US20140300491A1 - System with distributed process unit - Google Patents

System with distributed process unit Download PDF

Info

Publication number
US20140300491A1
US20140300491A1 US14/229,522 US201414229522A US2014300491A1 US 20140300491 A1 US20140300491 A1 US 20140300491A1 US 201414229522 A US201414229522 A US 201414229522A US 2014300491 A1 US2014300491 A1 US 2014300491A1
Authority
US
United States
Prior art keywords
unit
communication unit
sensing
computing
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/229,522
Inventor
Hung Wen Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemtek Technology Co Ltd
Original Assignee
Gemtek Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemtek Technology Co Ltd filed Critical Gemtek Technology Co Ltd
Assigned to GEMTEK TECHNOLOGY CO., LTD. reassignment GEMTEK TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, HUNG WEN
Publication of US20140300491A1 publication Critical patent/US20140300491A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention relates to a separate computing system, and more particularly, to a wireless communication system with a separate computing unit.
  • wearable electronic apparatuses Due to technological advancement, wearable electronic apparatuses are becoming more popular with consumers and come in a wide variety of categories and functionalities. In this regard, users expect wearable electronic apparatuses, such as a contact lens capable of measuring capillary blood pressure or a wristband capable of taking the pulse, to have excellent electronic detection/computation functionality while maintaining minimized weight and low power consumption.
  • the present invention involves transmitting, via wireless transmission, the data to be computed from a wearable electronic apparatus to a high-performance processor equipped in a mobile communication device, such as a smartphone, a tablet computer, or a hand-held game console, or to a microcomputer equipped with a separate computing processor, to undergo the processing and computing operations, and displaying the result of the processing and computing operations on a screen of the mobile communication device.
  • a mobile communication device such as a smartphone, a tablet computer, or a hand-held game console
  • a microcomputer equipped with a separate computing processor to undergo the processing and computing operations, and displaying the result of the processing and computing operations on a screen of the mobile communication device.
  • the user can directly enter an instruction to the mobile communication device via an interface of the mobile communication device to manipulate the settings of the wearable electronic apparatus.
  • a processor or microprocessor of an existing mobile device, such as a smartphone not only features a high computation clock rate but also has multiple cores for executing program instructions separately and independently, thereby increasing the speed of program execution
  • a system with a separate computing unit comprising: a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information and a first wireless communication unit via which the physiological information that has not yet undergone the computing and processing operations is transmitted externally, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and a primary computing device comprising a computing unit, a display unit and a second wireless communication unit, the second wireless communication unit receiving and transmitting the physiological information to the computing unit to undergo the computing operation and informing the user of a result of the computing operation through the display unit; wherein the sensing device transmits, via the first wireless communication unit, a wireless signal to the primary computing device according to a preset criterion.
  • the first wireless communication unit or/and the second wireless communication unit is/are selected from one of a Zigbee communication unit, a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, and an infrared communication unit.
  • the physiological information is selected from the information relating to the user's blood pressure, pulse, voice and vibration, and that the display unit is selected from a screen, an audio device and at least one LED lamp.
  • the primary computing device further comprises a control interface unit providing a physiological information reading interface for making available the corresponding information according to the user's click selection.
  • the control interface unit further provides a sensing device setting interface configured to transmit, via the second wireless communication unit, an uncoded wireless setting signal to the sensing device according to the click selection made by the user.
  • the sensing device changes the value of a register thereof according to the wireless setting signal.
  • the criterion is set to be that the user's physiological information is regularly sensed with the sensing unit and the wireless signal is regularly transmitted to the primary computing device via the first wireless communication unit.
  • the criterion is set to be that the wireless signal is transmitted to the primary computing device via the first wireless communication unit when the sensing unit senses that the user's physiological information exceeds a critical value.
  • the sensing device is a heart stent with sensing capability, and the physiological information relates to a width of a cardiac blood vessel.
  • the sensing device is a contact lens with sensing capability, and the physiological information relates to the blood pressure measured at ocular capillaries.
  • the sensing device is a wristband with sensing capability, and the physiological information relates to the blood pressure or pulse.
  • the primary computing device further comprises an identity authentication unit configured to perform an identity authentication procedure on the sensing device, and one or more other sensing devices from which the primary computing device synchronously receives wireless signals.
  • a system with a separate computing unit comprising: a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information and a first wireless communication unit via which a warning message is transmitted externally when the physiological information sensed exceeds a standard value, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and a warning device comprising a warning unit and a second wireless communication unit, the warning unit performing a
  • the warning device further comprises a computing unit configured to perform the computing operation on the physiological information contained in the warning message, and performs various respective warning operations according to a result of the computing operation.
  • the warning device is a pocket-sized computer or a microcomputer, and that the warning unit is selected from one of an audio device, a display device and a vibration device.
  • a wearable electronic apparatus requires either no processor at all or only a simple microprocessor because all the complicated computing operations can be performed on a mobile communication device, such as a smartphone, or a microcomputer with a separate processor by means of wireless transmission, thereby fulfilling the goals of minimized weight, low power consumption, reduced cost, and enhanced computing capability.
  • FIG. 1 is a block diagram illustrating the function of a separate computing system according to the first embodiment of the present invention.
  • FIG. 2 is a flow chart illustrating the operation of the separate computing system according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating the function of a separate computing system according to the second embodiment of the present invention.
  • FIG. 4 is a flow chart illustrating the operation of the separate computing system according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating the function of a separate computing system according to the third embodiment of the present invention.
  • FIG. 6 is a flow chart illustrating the operation of the separate computing system according to the third embodiment of the present invention.
  • FIG. 1 there is shown a block diagram illustrating the function of a separate computing system according to the first embodiment of the present invention.
  • a separate computing system 100 of the present invention comprising: a primary computing device 1 comprising a display unit 11 , a computing unit 12 , a memory unit 13 , a signal receiving unit 14 , and a power supply unit 15 ; and a sensing device 2 comprising a signal transmission unit 21 , a sensing unit 22 , and a power supply unit 23 .
  • the sensing unit 22 of the sensing device 2 is capable of detecting a user's physiological information such as, for example, information relating to one or more of the user's blood pressure, pulse, voice, vibration, and temperature.
  • the signal transmission unit 21 of the sensing device 2 receives a message from the sensing unit 22 and transmits externally the message via wireless communication.
  • the signal transmission unit 21 is selected from one of a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, a Zigbee communication unit, and an infrared communication unit.
  • the power supply unit 23 of the sensing device 2 which can be, for example, one of a lead-acid battery, a nickel-cadmium battery, a nickel-hydride battery and a lithium ion battery, is configured to supply power to all electronic components in the sensing device 2 .
  • the signal receiving unit 14 of the primary computing device 1 receives information transmitted by the signal transmission unit 21 of the sensing device 2 .
  • the signal receiving unit 14 is selected from one of a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, a Zigbee communication unit, and an infrared communication unit.
  • the computing unit 12 of the primary computing device 1 performs the processing or computing operation on the information received by the signal receiving unit 14 , stores a result of the processing or computing operation in the memory unit 13 and/or displays the result of the processing or computing operation on the display unit 11 .
  • the computing unit 12 refers generally to a logical computing device capable of executing complex computer programs, such as an integrated circuit central processing unit or a microprocessor.
  • the computing unit 12 can have one or more cores and is preferably capable of parallel computing or synchronous multithreaded computing.
  • the memory unit 13 includes a volatile memory and/or a nonvolatile memory and is configured to store the data of the primary computing device 1 .
  • the power supply unit 15 which can be, for example, one of a lead-acid battery, a nickel-cadmium battery, a nickel-hydride battery and a lithium ion battery, is configured to supply power to all electronic components in the primary computing device 1 .
  • the display unit 11 of the primary computing device 1 is selected from one of a screen, a projection device, an audio device, and at least one LED lamp.
  • FIG. 2 there is shown a flow chart illustrating the operation of the separate computing system according to the first embodiment of the present invention.
  • steps S 21 ⁇ S 22 are implemented on the sensing device 2
  • steps S 23 ⁇ S 25 are implemented on the primary computing device 1 .
  • the primary computing device 1 is exemplified by a smartphone
  • the sensing device 2 is exemplified by a wristband capable of sensing physiological information.
  • the physiological information is preferably the blood pressure-related information or pulse-related information.
  • the primary computing device 1 can be one of other mobile communication devices, such as a tablet computer, a notebook computer, a hand-held game console, and a multimedia player
  • the sensing device 2 can be a contact lens with sensing capability or a heart stent with sensing capability, without departing from the spirit and scope of the present invention.
  • the first embodiment described herein is to be deemed as illustrative, rather than restrictive, of the scope of the present invention.
  • step S 21 the sensing unit 22 of the sensing device 2 senses the user's physiological information such as, for example, one of the blood pressure-related information, the pulse-related information, the estimated step count-related information, and the body temperature-related information, but not limited thereto.
  • step S 22 the signal transmission unit 21 of the sensing device 2 transmits externally the physiological information having not yet undergone the computing and processing operations.
  • the phrase “having not yet undergone the computing and processing operations” refers to the condition that the value detected by the sensing unit 22 is directly transmitted externally via wireless transmission without special encoding or encrypted computation. Thus, the sensing device 2 does not require any high-performance computing unit.
  • a transmission condition for the sensing device 2 for example, under which wireless signals are regularly transmitted to the primary computing device 1 via the signal transmission unit 21 , or wireless signals are transmitted externally via the signal transmission unit 21 when the sensing unit 22 senses that the subject's physiological information exceeds a critical value.
  • the signal receiving unit 14 of the primary computing device 1 receives the physiological information.
  • the physiological information is then transmitted to the computing unit 12 to undergo the computing operation whose result can, for example, be used to determine whether the blood pressure-related information is within a normal range, determine whether the pulse-related information is within a normal range, calculate the calories burned or the distance walked according to the estimated step count-related information, and determine whether the body temperature-related information is within a normal range, but is not limited thereto.
  • step S 25 the primary computing device 1 informs a user 5 , via the display unit 11 , of a result of the processing or computing operation which indicates whether, for example, various data relating to the user's blood pressure, pulse, calories, and body temperature are within their respective normal ranges, hence the user 5 can obtain the physiological information in a real-time manner and knows whether or not the physiological information is within a normal range.
  • the user 5 watching the display unit 11 and the subject being measured by the sensing device 2 can be the same person or different persons, and thus the separate computing system of the present invention is widely applicable to the measurement made by the physician/patient or oneself.
  • certain physiological information after being obtained by the sensing device 2 , is transmitted, via wireless transmission, to the primary computing device 1 to undergo the computing and processing operations performed by the computing unit 11 of the primary computing device 1 , and then the result of the computing and processing operations is displayed on a screen (i.e., the display unit 11 ) of the primary computing device 1 .
  • the sensing device 2 is exempted from complicated processing or computing operations, and thus the number of essential components thereof can be minimized (for example, no high-performance processor or memory is required), thereby fulfilling the goals of minimized weight and low power consumption.
  • the present invention is advantageous in that the sensing device 2 , instead of being equipped with components of high power consumption and great weight, such as a processor, a memory and a display unit, exploits a central processing unit of a smartphone (i.e., the primary computing device 1 ) to perform the computing operation, and that the result of the computing operation is presented to the user 5 on the screen (i.e., the display unit 11 ) of the smartphone, thereby reducing the weight and power consumption.
  • a smartphone i.e., the primary computing device 1
  • the result of the computing operation is presented to the user 5 on the screen (i.e., the display unit 11 ) of the smartphone, thereby reducing the weight and power consumption.
  • the sensing device 2 of the present invention is characterized by minimized weight and low power consumption, it is applicable not only to the aforesaid wristband but also to a heart stent with sensing capability that detects a width of a cardiac blood vessel of a user with a sensing unit 22 thereof.
  • the sensing device 2 is applicable to a contact lens with sensing capability that detects the blood pressure at the user's ocular capillaries with a sensing unit 22 thereof.
  • FIG. 3 there is shown a block diagram illustrating the function of a separate computing system according to the second embodiment of the present invention.
  • FIG. 3 is different from FIG. 1 in that the sensing device 2 has a first wireless communication unit 24 for receiving and transmitting wireless signals, and that the primary computing device 1 has a second wireless communication unit 16 for receiving and transmitting wireless signals.
  • the primary computing device 1 and the sensing device 2 communicate with each other by one of WiFi communication, NFC communication, RFID communication, Bluetooth communication, Zigbee communication, and infrared communication.
  • the first wireless communication unit 24 and the second wireless communication unit 16 of the second embodiment are capable of two-way (receiving-and-transmitting) wireless communication.
  • the primary computing device 1 further has a control interface unit 17 .
  • the control interface unit 17 provides a physiological information reading interface for making available the corresponding information according to the user's click selection. For instance, the user can make enquiries, via the physiological information reading interface, as to the fluctuations in body temperature over the past week or the average pulse over the past hour.
  • FIG. 4 there is shown a flow chart illustrating the operation of the separate computing system according to the second embodiment of the present invention.
  • steps S 41 ⁇ S 42 are implemented on the primary computing device 1
  • steps S 43 ⁇ S 44 are implemented on the sensing device 2 .
  • the primary computing device 1 and the sensing device 2 like those disclosed in the first embodiment, are exemplified by a smartphone and a wristband capable of sensing physiological information, respectively.
  • the second embodiment is illustrative, rather than restrictive, of the scope of the present invention.
  • the flow chart in FIG. 4 omits similar operation processes depicted in FIG. 2 , such as the regular transmission of physiological information relating to the sensed blood pressure, pulse, calories, body temperature, etc., to the primary computing device 1 by the sensing device 2 .
  • step S 41 the user enters a sensing device setting instruction via a touchscreen or a physical key (i.e., the control interface unit) of the smartphone (i.e., the primary computing device 1 ). For instance, the user clicks on the touchscreen to set the current physiological information to be detected as the pulse-related information and set the detection interval to be 10 minutes.
  • step S 42 the smartphone transmits, via the second wireless communication unit 16 , an uncoded wireless setting signal based on the sensing device setting instruction, and the wireless setting signal contains the sensing device setting instruction which has just been entered by the user.
  • step S 43 the first wireless communication unit 24 of the sensing device 2 (i.e., the wristband) receives the wireless setting signal.
  • step S 44 the sensing device changes the value of a register thereof according to the wireless setting signal such that it detects a subject's pulse once every 10 minutes.
  • the primary computing device 1 can not only display the data sensed by the sensing device 2 but also allow the user to directly and conveniently manipulate the measurement settings of the sensing device 2 .
  • FIG. 5 there is shown a block diagram illustrating the function of a separate computing system according to the third embodiment of the present invention.
  • the embodiment illustrated in FIG. 5 is different from the embodiments illustrated in FIGS. 1 and 3 in that the primary computing device 1 is capable of synchronously controlling multiple sensing devices (exemplified by a first sensing device 3 and a second sensing device 4 ) via the second wireless communication unit 16 , and that the primary computing device 1 further comprises an identity authentication unit 18 configured to perform an identity authentication procedure on the first sensing device 3 and the second sensing device 4 .
  • the identity authentication unit 18 performs the identity authentication procedure according to the hardware IDs or media access control addresses (also known as MAC addresses) of the first sensing device 3 and the second sensing device 4 .
  • the hardware IDs or media access control addresses also known as MAC addresses
  • steps S 61 and S 62 are implemented on the first sensing device 3
  • steps S 63 and S 64 are implemented on the second sensing device 4
  • steps S 65 ⁇ S 67 are implemented on the primary computing device 1 .
  • the primary computing device 1 is exemplified by a smartphone
  • the first sensing device 3 is exemplified by a heart stent with sensing capability
  • the second sensing device 4 is exemplified by a contact lens with sensing capability.
  • the third embodiment is illustrative, rather than restrictive, of the scope of the present invention.
  • a heart stent i.e., the first sensing device 3
  • the smartphone i.e., the primary computing device 1
  • a first sensing communication unit 31 a first sensing communication unit
  • the contact lens i.e., the second sensing device 4
  • the contact lens undergoes the identity authentication procedure performed by the smartphone via a second sensing communication unit 41 .
  • the wireless authentication signals from the heart stent and the contact lens after being received by the smartphone, are delivered to the identity authentication unit 18 that performs the identity authentication procedure on the sensing devices.
  • the heart stent starts to sense the user's physiological information (e.g. a width of a cardiac blood vessel), and the contact lens also starts to sense the user's physiological information (e.g. the blood pressure at ocular capillaries) after successful identity authentication, and then the sensed physiological information is transmitted to the smartphone.
  • the user's physiological information e.g. a width of a cardiac blood vessel
  • the contact lens also starts to sense the user's physiological information (e.g. the blood pressure at ocular capillaries) after successful identity authentication, and then the sensed physiological information is transmitted to the smartphone.
  • the heart stent and/or the contact lens are/is configured to transmit, via, the first sensing communication unit 31 or the second sensing communication unit 41 , wireless signals to the smartphone only when the sensed physiological information exceeds a critical value (for example, when the blood pressure exceeds 140 mmHg) so as to reduce the power consumption.
  • a critical value for example, when the blood pressure exceeds 140 mmHg
  • the second wireless communication unit 16 of the smartphone receives and transmits the physiological information to the computing unit 12 to undergo the computing operation, and informs the user of a result of the computing operation via a screen (i.e., the display unit 11 ).
  • a screen i.e., the display unit 11 .
  • the user knows the width of a cardiac blood vessel and blood pressure in a real-time manner. In other words, the user can instantly obtain information measured by multiple sensing devices.
  • the sensing device comprises a power supply unit, a sensing unit, and a first wireless communication unit.
  • the power supply unit is configured to electrically connect and supply power to the sensing unit and the first wireless communication unit.
  • the sensing unit is configured to sense the user's physiological information and to transmit externally a warning message via the first wireless communication unit when the sensed physiological information exceeds a standard value.
  • a warning device comprises a warning unit and a second wireless communication unit. After the second wireless communication unit has received the warning message, the warning unit performs a warning operation.
  • the sensing device is an electronic sphygmomanometer equipped with a short-range wireless communication unit and embedded in a garment.
  • the sensing device transmits, via the short-range wireless communication unit, a
  • the microcomputer has a buzzer (i.e., the warning unit) and a second wireless communication unit. After the second wireless communication unit has received the warning message, the buzzer starts to sound to warn the user.
  • the warning device further comprises a computing unit (e.g. a microprocessor) configured to perform the computing operation on the physiological information contained in the warning message, and performs various respective warning operations according to the result of the computing operation.
  • a computing unit e.g. a microprocessor
  • slow sounds are generated when the blood pressure falls within the range of 140-160 mmHg
  • short interval sounds are generated when the blood pressure exceeds 160 mmHg.
  • the warning device is a pocket-sized computer or a microcomputer, and that the warning unit is selected from one of an audio device, a display device, and a vibration device.
  • a separate computing system of the present invention enables complex calculation operations and display to be performed on a smartphone via wireless transmission, and thus a sensing device, such as a wristband, a contact lens, or a heart stent, requires either no processor at all or only a simple microprocessor for facilitating the display of content. Therefore, the sensing device not only has electronic sensing capability but also fulfills the goals of minimized weight and low power consumption.

Abstract

The present invention provides a system with a separate computing unit, comprising: a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information, and a first wireless communication unit via which the physiological information that has not yet undergone the computing and processing operations is transmitted externally, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and a primary computing device comprising a computing unit, a display unit, and a second wireless communication unit, the second wireless communication unit receiving and transmitting the physiological information to the computing unit to undergo the computing operation and informing the user of a result of the computing operation via the display unit; wherein the sensing device transmits, via the first wireless communication unit, a wireless signal to the primary computing device according to a preset criterion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). CN201320155258.X filed in China on Mar. 29, 2013, CN201310214981.5 filed in China on May 31, 2013, and CN201310279676.4 filed in China on Jul. 4, 2013, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a separate computing system, and more particularly, to a wireless communication system with a separate computing unit.
  • 2. Description of the Prior Art
  • Due to technological advancement, wearable electronic apparatuses are becoming more popular with consumers and come in a wide variety of categories and functionalities. In this regard, users expect wearable electronic apparatuses, such as a contact lens capable of measuring capillary blood pressure or a wristband capable of taking the pulse, to have excellent electronic detection/computation functionality while maintaining minimized weight and low power consumption.
  • Minimized weight and low power consumption, however, are usually secured at the expense of electronic detection/computation functionality because a high-performance processor, which is prerequisite to excellent detection/computation functionality, inevitably consumes much power and causes heat dissipation problem.
  • Accordingly, how to reduce the weight and power consumption of a wearable electronic apparatus is an imperative issue to be addressed.
  • SUMMARY OF THE INVENTION
  • In view of the aforesaid drawbacks of the prior art, the present invention involves transmitting, via wireless transmission, the data to be computed from a wearable electronic apparatus to a high-performance processor equipped in a mobile communication device, such as a smartphone, a tablet computer, or a hand-held game console, or to a microcomputer equipped with a separate computing processor, to undergo the processing and computing operations, and displaying the result of the processing and computing operations on a screen of the mobile communication device. Alternatively, the user can directly enter an instruction to the mobile communication device via an interface of the mobile communication device to manipulate the settings of the wearable electronic apparatus. A processor or microprocessor of an existing mobile device, such as a smartphone, not only features a high computation clock rate but also has multiple cores for executing program instructions separately and independently, thereby increasing the speed of program execution with the multiplexing of parallel computing.
  • According to an object of the present invention, there is provided a system with a separate computing unit, comprising: a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information and a first wireless communication unit via which the physiological information that has not yet undergone the computing and processing operations is transmitted externally, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and a primary computing device comprising a computing unit, a display unit and a second wireless communication unit, the second wireless communication unit receiving and transmitting the physiological information to the computing unit to undergo the computing operation and informing the user of a result of the computing operation through the display unit; wherein the sensing device transmits, via the first wireless communication unit, a wireless signal to the primary computing device according to a preset criterion.
  • According to the above conception, the first wireless communication unit or/and the second wireless communication unit is/are selected from one of a Zigbee communication unit, a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, and an infrared communication unit.
  • According to the above conception, it is preferable that the physiological information is selected from the information relating to the user's blood pressure, pulse, voice and vibration, and that the display unit is selected from a screen, an audio device and at least one LED lamp.
  • According to the above conception, it is preferable that the primary computing device further comprises a control interface unit providing a physiological information reading interface for making available the corresponding information according to the user's click selection. Moreover, the control interface unit further provides a sensing device setting interface configured to transmit, via the second wireless communication unit, an uncoded wireless setting signal to the sensing device according to the click selection made by the user. The sensing device changes the value of a register thereof according to the wireless setting signal.
  • According to the above conception, it is preferable that the criterion is set to be that the user's physiological information is regularly sensed with the sensing unit and the wireless signal is regularly transmitted to the primary computing device via the first wireless communication unit. Alternatively, the criterion is set to be that the wireless signal is transmitted to the primary computing device via the first wireless communication unit when the sensing unit senses that the user's physiological information exceeds a critical value.
  • According to the above conception, it is preferable that the sensing device is a heart stent with sensing capability, and the physiological information relates to a width of a cardiac blood vessel. Alternatively, the sensing device is a contact lens with sensing capability, and the physiological information relates to the blood pressure measured at ocular capillaries. Alternatively, the sensing device is a wristband with sensing capability, and the physiological information relates to the blood pressure or pulse.
  • According to the above conception, it is preferable that the primary computing device further comprises an identity authentication unit configured to perform an identity authentication procedure on the sensing device, and one or more other sensing devices from which the primary computing device synchronously receives wireless signals.
  • According to the object of the present invention, there is provided a system with a separate computing unit comprising: a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information and a first wireless communication unit via which a warning message is transmitted externally when the physiological information sensed exceeds a standard value, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and a warning device comprising a warning unit and a second wireless communication unit, the warning unit performing a
  • warning operation after the second wireless communication unit has received the warning message.
  • According to the above conception, the warning device further comprises a computing unit configured to perform the computing operation on the physiological information contained in the warning message, and performs various respective warning operations according to a result of the computing operation. It is preferable that the warning device is a pocket-sized computer or a microcomputer, and that the warning unit is selected from one of an audio device, a display device and a vibration device.
  • With the aforementioned arrangement, a wearable electronic apparatus requires either no processor at all or only a simple microprocessor because all the complicated computing operations can be performed on a mobile communication device, such as a smartphone, or a microcomputer with a separate processor by means of wireless transmission, thereby fulfilling the goals of minimized weight, low power consumption, reduced cost, and enhanced computing capability.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating the function of a separate computing system according to the first embodiment of the present invention.
  • FIG. 2 is a flow chart illustrating the operation of the separate computing system according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating the function of a separate computing system according to the second embodiment of the present invention.
  • FIG. 4 is a flow chart illustrating the operation of the separate computing system according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating the function of a separate computing system according to the third embodiment of the present invention.
  • FIG. 6 is a flow chart illustrating the operation of the separate computing system according to the third embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention will be described more fully hereinafter with specific embodiments by reference to the accompanying drawings. Reference numerals used herein refer to those shown in the drawings. When used herein, the words “comprise”, “comprises”, and “comprising” are open-ended terms and shall be construed as “include, without limitation”, “includes, without limitation”, and “including, without limitation”, respectively. Moreover, a person having ordinary knowledge in the art understands that the same component/product may have a number of different names. For instance, the terms “processor” and “computing unit” refer to the same thing. Hence, components/products having functions similar to those described herein and belonging to the same technical field as the present invention fall within the scope of the present invention.
  • Referring to FIG. 1, there is shown a block diagram illustrating the function of a separate computing system according to the first embodiment of the present invention. As shown in FIG. 1, there is a separate computing system 100 of the present invention, comprising: a primary computing device 1 comprising a display unit 11, a computing unit 12, a memory unit 13, a signal receiving unit 14, and a power supply unit 15; and a sensing device 2 comprising a signal transmission unit 21, a sensing unit 22, and a power supply unit 23.
  • The sensing unit 22 of the sensing device 2 is capable of detecting a user's physiological information such as, for example, information relating to one or more of the user's blood pressure, pulse, voice, vibration, and temperature. The signal transmission unit 21 of the sensing device 2 receives a message from the sensing unit 22 and transmits externally the message via wireless communication. Preferably, the signal transmission unit 21 is selected from one of a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, a Zigbee communication unit, and an infrared communication unit. The power supply unit 23 of the sensing device 2, which can be, for example, one of a lead-acid battery, a nickel-cadmium battery, a nickel-hydride battery and a lithium ion battery, is configured to supply power to all electronic components in the sensing device 2.
  • The signal receiving unit 14 of the primary computing device 1 receives information transmitted by the signal transmission unit 21 of the sensing device 2. Preferably, the signal receiving unit 14 is selected from one of a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, a Zigbee communication unit, and an infrared communication unit. The computing unit 12 of the primary computing device 1 performs the processing or computing operation on the information received by the signal receiving unit 14, stores a result of the processing or computing operation in the memory unit 13 and/or displays the result of the processing or computing operation on the display unit 11. The computing unit 12 refers generally to a logical computing device capable of executing complex computer programs, such as an integrated circuit central processing unit or a microprocessor. The computing unit 12 can have one or more cores and is preferably capable of parallel computing or synchronous multithreaded computing. The memory unit 13 includes a volatile memory and/or a nonvolatile memory and is configured to store the data of the primary computing device 1. The power supply unit 15, which can be, for example, one of a lead-acid battery, a nickel-cadmium battery, a nickel-hydride battery and a lithium ion battery, is configured to supply power to all electronic components in the primary computing device 1. Moreover, the display unit 11 of the primary computing device 1 is selected from one of a screen, a projection device, an audio device, and at least one LED lamp.
  • Referring to FIG. 2, there is shown a flow chart illustrating the operation of the separate computing system according to the first embodiment of the present invention. As shown in FIG. 2, steps S21˜S22 are implemented on the sensing device 2, and steps S23˜S25 are implemented on the primary computing device 1. For the sake of better understanding of the present invention, the primary computing device 1 is exemplified by a smartphone, and the sensing device 2 is exemplified by a wristband capable of sensing physiological information. The physiological information is preferably the blood pressure-related information or pulse-related information. However, a person having ordinary knowledge in the art understands that the primary computing device 1 can be one of other mobile communication devices, such as a tablet computer, a notebook computer, a hand-held game console, and a multimedia player, and that the sensing device 2 can be a contact lens with sensing capability or a heart stent with sensing capability, without departing from the spirit and scope of the present invention. The first embodiment described herein is to be deemed as illustrative, rather than restrictive, of the scope of the present invention.
  • In step S21, the sensing unit 22 of the sensing device 2 senses the user's physiological information such as, for example, one of the blood pressure-related information, the pulse-related information, the estimated step count-related information, and the body temperature-related information, but not limited thereto. In step S22, the signal transmission unit 21 of the sensing device 2 transmits externally the physiological information having not yet undergone the computing and processing operations. The phrase “having not yet undergone the computing and processing operations” refers to the condition that the value detected by the sensing unit 22 is directly transmitted externally via wireless transmission without special encoding or encrypted computation. Thus, the sensing device 2 does not require any high-performance computing unit. Moreover, in practice, it is feasible to set a transmission condition for the sensing device 2, for example, under which wireless signals are regularly transmitted to the primary computing device 1 via the signal transmission unit 21, or wireless signals are transmitted externally via the signal transmission unit 21 when the sensing unit 22 senses that the subject's physiological information exceeds a critical value.
  • Referring to step S23, the signal receiving unit 14 of the primary computing device 1 receives the physiological information. As shown in step S24, the physiological information is then transmitted to the computing unit 12 to undergo the computing operation whose result can, for example, be used to determine whether the blood pressure-related information is within a normal range, determine whether the pulse-related information is within a normal range, calculate the calories burned or the distance walked according to the estimated step count-related information, and determine whether the body temperature-related information is within a normal range, but is not limited thereto. In step S25, the primary computing device 1 informs a user 5, via the display unit 11, of a result of the processing or computing operation which indicates whether, for example, various data relating to the user's blood pressure, pulse, calories, and body temperature are within their respective normal ranges, hence the user 5 can obtain the physiological information in a real-time manner and knows whether or not the physiological information is within a normal range. It is to be noted that the user 5 watching the display unit 11 and the subject being measured by the sensing device 2 can be the same person or different persons, and thus the separate computing system of the present invention is widely applicable to the measurement made by the physician/patient or oneself.
  • As can be seen from the above embodiment, certain physiological information, after being obtained by the sensing device 2, is transmitted, via wireless transmission, to the primary computing device 1 to undergo the computing and processing operations performed by the computing unit 11 of the primary computing device 1, and then the result of the computing and processing operations is displayed on a screen (i.e., the display unit 11) of the primary computing device 1. With such arrangement, the sensing device 2 is exempted from complicated processing or computing operations, and thus the number of essential components thereof can be minimized (for example, no high-performance processor or memory is required), thereby fulfilling the goals of minimized weight and low power consumption. In other words, the present invention is advantageous in that the sensing device 2, instead of being equipped with components of high power consumption and great weight, such as a processor, a memory and a display unit, exploits a central processing unit of a smartphone (i.e., the primary computing device 1) to perform the computing operation, and that the result of the computing operation is presented to the user 5 on the screen (i.e., the display unit 11) of the smartphone, thereby reducing the weight and power consumption.
  • Moreover, as the sensing device 2 of the present invention is characterized by minimized weight and low power consumption, it is applicable not only to the aforesaid wristband but also to a heart stent with sensing capability that detects a width of a cardiac blood vessel of a user with a sensing unit 22 thereof. Alternatively, the sensing device 2 is applicable to a contact lens with sensing capability that detects the blood pressure at the user's ocular capillaries with a sensing unit 22 thereof.
  • Referring to FIG. 3, there is shown a block diagram illustrating the function of a separate computing system according to the second embodiment of the present invention. FIG. 3 is different from FIG. 1 in that the sensing device 2 has a first wireless communication unit 24 for receiving and transmitting wireless signals, and that the primary computing device 1 has a second wireless communication unit 16 for receiving and transmitting wireless signals. In the second embodiment, the primary computing device 1 and the sensing device 2 communicate with each other by one of WiFi communication, NFC communication, RFID communication, Bluetooth communication, Zigbee communication, and infrared communication. In other words, unlike the signal transmission unit 21 and the signal receiving unit 14 of the first embodiment, the first wireless communication unit 24 and the second wireless communication unit 16 of the second embodiment are capable of two-way (receiving-and-transmitting) wireless communication. Moreover, in the second embodiment, the primary computing device 1 further has a control interface unit 17. The control interface unit 17 provides a physiological information reading interface for making available the corresponding information according to the user's click selection. For instance, the user can make enquiries, via the physiological information reading interface, as to the fluctuations in body temperature over the past week or the average pulse over the past hour.
  • Referring to FIG. 4, there is shown a flow chart illustrating the operation of the separate computing system according to the second embodiment of the present invention. As shown in FIG. 4, steps S41˜S42 are implemented on the primary computing device 1, and steps S43˜S44 are implemented on the sensing device 2. For the sake of better understanding of the present invention, the primary computing device 1 and the sensing device 2, like those disclosed in the first embodiment, are exemplified by a smartphone and a wristband capable of sensing physiological information, respectively. Similarly, the second embodiment is illustrative, rather than restrictive, of the scope of the present invention. The flow chart in FIG. 4 omits similar operation processes depicted in FIG. 2, such as the regular transmission of physiological information relating to the sensed blood pressure, pulse, calories, body temperature, etc., to the primary computing device 1 by the sensing device 2.
  • Referring to step S41, the user enters a sensing device setting instruction via a touchscreen or a physical key (i.e., the control interface unit) of the smartphone (i.e., the primary computing device 1). For instance, the user clicks on the touchscreen to set the current physiological information to be detected as the pulse-related information and set the detection interval to be 10 minutes. In step S42, the smartphone transmits, via the second wireless communication unit 16, an uncoded wireless setting signal based on the sensing device setting instruction, and the wireless setting signal contains the sensing device setting instruction which has just been entered by the user.
  • In step S43, the first wireless communication unit 24 of the sensing device 2 (i.e., the wristband) receives the wireless setting signal. In step S44, the sensing device changes the value of a register thereof according to the wireless setting signal such that it detects a subject's pulse once every 10 minutes. Hence, the primary computing device 1 can not only display the data sensed by the sensing device 2 but also allow the user to directly and conveniently manipulate the measurement settings of the sensing device 2.
  • Referring to FIG. 5, there is shown a block diagram illustrating the function of a separate computing system according to the third embodiment of the present invention. The embodiment illustrated in FIG. 5 is different from the embodiments illustrated in FIGS. 1 and 3 in that the primary computing device 1 is capable of synchronously controlling multiple sensing devices (exemplified by a first sensing device 3 and a second sensing device 4) via the second wireless communication unit 16, and that the primary computing device 1 further comprises an identity authentication unit 18 configured to perform an identity authentication procedure on the first sensing device 3 and the second sensing device 4. In practice, the identity authentication unit 18 performs the identity authentication procedure according to the hardware IDs or media access control addresses (also known as MAC addresses) of the first sensing device 3 and the second sensing device 4.
  • Referring to FIG. 6, there is shown a flow chart illustrating the operation of the separate computing system according to the third embodiment of the present invention. As shown in FIG. 6, steps S61 and S62 are implemented on the first sensing device 3, steps S63 and S64 are implemented on the second sensing device 4, and steps S65˜S67 are implemented on the primary computing device 1. For the sake of better understand of the present invention, the primary computing device 1 is exemplified by a smartphone, the first sensing device 3 is exemplified by a heart stent with sensing capability, and the second sensing device 4 is exemplified by a contact lens with sensing capability. Similarly, the third embodiment is illustrative, rather than restrictive, of the scope of the present invention.
  • Referring to step S61, a heart stent (i.e., the first sensing device 3) undergoes the identity authentication procedure performed by the smartphone (i.e., the primary computing device 1) via, a first sensing communication unit 31. In step
  • S63, the contact lens (i.e., the second sensing device 4) undergoes the identity authentication procedure performed by the smartphone via a second sensing communication unit 41. In step S65, the wireless authentication signals from the heart stent and the contact lens, after being received by the smartphone, are delivered to the identity authentication unit 18 that performs the identity authentication procedure on the sensing devices. In steps S62 and S64, the heart stent starts to sense the user's physiological information (e.g. a width of a cardiac blood vessel), and the contact lens also starts to sense the user's physiological information (e.g. the blood pressure at ocular capillaries) after successful identity authentication, and then the sensed physiological information is transmitted to the smartphone. Moreover, it is preferable that the heart stent and/or the contact lens are/is configured to transmit, via, the first sensing communication unit 31 or the second sensing communication unit 41, wireless signals to the smartphone only when the sensed physiological information exceeds a critical value (for example, when the blood pressure exceeds 140 mmHg) so as to reduce the power consumption.
  • Referring to steps S66˜S67, the second wireless communication unit 16 of the smartphone receives and transmits the physiological information to the computing unit 12 to undergo the computing operation, and informs the user of a result of the computing operation via a screen (i.e., the display unit 11). Hence, the user knows the width of a cardiac blood vessel and blood pressure in a real-time manner. In other words, the user can instantly obtain information measured by multiple sensing devices.
  • Moreover, according to the conception of the present invention, another application involves the combination of a sensing device and a warning device. The sensing device comprises a power supply unit, a sensing unit, and a first wireless communication unit. The power supply unit is configured to electrically connect and supply power to the sensing unit and the first wireless communication unit. The sensing unit is configured to sense the user's physiological information and to transmit externally a warning message via the first wireless communication unit when the sensed physiological information exceeds a standard value. A warning device comprises a warning unit and a second wireless communication unit. After the second wireless communication unit has received the warning message, the warning unit performs a warning operation.
  • For instance, the sensing device is an electronic sphygmomanometer equipped with a short-range wireless communication unit and embedded in a garment. The sensing device transmits, via the short-range wireless communication unit, a
  • warning message to a microcomputer (i.e., the warning device) regularly or when the sensed physiological information exceeds a standard value (for example, when the sensed blood pressure exceeds 140 mmHg). The microcomputer has a buzzer (i.e., the warning unit) and a second wireless communication unit. After the second wireless communication unit has received the warning message, the buzzer starts to sound to warn the user.
  • Preferably, the warning device further comprises a computing unit (e.g. a microprocessor) configured to perform the computing operation on the physiological information contained in the warning message, and performs various respective warning operations according to the result of the computing operation. For example, slow sounds are generated when the blood pressure falls within the range of 140-160 mmHg, and short interval sounds are generated when the blood pressure exceeds 160 mmHg. It is preferable that the warning device is a pocket-sized computer or a microcomputer, and that the warning unit is selected from one of an audio device, a display device, and a vibration device.
  • In conclusion, a separate computing system of the present invention enables complex calculation operations and display to be performed on a smartphone via wireless transmission, and thus a sensing device, such as a wristband, a contact lens, or a heart stent, requires either no processor at all or only a simple microprocessor for facilitating the display of content. Therefore, the sensing device not only has electronic sensing capability but also fulfills the goals of minimized weight and low power consumption.
  • The preferred embodiments described above are exemplary and are not intended to limit the scope of the present invention. Hence, any equivalent modification or variation made to the aforesaid embodiments without departing from the spirit and scope of the present invention shall fall within the scope of the appended claims.

Claims (19)

What is claimed is:
1. A system with a separate computing unit, comprising:
a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information, and a first wireless communication unit via which the physiological information that has not yet undergone the computing and processing operations is transmitted externally, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and
a primary computing device comprising a computing unit, a display unit, and a second wireless communication unit, the second wireless communication unit receiving and transmitting the physiological information to the computing unit to undergo the computing operation and informing the user of a result of the computing operation via the display unit;
wherein the sensing device transmits, via the first wireless communication unit, a wireless signal to the primary computing device according to a preset criterion.
2. The system with a separate computing unit of claim 1, wherein the first wireless communication unit is selected from one of a Zigbee communication unit, a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, and an infrared communication unit.
3. The system with a separate computing unit of claim 1, wherein the second wireless communication unit is selected from one of a Zigbee communication unit, a WiFi communication unit, an NFC communication unit, a RFID communication unit, a Bluetooth communication unit, and an infrared communication unit.
4. The system with a separate computing unit of claim 1, wherein the physiological information is selected from the information relating to the user's blood pressure, pulse, voice, and vibration.
5. The system with a separate computing unit of claim 1, wherein the display unit is selected from one of a screen, an audio device, and at least one LED lamp.
6. The system with a separate computing unit of claim 1, wherein the primary computing device further comprises a control interface unit providing a physiological information reading interface for making available the corresponding information according to the user's click selection.
7. The system with a separate computing unit of claim 6, wherein the control interface unit further provides a sensing device setting interface configured to transmit, via the second wireless communication unit, an uncoded wireless setting signal to the sensing device according to the click selection made by the user.
8. The system with a separate computing unit of claim 7, wherein the sensing device changes a value of a register thereof according to the wireless setting signal.
9. The system with a separate computing unit of claim 1, wherein the criterion is set to be that the user's physiological information is regularly sensed with the sensing unit and the wireless signal is regularly transmitted to the primary computing device via the first wireless communication unit.
10. The system with a separate computing unit of claim 1, wherein the criterion is set to be that the wireless signal is transmitted to the primary computing device via the first wireless communication unit when the sensing unit senses that the user's physiological information exceeds a critical value.
11. The system with a separate computing unit of claim 1, wherein the sensing device is a heart stent with sensing capability, and the physiological information relates to a width of a cardiac blood vessel.
12. The system with a separate computing unit of claim 1, wherein the sensing device is a contact lens with sensing capability, and the physiological information relates to a blood pressure measured at ocular capillaries.
13. The system with a separate computing unit of claim 1, wherein the sensing device is a wristband with sensing capability, and the physiological information is blood pressure-related information or pulse-related information.
14. The system with a separate computing unit of claim 1, wherein the primary computing device further comprises an identity authentication unit configured to perform an identity authentication procedure on the sensing device.
15. The system with a separate computing unit of claim 1, further comprising one or more other sensing devices from which the primary computing device synchronously receives wireless signals.
16. A system with a separate computing unit, comprising:
a sensing device comprising a power supply unit, a sensing unit configured to sense a user's physiological information, and a first wireless communication unit via which a warning message is transmitted externally when the sensing unit senses that the physiological information exceeds a standard value, the power supply unit electrically connecting and supplying power to the sensing unit and the first wireless communication unit; and
a warning device comprising a warning unit and a second wireless communication unit, the warning unit performing a warning operation after the second wireless communication unit has received the warning message.
17. The system with a separate computing unit of claim 16, wherein the warning device further comprises a computing unit configured to perform the computing operation on the physiological information contained in the warning message, and performs various respective warning operations according to a result of the computing operation.
18. The system with a separate computing unit of claim 16, wherein the warning device is a pocket-sized computer or a microcomputer.
19. The system with a separate computing unit of claim 16, wherein the warning unit is selected from one of an audio device, a display device, and a vibration device.
US14/229,522 2013-03-29 2014-03-28 System with distributed process unit Abandoned US20140300491A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201320155258 2013-03-29
CN201320155258.X 2013-03-29
CN201310214981.5 2013-05-31
CN201310214981 2013-05-31
CN201310279676 2013-07-04
CN201310279676.4 2013-07-04

Publications (1)

Publication Number Publication Date
US20140300491A1 true US20140300491A1 (en) 2014-10-09

Family

ID=51654058

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/229,522 Abandoned US20140300491A1 (en) 2013-03-29 2014-03-28 System with distributed process unit
US14/229,500 Active 2034-11-14 US9602584B2 (en) 2013-03-29 2014-03-28 System with distributed process unit

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/229,500 Active 2034-11-14 US9602584B2 (en) 2013-03-29 2014-03-28 System with distributed process unit

Country Status (2)

Country Link
US (2) US20140300491A1 (en)
TW (2) TWI569611B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150141131A1 (en) * 2006-05-05 2015-05-21 Cfph, Llc Game access device with time varying signal
CN104997489A (en) * 2015-08-26 2015-10-28 环旭电子股份有限公司 Acquisition device for raw data
US9280648B2 (en) 2006-11-14 2016-03-08 Cfph, Llc Conditional biometric access in a gaming environment
US9355518B2 (en) 2004-02-25 2016-05-31 Interactive Games Llc Gaming system with location determination
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US9430901B2 (en) 2004-02-25 2016-08-30 Interactive Games Llc System and method for wireless gaming with location determination
WO2017024002A1 (en) * 2015-08-06 2017-02-09 Micell Technologies, Inc. Implantable device
JP2017093924A (en) * 2015-11-26 2017-06-01 コニカミノルタ株式会社 Biological information detection apparatus and control device
US20170277347A1 (en) * 2014-09-03 2017-09-28 Zte Corporation Method and apparatus for switching key functions of touchscreen terminal
US10286300B2 (en) 2006-05-05 2019-05-14 Cfph, Llc Systems and methods for providing access to locations and services
US10332155B2 (en) 2007-03-08 2019-06-25 Cfph, Llc Systems and methods for determining an amount of time an object is worn
US10347076B2 (en) 2004-02-25 2019-07-09 Interactive Games Llc Network based control of remote system for enabling, disabling, and controlling gaming
US10366562B2 (en) 2007-03-14 2019-07-30 Cfph, Llc Multi-account access device
US10406446B2 (en) 2010-08-13 2019-09-10 Interactive Games Llc Multi-process communication regarding gaming information
US10424153B2 (en) 2007-03-08 2019-09-24 Cfph, Llc Game access device with privileges
US10460566B2 (en) 2005-07-08 2019-10-29 Cfph, Llc System and method for peer-to-peer wireless gaming
US10460557B2 (en) 2006-04-18 2019-10-29 Cfph, Llc Systems and methods for providing access to a system
US10535221B2 (en) 2006-10-26 2020-01-14 Interactive Games Llc System and method for wireless gaming with location determination
US10706673B2 (en) 2006-11-14 2020-07-07 Cfph, Llc Biometric access data encryption
US10726664B2 (en) 2004-02-25 2020-07-28 Interactive Games Llc System and method for convenience gaming
US11446570B2 (en) * 2020-05-08 2022-09-20 Electronic Arts Inc. Automated test multiplexing system
US11636727B2 (en) 2005-08-09 2023-04-25 Cfph, Llc System and method for providing wireless gaming as a service application
US20230144169A1 (en) * 2006-05-05 2023-05-11 Cfph, Llc Game access device with time varying signal

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119356A2 (en) 2004-05-28 2005-12-15 Erik Jan Banning Interactive direct-pointing system and calibration method
US9285897B2 (en) 2005-07-13 2016-03-15 Ultimate Pointer, L.L.C. Easily deployable interactive direct-pointing system and calibration method therefor
US9401977B1 (en) 2013-10-28 2016-07-26 David Curtis Gaw Remote sensing device, system, and method utilizing smartphone hardware components
US11956554B2 (en) 2013-10-28 2024-04-09 Sensera Systems, Inc. Image and video analysis with a low power, low bandwidth camera
USD831072S1 (en) * 2016-09-02 2018-10-16 Bsh Hausgeraete Gmbh Hands-free voice-controlled device
CN110047423B (en) * 2019-04-13 2023-05-12 上海影隆光电有限公司 LED display system based on cloud platform management and Internet of things control

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167258A (en) * 1998-10-09 2000-12-26 Cleveland Medical Devices Inc. Programmable wireless data acquisition system
US20040176672A1 (en) * 2000-05-15 2004-09-09 Silver James H. Implantable, retrievable, thrombus minimizing sensors
US20050206518A1 (en) * 2003-03-21 2005-09-22 Welch Allyn Protocol, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
US20080214903A1 (en) * 2005-02-22 2008-09-04 Tuvi Orbach Methods and Systems for Physiological and Psycho-Physiological Monitoring and Uses Thereof
US20090264714A1 (en) * 2006-05-18 2009-10-22 Chang-An Chou Non-invasive vital sign monitoring method, apparatus and system
US20110004072A1 (en) * 2009-04-16 2011-01-06 Massachusetts Institute Of Technology Methods and apparatus for monitoring patients and delivering therapeutic stimuli
US20120071731A1 (en) * 2010-09-22 2012-03-22 Gottesman Janell M System and method for physiological monitoring
US20130027205A1 (en) * 2011-07-27 2013-01-31 Nellcor Puritan Bennett Llc Automatic configuration protocol for a patient monitoring network
US20130053655A1 (en) * 2011-08-29 2013-02-28 Alexander F. Castellanos Mobile vascular health evaluation devices
US20130231711A1 (en) * 2012-03-02 2013-09-05 Thomas E. Kaib Systems and methods for configuring a wearable medical monitoring and/or treatment device
US20140244007A1 (en) * 2013-02-26 2014-08-28 Polar Electro Oy Arranging Data for Display

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482488B2 (en) * 2004-12-22 2013-07-09 Oakley, Inc. Data input management system for wearable electronically enabled interface
US6445953B1 (en) * 2001-01-16 2002-09-03 Kenergy, Inc. Wireless cardiac pacing system with vascular electrode-stents
CN100346740C (en) * 2003-05-20 2007-11-07 香港中文大学 Blood pressure measuring device and method based on the pulse information of radial artery
CN201341167Y (en) * 2009-01-13 2009-11-04 福建大兆电子科技有限公司 Wireless electronic communication multimedia spectacles
JP5674566B2 (en) * 2010-06-28 2015-02-25 ナイキ イノベイト セー. フェー. How to monitor and track athletic activity
CN201903695U (en) * 2010-08-31 2011-07-20 夏翔 Wireless IoT (Internet of Things) glasses
US20130311540A1 (en) * 2012-05-18 2013-11-21 Research In Motion Limited Methods and devices for initiating a complementary application
US20130326790A1 (en) * 2012-06-07 2013-12-12 Motorola Mobility, Inc. Wearable Band with Ease of Adjustment
US9151984B2 (en) * 2012-06-18 2015-10-06 Microsoft Technology Licensing, Llc Active reflective surfaces
US20140101755A1 (en) * 2012-10-10 2014-04-10 Research In Motion Limited Mobile wireless communications device providing security features based upon wearable near field communication (nfc) device and related methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167258A (en) * 1998-10-09 2000-12-26 Cleveland Medical Devices Inc. Programmable wireless data acquisition system
US20040176672A1 (en) * 2000-05-15 2004-09-09 Silver James H. Implantable, retrievable, thrombus minimizing sensors
US20050206518A1 (en) * 2003-03-21 2005-09-22 Welch Allyn Protocol, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
US20080214903A1 (en) * 2005-02-22 2008-09-04 Tuvi Orbach Methods and Systems for Physiological and Psycho-Physiological Monitoring and Uses Thereof
US20090264714A1 (en) * 2006-05-18 2009-10-22 Chang-An Chou Non-invasive vital sign monitoring method, apparatus and system
US20110004072A1 (en) * 2009-04-16 2011-01-06 Massachusetts Institute Of Technology Methods and apparatus for monitoring patients and delivering therapeutic stimuli
US20120071731A1 (en) * 2010-09-22 2012-03-22 Gottesman Janell M System and method for physiological monitoring
US20130027205A1 (en) * 2011-07-27 2013-01-31 Nellcor Puritan Bennett Llc Automatic configuration protocol for a patient monitoring network
US20130053655A1 (en) * 2011-08-29 2013-02-28 Alexander F. Castellanos Mobile vascular health evaluation devices
US20130231711A1 (en) * 2012-03-02 2013-09-05 Thomas E. Kaib Systems and methods for configuring a wearable medical monitoring and/or treatment device
US20140244007A1 (en) * 2013-02-26 2014-08-28 Polar Electro Oy Arranging Data for Display

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024115B2 (en) 2004-02-25 2021-06-01 Interactive Games Llc Network based control of remote system for enabling, disabling, and controlling gaming
US10726664B2 (en) 2004-02-25 2020-07-28 Interactive Games Llc System and method for convenience gaming
US11514748B2 (en) 2004-02-25 2022-11-29 Interactive Games Llc System and method for convenience gaming
US9355518B2 (en) 2004-02-25 2016-05-31 Interactive Games Llc Gaming system with location determination
US10347076B2 (en) 2004-02-25 2019-07-09 Interactive Games Llc Network based control of remote system for enabling, disabling, and controlling gaming
US9430901B2 (en) 2004-02-25 2016-08-30 Interactive Games Llc System and method for wireless gaming with location determination
US10653952B2 (en) 2004-02-25 2020-05-19 Interactive Games Llc System and method for wireless gaming with location determination
US10391397B2 (en) 2004-02-25 2019-08-27 Interactive Games, Llc System and method for wireless gaming with location determination
US10515511B2 (en) 2004-02-25 2019-12-24 Interactive Games Llc Network based control of electronic devices for gaming
US10733847B2 (en) 2005-07-08 2020-08-04 Cfph, Llc System and method for gaming
US10510214B2 (en) 2005-07-08 2019-12-17 Cfph, Llc System and method for peer-to-peer wireless gaming
US11069185B2 (en) 2005-07-08 2021-07-20 Interactive Games Llc System and method for wireless gaming system with user profiles
US10460566B2 (en) 2005-07-08 2019-10-29 Cfph, Llc System and method for peer-to-peer wireless gaming
US11636727B2 (en) 2005-08-09 2023-04-25 Cfph, Llc System and method for providing wireless gaming as a service application
US10957150B2 (en) 2006-04-18 2021-03-23 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US10460557B2 (en) 2006-04-18 2019-10-29 Cfph, Llc Systems and methods for providing access to a system
US10751607B2 (en) 2006-05-05 2020-08-25 Cfph, Llc Systems and methods for providing access to locations and services
US20230144169A1 (en) * 2006-05-05 2023-05-11 Cfph, Llc Game access device with time varying signal
US11229835B2 (en) 2006-05-05 2022-01-25 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US10286300B2 (en) 2006-05-05 2019-05-14 Cfph, Llc Systems and methods for providing access to locations and services
US10535223B2 (en) * 2006-05-05 2020-01-14 Cfph, Llc Game access device with time varying signal
US20150141131A1 (en) * 2006-05-05 2015-05-21 Cfph, Llc Game access device with time varying signal
US11024120B2 (en) 2006-05-05 2021-06-01 Cfph, Llc Game access device with time varying signal
US10535221B2 (en) 2006-10-26 2020-01-14 Interactive Games Llc System and method for wireless gaming with location determination
US11017628B2 (en) 2006-10-26 2021-05-25 Interactive Games Llc System and method for wireless gaming with location determination
US9280648B2 (en) 2006-11-14 2016-03-08 Cfph, Llc Conditional biometric access in a gaming environment
US10706673B2 (en) 2006-11-14 2020-07-07 Cfph, Llc Biometric access data encryption
US10546107B2 (en) 2006-11-15 2020-01-28 Cfph, Llc Biometric access sensitivity
US11182462B2 (en) 2006-11-15 2021-11-23 Cfph, Llc Biometric access sensitivity
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US11055958B2 (en) 2007-03-08 2021-07-06 Cfph, Llc Game access device with privileges
US10332155B2 (en) 2007-03-08 2019-06-25 Cfph, Llc Systems and methods for determining an amount of time an object is worn
US10424153B2 (en) 2007-03-08 2019-09-24 Cfph, Llc Game access device with privileges
US10366562B2 (en) 2007-03-14 2019-07-30 Cfph, Llc Multi-account access device
US11055954B2 (en) 2007-03-14 2021-07-06 Cfph, Llc Game account access device
US10744416B2 (en) 2010-08-13 2020-08-18 Interactive Games Llc Multi-process communication regarding gaming information
US10406446B2 (en) 2010-08-13 2019-09-10 Interactive Games Llc Multi-process communication regarding gaming information
US10175817B2 (en) * 2014-09-03 2019-01-08 Xi'an Zhongxing New Software Co., Ltd Method and apparatus for switching key functions of touchscreen terminal
US20170277347A1 (en) * 2014-09-03 2017-09-28 Zte Corporation Method and apparatus for switching key functions of touchscreen terminal
WO2017024002A1 (en) * 2015-08-06 2017-02-09 Micell Technologies, Inc. Implantable device
CN104997489A (en) * 2015-08-26 2015-10-28 环旭电子股份有限公司 Acquisition device for raw data
JP2017093924A (en) * 2015-11-26 2017-06-01 コニカミノルタ株式会社 Biological information detection apparatus and control device
US11446570B2 (en) * 2020-05-08 2022-09-20 Electronic Arts Inc. Automated test multiplexing system

Also Published As

Publication number Publication date
US9602584B2 (en) 2017-03-21
TW201519614A (en) 2015-05-16
TWI580233B (en) 2017-04-21
TWI569611B (en) 2017-02-01
TW201519613A (en) 2015-05-16
US20140304317A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US20140300491A1 (en) System with distributed process unit
US20220007955A1 (en) Method for measuring biological signal and wearable electronic device for the same
EP3132740B1 (en) Method for detecting biometric information and electronic device using same
US9730619B2 (en) Methods, systems and devices for linking user devices to activity tracking devices
US9692844B2 (en) Methods, systems and devices for automatic linking of activity tracking devices to user devices
KR102223376B1 (en) Method for Determining Data Source
US8519835B2 (en) Systems and methods for sensory feedback
US20140089514A1 (en) Methods, Systems and Devices for Automatic Linking of Activity Tracking Devices To User Devices
US11651842B2 (en) Server, portable terminal device, electronic device, and control method therefor
KR20180079912A (en) Band fastening device and wearable electronic device including the same
CN109718112B (en) Medication reminding method and device and computer readable storage medium
KR20190097878A (en) Electric device for providing health information based on biometric information and controlling method thereof
KR20190093432A (en) Electric device for sensing biometric information and controlling method thereof
JP2019537491A (en) Underwear based body data monitoring method and apparatus
KR20170076500A (en) Method, storage medium and electronic device for performing function based on biometric signal
US20140297198A1 (en) Measurement system
EP3513715B1 (en) Apparatus and method for determining calibration timing for blood pressure measurement in electronic device
JP2020098467A (en) Information management system, and method for pairing between measuring instrument and information terminal
KR20200060850A (en) Electronic Device which calculates Blood pressure value using Pulse Wave Velocity algorithm and the Method for calculating Blood Pressure value thereof
KR20160011976A (en) Apparatas and method for measuring a blood sugar in an electronic device
CN104077109A (en) System with separate arithmetic units
TW202002895A (en) Physiological signal measurement device
KR20170058516A (en) Emergency Systems
TW201637612A (en) Physiological parameter monitoring system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: GEMTEK TECHNOLOGY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, HUNG WEN;REEL/FRAME:033224/0465

Effective date: 20140701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION