change of position of the mobile terminal 100 or a component of the mobile terminal 100, a presence or absence of user contact with the mobile terminal 100, orientation or acceleration/deceleration of the mobile terminal 100. By nonlimiting example, such sensing unit 140 include, gyro sensor, accelerate sensor, geomagnetic sensor.
  • As an example, consider the mobile terminal 100 being configured as a slide-type mobile terminal In this configuration, the sensing unit 140 may sense whether a sliding portion of the mobile terminal is open or closed. Other examples include the sensing unit 140 sensing the presence or absence of power provided by the power supply 190, the presence or absence of a coupling or other connection between the interface unit 170 and an external device. And, the sensing unit 140 can include a proximity sensor 141.
  • The output unit 150 generates outputs relevant to the senses of sight, hearing, touch and the like. And, the output unit 150 includes the display 151, an audio output module 152, an alarm unit 153, and a haptic module 154 and the like.
  • The display 151 is typically implemented to visually display (output) information associated with the mobile terminal 100. For instance, if the mobile terminal is operating in a phone call mode, the display will generally provide a user interface (UI) or graphical user interface (GUI) which includes information associated with placing, conducting, and terminating a phone call. As another example, if the mobile terminal 100 is in a video call mode or a photographing mode, the display 151 may additionally or alternatively display images which are associated with these modes, the UI or the GUI.
  • The display module 151 may be implemented using known display technologies including, for example, a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT-LCD), an organic light-emitting diode display (OLED), a flexible display and a three-dimensional display. The mobile terminal 100 may include one or more of such displays.
  • Some of the above displays can be implemented in a transparent or optical transmittive type, which can be named a transparent display. As a representative example for the transparent display, there is TOLED (transparent OLED) or the like. A rear configuration of the display 151 can be implemented in the optical transmittive type as well. In this configuration, a user is able to see an object in rear of a terminal body via the area occupied by the display 151 of the terminal body.
  • At least two displays 151 can be provided to the mobile terminal 100 in accordance with the implemented configuration of the mobile terminal 100. For instance, a plurality of displays can be arranged on a single face of the mobile terminal 100 in a manner of being spaced apart from each other or being built in one body. Alternatively, a plurality of displays can be arranged on different faces of the mobile terminal 100.
  • In case that the display 151 and the touch sensor 137 configures a mutual layer structure (hereinafter called ‘touch screen’), it is able to use the display 151 as an input device as well as an output device. In this case, the touch sensor can be configured as a touch film, a touch sheet, a touchpad or the like.
  • The touch sensor 137 can be configured to convert a pressure applied to a specific portion of the display 151 or a variation of a capacitance generated from a specific portion of the display 151 to an electric input signal. Moreover, it is able to configure the touch sensor 137 to detect a pressure of a touch as well as a touched position or size.
  • If a touch input is made to the touch sensor 137, signal(s) corresponding to the touch is transferred to a touch controller. The touch controller processes the signal(s) and then transfers the processed signal(s) to the controller 180. Therefore, the controller 180 is able to know whether a prescribed portion of the display 151 is touched.
  • Referring to FIG. 2, a proximity sensor (141) can be provided to an internal area of the mobile terminal 100 enclosed by the touchscreen or around the touchscreen. The proximity sensor is the sensor that detects a presence or non-presence of an object approaching a prescribed detecting surface or an object existing around the proximity sensor using an electromagnetic field strength or infrared ray without mechanical contact. Hence, the proximity sensor has durability longer than that of a contact type sensor and also has utility wider than that of the contact type sensor.
  • The proximity sensor can include one of a transmittive photoelectric sensor, a direct reflective photoelectric sensor, a mirror reflective photoelectric sensor, a radio frequency oscillation proximity sensor, an electrostatic capacity proximity sensor, a magnetic proximity sensor, an infrared proximity sensor and the like. In case that the touchscreen includes the electrostatic capacity proximity sensor, it is configured to detect the proximity of a pointer using a variation of electric field according to the proximity of the pointer. In this case, the touchscreen (touch sensor) can be classified as the proximity sensor.
  • For clarity and convenience of the following description, as a pointer becomes proximate to a touchscreen without coming into contact with the touchscreen, if the pointer is perceived as situated over the touchscreen, such an action shall be named ‘proximity touch’. If a pointer actually comes into contact with a touchscreen, such an action shall be named ‘contact touch’. A proximity-touched position over the touchscreen with the pointer may mean a position at which the pointer vertically opposes the touchscreen when the touchscreen is proximity-touched with the pointer.
  • The proximity sensor detects a proximity touch and a proximity touch pattern (e.g., a proximity touch distance, a proximity touch duration, a proximity touch position, a proximity touch shift state, etc.). And, information corresponding to the detected proximity touch action and the detected proximity touch pattern can be outputted to the touchscreen.
  • The audio output module 152 functions in various modes including a call-receiving mode, a call-placing mode, a recording mode, a voice recognition mode, a broadcast reception mode and the like to output audio data which is received from the wireless communication unit 110 or is stored in the memory 160. During operation, the audio output module 152 outputs audio relating to a particular function (e.g., call received, message received, etc.). The audio output module 152 is often implemented using one or more speakers, buzzers, other audio producing devices, and combinations thereof
  • The alarm unit 153 is output a signal for announcing the occurrence of a particular event associated with the mobile terminal 100. Typical events include a call received event, a message received event and a touch input received event. The alarm unit 153 is able to output a signal for announcing the event occurrence by way of vibration as well as video or audio signal. The video or audio signal can be outputted via the display 151 or the audio output unit 152. Hence, the display 151 or the audio output module 152 can be regarded as a part of the alarm unit 153.
  • The haptic module 154 generates various tactile effects that can be sensed by a user. Vibration is a representative one of the tactile effects generated by the haptic module 154. Strength and pattern of the vibration generated by the haptic module 154 are controllable. For instance, different vibrations can be outputted in a manner of being synthesized together or can be outputted in sequence.
  • The haptic module 154 is able to generate various tactile effects as well as the vibration. For instance, the haptic module 154 generates the effect attributed to the arrangement of pins vertically moving against a contact skin surface, the effect attributed to the injection/suction power of air though an injection/suction hole, the effect attributed to the skim over a skin surface, the effect attributed to the contact with electrode, the effect attributed to the electrostatic force, the effect attributed to the representation of hold/cold sense using an endothermic or exothermic device and the like.
  • The haptic module 154 can be implemented to enable a user to sense the tactile effect through a muscle sense of finger, arm or the like as well as to transfer the tactile effect through a direct contact. Optionally, at least two haptic modules 154 can be provided to the mobile terminal 100 in accordance with the corresponding configuration type of the mobile terminal 100.
  • The memory unit 160 is generally used to store various types of data to support the processing, control, and storage requirements of the mobile terminal 100. Examples of such data include program instructions for applications operating on the mobile terminal 100, contact data, phonebook data, messages, audio, still pictures (or photo), moving pictures, etc. And, a recent use history or a cumulative use frequency of each data (e.g., use frequency for each phonebook, each message or each multimedia) can be stored in the memory unit 160. Moreover, data for various patterns of vibration and/or sound outputted in case of a touch input to the touchscreen can be stored in the memory unit 160.
  • The memory 160 may be implemented using any type or combination of suitable volatile and non-volatile memory or storage devices including hard disk, random access memory (RAM), static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk, multimedia card micro type memory, card-type memory (e.g., SD memory, XD memory, etc.), or other similar memory or data storage device. And, the mobile terminal 100 is able to operate in association with a web storage for performing a storage function of the memory 160 on Internet.
  • The interface unit 170 is often implemented to couple the mobile terminal 100 with external devices. The interface unit 170 receives data from the external devices or is supplied with the power and then transfers the data or power to the respective elements of the mobile terminal 100 or enables data within the mobile terminal 100 to be transferred to the external devices. The interface unit 170 may be configured using a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for coupling to a device having an identity module, audio input/output ports, video input/output ports, an earphone port and/or the like.
  • The identity module is the chip for storing various kinds of information for authenticating a use authority of the mobile terminal 100 and can include User Identify Module (UIM), Subscriber Identify Module (SIM), Universal Subscriber Identity Module (USIM) and/or the like. A device having the identity module (hereinafter called ‘identity device’) can be manufactured as a smart card. Therefore, the identity device is connectible to the mobile terminal 100 via the corresponding port.
  • When the mobile terminal 110 is connected to an external cradle, the interface unit 170 becomes a passage for supplying the mobile terminal 100 with a power from the cradle or a passage for delivering various command signals inputted from the cradle by a user to the mobile terminal 100. Each of the various command signals inputted from the cradle or the power can operate as a signal enabling the mobile terminal 100 to recognize that it is correctly loaded in the cradle.
  • The controller 180 typically controls the overall operations of the mobile terminal 100. For example, the controller 180 performs the control and processing associated with voice calls, data communications, video calls, etc. The controller 180 may include a multimedia module 181 that provides multimedia playback. The multimedia module 181 may be configured as part of the controller 180, or implemented as a separate component.
  • Moreover, the controller 180 is able to perform a pattern (or image) recognizing process for recognizing a writing input and a picture drawing input carried out on the touchscreen as characters or images, respectively.
  • The power supply unit 190 provides power required by the various components for the mobile terminal 100. The power may be internal power, external power, or combinations thereof.
  • A battery may include a built-in rechargeable battery and may be detachably attached to the terminal body for a charging and the like. A connecting port may be configured as one example of the interface 170 via which an external charger for supplying a power of a battery charging is electrically connected.
  • Various embodiments described herein may be implemented in a computer-readable medium using, for example, computer software, hardware, or some combination thereof.
  • For a hardware implementation, the embodiments described herein may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a selective combination thereof. Such embodiments may also be implemented by the controller 180.
  • For a software implementation, the embodiments described herein may be implemented with separate software modules, such as procedures and functions, each of which perform one or more of the functions and operations described herein. The software codes can be implemented with a software application written in any suitable programming language and may be stored in memory such as the memory 160, and executed by a controller or processor, such as the controller 180.
  • FIG. 2 is a front perspective diagram of a mobile terminal according to one embodiment of the present invention.
  • The mobile terminal 100 shown in the drawing has a bar type terminal body. Yet, the mobile terminal 100 may be implemented in a variety of different configurations.
  • Examples of such configurations include folder-type, slide-type, rotational-type, swing-type and combinations thereof For clarity, further disclosure will primarily relate to a bar-type mobile terminal 100. However such teachings apply equally to other types of mobile terminals.
  • Referring to FIG. 2A, the mobile terminal 100 includes a case (101, 102, 103) configuring an exterior thereof In the present embodiment, the case can be divided into a front case 101 and a rear case 102. Various electric/electronic parts are loaded in a space provided between the front and rear cases 101 and 102.
  • Occasionally, electronic components can be mounted on a surface of the rear case 102. The electronic part mounted on the surface of the rear case 102 may include such a detachable part as a battery, a USIM card, a memory card and the like. In doing so, the rear case 102 may further include a backside cover 103 configured to cover the surface of the rear case 102. In particular, the backside cover 103 has a detachable configuration for user's convenience. If the backside cover 103 is detached from the rear case 102, the surface of the rear case 102 is exposed.
  • Referring to FIG. 2, if the backside cover 103 is attached to the rear case 102, a lateral side of the rear case 102 may be exposed in part. If a size of the backside cover 103 is decreased, a rear side of the rear case 102 may be exposed in part. If the backside cover 103 covers the whole rear side of the rear case 102, it may include an opening 103′ configured to expose a camera 121′ or an audio output unit 152′ externally.
  • The cases 101, 102 and 103 are formed by injection molding of synthetic resin or can be formed of metal substance such as stainless steel (STS), titanium (Ti) or the like for example.
  • A display 151, an audio output unit 152, a camera 121, user input units 130/131 and 132, a microphone 122, an interface 180 and the like can be provided to the case 101 or 102.
  • The display 151 occupies most of a main face of the front case 101. The audio output unit 152 and the camera 121 are provided to an area adjacent to one of both end portions of the display 151, while the user input unit 131 and the microphone 122 are provided to another area adjacent to the other end portion of the display 151. The user input unit 132 and the interface 170 can be provided to lateral sides of the front and rear cases 101 and 102.
  • The input unit 130 is manipulated to receive a command for controlling an operation of the terminal 100. And, the input unit 130 is able to include a plurality of manipulating units 131 and 132. The manipulating units 131 and 132 can be named a manipulating portion and may adopt any mechanism of a tactile manner that enables a user to perform a manipulation action by experiencing a tactile feeling.
  • Content inputted by the first or second manipulating unit 131 or 132 can be diversely set. For instance, such a command as start, end, scroll and the like is inputted to the first manipulating unit 131. And, a command for a volume adjustment of sound outputted from the audio output unit 152 and the like can be inputted to the second manipulating unit 132, a command for a switching to a touch recognizing mode of the display 151 and the like can be inputted to the second manipulating unit 133.
  • FIG. 3 is a perspective diagram of a backside of the terminal shown in FIG. 2.
  • Referring to FIG. 3, a camera 121′ can be additionally provided to a backside of the terminal body, and more particularly, to the rear case 102. The camera 121 has a photographing direction that is substantially opposite to that of the former camera 121 shown in FIG. 2 and may have pixels differing from those of the firmer camera 121.
  • Preferably, for instance, the former camera 121 has low pixels enough to capture and transmit a picture of user's face for a video call, while the latter camera 121′ has high pixels for capturing a general subject for photography without transmitting the captured subject. And, each of the cameras 121 and 121′ can be installed at the terminal body to be rotated or popped up.
  • A flash 123 and a mirror 124 are additionally provided adjacent to the camera 121′. The flash 123 projects light toward a subject in case of photographing the subject using the camera 121′. In case that a user attempts to take a picture of the user (self-photography) using the camera 121′, the mirror 124 enables the user to view user's face reflected by the mirror 124.
  • An additional audio output unit 152′ can be provided to the backside of the terminal body. The additional audio output unit 152′ is able to implement a stereo function together with the former audio output unit 152 shown in FIG. 2A and may be used for implementation of a speakerphone mode in talking over the terminal
  • A broadcast signal receiving antenna 116 can be additionally provided to the lateral side of the terminal body as well as an antenna for communication or the like. The antenna 116 constructing a portion of the broadcast receiving module 111 shown in FIG. 1 can be retractably provided to the terminal body.
  • For clarity and convenience of the following description, assume that a mobile terminal mentioned in the following description includes at least one of the components shown in FIG. 1. In particular, assume that a mobile terminal 100 according to the present invention includes the wireless communication unit 110, the display unit 151, the memory 160 and the controller 180 among the components shown in FIG. 1. The mobile terminal 100 according to the present invention may include the wireless internet module 113 and the short range communication module 114 configured to perform a short range communication in the wireless communication unit 110 shown in FIG. 1. In particular, the wireless internet module 113 may be configured to perform an access to an access point (AP) and the short range communication module 114 may be configured to deliver a control signal for controlling an operation of an external device. The wireless internet module 113 may include a WLAN communication module configured to perform Wi-Fi communication and the short range communication module 114 may include an infrared communication module configured to perform an infrared communication (IrDA), by which the present invention may be non-limited.
  • In the mobile terminal 100 according to the present invention, if the display unit 151 includes a touchscreen, it may facilitate implementation of the present invention. Hence, in the following description, assume that the display unit 151 includes the touchscreen.
  • Prior to describing operations of the mobile terminal 100 according to the present invention, a remote controller program for remotely controlling an external terminal is described as follows.
  • First of all, a remote controller program is configured to remotely control operations of an external device. And, the controller 180 is able to generate a control signal for remotely controlling the external device via the remote controller program. Using the remote controller program, the mobile terminal 100 can be used as a traditional remote controller. Once the remote controller program is active, the controller 180 can control a control board for controlling operations of the external device externally to be displayed. This is described in detail with reference to FIG. 4 as follows.
  • FIGS. 4A to 4D are diagrams for one example to describe a remote controller program according to the present invention.
  • Referring to FIGS. 4A to 4D, once a remote controller program is activated, the controller 180 can control a control board 400, which is configured to control operations of an external device, to be displayed. In this case, the control board 400 may mean a user interface (hereinafter abbreviated UI) in which buttons for remotely controlling the operations of the external device are put together. Based on a user input to the control board 400, the controller 180 generates a control signal for remotely controlling an operation of the external device. The controller 180 then transmits the generated control signal to the external device, thereby controlling the external device to operate based on the corresponding control signal.
  • In FIGS. 4A to 4D, the control board 400 may include tab button regions 412, 414, 416 and 418 for selecting external devices to control remotely and a control button region 420 for controlling operations of the external devices. If a user applies a touch input to one of the tab buttons 412, 414, 416 and 418, the user can specify the external device to remotely control. Once the external device to be remotely controlled is specified, the controller 180 can control the specified external device to be identified through an indicator. In FIGS. 4A to 4D, a star-shape indicator 430 is displayed on an activation tab for example, thereby enabling the specified external device to become identifiable. For instance, in FIGS. 4A to 4D, the tab buttons 412, 414, 416 and 418 of a TV, a settop box, an audio system and an air conditioner are in active states, respectively. Hence, through the control boards 400 shown in FIGS. 4A to 4D, operations of the TV, settop box, audio system and air conditioner can be controlled individually and remotely.
  • The control board 400 shown in FIGS. 4A to 4D shall be sequentially described as follows.
  • First of all, referring to FIG. 4A, a power button, a volume adjust button, a channel adjust button, a mute button and an external input button are displayed on the TV control board 400 for controlling the TV for example. The power button shown in FIG. 4A may be understood as provided to remotely control power ON/OFF of the TV, the volume adjust button may be understood as provided to remotely control a volume of the TV, and the channel adjust button may be understood as provided to remotely control a channel of the TV. Moreover, the mute button may be understood as provided to set the TV to enter a mute state and the external input button may be understood as provided to adjust whether to activate a TV external input terminal channel.
  • Referring to FIG. 4B, a power button, a volume adjust button, a channel adjust button, a mute button, an external input button and a numeral button are displayed on the settop box control board 400 for controlling the settop box for example. The power button shown in FIG. 4B may be understood as provided to remotely control power ON/OFF of the settop box, the volume adjust button may be understood as provided to remotely control a volume of the settop box, and the channel adjust button may be understood as provided to remotely control a channel of the settop box. Moreover, the mute button may be understood as provided to set the settop box to enter a mute state and the external input button may be understood as provided to adjust whether to activate a settop box external input terminal channel. The numeral button shown in FIG. 4B may be understood as provided to page a numeral button. If the numeral button is paged, a user can adjust a channel of the settop box by manipulating the numeral button.
  • Referring to FIG. 4C, a power button, a volume adjust button, a mute button, a mode adjust button, a play/pause button, a skip button and a rewinder button are displayed on the audio system control board 400 for controlling the audio system for example. The power button shown in FIG. 4C may be understood as provided to remotely control power ON/OFF of the audio system and the volume adjust button may be understood as provided to remotely control a volume of the audio system. Moreover, the mute button may be understood as provided to set the audio system to enter a mute state and the mode adjust button may be understood as provided to adjust a play mode of the audio system. For instance, the play mode of the audio system may be set to at least one of a tape play mode, a CD play mode, a DVD play mode, a radio mode, an external device connect mode, and a Bluetooth play mode. The play/pause button, the skip button and the rewinder button may be understood as provided to adjust a play/pause, a skip and a rewinder of a multimedia content outputted via the audio system, respectively.
  • Referring to FIG. 4D, a power button, a temperature adjust button, a mode adjust button and an airflow adjust button are displayed on the air conditioner control board 400 for controlling the air conditioner for example. The power button shown in FIG. 4D may be understood as provided to remotely control power ON/OFF of the air conditioner and the temperature adjust button may be understood as provided to remotely adjust a desired temperature in case of activating the air conditioner. Moreover, the airflow adjust button may be understood as provided to adjust an air conditioner airflow level and the mode adjust button may be understood as provided to adjust an operating mode of the air conditioner. For instance, the operating mode of the air conditioner may be set to one of a normal mode and a power-saving mode.
  • The types of the external devices shown in FIGS. 4A to 4D and the types of the control buttons displayed on the control boards 400 are provided for clarity and convenience of the description only, by which the present invention may be non-limited. It is a matter of course that the present invention is applicable to remotely controlling external devices of which types are different from those of the former external devices shown in FIGS. 4A to 4D. And, it is a matter of course that buttons different from those shown in FIGS. 4A to 4D can configure the control boards 400. For instance, the mobile terminal 100 according to the present invention may be utilized as a remote controller configured to remotely adjust operations of at least one of an illumination device, a washer, a microwave oven and the like. And, a keypad for inputting text rings can be displayed on the control board 400. Moreover, it may be unnecessary for the control board 400 to include the tab button region and the control button region, as shown in FIGS. 4A to 4D. For instance, if there is only one external device of a type selectable as a control target, the tab button region can be omitted from being displayed. The number and/or types of control buttons displayable on the control board 400 may be changeable depending on a state of an external device. For instance, if the external device in OFF state, the controller 180 controls the power button to be displayed on the control board 400. In doing so, if the external device enters ON state, the controller 180 then controls additional control button(s) (e.g., a channel adjust button, a volume adjust button, etc.) to be displayed.
  • A remote controller program explained in the description of the present invention may support widgets. Hence, the control board 400 mentioned in the foregoing description may be displayed as a full screen on the touchscreen 151. Alternatively, the control board 400 may be displayed as a widget in a manner of overlaying a home screen (e.g., a basic screen appearing on pressing a home button of a mobile terminal) or the like.
  • After the external device to be remotely controller has been specified, if a user input is applied via the control board 400, the controller 180 generates a control signal for controlling an operation of the external device and is then able to remotely control the operation of the external device by transmitting the generated control signal to the external device. In particular, the controller 180 can transmit the control signal to the external device via the wireless internet module 113 or the short range communication module 114. In case that the control signal is transmitted via the wireless internet module 113, a network address of the external device is set as a destination to provide the control signal to the external device. In particular, the control signal may be transmitted using TCP/IP (transmission control protocol/internet protocol) communication. In case that the external device is remotely controlled using the TCP/IP communication, the mobile terminal 100 may receive feedback information on the control signal from the external device. In this case, the feedback information may mean operating state information of the external device and an operating state changed by the control signal may be handled as the feedback information.
  • For instance, if the control signal is the signal for turning on/off the TV, the feedback information may be related to the power ON/OFF state of the TV. If the control signal is the signal for changing a channel of the TV, the feedback information may include the information on the changed channel of the TV. In order to transmit the control signal via the short range communication module 114 using infrared (IrDA) communication, the short range communication module 14 of the mobile terminal 100 should be situated to face the external device (particularly, an infrared port of the external device) while the mobile terminal 100 maintains a sufficiently close distance from the external device. If bidirectional IrDA communication is used, the mobile terminal 100 can receive the feedback information on the control signal from the external device.
  • The controller 180 of the present invention can determine a state of an external device based on at least one of a feedback information and a manipulation history of the external device.
  • For instance, if the controller 180 can receive the feedback information from the external device, the controller 180 may be able to determine whether the external device is in ON/OFF based on the received feedback information. Even if the controller 180 does not receive the feedback information from the external device, the controller 180 may be able to determine an operating state of the external device based on a history of user's manipulation on the control board. For instance, if a user initially applies a power ON/OFF input of the control board once, the controller 180 recognizes the initial input as applied to turn on the external device. If the user applies the power ON/OFF input twice, the controller 180 determines it as inputted to turn off the external device. And, the controller 180 can determine that the external device in ON state until receiving the 2nd power ON/OFF input since the reception of the 1st power ON/OFF input.
  • In case of attempting to transmit a control signal using the IrDA communication, it may be necessary to specify an external device manufacturer. Since the compatibility of IrDA varies depending on a difference of IR code, a control signal compatible with an external device of a 1st manufacturer is not always compatible with an external device of a 2nd manufacturer. Hence, before a control signal is transmitted by IrDA, a process for specifying a manufacturer of an external device needs to be performed in advance in order to check the compatibility of a previous IR code. The process for specifying the manufacturer of the external device is described in detail with reference to FIG. 5 as follows.
  • FIG. 5 is a diagram for one example of a screen provided to specify a manufacturer of an external device.
  • Referring to FIG. 5, if a user input is applied to the setting button 440 of the control board shown in FIG. 4, the controller 180 can control a setting screen of a remote controller program to be displayed [FIG. 5 (a)]. On the setting screen shown in FIG. 5 (a), a device setting tab 520 and a feedback setting tab 530 are displayed together with an auto display setting region 510 for example. An operation of the mobile terminal 100 related to the display setting region 510 shall be described later.
  • The device setting tab 520 shown in FIG. 5 (a) enumerates types of external terminals remotely controllable via the mobile terminal 100 and is provided to select at least one of the enumerated external terminals as a target of a remote control. For instance, if a user applies a touch input to each of ‘TV’, ‘settop box’, ‘audio’ and ‘air conditioner’ regions shown in FIG. 5 (a), the controller 180 can control outputs of check boxes 521 to 524 each of which whether a corresponding external device is selected. Thereafter, based on the selected external device, the controller 180 can adjust an active tab configuration of the control board. For instance, referring to FIG. 5 (a), if the TV and the settop box are selected [cf. ‘521’, ‘524’], the controller 180 can configure the control board to remotely control the TV and the settop box only. In this case, unlike the former example shown in FIG. 4 showing that the activation tabs of the TV, settop box, audio system and air conditioner are displayed, the controller 180 can control the activation tabs of the TV and the settop box to be displayed only.
  • Moreover, a user can select manufacturers of the external devices enumerated on the device setting tab 520. For instance, if a user input is applied to the TV setting button 525 [FIG. 5 (a)], the controller 180 can control a selection screen, on which a list of TV manufacturers is enumerated, to be displayed [FIG. 5 (b)]. If the user selects one of the manufacturers from the list, the user can select the corresponding TV manufacturer.
  • Once the user selects the TV manufacturer, the controller 180 can read out an IR code of the selected TV manufacturer from the memory 160. Thereafter, the controller 180 generates a test control signal using the read-out IR code and is then able to text a presence or non-presence of compatibility between the generated control signal and the external device. In particular, the controller 180 displays a text page of the example shown in FIG. 5 (c), generates a text control signal with an IR code that matches the TV manufacturer, and is then able to transmit the generated text control signal to the external device. The user is then able to complete the setting of the IR code by checking whether the text control signal is compatible with the external terminal
  • Yet, although an external device is released by the same manufacturer, it is not necessary to use the same IR code. If IR codes are different despite the same manufacturer, a plurality of test control signals may be generated by changing the IR codes.
  • Besides, manufacturers can be selected for various external devices including a settop box, an audio system, an air conditioner and the like as well as a TV.
  • The ‘auto display’ region shown in FIG. 5 (a) is provided to adjust whether to activate an auto display function. The auto display function is to adjust an auto running of a remote controller program when the mobile terminal 100 enters a preset network. While the auto display function is active, if the mobile terminal 100 enters the preset network, the controller 180 can automatically activate the remote controller program. For instance, when the preset network is a home network, if the mobile terminal 100 enters the preset home network, the controller 180 automatically activates the remote controller program, thereby enabling a user to remotely control an operation of an external device through the mobile terminal 100. The settings of the home network can be performed in a manner of registering AP information in advance, like the example which will be described with reference to FIG. 6 later.
  • The activation of the auto display function can be triggered after a manufacturer of an external device becoming a target of a remote control has been selected. Before the selection of the external device manufacturer, even if the auto display function is activated, it is unable to secure compatibility of a control signal using IrDA. A user can manually adjust whether to activate the auto display function. If the manufacturer of the external device is selected, the controller 180 can control the auto display function to be automatically activated.
  • The feedback setting tab 530 shown in FIG. 5 (a) is provided to adjust a feedback output in response to a user input applied to a control board. While a touch sound item shown in FIG. 5 (a) is set active, if a touch input is applied to a control board, the controller 180 can control sound data to be outputted in response to the touch input to the control board. While a vibration item shown in FIG. 5 (a) is set active, if a touch input is applied to a control board, the controller 180 can control vibration to be outputted in response to the touch input to the control board.
  • Although the sound and vibration are taken as examples of feedback types, they are just provided for clarity and convenience of the description. And, the present invention may be non-limited by the sound and vibration. Alternatively, instead of the sound and vibration types, a feedback can be outputted in type of LED flickering, color change of a touched point or the like. Moreover, it is a matter of course that a feedback can be outputted in a manner of combining at least two of the above-enumerated feedback types.
  • In the following description, an operation of the mobile terminal 100 according to the present invention is explained based on the above-mentioned remote controller program.
  • FIG. 6 is a flowchart for controlling a mobile terminal according to the present invention. For clarity of the following description, assume that a state of an auto display function of a remote controller program is set to an active state.
  • Referring to FIG. 6, the controller 180 can register an AP (access point) based on a user input [S601]. In particular, the controller 180 controls AP information to be saved in the memory 160 based on the user input, thereby completing the registration of the AP. In this case, the AP information may include at least one of a service set identifier (SSID) of the AP and a network address of the AP, by which the present invention may be non-limited. How the controller 180 registers the AP based on the user input is described with reference to FIG. 7 as follows.
  • FIG. 7 is a diagram for one example to describe an AP registering process.
  • Referring to FIG. 7, in an auto display setting region 710, if a touch input is applied to a setting button 712 for adjusting detailed settings of an auto display function [FIG. 7 (a)], the controller 180 can control an AP list to be displayed [FIG. 7 (b)]. In the AP list, an AP currently transmitting a beacon signal to the mobile terminal and AP(s) having transmitted a beacon signal to the mobile terminal can be included.
  • FIG. 7 (b) shows one example that an AP having an SSID set to AP1 and an AP having an SSID set to AP2 are included in the AP list. The controller 180 saves AP information of the AP selected by a user in the memory 160, thereby completing AP registration. Since the AP1 is selected in FIG. 7 (b), the AP registration may be completed by saving the AP information of the AP1 in the memory 160. In this case, the AP information may include at least one of an SSI of the AP and a network address of the AP. In particular, the network address of the AP may include an IP address of the AP and/or a MAC address of the AP.
  • One example for registering an AP is described with reference to FIG. 7, by which the present invention may be non-limited. And, it is apparent that the AP registering process can be performed by various methods devisable by those skilled in the art as well as by the process shown in FIG. 7.
  • Referring now to FIG. 6, if the wireless internet module 113 accesses a random AP [S602], the controller 180 can determine whether the AP (hereinafter named an accessed AP) accessed by the wireless internet module 113 is a previously registered AP [S603]. In particular, the controller 180 determines whether an SSID and/or network address of the accessed AP is identical to the previously registered AP information, thereby determining whether the accessed AP matches the previously registered AP information.
  • If the accessed AP is the previously registered AP, the controller 180 can control a control board for remotely controlling an external device to be displayed or may control the control board to enter an displayable state [S604]. In this case, if the control board is displayed, it may mean that the control board is displayed as a full screen by activating a remote controller program or that the control board is displayed as a widget of the remote controller program. Moreover, if the control board enters the displayable state, it may mean that the control board is in a displayable state by receiving a prescribed user input.
  • Thus, the controller 180 can output the control board as the full screen or the widget. The control board of the widget type can be outputted to a home screen, a status board, a locked screen and the like.
  • In case that a prescribed touch input is applied to a status bar for displaying an operating state of the mobile terminal 100, the status board may be provided to adjust ON/OFF of various modules of the mobile terminal 100 and to display various indication informations. The controller 180 controls the control board of the widget type to be displayed on the status board, thereby increasing user's accessibility to the control board. A process for outputting the control board to the status board is described with reference to FIG. 8 as follows.
  • FIG. 8 is a diagram for one example to describe a process for displaying a control board on a status bar.
  • Referring to FIG. 8 (a), the controller 180 can control a status bar 810, which is provided to display an operating state of the mobile terminal 100, to be displayed on one side (e.g., a top end of the touchscreen 151 shown in FIG. 8 (a)) of the touchscreen 151. On the status bar 810, such an operating state information of the mobile terminal 100 as an absent call indication, a new text message reception indication, a vibration/sound mode setting indication, a current hour, a remaining battery level, a strength of signal received from a base station and the like can be displayed.
  • While the mobile terminal 100 accesses a previously registered AP, if a prescribed touch input 820 (e.g., an action of dragging the status bar in bottom direction) is applied to the status bar 810 [FIG. 8 (a)], the controller 180 displays a status board [FIG. 8 (b)] and then controls a control board 830, which is provided to adjust an operation of an external device, to be displayed on the status board.
  • If the status bar is exposed, the status board can be paged at any time. Hence, user's accessibility to the control board 830 can be enhanced. For instance, although such an operation as a web browser display, a music play, a video play, a camera photographing and the like is being performed, if a user applies a prescribed touch input to the status bar 810, it is able to remotely control an operation of an external device by paging the status board and the above-mentioned control board 830.
  • The controller 180 may control a control board to be displayed on a locked screen. Prior to describing a process for displaying a control board on a locked screen, the locked screen is described as follows.
  • First of all, if a prescribed condition is met, the controller 180 may control the mobile terminal 100 to enter a power saving mode. In this case, the power saving mode is to deactivate a touchscreen having high power consumption in order to raise battery power efficiency. For instance, if a touch input is not applied to the touchscreen 151 for a prescribed duration or a user applies a user input to an external button, the controller 180 may control the mobile terminal 100 to enter the power saving mode. While a mode of the mobile terminal 100 is set to the power saving mode, if a prescribed user input is applied, the controller 180 may control a locked screen to be displayed on the touchscreen 151. The locked screen ignores touch inputs other than a preset meaningful touch input, thereby preventing wrong inputs applied by a user.
  • If the power saving mode of the mobile terminal 100 having accessed the previously registered AP is cancelled, the controller 180 of the present invention can control a control board to be displayed on a locked screen. A process for displaying a control board on a locked screen is described in detail with reference to FIG. 9 as follows.
  • FIGS. 9A to 9C are diagrams for one example to describe a process for displaying a locked screen including a control board.
  • Referring to FIGS. 9A to 9C, as the touchscreen 151 is turned off in the mobile terminal 100 in a power saving state, any information is not displayed [FIG. 9A].
  • Thereafter, if a prescribed user input 910 is applied to the mobile terminal 100 (e.g., a user input is applied to an external key in FIG. 9A), the controller 180 turns on the touchscreen 151 and is then able to control a locked screen to be outputted [FIG. 9B]. In doing so, if the mobile terminal 100 is currently connected to a previously registered AP, the controller 180 can control a control board 920 to be displayed on the locked screen [FIG. 9B].
  • The controller 180 handles a user touch input to the control board 920 as a meaningful input, thereby enabling a user to remotely control an operation of an external device without unlocking the touchscreen 151. And, the user may select a type of an external device to control through a tab button provided to the control board 920.
  • Unlike the example shown in FIG. 9B, if a plurality of external devices are set as remote control targets (cf. the device setting tab 520 shown in FIG. 5 (a)), the controller 180 may control a plurality of control boards to be displayed to control a plurality of remote devices selected as the remote control targets, respectively.
  • For instance, if there are two remote devices (e.g., TV and settop box) selected as the remote control targets, referring to FIG. 9C, the controller 180 can control two control boards 922 and 924 to be displayed. Thus, if there are N remote devices selected as the remote control targets, the controller 180 may control N control boards to be simultaneously displayed.
  • If a touch is inputted to a close button 930 of the control board 920, the controller 180 may control the control board to stop being displayed. In particular, a user can control the control board to stop being displayed at any time.
  • While the locked screen is displayed, if a prescribed touch input is applied to the control board 920, the controller 180 may control the locked screen of the touchscreen to be cancelled (i.e., unlocked). For instance, referring to FIG. 9B and FIG. 9C, if a touch input for dragging a handler 940 displayed on one end of the control board 920 in a prescribed direction is received, the controller 180 may control the locked screen of the touchscreen 151 to be cancelled.
  • Of course, without using the control board 920, it is able to cancel the locked screen of the touchscreen 151 by a conventional method (e.g., a prescribed touch input applied onto a lock icon 950).
  • Once the locked screen of the touchscreen 151 is cancelled, the controller 180 may control a control board to be re-displayed as a widget on the home screen or the status board or may control the control board to be outputted as a full screen.
  • According to another embodiment of the present invention, the controller 180 can determine whether to keep running a remote controller program depending on a method of cancelling a locked screen of the touchscreen 151. In particular, the controller discriminates a case of cancelling a locked screen based on a touch input applied to the control board 920 from a case of cancelling a locked screen based on a touch input applied to an outside of the control board 920 and is then able to determine whether to keep running the remote controller program.
  • For instance, as a touch input is applied to the handler 940 of the control board 920, if the locked screen is cancelled, the controller 180 determines that the control board 920 is intended to keep being used after the cancellation of the locked screen of the touchscreen 151 and may control the control board 920 to keep being displayed. On the other hand, if the locked screen is cancelled based on a touch input to the lock icon 950, the controller 180 determines that the control board 920 is intended not to keep being used and may control the control board 920 to stop being displayed after the cancellation of the locked screen of the touchscreen 151.
  • According to the embodiment shown in FIG. 9, if a prescribed user input is applied to the touchscreen 151 in a power saving state, the controller 180 turns on the touchscreen 151 and a locked screen having the control board 920 displayed thereon is outputted. According to another example of the present invention, while a locked screen is outputted through the touchscreen 151, if a prescribed user input (e.g., a push to a home button) is applied, the controller 180 may control the control board 920 to be displayed on the locked screen.
  • While the mobile terminal 100 is connected to a previously registered AP, a control board is displayed, or a control board displayable state is maintained, if there is an incoming call to the mobile terminal 100 or a user answers an incoming call, the controller 180 can transmit a control signal, which is generated to automatically lower (or mute) a volume of such an audio output device as a TV, an audio system and the like, to an external device. If determining that the phone call is ended, the controller 180 may control the volume of the audio output device such as the TV, the audio system and the like to automatically return to the previous volume. While a phone call is made, the controller 180 may control a voice in the phone call to be outputted through the TV, the audio system or the like.
  • While the mobile terminal 100 is connected to a previously registered AP or a control board displayable state is maintained, if there is an incoming video call to the mobile terminal 100, the controller 180 may control the video call to be displayed through such a video output device as a TV and the like.
  • If the wireless internet module 113 cancels the access to the previously registered AP [S605], the controller 180 stops displaying the control board and may control the remote controller program to be automatically ended [S606].
  • In the example shown in FIG. 6, the activation or termination of the remote controller program is automatically adjusted depending on the access to the previously registered AP or the cancellation of the access. Yet, it may not be mandatory for the activation or termination of the remote controller program to be automatically performed. The controller 180 may control the activation or termination of the remote controller program based on a user's input. In doing so, an activate/end button of the remote controller program may be provided as a quick icon that is paged from the status bar.
  • For instance, referring to FIG. 8 (b), based on a touch input to a quick icon button 840 named ‘remote controller’, the controller 180 can control activation and termination of the remote controller program. Even if the mobile terminal 100 is not connected to the previously registered AP, the controller 180 may control the remote controller program to be activated through a touch input to the quick icon button 840. On the contrary, even if the mobile terminal 100 is currently connected to the previously registered AP, the controller 180 may control the remote controller program to be terminated through a touch input to the quick icon button 840.
  • In the above-described example, the mobile terminal 100 according to the present invention is able to transmit a control signal to an external device using at least one of the wireless internet module 13 and the short range communication module 114. In case of transmitting a control signal using the short range communication module 114 by IrDA communication, there is such a limitation that the short range communication module 114 should face the external device. Yet, in case of transmitting a control signal using the wireless internet module 113, there is no such limitation.
  • In case that the mobile terminal 100 is able to transmit a control signal using both of the wireless internet module 113 and the short range communication module 114, the controller 180 may control the control signal to be transmitted by selecting one of the communication modules depending on directionality of the mobile terminal 100. In particular, in case of detecting that the mobile terminal 100 has inclined over a prescribed angle through the sensing unit 140, the controller 180 can transmit the control signal via the wireless internet module 113. Otherwise, the controller 180 can transmit the control signal via the short range communication module 114.
  • For another instance, in case that a control signal is generated while an output mode of the touchscreen 151 is set to a landscape mode, the controller 180 can control the control signal to be transmitted using the wireless internet module 113. For another instance, in case that a control signal is generated while an output mode of the touchscreen 151 is set to a portrait mode, the controller 180 can control the control signal to be transmitted using the short range communication module 114.
  • In particular, as the mobile terminal 100 inclines over the prescribed angle, if the output mode of the touchscreen 151 is set to the landscape mode, the controller 180 determines that the short range communication module 114 of the mobile terminal 100 does not face the external device. Hence, the controller 180 transmits the control signal of no directionality using the wireless internet module 113.
  • On the contrary, while the output mode of the touchscreen 151 is set to the landscape mode, the short range communication module 114 may be set available. Moreover, while the output mode of the touchscreen 151 is set to the portrait mode, the wireless internet module 113 may be set available.
  • In case that the mobile terminal 100 is able to transmit a control signal via the short range communication module 1143 only (e.g., a network address of an external device is unknown or the mobile terminal 100 or the external terminal is not in a wireless internet accessed state), if the output mode of the touchscreen 151 is switched to the landscape mode from the portrait mode, the controller 180 can control the remote controller program to be automatically ended. In particular, if the mobile terminal 100 is determined as not facing the external device, the controller 180 determines that the external device is intended not to be remotely controlled any more, the remote controller program can be automatically ended.
  • According to one embodiment of the present invention, the above-described method (flowchart) can be implemented in a program recorded medium as processor-readable codes. The processor-readable media include all kinds of recording devices in which data readable by a processor are stored. The processor-readable media include ROM, RAM, CD-ROM, magnetic tapes, floppy discs, optical data storage devices, and the like for example and also include carrier-wave type implementations (e.g., transmission via Internet).
  • The aforementioned embodiments are achieved by combination of structural elements and features of the present invention in a predetermined type. Each of the structural elements or features should be considered selectively unless specified separately. Each of the structural elements or features may be carried out without being combined with other structural elements or features. Also, some structural elements and/or features may be combined with one another to constitute the embodiments of the present invention.
  • Accordingly, the present invention provides the following advantages and/or features.
  • First of all, the present invention provides a mobile terminal, by which user's convenience in manipulating the mobile terminal is enhanced.
  • Secondly, if a mobile terminal according to the present invention enters a preset network, the mobile terminal can automatically function as a remote controller for controlling operations of an external terminal, thereby enhancing user's convenience.
  • Thirdly, the present invention facilitates an operation of an external terminal to be controlled while a screen of the mobile terminal is locked or another job is being performed via the mobile terminal
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (15)

What is claimed is:
1. A mobile terminal comprising:
a touchscreen;
a memory configured to store access point (AP) information;
a 1st wireless communication unit configured to perform a communication with an AP (access point); and
a controller configured to control a user interface for remotely controlling an external device to be displayed on the touchscreen or to be in a displayable state when the AP connected to the 1st wireless communication unit matches the stored AP information.
2. The mobile terminal of claim 1, wherein if the mobile terminal escapes from a power saving mode while the 1st wireless communication unit is connected to the AP, the controller configured to control the user interface to be displayed or to be in the displayable state while the touchscreen is in locked state.
3. The mobile terminal of claim 2, wherein, if a prescribed user input is applied to the user interface while the touchscreen is in the locked state, the controller controls the touchscreen to be escaped from the locked state.
4. The mobile terminal of claim 1, wherein if a prescribed user input is applied to a status bar for displaying an state of the mobile terminal when the user infterface is in the displayable state, the controller controls the user interface to be displayed on the touchscreen.
5. The mobile terminal of claim 1, wherein the controller generates a control signal for remotely controlling the external device based on a user input to the user interface.
6. The mobile terminal of claim 5, further comprising a 2nd wireless communication unit configured to communicate with the external device.
7. The mobile terminal of claim 6, wherein the controller transmits the control signal using either the 1st wireless communication unit or the 2nd wireless communication unit.
8. The mobile terminal of claim 7, wherein if the touchscreen is set to a landscape mode, the controller controls the control signal to be transmitted via the 1st wireless communication unit and wherein if the touchscreen is set to a portrait mode, the controller controls the control signal to be transmitted via the 2nd wireless communication unit.
9. The mobile terminal of claim 8, wherein the 1st wireless communication unit comprises a wireless LAN (WLAN) communication module and wherein the 2nd wireless communication unit comprises an infrared communication (IrDA) module.
10. The mobile terminal of claim 5, wherein the controller controls a feedback to be outputted in response to the user input to the user interface.
11. The mobile terminal of claim 10, wherein the feedback comprises at least one selected from the group consisting of an output of vibration, an output of an alarm sound and a flickering of an LED.
12. The mobile terminal of claim 1, wherein the user interface comprises a tab button region for selecting a kind of the external device to control and a control button region for generating a control signal for remotely controlling the external device.
13. The mobile terminal of claim 1, wherein the AP information comprises at least one of an service set identifier (SSID) and a network address.
14. The mobile terminal of claim 1, wherein if the 1st wireless communication unit is disconnected from the AP, the controller controls an output of the user interface to be ended.
15. A method of controlling a mobile terminal, comprising the steps of:
saving access point (AP) information;
requesting an access to an AP (access point);
determining whether the AP matches the AP information; and
if the AP matches the AP information, displaying a user interface for remotely controlling an operation of an external device or enabling the user interface to be in a displayable state.
US14/010,339 2012-08-27 2013-08-26 Mobile terminal and controlling method thereof Abandoned US20140055251A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/010,339 US20140055251A1 (en) 2012-08-27 2013-08-26 Mobile terminal and controlling method thereof
US15/059,236 US9844096B2 (en) 2012-08-27 2016-03-02 Mobile terminal and controlling method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261693756P 2012-08-27 2012-08-27
KR1020120094585A KR101949737B1 (en) 2012-08-28 2012-08-28 Mobile terminal and controlling method therof, and recording medium thereof
KR10-2012-0094585 2012-08-28
US14/010,339 US20140055251A1 (en) 2012-08-27 2013-08-26 Mobile terminal and controlling method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/059,236 Continuation US9844096B2 (en) 2012-08-27 2016-03-02 Mobile terminal and controlling method thereof

Publications (1)

Publication Number Publication Date
US20140055251A1 true US20140055251A1 (en) 2014-02-27

Family

ID=48914150

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/010,339 Abandoned US20140055251A1 (en) 2012-08-27 2013-08-26 Mobile terminal and controlling method thereof
US15/059,236 Active US9844096B2 (en) 2012-08-27 2016-03-02 Mobile terminal and controlling method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/059,236 Active US9844096B2 (en) 2012-08-27 2016-03-02 Mobile terminal and controlling method thereof

Country Status (5)

Country Link
US (2) US20140055251A1 (en)
EP (1) EP2704407B1 (en)
KR (1) KR101949737B1 (en)
CN (2) CN103634460B (en)
DE (1) DE202013012417U1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140223321A1 (en) * 2013-02-06 2014-08-07 Samsung Electronics Co., Ltd. Portable device and method for controlling external device thereof
US20150061841A1 (en) * 2013-09-02 2015-03-05 Lg Electronics Inc. Mobile terminal and method of controlling the same
US20150066247A1 (en) * 2012-03-30 2015-03-05 Jaguar Land Rover Limited On-board vehicle control system and method
US20150153840A1 (en) * 2013-11-20 2015-06-04 Wendy March Computing systems for peripheral control
JP2016127334A (en) * 2014-12-26 2016-07-11 ティアック株式会社 Sound recording system including wireless lan function
US20160276866A1 (en) * 2015-03-17 2016-09-22 Peiker Acustic Gmbh & Co. Kg Integration device
US9454251B1 (en) * 2013-06-26 2016-09-27 Google Inc. Methods, systems, and media for controlling a remote device using a touch screen of a mobile device in a display inhibited state
CN105974804A (en) * 2016-05-09 2016-09-28 北京小米移动软件有限公司 Method and device for controlling equipment
CN107295383A (en) * 2016-08-31 2017-10-24 梁云 The input device of set top box virtual keyboard
EP3210388A4 (en) * 2014-10-24 2017-10-25 Samsung Electronics Co., Ltd. Control device, method of controlling the same, and integrated control system
KR20170125655A (en) * 2016-05-04 2017-11-15 삼성전자주식회사 electronic apparatus and method for controlling external device
US9844096B2 (en) 2012-08-27 2017-12-12 Lg Electronics Inc. Mobile terminal and controlling method thereof
US9888339B2 (en) 2014-10-31 2018-02-06 Samsung Electronics Co., Ltd. User terminal apparatus, electronic apparatus, system and controlling method thereof
US9892634B2 (en) * 2016-05-27 2018-02-13 Remotec Technology Limited Remote control docking station and system
US10015739B2 (en) 2014-11-21 2018-07-03 Samsung Electronics Co., Ltd. User terminal for controlling display device and control method thereof
US20190052745A1 (en) * 2018-06-14 2019-02-14 Hisense Mobile Communications Technology Co., Ltd. Method For Presenting An Interface Of A Remote Controller In A Mobile Device
US20190155495A1 (en) * 2017-11-22 2019-05-23 Microsoft Technology Licensing, Llc Dynamic device interaction adaptation based on user engagement
US20190196683A1 (en) * 2016-05-03 2019-06-27 Samsung Electronics Co., Ltd. Electronic device and control method of electronic device
US10403253B2 (en) 2014-12-19 2019-09-03 Teac Corporation Portable recording/reproducing apparatus with wireless LAN function and recording/reproduction system with wireless LAN function
CN110337020A (en) * 2019-06-26 2019-10-15 华为技术有限公司 A kind of control method and relevant apparatus showing equipment
US10452230B2 (en) * 2014-05-21 2019-10-22 Samsung Electronics Co., Ltd. Electronic device and method for adding home screen page
US10560654B2 (en) * 2017-09-20 2020-02-11 Lg Electronics Inc. Display device
US10613627B2 (en) 2014-05-12 2020-04-07 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
US20200336325A1 (en) * 2013-12-31 2020-10-22 Samsung Electronics Co., Ltd. Display apparatus, terminal apparatus, and controlling methods thereof
CN114499564A (en) * 2022-01-24 2022-05-13 北京博瑞翔伦科技发展有限公司 Underground wireless AP capable of recording data
US11507215B2 (en) 2018-05-07 2022-11-22 Apple Inc. Devices, methods, and graphical user interfaces for interaction with an intensity-sensitive input region
US11797113B2 (en) * 2019-06-01 2023-10-24 Apple Inc. Devices, methods, and graphical user interfaces for interaction with a control
KR102651875B1 (en) 2016-05-04 2024-03-27 삼성전자주식회사 electronic apparatus and method for controlling external device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9519413B2 (en) 2014-07-01 2016-12-13 Sonos, Inc. Lock screen media playback control
KR101698098B1 (en) * 2014-07-23 2017-01-19 엘지전자 주식회사 Mobile terminal and control method for the mobile terminal
US10055094B2 (en) 2014-10-29 2018-08-21 Xiaomi Inc. Method and apparatus for dynamically displaying device list
KR20160087646A (en) 2015-01-14 2016-07-22 엘지전자 주식회사 Watch type terminal and method for controlling the same
CN104640174B (en) * 2015-02-05 2019-01-08 腾讯科技(深圳)有限公司 Wireless network access point reminding method and device
KR20170035678A (en) * 2015-09-23 2017-03-31 엘지전자 주식회사 Mobile terminal and method of controlling the same
CN106201530A (en) * 2016-07-15 2016-12-07 乐视控股(北京)有限公司 The screen display method of application card and device
CN106201621A (en) * 2016-07-15 2016-12-07 乐视控股(北京)有限公司 Remote controller scene is prescribed a time limit the screen display method of card and device
KR101989828B1 (en) * 2016-12-29 2019-06-17 대구대학교 산학협력단 Home network service providing system using portable terminal
WO2018133456A1 (en) * 2017-01-22 2018-07-26 广东美的制冷设备有限公司 Control device, method, and system for air processing apparatus
CN106765998B (en) * 2017-01-22 2019-08-27 广东美的制冷设备有限公司 Airhandling equipment control device, method and system
CN106839306B (en) * 2017-01-22 2019-11-08 广东美的制冷设备有限公司 Airhandling equipment control device, method and system
CN106765996B (en) * 2017-01-22 2019-06-28 广东美的制冷设备有限公司 Airhandling equipment control device, method and system
CN106996618A (en) * 2017-03-27 2017-08-01 广东美的制冷设备有限公司 The control system of the control device of airhandling equipment, method and air conditioner
CN106679112B (en) * 2017-01-22 2019-08-27 广东美的制冷设备有限公司 The display device of airhandling equipment, method and system
CN106839343B (en) * 2017-03-27 2019-09-13 广东美的制冷设备有限公司 Display device and method based on mobile terminal
CN106647313A (en) * 2017-02-14 2017-05-10 长沙零冰电子科技有限公司 Intelligent household control interface display method and display device
CN107084516B (en) * 2017-03-27 2019-08-16 广东美的制冷设备有限公司 The control device of airhandling equipment, method and system
CN106895880B (en) * 2017-03-29 2020-02-21 联想(北京)有限公司 Electronic device and dangerous state detection method for same
CN107355944A (en) * 2017-06-21 2017-11-17 珠海格力电器股份有限公司 The control method and device of air-conditioning
KR102481894B1 (en) 2017-11-06 2022-12-28 삼성전자 주식회사 Electronic device and method for sharing screen thereof
CN110324481A (en) * 2018-03-30 2019-10-11 比亚迪股份有限公司 The control method and intelligent terminal of vehicle
CN112269505B (en) * 2020-10-22 2022-08-09 维沃移动通信有限公司 Audio and video control method and device and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276221A1 (en) * 2005-06-03 2006-12-07 Isaac Lagnado Usage mode-based antenna selection
US20070294212A1 (en) * 2006-06-14 2007-12-20 Canon Kabushiki Kaisha Information processing apparatus, control method thereof, program, and storage medium
US20090153368A1 (en) * 2007-12-12 2009-06-18 Hur Ji-Hye Tactile input/output device and driving method thereof
US20100138764A1 (en) * 2004-09-08 2010-06-03 Universal Electronics, Inc. System and method for flexible configuration of a controlling device
US20110047368A1 (en) * 2009-08-24 2011-02-24 Microsoft Corporation Application Display on a Locked Device
US20120060123A1 (en) * 2010-09-03 2012-03-08 Hugh Smith Systems and methods for deterministic control of instant-on mobile devices with touch screens
US20120278744A1 (en) * 2011-04-28 2012-11-01 Nokia Corporation Method and apparatus for increasing the functionality of an electronic device in a locked state

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586398B2 (en) * 1998-07-23 2009-09-08 Universal Electronics, Inc. System and method for setting up a universal remote control
US20020093424A1 (en) * 2001-01-17 2002-07-18 Travis Parry Wireless multi-function communication device
US7650004B2 (en) * 2001-11-15 2010-01-19 Starkey Laboratories, Inc. Hearing aids and methods and apparatus for audio fitting thereof
US7653212B2 (en) * 2006-05-19 2010-01-26 Universal Electronics Inc. System and method for using image data in connection with configuring a universal controlling device
FR2851392B1 (en) * 2003-02-18 2005-05-20 Canon Europa Nv METHOD FOR PROCESSING CONTROL SIGNALS WITHIN AUDIO VISUAL NETWORK, DEVICE, NETWORK AND CORRESPONDING COMPUTER PROGRAM
KR100725522B1 (en) * 2006-09-01 2007-06-07 삼성전자주식회사 Method for controlling partial lock in portable device having touch input unit
US8219936B2 (en) * 2007-08-30 2012-07-10 Lg Electronics Inc. User interface for a mobile device using a user's gesture in the proximity of an electronic device
US20090102805A1 (en) * 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
US8138896B2 (en) * 2007-12-31 2012-03-20 Apple Inc. Tactile feedback in an electronic device
KR101537598B1 (en) * 2008-10-20 2015-07-20 엘지전자 주식회사 Mobile terminal with an image projector and method for controlling the same
CN201467242U (en) * 2009-04-30 2010-05-12 深圳万利达移动通信设备有限公司 Mobile phone with network application and capable of remotely controlling television/DVD/set top box
US20100328223A1 (en) * 2009-06-30 2010-12-30 Nokia Corporation Apparatus and associated methods
KR20110019144A (en) * 2009-08-19 2011-02-25 엘지전자 주식회사 Apparatus and method for generating vibration pattern
KR101633329B1 (en) * 2009-08-19 2016-06-24 엘지전자 주식회사 Mobile terminal and method for controlling therof
KR20110074333A (en) * 2009-12-24 2011-06-30 삼성전자주식회사 Method and apparatus for generating vibration in potable terminal
US8502925B2 (en) * 2009-12-29 2013-08-06 VIZIO Inc. Television programming of a remote control
US9083817B2 (en) * 2010-03-19 2015-07-14 Htc Corporation Method for controlling surrounding device and communication device and computer-readable medium using the same
KR101695810B1 (en) * 2010-05-07 2017-01-13 엘지전자 주식회사 Mobile terminal and method for controlling thereof
KR20110127853A (en) * 2010-05-20 2011-11-28 엘지전자 주식회사 Mobile terminal and method for controlling the same
JP5625506B2 (en) * 2010-06-04 2014-11-19 ソニー株式会社 Operation terminal device, electronic device, and electronic device system
US20110320959A1 (en) * 2010-06-23 2011-12-29 Christopher Kresimir Maly System and method for real time inspection information recording and reporting
CN101894023B (en) * 2010-07-06 2016-03-30 中兴通讯股份有限公司 screen locking method and mobile terminal
CN101950461A (en) * 2010-08-20 2011-01-19 东北林业大学 Remote ground infrared automatic forest fire detection system and detection method thereof
US9465457B2 (en) * 2010-08-30 2016-10-11 Vmware, Inc. Multi-touch interface gestures for keyboard and/or mouse inputs
JP5620287B2 (en) * 2010-12-16 2014-11-05 株式会社オプティム Portable terminal, method and program for changing user interface
JP5761993B2 (en) * 2010-12-28 2015-08-12 キヤノン株式会社 Access point search apparatus, access point search method, and program
US20120223959A1 (en) * 2011-03-01 2012-09-06 Apple Inc. System and method for a touchscreen slider with toggle control
KR101953382B1 (en) * 2011-09-21 2019-03-04 삼성전자주식회사 Device and method for conrolling a display in wireless terminal
US9495010B2 (en) * 2011-10-26 2016-11-15 Nokia Technologies Oy Apparatus and associated methods
CN102520940A (en) * 2011-12-01 2012-06-27 深圳市中兴移动通信有限公司 Method and device for displaying widget on screen-locking interface of touch-screen terminal
KR101949737B1 (en) 2012-08-28 2019-02-19 엘지전자 주식회사 Mobile terminal and controlling method therof, and recording medium thereof
US8954736B2 (en) * 2012-10-04 2015-02-10 Google Inc. Limiting the functionality of a software program based on a security model

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100138764A1 (en) * 2004-09-08 2010-06-03 Universal Electronics, Inc. System and method for flexible configuration of a controlling device
US20060276221A1 (en) * 2005-06-03 2006-12-07 Isaac Lagnado Usage mode-based antenna selection
US20070294212A1 (en) * 2006-06-14 2007-12-20 Canon Kabushiki Kaisha Information processing apparatus, control method thereof, program, and storage medium
US20090153368A1 (en) * 2007-12-12 2009-06-18 Hur Ji-Hye Tactile input/output device and driving method thereof
US20110047368A1 (en) * 2009-08-24 2011-02-24 Microsoft Corporation Application Display on a Locked Device
US20120060123A1 (en) * 2010-09-03 2012-03-08 Hugh Smith Systems and methods for deterministic control of instant-on mobile devices with touch screens
US20120278744A1 (en) * 2011-04-28 2012-11-01 Nokia Corporation Method and apparatus for increasing the functionality of an electronic device in a locked state

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150066247A1 (en) * 2012-03-30 2015-03-05 Jaguar Land Rover Limited On-board vehicle control system and method
US9744973B2 (en) * 2012-03-30 2017-08-29 Jaguar Land Rover Limited On-board vehicle control system and method
US9844096B2 (en) 2012-08-27 2017-12-12 Lg Electronics Inc. Mobile terminal and controlling method thereof
US20140223321A1 (en) * 2013-02-06 2014-08-07 Samsung Electronics Co., Ltd. Portable device and method for controlling external device thereof
US11430325B2 (en) * 2013-06-26 2022-08-30 Google Llc Methods, systems, and media for controlling a remote device using a touch screen of a mobile device in a display inhibited state
US10490061B2 (en) 2013-06-26 2019-11-26 Google Llc Methods, systems, and media for controlling a remote device using a touch screen of a mobile device in a display inhibited state
US11749102B2 (en) 2013-06-26 2023-09-05 Google Llc Methods, systems, and media for controlling a remote device using a touch screen of a mobile device in a display inhibited state
US9454251B1 (en) * 2013-06-26 2016-09-27 Google Inc. Methods, systems, and media for controlling a remote device using a touch screen of a mobile device in a display inhibited state
US11043116B2 (en) 2013-06-26 2021-06-22 Google Llc Methods, systems, and media for controlling a remote device using a touchscreen of a mobile device in a display inhibited state
US20150061841A1 (en) * 2013-09-02 2015-03-05 Lg Electronics Inc. Mobile terminal and method of controlling the same
US8988247B1 (en) * 2013-09-02 2015-03-24 Lg Electronics Inc. Mobile terminal and method of controlling the same
US20150153840A1 (en) * 2013-11-20 2015-06-04 Wendy March Computing systems for peripheral control
US9495017B2 (en) * 2013-11-20 2016-11-15 Intel Corporation Computing systems for peripheral control
US11627013B2 (en) * 2013-12-31 2023-04-11 Samsung Electronics Co., Ltd. Display apparatus, terminal apparatus, and methods of controlling at least one peripheral device using same
US20200336325A1 (en) * 2013-12-31 2020-10-22 Samsung Electronics Co., Ltd. Display apparatus, terminal apparatus, and controlling methods thereof
US11347311B2 (en) 2014-05-12 2022-05-31 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
EP2945044B1 (en) * 2014-05-12 2023-08-23 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
US10613627B2 (en) 2014-05-12 2020-04-07 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
US10452230B2 (en) * 2014-05-21 2019-10-22 Samsung Electronics Co., Ltd. Electronic device and method for adding home screen page
EP3210388A4 (en) * 2014-10-24 2017-10-25 Samsung Electronics Co., Ltd. Control device, method of controlling the same, and integrated control system
US10439838B2 (en) 2014-10-24 2019-10-08 Samsung Electronics Co., Ltd. Control device, method of controlling the same, and integrated control system
US9888339B2 (en) 2014-10-31 2018-02-06 Samsung Electronics Co., Ltd. User terminal apparatus, electronic apparatus, system and controlling method thereof
US10194300B2 (en) 2014-10-31 2019-01-29 Samsung Electronics Co., Ltd. User terminal apparatus, electronic apparatus, system and controlling method thereof
US10015739B2 (en) 2014-11-21 2018-07-03 Samsung Electronics Co., Ltd. User terminal for controlling display device and control method thereof
US10403253B2 (en) 2014-12-19 2019-09-03 Teac Corporation Portable recording/reproducing apparatus with wireless LAN function and recording/reproduction system with wireless LAN function
JP2016127334A (en) * 2014-12-26 2016-07-11 ティアック株式会社 Sound recording system including wireless lan function
US20160276866A1 (en) * 2015-03-17 2016-09-22 Peiker Acustic Gmbh & Co. Kg Integration device
US10439423B2 (en) * 2015-03-17 2019-10-08 Peiker Acustic Gmbh & Co. Kg Integration device
US20190196683A1 (en) * 2016-05-03 2019-06-27 Samsung Electronics Co., Ltd. Electronic device and control method of electronic device
KR102651875B1 (en) 2016-05-04 2024-03-27 삼성전자주식회사 electronic apparatus and method for controlling external device
US20190138172A1 (en) * 2016-05-04 2019-05-09 Samsung Electronics Co., Ltd. Method for controlling external device by electronic device, and electronic device therefor
US11036367B2 (en) * 2016-05-04 2021-06-15 Samsung Electronics Co., Ltd. Method for controlling external device by electronic device, and electronic device therefor
KR20170125655A (en) * 2016-05-04 2017-11-15 삼성전자주식회사 electronic apparatus and method for controlling external device
JP2018524827A (en) * 2016-05-09 2018-08-30 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. Device control method and apparatus
US10564833B2 (en) * 2016-05-09 2020-02-18 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for controlling devices
WO2017193491A1 (en) * 2016-05-09 2017-11-16 北京小米移动软件有限公司 Method and apparatus for controlling device
CN105974804A (en) * 2016-05-09 2016-09-28 北京小米移动软件有限公司 Method and device for controlling equipment
US20170322712A1 (en) * 2016-05-09 2017-11-09 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for controlling devices
US9892634B2 (en) * 2016-05-27 2018-02-13 Remotec Technology Limited Remote control docking station and system
CN107295383A (en) * 2016-08-31 2017-10-24 梁云 The input device of set top box virtual keyboard
US10560654B2 (en) * 2017-09-20 2020-02-11 Lg Electronics Inc. Display device
US10732826B2 (en) * 2017-11-22 2020-08-04 Microsoft Technology Licensing, Llc Dynamic device interaction adaptation based on user engagement
US20190155495A1 (en) * 2017-11-22 2019-05-23 Microsoft Technology Licensing, Llc Dynamic device interaction adaptation based on user engagement
US11507215B2 (en) 2018-05-07 2022-11-22 Apple Inc. Devices, methods, and graphical user interfaces for interaction with an intensity-sensitive input region
US20190052745A1 (en) * 2018-06-14 2019-02-14 Hisense Mobile Communications Technology Co., Ltd. Method For Presenting An Interface Of A Remote Controller In A Mobile Device
US11797113B2 (en) * 2019-06-01 2023-10-24 Apple Inc. Devices, methods, and graphical user interfaces for interaction with a control
CN110337020A (en) * 2019-06-26 2019-10-15 华为技术有限公司 A kind of control method and relevant apparatus showing equipment
CN114499564A (en) * 2022-01-24 2022-05-13 北京博瑞翔伦科技发展有限公司 Underground wireless AP capable of recording data

Also Published As

Publication number Publication date
KR101949737B1 (en) 2019-02-19
CN105913643A (en) 2016-08-31
US20160183326A1 (en) 2016-06-23
US9844096B2 (en) 2017-12-12
KR20140029609A (en) 2014-03-11
CN103634460A (en) 2014-03-12
EP2704407A1 (en) 2014-03-05
CN105913643B (en) 2019-08-02
EP2704407B1 (en) 2018-05-23
DE202013012417U1 (en) 2016-10-20
CN103634460B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
US9844096B2 (en) Mobile terminal and controlling method thereof
US10015624B2 (en) Mobile terminal and controlling method thereof
US10001917B2 (en) Mobile terminal and controlling method thereof
US10031659B2 (en) Mobile terminal and method for gesture input controlling an individual application setting
US9793981B2 (en) Mobile terminal and controlling method thereof
US10038687B2 (en) Devices and control method thereof and application login system
US9658768B2 (en) Method of controlling mobile terminal
US9167526B2 (en) Mobile terminal and controlling method thereof
US9880701B2 (en) Mobile terminal and controlling method thereof
US8612033B2 (en) Method for executing menu in mobile terminal and mobile terminal thereof
EP2073514B1 (en) Mobile terminal and method for displaying wireless devices thereof
US9578758B2 (en) Mobile terminal
US8583178B2 (en) Mobile terminal, display device and controlling method thereof
US20130157722A1 (en) Mobile terminal and controlling method thereof
US20150205488A1 (en) Mobile terminal and method for controlling the same
US9131348B2 (en) Mobile terminal and controlling method thereof
US10348882B2 (en) Interface display method, communication terminal and computer storage medium
US9544708B2 (en) Mobile terminal and controlling method thereof
US10402086B2 (en) Mobile terminal and method for controlling the same
WO2022052907A1 (en) Display method and electronic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SON, JIYEN;SONG, YOUNGHOON;LEE, CHOONJAE;AND OTHERS;SIGNING DATES FROM 20130726 TO 20130813;REEL/FRAME:031085/0298

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION