US20150031946A1 - Direct vision cryosurgical probe and methods of use - Google Patents

Direct vision cryosurgical probe and methods of use Download PDF

Info

Publication number
US20150031946A1
US20150031946A1 US14/339,024 US201414339024A US2015031946A1 US 20150031946 A1 US20150031946 A1 US 20150031946A1 US 201414339024 A US201414339024 A US 201414339024A US 2015031946 A1 US2015031946 A1 US 2015031946A1
Authority
US
United States
Prior art keywords
balloon
distal end
probe
tissue
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/339,024
Inventor
Vahid Saadat
Matthew Herron
Richard C. Ewers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arrinex Inc
Original Assignee
Nidus Medical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidus Medical LLC filed Critical Nidus Medical LLC
Priority to US14/339,024 priority Critical patent/US20150031946A1/en
Assigned to NIDUS MEDICAL, LLC reassignment NIDUS MEDICAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAADAT, VAHID, EWERS, RICHARD C., HERRON, MATTHEW
Publication of US20150031946A1 publication Critical patent/US20150031946A1/en
Assigned to ARRINEX, INC. reassignment ARRINEX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIDUS MEDICAL, LLC
Priority to US15/804,652 priority patent/US10813533B2/en
Priority to US17/030,047 priority patent/US11576559B2/en
Priority to US18/152,828 priority patent/US20230157522A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B18/0218Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00177Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00179Optical arrangements characterised by the viewing angles for off-axis viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00183Optical arrangements characterised by the viewing angles for variable viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0615Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for radial illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/233Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the nose, i.e. nasoscopes, e.g. testing of patency of Eustachian tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle

Definitions

  • the present invention relates to cryosurgical probes and their methods of use. More particularly, the present invention relates to cryosurgical probes which are configured to be advanced into a body lumen while providing for direct visualization.
  • Accessing and treating regions within a body lumen such as the nasal cavities are often performed by utilizing a probe which is cooled via a chilled fluid, a cryo-fluid such as Nitrous Oxide, or through some other cooling mechanism.
  • the cooled tip can be placed into contact against the tissue region to be treated.
  • proper positioning of the cooling probe relative to the tissue may be difficult to achieve due to a number of factors such as limited space, lack of visual contact, anatomical obstructions, etc.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-ablation probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the needle tip is configured for advancement towards a surgical target through a facial boundary between two or more discrete anatomical structures in a substantially atraumatic manner, and the imaging device is used to guide the advancement of the needle tip.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and further comprising an inflatable structure proximal to the needle tip; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryosurgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, and a means for inflating the inflatable structure, whereby the needle tip is configured for advancement towards a surgical target through a facial boundary between two or more discrete anatomical structures in a substantially atraumatic manner, and the imaging device is used to guide the advancement of the needle tip, and the
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the objective lens, a CMOS imaging sensor, and at least one light emitting diode configured for tissue illumination.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the imaging device is an endoscope comprising an objective lens, a coherent fiber optic bundle configured for imaging, and a second optical bundle configured for illumination.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the imaging device is an endoscope comprising an objective lens, and at least one relay lens configured for tissue imaging, and a fiber optic bundle configured for tissue illumination.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the minor dimension of the lateral fenestration approximates the working diameter of the central lumen.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the lateral fenestration is substantially perpendicular to the axis of the central lumen.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is a clear ionic liquid.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid to/from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is pressurized to facilitated dissection and distal advancement.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is an evaporated liquid refrigerant that is introduced to the distal region by the cryosurgical probe during distal tissue freezing.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid to/from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is comprises an anesthetic.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing by means of direct application of liquid refrigerant to the target distal tissue.
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing comprising a distal refrigerant evaporation chamber in direct contact with the target distal tissue, with the evaporation chamber comprising a hollow metallic
  • a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing comprising a distal refrigerant evaporation chamber in direct contact with the target distal tissue, with the evaporation chamber comprising an inflatable balloon.
  • a method for accessing a distal region in a mammalian body through a natural dissection plane in order to perform at least one diagnostic or therapeutic cryosurgical step comprising inserting into the body a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, and housing at least one imaging device configured for distal imaging, and housing at least one removable cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s); then advancing the surgical device in the direction of the distal region while maneuvering the distal tip between the facial boundaries of intervening anatomical
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas.
  • An alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas.
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device is configured for lateral imaging.
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device comprises at least one coherent optical fiber bundle, configured for transmitting an image from within the inflatable balloon to a camera in the vicinity of the proximal end.
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device comprises a probe with a distal end and a proximal end configured for removable insertion into the inflatable balloon through a central lumen, with the distal end comprising an imaging means, and the proximal end
  • a cryosurgical probe comprising a substantially rigid elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the cryosurgical probe is configured for insertion into the targeted surgical site.
  • a cryosurgical probe comprising a substantially flexible elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the cryosurgical probe is configured for insertion into the targeted surgical site by means of a tortuous insertion pathway.
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the predetermined pressure is maintained by a pressure relief valve in line between the interior of the balloon and the ambient atmosphere, wherein the cryosurgical probe is configured for lateral tissue freezing by means of spraying a liquid refrigerant at an interior radi
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas, whereby the outer balloon is fabricated from
  • a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one removably insertable optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas, whereby the inner
  • It is further an object of this invention to provide a method for performing a cryosurgical procedure comprising inserting a cryosurgical probe into the body of a patient, and then advancing the distal end of the probe into the vicinity of the surgical target, with the cryosurgical probe comprising: an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas; then inflating the balloon and imaging the anatomy surrounding the balloon, then determining whether the cry
  • An additional object of this invention is a method for cryosurgical ablation of the function of a nerve comprising inserting a cryosurgical probe between the target nerve and the artery and vein associated with the nerve; with the cryosurgical probe having an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to
  • FIG. 1 shows a perspective view of a surgical imaging probe configured for accessing a distal surgical site within a patient using image guidance.
  • FIG. 2 shows a perspective view of the distal end of the surgical probe having an optically transparent needle tip mounted on the probe shaft.
  • FIG. 3 shows a cross sectional illustration of the distal end of the surgical probe depicting the probe shaft, optically transparent needle tip, and imaging element.
  • FIG. 4 shows a cross sectional illustration of the distal end of the surgical probe which is configured for direct application of a liquid refrigerant on target tissue within the field of view of the imaging element.
  • FIGS. 5A and 5B show cross sectional side views of the distal end of the surgical probe illustrating a cryosurgical balloon probe having a balloon member which is inflatable upon introduction of a liquid refrigerant.
  • FIG. 6A shows a schematic illustration of a surgical probe inserted into the body of a patient and advanced through tissue towards the target distal region while under visual guidance.
  • FIG. 6B shows an illustration of an image received from the imaging element positioned within the probe.
  • FIG. 6C shows an illustration of an image from imaging element showing the target distal region residing between facial surfaces which have been separated by the manipulation of the surgical probe.
  • FIG. 7A shows a side view of a variation of the distal end of an Image Guided Directed Cryosurgical Balloon (IGCB) probe.
  • IICB Image Guided Directed Cryosurgical Balloon
  • FIG. 7B shows a cross sectional end view of the IGCB probe.
  • FIG. 7C shows a schematic illustration of a variation of the proximal terminal of the IGCB probe.
  • FIG. 8 shows a cum sectional schematic side view of a variation of the distal end of a lateral optical imaging probe.
  • FIG. 9A shows the distal end of the IGCB probe with an inflated outer balloon and a lateral optical imaging probe imaging the surrounding anatomy from within the outer balloon as represented by field of view.
  • FIG. 9B shows the distal end of IGCB probe 101 with the outer balloon removed for clarity to reveal an inner cryo balloon in a deflated configuration and an inner thermal insulation balloon in a deflated configuration.
  • FIG. 9C shows a cross sectional side view of the distal end of the IGCB probe.
  • FIG. 10 shows a cross sectional end view of the IGCB probe taken proximal to the inflatable outer balloon.
  • FIG. 11 shows a cross section side view of the distal end of the IGCB probe during a cryosurgical procedure.
  • FIG. 12 shows a transverse cross sectional end view of the IGCB probe illustrating cryogenic fluid being sprayed at an inner wall of the inner balloon.
  • FIG. 13 shows a schematic illustration of the proximal terminal of the IGCB probe.
  • FIG. 14 shows a cross sectional end view of a nerve undergoing cryo-ablation using the IGCB probe.
  • FIG. 1 is an illustration of the central embodiment of surgical imaging probe 1 configured for accessing a distal surgical site within a patient by advancement between anatomical structures by atraumatic blunt dissection using image guidance for the purpose of performing a cryosurgical step.
  • Surgical imaging probe 1 comprises probe shaft 2 , non-coring optically transparent needle tip 3 , probe handle 8 , electrical lead 4 , electrical connector 5 fluid tube 6 and fluid connector 7 .
  • Probe shaft 2 is between approximately 5 and 20 centimeters long, and between approximately 2.5 and 3.5 millimeters in diameter.
  • Probe shaft 2 has a central lumen between approximately 2 .3 and 3.3 millimeters in diameter.
  • Probe shaft 2 may be fabricated from a stainless steel hypodermic tube, or may be fabricated from another metal used in surgical instruments such as titanium.
  • Probe shaft 2 is substantially rigid and is capable of transmitting lateral, longitudinal, and torsional forces along its length.
  • Distal needle tip 3 is configured for blunt atraumatic dissection between the fascias of discrete anatomical structures.
  • Distal needle tip 3 is optically transparent and houses an optical imaging device that is connectable to an imaging display. The optical images are used by the surgeon identify a facial plane through which the surgical probe may safely be advanced towards a target distal region within the body.
  • Distal needle tip 3 also comprises a lateral fenestration which communicates with the interior of distal needle tip 3 , and the central lumen of probe shaft 2 .
  • Distal needle tip 3 , probe shaft 2 are described in greater detail below.
  • Surgical probe handle 8 is configured in an ergonomic manner to provide the surgeon with a comfortable grip of surgical probe 1 , and good tactile feedback of the forces resulting from manipulation of surgical probe 1 during the surgery.
  • Surgical probe handle 8 also comprises a means for fluid communication between fluid tube 6 and the central lumen in probe shaft 2 .
  • Fluid connector 7 is a female luer fitting as depicted and is configured for connection to a syringe or another fluid source. Additionally, a cryosurgical surgical probe may be inserted through surgical probe 1 for distal use using fluid connector 7 , fluid tube 6 , the central lumen of probe shaft 5 and exiting through the lateral fenestration of needle tip 3 .
  • Electrical lead 4 , and electrical connector 5 are configured to connect the optical imaging device mounted within needle tip 3 to an optical imaging display.
  • Electrical lead 4 , and electrical connector 5 may provide a means for connecting additional sensors mounted within surgical probe 1 that may include sensors configured to detect temperature, cardiac signals, bodily fluid chemistry, dissecting force, fluid pressure, ionizing radiation, non-visible light, or a magnetic field. Electrical lead 4 and electrical connector may be configured for connecting a therapeutic energy emitting device mounted within surgical probe 1 to a source of therapeutic energy.
  • FIG. 2 is an illustration of the distal end of surgical probe 1 showing the distal end of probe shaft 2 , with optically transparent needle tip 3 mounted on probe shaft 2 .
  • Needle tip 3 comprises a non-coring needle tip design where the distal face of the needle tip is smooth with a large radius 10 as shown, and comprises a lateral fenestration 9 that communicates between the distal exterior of surgical probe 1 and the interior of needle tip 3 and the central lumen of probe shaft 2 .
  • Radiused edge 11 is configured to smooth the edge formed between large radiused surface 10 and fenestration 9 to prevent puncture or incision of tissue as surgical 1 is advanced in the distal direction between anatomical structures.
  • FIG. 3 is a cross sectional illustration of the distal end of surgical probe 1 depicting probe shaft 2 , optically transparent needle tip 3 , CMOS camera with integral illumination 12 , camera mount 13 , central lumen 16 , electrical cable 14 , and camera field of view 15 .
  • Probe shaft 2 comprises central lumen 16 , and a stepped segment 17 configured for mounting needle tip 3 .
  • Needle tip 3 is fabricated from an optically transparent, mechanically rigid material, which may a glass material, or may be a plastic material such as polycarbonate. Those skilled in the art of glass forming, or plastic molding of optical components are familiar the fabrication techniques that may be used for fabricating needle tip 3 as disclosed here within, therefore no further description is warranted.
  • Needle tip 3 is a hollow tubular structure with a central axis substantially aligned with the central axis of probe shaft 2 at its proximal end, and with the central axis substantially perpendicular to the central axis of probe shaft 2 as shown.
  • the distal face is blunt as defined by large radius 10 .
  • Fenestration 9 communicates between the interior of needle tip 3 and central lumen 16 , and the exterior of surgical probe 1 .
  • Fenestration 9 may be configured as shown, or may alternatively be more than one single fenestration.
  • Fenestration 9 may have a diameter that is similar to the diameter of central lumen 16 and suitable for passing a surgical instrument through, or may be substantially smaller than central lumen 16 .
  • Camera 12 may be a miniature CMOS camera with integral illumination and similar to cameras offered by Awaiba Corp. which are described in detail at www.awaiba.com, and therefore no further description is warranted here.
  • Camera 12 is mounted to the inner surface of needle tip 3 by camera mount 13 , which is configured to point camera 12 so field of view 15 is in the distal direction, and substantially encompasses fenestration 9 as shown.
  • An alternate optical imaging device, not show may be employed for distal imaging, which may be a fiberscope, of a rigid endoscope mounted within central lumen 16 .
  • Camera mount 13 may be integrally molded into needle tip 3 as shown, or may be separate component that is bonded to the interior of needle tip 3 .
  • Electrical cable 14 connects camera 12 to electrical connector 5 at the proximal end of surgical probe 1 , and resides within central lumen 16 as shown.
  • FIG. 4 is a cross sectional illustration of the distal end of surgical probe 1 depicting cryosurgical probe 18 , which is configured for direct application of liquid refrigerant on target tissue to effect tissue freezing.
  • cryosurgical probe 18 is extending from central lumen 16 and needle tip 3 in position for spraying liquid refrigerant 50 through distal cryo-nozzle 49 on target distal tissue within the field of view 15 of camera 12 .
  • evaporated refrigerant 51 is vented back to ambient atmosphere through central lumen 16 .
  • Camera 12 may be used to monitor and guide tissue freezing.
  • Cryosurgical probe 18 may comprise a steerable distal segment that may be utilized to direct the spray of liquid refrigerant.
  • steerable catheters are familiar with designs and manufacturing process for incorporating steerable function into cryosurgical probe 18 , therefore no further description is warranted.
  • FIG. 5A is a cross sectional illustration of the distal end of surgical probe 1 configured for distal tissue ablation utilizing cryosurgical probe 52 comprising a closed distal evaporator chamber 53 , which freezes target tissue by contact with the surface of evaporator 53 , and by thermal conduction of heat from the target tissue into evaporator chamber 53 .
  • cryosurgical probes with closed distal evaporation chambers are thoroughly and widely described in the prior art, therefore no further description of cryosurgical probe 52 is warranted.
  • FIG. 1 is a cross sectional illustration of the distal end of surgical probe 1 configured for distal tissue ablation utilizing cryosurgical probe 52 comprising a closed distal evaporator chamber 53 , which freezes target tissue by contact with the surface of evaporator 53 , and by thermal conduction of heat from the target tissue into evaporator chamber 53 .
  • Cryosurgical probes with closed distal evaporation chambers are thoroughly and widely described in the prior art, therefore no further description of cryosurgical probe
  • FIG. 5B is a cross sectional illustration of the distal end of surgical probe 1 configured for distal tissue ablation utilizing cryosurgical balloon probe 54 comprising a closed distal evaporator balloon chamber 55 , which inflates upon introduction of liquid refrigerant into the interior of balloon 55 and freezes target tissue by contact with the surface of balloon 55 , and by thermal conduction of heat from the target tissue into evaporator balloon chamber 55 .
  • cryosurgical probes with closed distal evaporation balloon chambers are thoroughly and widely described in the prior art, therefore no further description of cryosurgical probe 54 is warranted.
  • FIG. 6A is a schematic illustration of surgical probe 1 being inserted into the body of a patient 30 and being advanced in a distal direction through tissue 31 towards target distal region 32 under visual guidance.
  • Surgical probe 1 may be manipulated in torsional and lateral directions as represented by the crossed arrows in order to find a facial boundary between two or more discrete anatomical structures through which surgical probe 1 may be safely advanced in the distal direction towards the target distal region 32 .
  • FIG. 6B is an illustration showing an image from camera 12 . Visible in the image is distal tissue comprising discrete anatomical structures 36 , and 35 , which is separated by facial boundary 34 . Fenestration 9 is shown in full view.
  • FIG. 6A is a schematic illustration of surgical probe 1 being inserted into the body of a patient 30 and being advanced in a distal direction through tissue 31 towards target distal region 32 under visual guidance.
  • Surgical probe 1 may be manipulated in torsional and lateral directions as represented by the crossed arrows in order to find a
  • 6C is an illustration showing an image from camera 12 showing the target distal region 32 residing between facial surfaces 37 and 38 , which have been separated by the manipulation of surgical probe 1 facilitating one or more surgical therapeutic or diagnostic step(s), including a possible cryosurgical step, as depicted by frozen tissue 56 .
  • FIG. 7A , 7 B and 7 C are schematic illustrations of Image Guided Directed Cryosurgical Balloon (IGCB) probe 60 .
  • IGCB Probe 60 comprises probe shaft 61 , balloon 62 , distal tip 63 , optical imaging probe 64 , cryogen tube 65 , and proximal terminal 66 .
  • FIG. 7A depicts the distal end of IGCB probe 60 showing balloon 62 bonded to probe shaft 61 at its proximal end, and bonded to distal tip 63 at its distal end. Also shown is cryogen tube 65 mounted between probe shaft 61 and distal tip 63 .
  • Cryogen tube 63 comprises a linear array of lateral cryogen nozzles 67 .
  • Lateral cryogen nozzle array 67 are small fenestrations through on wall of cryogen tube 65 , and are between approximately 50 and 150 microns in diameter, and number between one and approximately 20 or more. Lateral cryogen nozzles 67 may formed by a laser machining operation.
  • Cryogen tube 65 is connectable to a source of cryogenic liquid at proximal terminal 66 , and is configured to spray a lateral region of balloon 62 with liquid cryogen to form lateral tissue freezing zone 68 .
  • Cryo tube 65 and balloon 62 are configured so that substantially all of the liquid cryogen sprayed at the inner wall of balloon 62 is evaporated on contact, and balloon 62 is substantially filled with cryogen in a gaseous state, which is thermally insulative, thereby limiting tissue freezing to tissue adjacent to tissue freezing zone 68 .
  • Cryo tube 65 is also configured to mechanically link probe shaft 61 to distal tip 63 and to translate axial and lateral forces between probe shaft 61 and distal tip 63 to a degree sufficient to maneuver IGCB probe 60 into position within a mammalian body for the purpose of performing at least one cryosurgical step.
  • the inner lumen of cryogen tube 65 is terminated and sealed at distal tip 63 , thereby, all cryogen leaves cryogen tube 65 through lateral cryogen nozzle array 67 .
  • Cryogen tube 65 may be fabricated from stainless steel or Nitinol® hypodermic tube.
  • Optical imaging probe 64 may be removably inserted into the interior of balloon 62 though central lumen 69 , and imaging port 70 of proximal terminal 66 (See FIG.
  • Optical imaging probe 64 is configured for lateral imaging as depicted by imaging field of view 71 .
  • Optical imaging probe 64 and IGCB probe 60 are configured with an imaging range of motion that is substantially 360 degrees of lateral imaging, and with an axial range that approximates the length of the balloon 62 .
  • Imaging probe 64 is described in greater detail below.
  • Balloon 62 is configured for tissue dilation, and as an optical window for optical imaging probe 64 .
  • Balloon 62 may be fabricated from a substantially in-elastic material with good optical clarity such PET.
  • Balloon 62 is configured to have a burst strength of between approximately 4 and 12 atmospheres of pressure, at a cryogenic temperature between zero, and minus 100 degrees centigrade.
  • Balloon 62 is bonded using an adhesive to the distal end of probe shaft 61 , and the proximal end of distal tip 63 as shown. Balloon 62 may be inflated (as shown) with a liquid or a gas though at least one central lumen in probe shaft 61 , and a fluid port on proximal terminal 66 , which is described in detail below. Balloon 62 may also be inflated during cryogen spraying using the expansion of the evaporating cryogen and a pressure regulating valve mounted within distal terminal 66 disposed between the interior of balloon 62 and the ambient atmosphere, which is described in more detail below.
  • Probe shaft 61 may be substantially rigid, and fabricated as a metal extrusion, or may be substantially flexible and fabricated from a plastic material such as urethane, PeBax®, nylon, or polyethylene.
  • Distal tip 63 may be bullet shaped as shown, and may have a guidewire channel 77 as shown for assisting in positioning IGCB probe 60 into position for performing a cryosurgical step.
  • Distal tip 63 may be a molded or extruded plastic material, or may be machined from metal.
  • FIG. 7B is a sectional illustration taken at section A-A in FIG. 7A .
  • cryogen 75 being sprayed against a lateral section of balloon 62 (lateral tissue freezing zone 68 ) through lateral cryogen nozzle array 67 in cryogen tube 65 .
  • ice ball 72 formed in tissue adjacent to lateral tissue freezing zone 68 .
  • Optical imaging probe 64 is shown imaging tissue diametrically opposed to lateral tissue freezing zone 68 .
  • balloon lumens 73 and 74 which are in fluidic communication with proximal terminal 66 . Balloon lumens 73 and 74 may be used to together or separately for inflating the balloon with a liquid or gas prior to or after tissue freezing, and are used to vent evaporated cryogen from balloon 62 .
  • FIG. 7C is a schematic illustration of proximal terminal 66 of IGCB probe 60 .
  • Hub 78 fluidically connects balloon lumens 73 and 74 to balloon lumen hub tube 79 , cryogen tube 65 to cryogen hub tube 85 , and provides an insertion path for optical probe 64 into optical probe lumen 69 though optical probe port 86 and optical probe hub tube 87 .
  • Hub 78 in insert molded using mandrels to create discrete channels between the hub tubes and lumens described above. Those skilled in the art of surgical probe hub design and manufacture are familiar methods for designing and manufacturing the an IGCB probe hub as disclosed here within, therefore no further description is warranted.
  • Imaging probe 64 is inserted into imaging probe lumen 69 through imaging probe port 86 and imaging probe hub tube 87 .
  • Imaging probe port 86 may comprise a Toughy Borst connector, or another type of surgical pressure port.
  • Imaging module 88 comprises a camera and a light source. The camera images the proximal end of the coherent optical fiber bundle of imaging probe 64 , and the light source provides illumination to the distal surgical field, with the light being transmitted distally by a second optical fiber or fiber bundle.
  • Optical imaging probe 64 will be described in further detail below.
  • Imaging module 88 is connected to an imaging display, not shown.
  • Cryogen tube 65 is connected to a source of liquid cryogen 90 by means of cryogen port 84 , cryogen source hose 91 , and cryogen connector 92 .
  • Liquid cryogen source 90 is depicted schematically as a cryogen tank.
  • the liquid cryogen source may comprise a control console that controls the flow of cryogen based on user settings, and feedback from sensors, not shown.
  • the liquid cryogen may be liquid carbon dioxide or liquid nitrogen, or a liquid chlorofluorocarbon compound.
  • a Joules-Thompson effect (adiabatic gas expansion) cooling architecture could employed and still be within the scope of this invention. Nitrous oxide or argon gas would be the preferred cryogenic gasses for use if a Joule-Thompson cooling architecture is employed.
  • Balloon lumens 73 and 74 are in fluidic communication with balloon lumen hub tube 79 .
  • Stop cock 80 provides the user a means to either inflate balloon 62 prior to or after a cryosurgical step using syringe 81 .
  • Syringe 81 may also be used to deflate balloon 62 .
  • the stop cock is configured to fluidically connect pressure relief valve 82 to balloon lumen hub tube 79 , and fluidically disconnect syringe 81 from balloon lumen hub tube 79 .
  • Pressure relief valve 82 vents evaporated cryogen 83 to the ambient atmosphere while maintaining a set pressure with balloon 62 during liquid cryogen delivery.
  • the pressure created by pressure relief valve 82 is used to maintain inflation and tissue dilation force for balloon 62 in order to maintain a spatial separation between tissue targeted for freezing, and tissue intended to be protected from freezing.
  • Pressure relief valve 82 may have a fixed preset pressure relief setting, or pressure relief valve 82 may have a user adjustable pressure setting within a range of pressures that are lower than the burst strength of balloon 62 .
  • Pressure relief valve 82 may also comprise an audible indication of the volumetric flow rate of evaporated cryogen 83 exiting pressure relief valve 82 .
  • the audible indication may be in the form of a whistle where the pitch or volume of the whistle may increase as the flow rate of evaporated cryogen 83 increases.
  • the audible signal may provide the user with an indication of tissue freezing effectiveness, or an indication of device failure, such as a cryo balloon 62 failure.
  • FIG. 8 is a cross sectional schematic illustration of the distal end of lateral optical imaging probe 64 .
  • Lateral optical imaging probe 64 comprises imaging probe sheath 93 , fiber bundle 100 comprising central coherent fiber bundle 94 and outer non-coherent fiber bundle 95 , and imaging element 96 comprising objective lens 97 , lateral reflective surface 98 , and imaging window 99 .
  • Imaging probe sheath 93 houses optical fiber bundle 100 , and is used to mount imaging element 96 at the distal end of lateral optical imaging probe 64 .
  • Imaging probe sheath 93 may fabricated from a thin walled polyimide tubing.
  • optical imaging sheath 92 is between approximately 0.8 mm and 1.5 mm in diameter, with a length suitable to the particular IGCB probe, which may vary based on specific surgical requirements.
  • Imaging element 98 is machined from optical grade glass forming objective lens 97 , lateral reflecting surface 98 and optical imaging window 99 .
  • Objective lens 97 creates an image of the anatomical surroundings within field of view 71 on the surface of coherent optical bundle 94 .
  • a camera within imaging module 88 at the proximal end of lateral optical imaging probe 64 converts the image to video image for surgical guidance.
  • Non-coherent fiber optical bundle 95 transmits light from a light source within proximal imaging module 88 to illuminate field of vision 71 .
  • Lateral reflecting surface 98 may be a mirror coated surface, or may function as a prism.
  • FIG. 9A , 9 B, and 9 C are schematic illustrations of the distal end of Image Guided Cryo Balloon (IGCB) probe 101 , which is an alternative embodiment to IGCB probe 60 .
  • IGCB probe 101 comprises probe shaft 102 , outer balloon 103 , distal tip 104 , inner cryo balloon 105 , inner thermal insulation balloon 106 , cryogen balloon tube 107 , insulation balloon tube 109 , lateral optical imaging probe 64 , with lateral field of view 71 , and cryogen vent tube 108 , and proximal terminal 109 , which will be described in detail below.
  • IGCB probe 101 comprises probe shaft 102 , outer balloon 103 , distal tip 104 , inner cryo balloon 105 , inner thermal insulation balloon 106 , cryogen balloon tube 107 , insulation balloon tube 109 , lateral optical imaging probe 64 , with lateral field of view 71 , and cryogen vent tube 108 , and proximal terminal 109 , which will be described
  • FIG. 9A shows the distal end of IGCB probe 101 , with outer balloon 103 inflated, and lateral optical imaging probe 64 imaging the surrounding anatomy from within outer balloon 103 , as represented by field of view 71 .
  • the proximal end of outer balloon 103 is bonded to the distal end of probe shaft 102
  • the distal end of outer balloon 103 is bonded to the proximal end of distal tip 104 .
  • FIG. 9B shows the distal end of IGCB probe 101 with outer balloon 103 hidden, revealing inner cryo balloon 105 in a deflated configuration, inner thermal insulation balloon 106 in a deflated configuration, with cryo balloon tube 107 , and inner insulation balloon tube 109 mounted between distal tip 104 and probe shaft 102 .
  • FIG. 9C is a cross sectional view of the distal end of IGCB probe 101 taken at section marks B-B in FIG. 9A .
  • Cryogen nozzle array ill is directs and meters liquid cryogen into inner cryogen balloon 105 .
  • Cryo nozzle array 111 is an array of small fenestrations in the wall of cryogen balloon tube 107 , and are between 50 and 150 microns in diameter, and number between one and approximately 20, all located within the interior of inner cryo balloon 105 .
  • Vent ports 112 are fenestrations in the wall of inner insulation balloon tube 109 and provide fluidic communication between the inner lumen of inner insulation balloon tube 109 and the interior of inner thermal insulation balloon 106 .
  • Inner cryo balloon 105 , and inner thermal insulation balloon 106 are substantially elastic balloon, and are preferably made from a silicone rubber.
  • Outer balloon 103 is substantially non-elastic, and is optically clear, and is preferably made from PET. The distal end of outer balloon 103 is bonded to the proximal end of distal tip 104 using adhesive 113 . The proximal end of outer balloon 103 is bonded to the distal end of probe shaft 102 using an adhesive 113 .
  • cryo balloon 105 is bonded to the distal end of cryogen balloon tube 107 , just proximal to distal tip 104 using adhesive 113 .
  • the proximal end of inner cryo balloon 105 is bonded to the distal end cryogen vent tube 108 using adhesive 113 as shown.
  • the distal end of inner thermal insulation balloon is bonded to the distal end of inner insulation balloon tube at its distal end just proximal to distal tip 104 using adhesive 113 as shown.
  • the proximal end of inner insulation balloon 106 is bonded to inner insulation balloon tube 109 just distal to probe shaft 101 using adhesive 113 as shown.
  • Adhesive 113 may be any suitable adhesive.
  • Outer balloon 103 has a burst strength between approximately 4 and 12 atmospheres of pressure.
  • Inner cryo balloon 105 , and inner thermal insulation balloon 106 have a burst strength of approximately 2 atmospheres of pressure or less.
  • Cryo vent tube 108 and inner insulation balloon tube 109 are in fluidic communication at proximal terminal 110 .
  • inner cryo balloon 105 , and inner thermal insulation balloon 106 are pressurized due to the evaporation of cryogen causing both inner cryo balloon 105 , and inner thermal insulation balloon 106 to be inflated and to conform to the inner surface of outer balloon 103 .
  • Outer balloon 103 may be inflated or deflated independently of of the introduction of cryogenic liquid into inner cryo balloon 105 .
  • the outer diameter of outer balloon 103 is between approximately 6 mm and 20 mm or more.
  • the length of outer balloon 103 is between 1 cm and 6 cm or more.
  • the dimensions of inner cryo balloon 105 and inner thermal insulation balloon 106 are sized so that both balloons are in conformity with the interior outer balloon 103 when pressurized.
  • Inner cryo balloon 105 is configured to freeze tissue laterally in a radial segment of outer balloon 103 between approximately 90 and 270 degrees.
  • Inner insulation balloon 106 is configured to prevent tissue freezing in a radial segment of outer balloon 103 between approximately 90 and 270 degrees.
  • the radial segments of tissue freezing and tissue insulation may manipulated by the dimensions of inner cryo balloon 105 and inner thermal insulation balloon 106 , and manipulation of their material properties, including elasticity.
  • Lateral optical probe 64 may be inserted into and withdrawn from outer balloon 103 , prior to a cryosurgical step, and after a cryosurgical step.
  • FIG. 10 is a cross section Illustration of IGCB probe 101 taken at section C-C of FIG. 9C .
  • Probe shaft 102 may me substantially rigid and extruded of a surgical metal, or may be substantially flexible and extruded from a plastic material such as urethane, PeBax®, nylon or polyethylene.
  • the diameter of probe shaft 102 is between approximately 2.5 and 3.5 mm.
  • the length of probe shaft 102 is application specific and may range between 10 cm and 100 cm or more.
  • Probe shaft 102 comprises outer balloon lumen 114 , inner thermal insulation balloon lumen 115 , imaging probe lumen 116 , and inner cryo balloon lumen 117 .
  • Inner insulation balloon tube 109 resides within inner thermal insulation balloon lumen 115 for at least a portion of the length of probe shaft 102 .
  • Inner insulation balloon tube 109 may be bonded within inner thermal insulation balloon lumen 115 with an adhesive.
  • Lateral optical imaging probe 64 is configured to reside within optical imaging lumen 116 , and may be inserted and withdrawn form optical imaging lumen 116 from a port in proximal terminal 110 , which will be described in further detail below.
  • Cryo tube 107 resides within cryo vent tube 108 in a coaxial relationship as shown.
  • Cryo vent tube 108 resides within inner cryo balloon lumen 117 as shown.
  • Inner cryo balloon tube 105 , and inner thermal insulation balloon tube 109 may be fabricated from a stainless steel of Nitinol® hypodermic tube.
  • Cryo vent tube 108 may be fabricated from a plastic extrusion, or a metal hypodermic tube.
  • the inner cross sectional area of inner cryo balloon tube 107 is approximately less than one half of the inner cross sectional area of cryo vent tube 108 .
  • FIG. 11 is a cross section schematic illustration of the distal end of IGCB probe 101 during a cryosurgical step.
  • Lateral optical imaging probe 64 has been withdrawn from the interior of outer balloon 103 .
  • Liquid cryogen 119 is shown being sprayed at the lateral wall of inner cryo balloon 105 .
  • inner cryo balloon 105 and inner insulation balloon 106 are inflated at a pressure controlled by a pressure relief valve in the proximal terminal 110 by evaporated cryogen gas 120 , into substantial conformance to the inner surface of outer balloon 103 .
  • Ice ball 118 is formed within the tissue adjacent to inner cryo balloon 105 .
  • Tissue adjacent to inner thermal insulation balloon 106 is spared from freezing, and therefore freezing injury.
  • FIG. 12 is a transverse cross sectional schematic illustration of IGCB probe 101 taken at section D-D of FIG. 11 .
  • liquid cryogen 119 being sprayed at the inner wall of inner cryo balloon 105 by cryogenic nozzle array in inner cryo balloon tube 107 .
  • liquid cryogen 119 evaporates at the surface of inner cryo balloon 107 forming cryogenic gas 120 , that is maintained at a pressure sufficient to inflate inner cryo balloon 105 and inner thermal insulation balloon 106 into conformance with the interior of outer balloon 103 as show.
  • FIG. 13 is a schematic illustration of proximal terminal 110 of IGCB probe 101 .
  • Hub 121 fluidically connects outer balloon lumen 114 to outer balloon lumen hub tube 122 , inner cryo balloon tube 107 to cryo balloon hub tube 123 , and provides an insertion path for optical probe 64 into optical probe lumen 116 though optical probe port 86 and optical probe hub tube 125 .
  • Hub 121 is also configured to provide fluidic communication between inner cryo balloon lumen 117 , inner cryo balloon vent tube 108 , and inner thermal insulation balloon tube 109 , and hub cryo exhaust tube 126 .
  • Hub 121 may be insert molded using mandrels to create discrete channels between the hub tubes and lumens described above.
  • Imaging probe port 124 may comprise a Toughy Borst connector, or another type of surgical pressure port
  • imaging module 88 comprises a camera and a light source, and has been previously described in detail.
  • Inner cryo balloon tube 107 is connected to a source of liquid cryogen 90 by means of cryogen port 127 , cryogen source hose 91 , and cryogen connector 92 .
  • Liquid cryogen source 90 is depicted schematically as a cryogen tank.
  • the liquid cryogen source may comprise a control console that controls the flow of cryogen based on user settings, and feedback from sensors, not shown.
  • the liquid cryogen may be liquid carbon dioxide or liquid nitrogen, or a liquid chlorofluorocarbon compound.
  • a Joules-Thompson effect (adiabatic gas expansion) cooling architecture could employed and still be within the scope of this invention.
  • Nitrous oxide or argon gas would be the preferred cryogenic gasses for use if a Joule-Thompson cooling architecture is employed.
  • Those skilled in the art cryosurgical probe design and manufacture are familiar the design attributes and trade-offs between liquid cryogen evaporative cooling and Joule-Thompson effect cooling architectures, and are familiar with the means for employing either cooling architecture within the scope of this invention, therefore no further discussion is warranted.
  • Outer balloon lumen 114 is in fluidic communication with balloon lumen hub tube 122 .
  • Syringe 128 provides the user a means to either inflate outer balloon 103 prior to or after a cryosurgical step.
  • Pressure relief valve 129 vents evaporated cryogen 120 to the ambient atmosphere while maintaining a set pressure within inner cryo balloon 105 and inner thermal insulation balloon 106 during liquid cryogen delivery. The pressure created by pressure relief valve 129 is used to maintain inflation of inner cryo balloon 105 and inner thermal insulation balloon 106 in order to maintain their conformity with the interior surface of outer balloon 103 .
  • Pressure relief valve 129 may have a fixed preset pressure relief setting, or pressure relief valve 129 may have a user adjustable pressure setting within a range of pressures that are lower than the burst strength of outer balloon 103 .
  • Pressure relief valve 129 may also comprise an audible indication of the volumetric flow rate of evaporated cryogen 120 exiting pressure relief valve 129 .
  • the audible indication may be in the form of a whistle where the pitch or volume of the whistle may increase as the flow rate of evaporated cryogen 120 increases.
  • the audible signal may provide the user with an indication of tissue freezing effectiveness, or an indication of device failure, such as an inner cryo balloon 105 failure.
  • FIG. 14 is cross sectional schematic illustration of a cryo-ablation of the function of nerve 130 using IGCB probe 101 .
  • IGCB probe 101 is positioned with balloon 103 inflated and separating nerve 130 from associated vein 131 and artery 132 .
  • Inner cryo balloon 105 is positioned adjacent to nerve 130 .
  • Liquid cryogen 119 is being sprayed against the inner wall of inner cryo balloon 105 , resulting in ice ball 118 forming in adjacent tissue and encompassing nerve 130 .
  • Inner cryo balloon 105 and inner thermal insulation balloon 106 are inflated by evaporated cryogen gas 120 as previously described.
  • Inner thermal insulation balloon 106 is adjacent to vein 131 , and artery 132 providing protective thermal insulation from cryogenic injury.

Abstract

A direct vision cryosurgical and methods of use are described herein where the device may generally comprise an elongated rigid structure with a distal end, a proximal end, and a central lumen. The distal end may comprise a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen. The distal end may also house at least one imaging device configured for distal imaging. A proximal end of the device may comprise a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-ablation probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Prov. Pat. App. 61/858,104 filed Jul. 24, 2013, which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to cryosurgical probes and their methods of use. More particularly, the present invention relates to cryosurgical probes which are configured to be advanced into a body lumen while providing for direct visualization.
  • BACKGROUND OF THE INVENTION
  • Accessing and treating regions within a body lumen such as the nasal cavities are often performed by utilizing a probe which is cooled via a chilled fluid, a cryo-fluid such as Nitrous Oxide, or through some other cooling mechanism. The cooled tip can be placed into contact against the tissue region to be treated. However, proper positioning of the cooling probe relative to the tissue may be difficult to achieve due to a number of factors such as limited space, lack of visual contact, anatomical obstructions, etc.
  • Accordingly, devices and methods which can overcome such obstacles to effectively treat tissue regions in body lumens through cryo-therapy are needed.
  • SUMMARY OF THE INVENTION
  • It is an object of this invention to provide a surgical system for image guided cryo-ablation of a discrete anatomical structure within a mammalian body, through a surgically created or natural body orifice, for the purpose of diagnosing or treating disease or injury.
  • In accordance with one aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-ablation probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the needle tip is configured for advancement towards a surgical target through a facial boundary between two or more discrete anatomical structures in a substantially atraumatic manner, and the imaging device is used to guide the advancement of the needle tip.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and further comprising an inflatable structure proximal to the needle tip; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryosurgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, and a means for inflating the inflatable structure, whereby the needle tip is configured for advancement towards a surgical target through a facial boundary between two or more discrete anatomical structures in a substantially atraumatic manner, and the imaging device is used to guide the advancement of the needle tip, and the inflatable structure is configured to further separate the anatomical structure(s) as the needle tip is advanced.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the objective lens, a CMOS imaging sensor, and at least one light emitting diode configured for tissue illumination.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the imaging device is an endoscope comprising an objective lens, a coherent fiber optic bundle configured for imaging, and a second optical bundle configured for illumination.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the imaging device is an endoscope comprising an objective lens, and at least one relay lens configured for tissue imaging, and a fiber optic bundle configured for tissue illumination.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the minor dimension of the lateral fenestration approximates the working diameter of the central lumen.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-surgical probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the lateral fenestration is substantially perpendicular to the axis of the central lumen.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is a clear ionic liquid.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid to/from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is pressurized to facilitated dissection and distal advancement.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is an evaporated liquid refrigerant that is introduced to the distal region by the cryosurgical probe during distal tissue freezing.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging, and at least one cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for delivering or removing fluid to/from the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the fluid is comprises an anesthetic.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing by means of direct application of liquid refrigerant to the target distal tissue.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing comprising a distal refrigerant evaporation chamber in direct contact with the target distal tissue, with the evaporation chamber comprising a hollow metallic structure.
  • In accordance with another aspect of this invention is a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, whereby the handle, central lumen, and lateral fenestration are configured to receive a surgical probe for surgical access to distal tissue, wherein the surgical probe may be a cryosurgical probe configured for distal tissue freezing comprising a distal refrigerant evaporation chamber in direct contact with the target distal tissue, with the evaporation chamber comprising an inflatable balloon.
  • In accordance with another aspect of this invention is a method for accessing a distal region in a mammalian body through a natural dissection plane in order to perform at least one diagnostic or therapeutic cryosurgical step comprising inserting into the body a surgical device comprising an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, and housing at least one imaging device configured for distal imaging, and housing at least one removable cryosurgical probe configured for distal tissue freezing; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s); then advancing the surgical device in the direction of the distal region while maneuvering the distal tip between the facial boundaries of intervening anatomical structures using images from the imaging device(s) and imaging display(s) to guide the maneuvering.
  • In accordance with another aspect of this invention is a method for accessing a distal region in a mammalian body through a natural dissection plane in order to perform at least one diagnostic fenestration in communication with the central lumen, and housing at least one imaging device configured for distal imaging, and further comprising an inflatable structure proximal to the needle tip; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes, and a means for inflating the inflatable structure; then advancing the surgical device in the direction of the distal region while maneuvering the distal tip between the facial boundaries of intervening anatomical structures using images from the imaging device(s) and imaging display(s) to guide the maneuvering, and inflating the inflatable structure as needed to facilitate distal advancement.
  • In accordance with an alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas.
  • An alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas.
  • In accordance with one aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device is configured for lateral imaging.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device comprises at least one coherent optical fiber bundle, configured for transmitting an image from within the inflatable balloon to a camera in the vicinity of the proximal end.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby, the imaging device comprises a probe with a distal end and a proximal end configured for removable insertion into the inflatable balloon through a central lumen, with the distal end comprising an imaging means, and the proximal end comprising a means for connecting the probe to an image display.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising a substantially rigid elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the cryosurgical probe is configured for insertion into the targeted surgical site.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising a substantially flexible elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the cryosurgical probe is configured for insertion into the targeted surgical site by means of a tortuous insertion pathway.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas, whereby the predetermined pressure is maintained by a pressure relief valve in line between the interior of the balloon and the ambient atmosphere, wherein the cryosurgical probe is configured for lateral tissue freezing by means of spraying a liquid refrigerant at an interior radial segment of the balloon from a central lumen cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas, whereby the outer balloon is fabricated from a substantially non-elastic material, and the inner balloons are fabricated from a substantially elastic material.
  • In accordance with another aspect of the alternative embodiment of this invention is a cryosurgical probe comprising an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one removably insertable optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas, whereby the inner balloons are configured to conform to the inner surface of the outer balloon when pressurized with refrigerant.
  • It is further an object of this invention to provide a method for performing a cryosurgical procedure comprising inserting a cryosurgical probe into the body of a patient, and then advancing the distal end of the probe into the vicinity of the surgical target, with the cryosurgical probe comprising: an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical probe at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the balloon with a liquid or a gas; then inflating the balloon and imaging the anatomy surrounding the balloon, then determining whether the cryosurgical probe is in a correct position for cryosurgical ablation based at least in part on the imaging, then, if the determination is that the cryosurgical probe is in a correct position then proceeding with the cryosurgical ablation, and alternatively, if the determination is that the cryosurgical probe is not in the correct position, then repositioning the cryosurgical probe until the cryosurgical probe is in a correct position, as determined at least in part by the imaging, whereby determining correct position may comprise determining the position of a lateral tissue freezing zone of the cryosurgical probe in relation to the adjacent anatomy.
  • An additional object of this invention is a method for cryosurgical ablation of the function of a nerve comprising inserting a cryosurgical probe between the target nerve and the artery and vein associated with the nerve; with the cryosurgical probe having an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas; then inflating the outer balloon to create distance between the nerve and the vein and artery; then using the imaging device, position the inner cryo balloon proximate to the nerve, and the inner insulation balloon proximate to the vein and artery; then introducing liquid refrigerant into the cryo balloon causing inflation of the inner cryo balloon and the inner insulation balloon; then maintaining the flow of refrigerant for a period of time sufficient for affecting the nerve function in the desired manner, whereby, the vein and artery remain unaffected by cold due to the separation between the target nerve end the vein and artery, and the thermal insulating effect of the inner thermal insulation balloon.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of a surgical imaging probe configured for accessing a distal surgical site within a patient using image guidance.
  • FIG. 2 shows a perspective view of the distal end of the surgical probe having an optically transparent needle tip mounted on the probe shaft.
  • FIG. 3 shows a cross sectional illustration of the distal end of the surgical probe depicting the probe shaft, optically transparent needle tip, and imaging element.
  • FIG. 4 shows a cross sectional illustration of the distal end of the surgical probe which is configured for direct application of a liquid refrigerant on target tissue within the field of view of the imaging element.
  • FIGS. 5A and 5B show cross sectional side views of the distal end of the surgical probe illustrating a cryosurgical balloon probe having a balloon member which is inflatable upon introduction of a liquid refrigerant.
  • FIG. 6A shows a schematic illustration of a surgical probe inserted into the body of a patient and advanced through tissue towards the target distal region while under visual guidance.
  • FIG. 6B shows an illustration of an image received from the imaging element positioned within the probe.
  • FIG. 6C shows an illustration of an image from imaging element showing the target distal region residing between facial surfaces which have been separated by the manipulation of the surgical probe.
  • FIG. 7A shows a side view of a variation of the distal end of an Image Guided Directed Cryosurgical Balloon (IGCB) probe.
  • FIG. 7B shows a cross sectional end view of the IGCB probe.
  • FIG. 7C shows a schematic illustration of a variation of the proximal terminal of the IGCB probe.
  • FIG. 8 shows a cum sectional schematic side view of a variation of the distal end of a lateral optical imaging probe.
  • FIG. 9A shows the distal end of the IGCB probe with an inflated outer balloon and a lateral optical imaging probe imaging the surrounding anatomy from within the outer balloon as represented by field of view.
  • FIG. 9B shows the distal end of IGCB probe 101 with the outer balloon removed for clarity to reveal an inner cryo balloon in a deflated configuration and an inner thermal insulation balloon in a deflated configuration.
  • FIG. 9C shows a cross sectional side view of the distal end of the IGCB probe.
  • FIG. 10 shows a cross sectional end view of the IGCB probe taken proximal to the inflatable outer balloon.
  • FIG. 11 shows a cross section side view of the distal end of the IGCB probe during a cryosurgical procedure.
  • FIG. 12 shows a transverse cross sectional end view of the IGCB probe illustrating cryogenic fluid being sprayed at an inner wall of the inner balloon.
  • FIG. 13 shows a schematic illustration of the proximal terminal of the IGCB probe.
  • FIG. 14 shows a cross sectional end view of a nerve undergoing cryo-ablation using the IGCB probe.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is an illustration of the central embodiment of surgical imaging probe 1 configured for accessing a distal surgical site within a patient by advancement between anatomical structures by atraumatic blunt dissection using image guidance for the purpose of performing a cryosurgical step. Surgical imaging probe 1 comprises probe shaft 2, non-coring optically transparent needle tip 3, probe handle 8, electrical lead 4, electrical connector 5 fluid tube 6 and fluid connector 7. Probe shaft 2 is between approximately 5 and 20 centimeters long, and between approximately 2.5 and 3.5 millimeters in diameter. Probe shaft 2 has a central lumen between approximately 2.3 and 3.3 millimeters in diameter. Probe shaft 2 may be fabricated from a stainless steel hypodermic tube, or may be fabricated from another metal used in surgical instruments such as titanium. Probe shaft 2 is substantially rigid and is capable of transmitting lateral, longitudinal, and torsional forces along its length. Distal needle tip 3 is configured for blunt atraumatic dissection between the fascias of discrete anatomical structures. Distal needle tip 3 is optically transparent and houses an optical imaging device that is connectable to an imaging display. The optical images are used by the surgeon identify a facial plane through which the surgical probe may safely be advanced towards a target distal region within the body. Distal needle tip 3 also comprises a lateral fenestration which communicates with the interior of distal needle tip 3, and the central lumen of probe shaft 2. Distal needle tip 3, probe shaft 2 are described in greater detail below. Surgical probe handle 8 is configured in an ergonomic manner to provide the surgeon with a comfortable grip of surgical probe 1, and good tactile feedback of the forces resulting from manipulation of surgical probe 1 during the surgery. Surgical probe handle 8 also comprises a means for fluid communication between fluid tube 6 and the central lumen in probe shaft 2. Fluid connector 7 is a female luer fitting as depicted and is configured for connection to a syringe or another fluid source. Additionally, a cryosurgical surgical probe may be inserted through surgical probe 1 for distal use using fluid connector 7, fluid tube 6, the central lumen of probe shaft 5 and exiting through the lateral fenestration of needle tip 3. Electrical lead 4, and electrical connector 5 are configured to connect the optical imaging device mounted within needle tip 3 to an optical imaging display. Electrical lead 4, and electrical connector 5 may provide a means for connecting additional sensors mounted within surgical probe 1 that may include sensors configured to detect temperature, cardiac signals, bodily fluid chemistry, dissecting force, fluid pressure, ionizing radiation, non-visible light, or a magnetic field. Electrical lead 4 and electrical connector may be configured for connecting a therapeutic energy emitting device mounted within surgical probe 1 to a source of therapeutic energy.
  • FIG. 2 is an illustration of the distal end of surgical probe 1 showing the distal end of probe shaft 2, with optically transparent needle tip 3 mounted on probe shaft 2. Needle tip 3 comprises a non-coring needle tip design where the distal face of the needle tip is smooth with a large radius 10 as shown, and comprises a lateral fenestration 9 that communicates between the distal exterior of surgical probe 1 and the interior of needle tip 3 and the central lumen of probe shaft 2. Radiused edge 11 is configured to smooth the edge formed between large radiused surface 10 and fenestration 9 to prevent puncture or incision of tissue as surgical 1 is advanced in the distal direction between anatomical structures.
  • FIG. 3 is a cross sectional illustration of the distal end of surgical probe 1 depicting probe shaft 2, optically transparent needle tip 3, CMOS camera with integral illumination 12, camera mount 13, central lumen 16, electrical cable 14, and camera field of view 15. Probe shaft 2 comprises central lumen 16, and a stepped segment 17 configured for mounting needle tip 3. Needle tip 3 is fabricated from an optically transparent, mechanically rigid material, which may a glass material, or may be a plastic material such as polycarbonate. Those skilled in the art of glass forming, or plastic molding of optical components are familiar the fabrication techniques that may be used for fabricating needle tip 3 as disclosed here within, therefore no further description is warranted. Needle tip 3 is a hollow tubular structure with a central axis substantially aligned with the central axis of probe shaft 2 at its proximal end, and with the central axis substantially perpendicular to the central axis of probe shaft 2 as shown. The distal face is blunt as defined by large radius 10. Fenestration 9 communicates between the interior of needle tip 3 and central lumen 16, and the exterior of surgical probe 1. Fenestration 9 may be configured as shown, or may alternatively be more than one single fenestration. Fenestration 9 may have a diameter that is similar to the diameter of central lumen 16 and suitable for passing a surgical instrument through, or may be substantially smaller than central lumen 16. Camera 12 may be a miniature CMOS camera with integral illumination and similar to cameras offered by Awaiba Corp. which are described in detail at www.awaiba.com, and therefore no further description is warranted here. Camera 12 is mounted to the inner surface of needle tip 3 by camera mount 13, which is configured to point camera 12 so field of view 15 is in the distal direction, and substantially encompasses fenestration 9 as shown. An alternate optical imaging device, not show may be employed for distal imaging, which may be a fiberscope, of a rigid endoscope mounted within central lumen 16. Camera mount 13 may be integrally molded into needle tip 3 as shown, or may be separate component that is bonded to the interior of needle tip 3. Electrical cable 14 connects camera 12 to electrical connector 5 at the proximal end of surgical probe 1, and resides within central lumen 16 as shown.
  • FIG. 4 is a cross sectional illustration of the distal end of surgical probe 1 depicting cryosurgical probe 18, which is configured for direct application of liquid refrigerant on target tissue to effect tissue freezing. As shown cryosurgical probe 18 is extending from central lumen 16 and needle tip 3 in position for spraying liquid refrigerant 50 through distal cryo-nozzle 49 on target distal tissue within the field of view 15 of camera 12. Also as depicted, evaporated refrigerant 51 is vented back to ambient atmosphere through central lumen 16. Camera 12 may be used to monitor and guide tissue freezing. Cryosurgical probe 18 may comprise a steerable distal segment that may be utilized to direct the spray of liquid refrigerant. Those skilled in the art of steerable catheters are familiar with designs and manufacturing process for incorporating steerable function into cryosurgical probe 18, therefore no further description is warranted.
  • FIG. 5A is a cross sectional illustration of the distal end of surgical probe 1 configured for distal tissue ablation utilizing cryosurgical probe 52 comprising a closed distal evaporator chamber 53, which freezes target tissue by contact with the surface of evaporator 53, and by thermal conduction of heat from the target tissue into evaporator chamber 53. Cryosurgical probes with closed distal evaporation chambers are thoroughly and widely described in the prior art, therefore no further description of cryosurgical probe 52 is warranted. FIG. 5B is a cross sectional illustration of the distal end of surgical probe 1 configured for distal tissue ablation utilizing cryosurgical balloon probe 54 comprising a closed distal evaporator balloon chamber 55, which inflates upon introduction of liquid refrigerant into the interior of balloon 55 and freezes target tissue by contact with the surface of balloon 55, and by thermal conduction of heat from the target tissue into evaporator balloon chamber 55. Cryosurgical probes with closed distal evaporation balloon chambers are thoroughly and widely described in the prior art, therefore no further description of cryosurgical probe 54 is warranted.
  • FIG. 6A is a schematic illustration of surgical probe 1 being inserted into the body of a patient 30 and being advanced in a distal direction through tissue 31 towards target distal region 32 under visual guidance. Surgical probe 1 may be manipulated in torsional and lateral directions as represented by the crossed arrows in order to find a facial boundary between two or more discrete anatomical structures through which surgical probe 1 may be safely advanced in the distal direction towards the target distal region 32. FIG. 6B is an illustration showing an image from camera 12. Visible in the image is distal tissue comprising discrete anatomical structures 36, and 35, which is separated by facial boundary 34. Fenestration 9 is shown in full view. FIG. 6C is an illustration showing an image from camera 12 showing the target distal region 32 residing between facial surfaces 37 and 38, which have been separated by the manipulation of surgical probe 1 facilitating one or more surgical therapeutic or diagnostic step(s), including a possible cryosurgical step, as depicted by frozen tissue 56.
  • FIG. 7A, 7B and 7C are schematic illustrations of Image Guided Directed Cryosurgical Balloon (IGCB) probe 60. IGCB Probe 60 comprises probe shaft 61, balloon 62, distal tip 63, optical imaging probe 64, cryogen tube 65, and proximal terminal 66.
  • FIG. 7A depicts the distal end of IGCB probe 60 showing balloon 62 bonded to probe shaft 61 at its proximal end, and bonded to distal tip 63 at its distal end. Also shown is cryogen tube 65 mounted between probe shaft 61 and distal tip 63. Cryogen tube 63 comprises a linear array of lateral cryogen nozzles 67. Lateral cryogen nozzle array 67 are small fenestrations through on wall of cryogen tube 65, and are between approximately 50 and 150 microns in diameter, and number between one and approximately 20 or more. Lateral cryogen nozzles 67 may formed by a laser machining operation. Cryogen tube 65 is connectable to a source of cryogenic liquid at proximal terminal 66, and is configured to spray a lateral region of balloon 62 with liquid cryogen to form lateral tissue freezing zone 68. Cryo tube 65 and balloon 62 are configured so that substantially all of the liquid cryogen sprayed at the inner wall of balloon 62 is evaporated on contact, and balloon 62 is substantially filled with cryogen in a gaseous state, which is thermally insulative, thereby limiting tissue freezing to tissue adjacent to tissue freezing zone 68. Cryo tube 65 is also configured to mechanically link probe shaft 61 to distal tip 63 and to translate axial and lateral forces between probe shaft 61 and distal tip 63 to a degree sufficient to maneuver IGCB probe 60 into position within a mammalian body for the purpose of performing at least one cryosurgical step. The inner lumen of cryogen tube 65 is terminated and sealed at distal tip 63, thereby, all cryogen leaves cryogen tube 65 through lateral cryogen nozzle array 67. Cryogen tube 65 may be fabricated from stainless steel or Nitinol® hypodermic tube. Optical imaging probe 64 may be removably inserted into the interior of balloon 62 though central lumen 69, and imaging port 70 of proximal terminal 66 (See FIG. 7C). Optical imaging probe 64 is configured for lateral imaging as depicted by imaging field of view 71. Optical imaging probe 64 and IGCB probe 60 are configured with an imaging range of motion that is substantially 360 degrees of lateral imaging, and with an axial range that approximates the length of the balloon 62. Imaging probe 64 is described in greater detail below. Balloon 62 is configured for tissue dilation, and as an optical window for optical imaging probe 64. Balloon 62 may be fabricated from a substantially in-elastic material with good optical clarity such PET. Balloon 62 is configured to have a burst strength of between approximately 4 and 12 atmospheres of pressure, at a cryogenic temperature between zero, and minus 100 degrees centigrade. Balloon 62 is bonded using an adhesive to the distal end of probe shaft 61, and the proximal end of distal tip 63 as shown. Balloon 62 may be inflated (as shown) with a liquid or a gas though at least one central lumen in probe shaft 61, and a fluid port on proximal terminal 66, which is described in detail below. Balloon 62 may also be inflated during cryogen spraying using the expansion of the evaporating cryogen and a pressure regulating valve mounted within distal terminal 66 disposed between the interior of balloon 62 and the ambient atmosphere, which is described in more detail below. Those skilled in the art of surgical balloon probe design and manufacture are familiar with means for designing and manufacturing IGCB probe as disclosed here within, therefore, no further explanation is warranted. Probe shaft 61 may be substantially rigid, and fabricated as a metal extrusion, or may be substantially flexible and fabricated from a plastic material such as urethane, PeBax®, nylon, or polyethylene. Distal tip 63 may be bullet shaped as shown, and may have a guidewire channel 77 as shown for assisting in positioning IGCB probe 60 into position for performing a cryosurgical step. Distal tip 63 may be a molded or extruded plastic material, or may be machined from metal.
  • FIG. 7B is a sectional illustration taken at section A-A in FIG. 7A. Depicted in FIG. 7B is cryogen 75 being sprayed against a lateral section of balloon 62 (lateral tissue freezing zone 68) through lateral cryogen nozzle array 67 in cryogen tube 65. Also shown is ice ball 72 formed in tissue adjacent to lateral tissue freezing zone 68. Optical imaging probe 64 is shown imaging tissue diametrically opposed to lateral tissue freezing zone 68. Also depicted are balloon lumens 73 and 74 which are in fluidic communication with proximal terminal 66. Balloon lumens 73 and 74 may be used to together or separately for inflating the balloon with a liquid or gas prior to or after tissue freezing, and are used to vent evaporated cryogen from balloon 62.
  • FIG. 7C is a schematic illustration of proximal terminal 66 of IGCB probe 60. Hub 78 fluidically connects balloon lumens 73 and 74 to balloon lumen hub tube 79, cryogen tube 65 to cryogen hub tube 85, and provides an insertion path for optical probe 64 into optical probe lumen 69 though optical probe port 86 and optical probe hub tube 87. Hub 78 in insert molded using mandrels to create discrete channels between the hub tubes and lumens described above. Those skilled in the art of surgical probe hub design and manufacture are familiar methods for designing and manufacturing the an IGCB probe hub as disclosed here within, therefore no further description is warranted. Imaging probe 64 is inserted into imaging probe lumen 69 through imaging probe port 86 and imaging probe hub tube 87. Imaging probe port 86 may comprise a Toughy Borst connector, or another type of surgical pressure port. Imaging module 88 comprises a camera and a light source. The camera images the proximal end of the coherent optical fiber bundle of imaging probe 64, and the light source provides illumination to the distal surgical field, with the light being transmitted distally by a second optical fiber or fiber bundle. Optical imaging probe 64 will be described in further detail below. Imaging module 88 is connected to an imaging display, not shown. Cryogen tube 65 is connected to a source of liquid cryogen 90 by means of cryogen port 84, cryogen source hose 91, and cryogen connector 92. Liquid cryogen source 90 is depicted schematically as a cryogen tank. The liquid cryogen source may comprise a control console that controls the flow of cryogen based on user settings, and feedback from sensors, not shown. The liquid cryogen may be liquid carbon dioxide or liquid nitrogen, or a liquid chlorofluorocarbon compound. Alternatively, instead of using evaporative cooling, a Joules-Thompson effect (adiabatic gas expansion) cooling architecture could employed and still be within the scope of this invention. Nitrous oxide or argon gas would be the preferred cryogenic gasses for use if a Joule-Thompson cooling architecture is employed. Those skilled in the art cryosurgical probe design and manufacture are familiar the design attributes and trade-offs between liquid cryogen evaporative cooling and Joule-Thompson effect cooling architectures, and are familiar with the means for employing either cooling architecture within the scope of this invention, therefore no further discussion is warranted. Balloon lumens 73 and 74 are in fluidic communication with balloon lumen hub tube 79. Stop cock 80 provides the user a means to either inflate balloon 62 prior to or after a cryosurgical step using syringe 81. Syringe 81 may also be used to deflate balloon 62. During a cryosurgical step, the stop cock is configured to fluidically connect pressure relief valve 82 to balloon lumen hub tube 79, and fluidically disconnect syringe 81 from balloon lumen hub tube 79. Pressure relief valve 82 vents evaporated cryogen 83 to the ambient atmosphere while maintaining a set pressure with balloon 62 during liquid cryogen delivery. The pressure created by pressure relief valve 82 is used to maintain inflation and tissue dilation force for balloon 62 in order to maintain a spatial separation between tissue targeted for freezing, and tissue intended to be protected from freezing. Pressure relief valve 82 may have a fixed preset pressure relief setting, or pressure relief valve 82 may have a user adjustable pressure setting within a range of pressures that are lower than the burst strength of balloon 62. Pressure relief valve 82 may also comprise an audible indication of the volumetric flow rate of evaporated cryogen 83 exiting pressure relief valve 82. The audible indication may be in the form of a whistle where the pitch or volume of the whistle may increase as the flow rate of evaporated cryogen 83 increases. The audible signal may provide the user with an indication of tissue freezing effectiveness, or an indication of device failure, such as a cryo balloon 62 failure.
  • FIG. 8 is a cross sectional schematic illustration of the distal end of lateral optical imaging probe 64. Lateral optical imaging probe 64 comprises imaging probe sheath 93, fiber bundle 100 comprising central coherent fiber bundle 94 and outer non-coherent fiber bundle 95, and imaging element 96 comprising objective lens 97, lateral reflective surface 98, and imaging window 99. Imaging probe sheath 93 houses optical fiber bundle 100, and is used to mount imaging element 96 at the distal end of lateral optical imaging probe 64. Imaging probe sheath 93 may fabricated from a thin walled polyimide tubing. The outer diameter of optical imaging sheath 92 is between approximately 0.8 mm and 1.5 mm in diameter, with a length suitable to the particular IGCB probe, which may vary based on specific surgical requirements. Imaging element 98 is machined from optical grade glass forming objective lens 97, lateral reflecting surface 98 and optical imaging window 99. Objective lens 97 creates an image of the anatomical surroundings within field of view 71 on the surface of coherent optical bundle 94. A camera within imaging module 88 at the proximal end of lateral optical imaging probe 64 converts the image to video image for surgical guidance. Non-coherent fiber optical bundle 95 transmits light from a light source within proximal imaging module 88 to illuminate field of vision 71. Lateral reflecting surface 98 may be a mirror coated surface, or may function as a prism. Those skilled in the art of fiber scopes, and optical engineering are familiar with means for designing and developing a lateral optical imaging as disclosed here within, and remain within the scope of this invention, therefore, no further description is warranted.
  • FIG. 9A, 9B, and 9C are schematic illustrations of the distal end of Image Guided Cryo Balloon (IGCB) probe 101, which is an alternative embodiment to IGCB probe 60. IGCB probe 101 comprises probe shaft 102, outer balloon 103, distal tip 104, inner cryo balloon 105, inner thermal insulation balloon 106, cryogen balloon tube 107, insulation balloon tube 109, lateral optical imaging probe 64, with lateral field of view 71, and cryogen vent tube 108, and proximal terminal 109, which will be described in detail below.
  • FIG. 9A shows the distal end of IGCB probe 101, with outer balloon 103 inflated, and lateral optical imaging probe 64 imaging the surrounding anatomy from within outer balloon 103, as represented by field of view 71. The proximal end of outer balloon 103 is bonded to the distal end of probe shaft 102, and the distal end of outer balloon 103 is bonded to the proximal end of distal tip 104. FIG. 9B shows the distal end of IGCB probe 101 with outer balloon 103 hidden, revealing inner cryo balloon 105 in a deflated configuration, inner thermal insulation balloon 106 in a deflated configuration, with cryo balloon tube 107, and inner insulation balloon tube 109 mounted between distal tip 104 and probe shaft 102. Also depicted is lateral optical imaging probe 64 with field of view 71. FIG. 9C is a cross sectional view of the distal end of IGCB probe 101 taken at section marks B-B in FIG. 9A. Cryogen nozzle array ill is directs and meters liquid cryogen into inner cryogen balloon 105. Cryo nozzle array 111 is an array of small fenestrations in the wall of cryogen balloon tube 107, and are between 50 and 150 microns in diameter, and number between one and approximately 20, all located within the interior of inner cryo balloon 105. Vent ports 112 are fenestrations in the wall of inner insulation balloon tube 109 and provide fluidic communication between the inner lumen of inner insulation balloon tube 109 and the interior of inner thermal insulation balloon 106. Inner cryo balloon 105, and inner thermal insulation balloon 106 are substantially elastic balloon, and are preferably made from a silicone rubber. Outer balloon 103 is substantially non-elastic, and is optically clear, and is preferably made from PET. The distal end of outer balloon 103 is bonded to the proximal end of distal tip 104 using adhesive 113. The proximal end of outer balloon 103 is bonded to the distal end of probe shaft 102 using an adhesive 113. The distal end of cryo balloon 105 is bonded to the distal end of cryogen balloon tube 107, just proximal to distal tip 104 using adhesive 113. The proximal end of inner cryo balloon 105 is bonded to the distal end cryogen vent tube 108 using adhesive 113 as shown. the distal end of inner thermal insulation balloon is bonded to the distal end of inner insulation balloon tube at its distal end just proximal to distal tip 104 using adhesive 113 as shown. The proximal end of inner insulation balloon 106 is bonded to inner insulation balloon tube 109 just distal to probe shaft 101 using adhesive 113 as shown. Adhesive 113 may be any suitable adhesive. Outer balloon 103 has a burst strength between approximately 4 and 12 atmospheres of pressure. Inner cryo balloon 105, and inner thermal insulation balloon 106 have a burst strength of approximately 2 atmospheres of pressure or less. Cryo vent tube 108 and inner insulation balloon tube 109 are in fluidic communication at proximal terminal 110. When liquid cryogen is introduced into inner cryo balloon 105 through cryogen nozzle array 111, inner cryo balloon 105, and inner thermal insulation balloon 106 are pressurized due to the evaporation of cryogen causing both inner cryo balloon 105, and inner thermal insulation balloon 106 to be inflated and to conform to the inner surface of outer balloon 103. The pressure of inflation is controlled by a pressure relief valve in proximal terminal 110, and is described in further detail below. Outer balloon 103 may be inflated or deflated independently of of the introduction of cryogenic liquid into inner cryo balloon 105. The outer diameter of outer balloon 103 is between approximately 6 mm and 20 mm or more. The length of outer balloon 103 is between 1 cm and 6 cm or more. The dimensions of inner cryo balloon 105 and inner thermal insulation balloon 106 are sized so that both balloons are in conformity with the interior outer balloon 103 when pressurized. Inner cryo balloon 105 is configured to freeze tissue laterally in a radial segment of outer balloon 103 between approximately 90 and 270 degrees. Inner insulation balloon 106 is configured to prevent tissue freezing in a radial segment of outer balloon 103 between approximately 90 and 270 degrees. The radial segments of tissue freezing and tissue insulation may manipulated by the dimensions of inner cryo balloon 105 and inner thermal insulation balloon 106, and manipulation of their material properties, including elasticity. Lateral optical probe 64 may be inserted into and withdrawn from outer balloon 103, prior to a cryosurgical step, and after a cryosurgical step.
  • FIG. 10 is a cross section Illustration of IGCB probe 101 taken at section C-C of FIG. 9C. Probe shaft 102 may me substantially rigid and extruded of a surgical metal, or may be substantially flexible and extruded from a plastic material such as urethane, PeBax®, nylon or polyethylene. The diameter of probe shaft 102 is between approximately 2.5 and 3.5 mm. The length of probe shaft 102 is application specific and may range between 10 cm and 100 cm or more. Probe shaft 102 comprises outer balloon lumen 114, inner thermal insulation balloon lumen 115, imaging probe lumen 116, and inner cryo balloon lumen 117. Inner insulation balloon tube 109 resides within inner thermal insulation balloon lumen 115 for at least a portion of the length of probe shaft 102. Inner insulation balloon tube 109 may be bonded within inner thermal insulation balloon lumen 115 with an adhesive. Lateral optical imaging probe 64 is configured to reside within optical imaging lumen 116, and may be inserted and withdrawn form optical imaging lumen 116 from a port in proximal terminal 110, which will be described in further detail below. Cryo tube 107 resides within cryo vent tube 108 in a coaxial relationship as shown. Cryo vent tube 108 resides within inner cryo balloon lumen 117 as shown. Inner cryo balloon tube 105, and inner thermal insulation balloon tube 109 may be fabricated from a stainless steel of Nitinol® hypodermic tube. Cryo vent tube 108 may be fabricated from a plastic extrusion, or a metal hypodermic tube. The inner cross sectional area of inner cryo balloon tube 107 is approximately less than one half of the inner cross sectional area of cryo vent tube 108.
  • FIG. 11 is a cross section schematic illustration of the distal end of IGCB probe 101 during a cryosurgical step. Lateral optical imaging probe 64 has been withdrawn from the interior of outer balloon 103. Liquid cryogen 119 is shown being sprayed at the lateral wall of inner cryo balloon 105. As a result of the evaporation of liquid cryogen 119 inner cryo balloon 105, and inner insulation balloon 106 are inflated at a pressure controlled by a pressure relief valve in the proximal terminal 110 by evaporated cryogen gas 120, into substantial conformance to the inner surface of outer balloon 103. Ice ball 118 is formed within the tissue adjacent to inner cryo balloon 105. Tissue adjacent to inner thermal insulation balloon 106 is spared from freezing, and therefore freezing injury.
  • FIG. 12 is a transverse cross sectional schematic illustration of IGCB probe 101 taken at section D-D of FIG. 11. Depicted is liquid cryogen 119 being sprayed at the inner wall of inner cryo balloon 105 by cryogenic nozzle array in inner cryo balloon tube 107. As a result, liquid cryogen 119 evaporates at the surface of inner cryo balloon 107 forming cryogenic gas 120, that is maintained at a pressure sufficient to inflate inner cryo balloon 105 and inner thermal insulation balloon 106 into conformance with the interior of outer balloon 103 as show.
  • FIG. 13 is a schematic illustration of proximal terminal 110 of IGCB probe 101. Hub 121 fluidically connects outer balloon lumen 114 to outer balloon lumen hub tube 122, inner cryo balloon tube 107 to cryo balloon hub tube 123, and provides an insertion path for optical probe 64 into optical probe lumen 116 though optical probe port 86 and optical probe hub tube 125. Hub 121 is also configured to provide fluidic communication between inner cryo balloon lumen 117, inner cryo balloon vent tube 108, and inner thermal insulation balloon tube 109, and hub cryo exhaust tube 126. Hub 121 may be insert molded using mandrels to create discrete channels between the hub tubes and lumens described above. Those skilled in the art of surgical probe hub design and manufacture are familiar methods for designing and manufacturing the an IGCB probe hub as disclosed here within, therefore no further description is warranted. Imaging probe port 124 may comprise a Toughy Borst connector, or another type of surgical pressure port, imaging module 88 comprises a camera and a light source, and has been previously described in detail. Inner cryo balloon tube 107 is connected to a source of liquid cryogen 90 by means of cryogen port 127, cryogen source hose 91, and cryogen connector 92. Liquid cryogen source 90 is depicted schematically as a cryogen tank. The liquid cryogen source may comprise a control console that controls the flow of cryogen based on user settings, and feedback from sensors, not shown. The liquid cryogen may be liquid carbon dioxide or liquid nitrogen, or a liquid chlorofluorocarbon compound. Alternatively, instead of using evaporative cooling, a Joules-Thompson effect (adiabatic gas expansion) cooling architecture could employed and still be within the scope of this invention. Nitrous oxide or argon gas would be the preferred cryogenic gasses for use if a Joule-Thompson cooling architecture is employed. Those skilled in the art cryosurgical probe design and manufacture are familiar the design attributes and trade-offs between liquid cryogen evaporative cooling and Joule-Thompson effect cooling architectures, and are familiar with the means for employing either cooling architecture within the scope of this invention, therefore no further discussion is warranted. Outer balloon lumen 114 is in fluidic communication with balloon lumen hub tube 122. Syringe 128 provides the user a means to either inflate outer balloon 103 prior to or after a cryosurgical step. Pressure relief valve 129 vents evaporated cryogen 120 to the ambient atmosphere while maintaining a set pressure within inner cryo balloon 105 and inner thermal insulation balloon 106 during liquid cryogen delivery. The pressure created by pressure relief valve 129 is used to maintain inflation of inner cryo balloon 105 and inner thermal insulation balloon 106 in order to maintain their conformity with the interior surface of outer balloon 103. Pressure relief valve 129 may have a fixed preset pressure relief setting, or pressure relief valve 129 may have a user adjustable pressure setting within a range of pressures that are lower than the burst strength of outer balloon 103. Pressure relief valve 129 may also comprise an audible indication of the volumetric flow rate of evaporated cryogen 120 exiting pressure relief valve 129. The audible indication may be in the form of a whistle where the pitch or volume of the whistle may increase as the flow rate of evaporated cryogen 120 increases. The audible signal may provide the user with an indication of tissue freezing effectiveness, or an indication of device failure, such as an inner cryo balloon 105 failure.
  • FIG. 14 is cross sectional schematic illustration of a cryo-ablation of the function of nerve 130 using IGCB probe 101. As shown, IGCB probe 101 is positioned with balloon 103 inflated and separating nerve 130 from associated vein 131 and artery 132. Inner cryo balloon 105 is positioned adjacent to nerve 130. Liquid cryogen 119 is being sprayed against the inner wall of inner cryo balloon 105, resulting in ice ball 118 forming in adjacent tissue and encompassing nerve 130. Inner cryo balloon 105 and inner thermal insulation balloon 106 are inflated by evaporated cryogen gas 120 as previously described. Inner thermal insulation balloon 106 is adjacent to vein 131, and artery 132 providing protective thermal insulation from cryogenic injury.
  • The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modifications of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.

Claims (33)

What is claimed is:
1. A cryosurgical apparatus, comprising:
an elongated rigid structure having a distal end, a proximal end, and a lumen defined through the structure;
a non-coring optically transparent tip located at the distal end, wherein the tip presents a curved distal surface which curves to a side of the tip and terminates in at least one opening defined along a side relative to the structure such that the at least one opening is in communication with the lumen;
at least one imaging device positioned proximal or adjacent to the tip and angled to image through the tip and along a region coincident with the at least one opening; and,
a cryo-ablation probe positioned through the lumen with a distal probe tip in proximity to the at least one opening.
2. The apparatus of claim 1 further comprising a lateral tissue thermal protection barrier located in apposition to the cryo-ablation probe.
3. The apparatus of claim 1 wherein the tip is configured for blunt atraumatic dissection between tissue fascia.
4. The apparatus of claim 3 wherein a distal edge of the at least one opening defines a radius which is configured to smooth the curved distal surface and the at least one opening.
5. The apparatus of claim 1 wherein the tip comprises a polycarbonate or glass material.
6. The apparatus of claim 1 wherein the at least one imaging device comprises a CMOS camera or fiberscope.
7. The apparatus of claim 1 wherein the cryo-ablation probe comprises a lumen configured to spray a liquid refrigerant through a tip of the probe.
8. The apparatus of claim 1 wherein the cryo-ablation probe comprises an inflatable balloon member configured to inflate upon introduction of a liquid refrigerant into an interior of balloon.
9. The apparatus of claim 1 wherein the cryo-ablation probe comprises an enclosed probe member.
10. A cryosurgical apparatus, comprising:
an elongated structure having a distal end, a proximal end, and a lumen defined through the structure;
an outer balloon positioned near or at the distal end, wherein the outer balloon is comprised of an optically transparent material;
at least one imaging device adjustably positioned within the outer balloon; and
at least one cryogenic probe positioned within the lumen such that one or more openings defined along the cryogenic probe are directed to a treatment region defined along an inner surface of the outer balloon; and
at least one inner balloon positioned within the outer balloon such that inflation of the inner balloon expands the inner balloon into conformance against the inner surface of the outer balloon at a location opposite to the treatment region to thermally insulate areas adjacent to the treatment region.
11. The apparatus of claim 10 further comprising a relief valve in fluid communication with the lumen, wherein the relief valve is configured to open at a predetermined pressure.
12. The apparatus of claim 10 wherein the outer balloon is configured to have a burst strength of between 4 and 12 atmospheres of pressure and at a cryogenic temperature between 0° and −100° C.
13. The apparatus of claim 10 further comprising an inner cryo balloon positioned within the outer balloon and enclosing the at least one cryogenic probe.
14. The apparatus of claim 13 wherein the inner cryo balloon is configured to expand into conformance against the inner surface of the outer balloon.
15. The apparatus of claim 10 wherein the outer balloon is inflatable via a liquid refrigerate.
16. The apparatus of claim 10 wherein the outer balloon is inflatable to have an outer diameter between 6 mm and 20 mm or more.
17. The apparatus of claim 16 wherein the outer balloon has a length between 1 cm and 6 cm or more.
18. The apparatus of claim 10 wherein the at least one imaging device is removably insertable within the outer balloon.
19. The apparatus of claim 10 wherein the one or more openings are defined in a linear array along the cryogenic probe.
20. The apparatus of claim 19 wherein the one or more openings each have a diameter of between 50 and 150 microns.
21. The apparatus of claim 19 wherein the one or more openings number between 1 and 20 or more.
22. A method for cryosurgical ablation of an anatomical structure in the body of a patient comprising the steps of:
a. inserting a cryosurgical apparatus into the body of the patient, with said cryosurgical apparatus comprising an elongated structure with a distal end, a proximal end, a means for lateral tissue freezing disposed in the vicinity of the distal end, a means for lateral tissue thermal protection disposed in the vicinity of the distal end in diametric opposition to said lateral freezing means, an imaging device mounted in the vicinity of the distal end configured for distal imaging, a means for connecting the lateral freezing means to a source of cryogenic fluid, and a means for connecting the imaging device to an imaging console disposed in the vicinity of the proximal end;
b. advancing said distal end into close proximity of the target anatomical structure;
c. imaging distal tissue with said imaging device, and using said imaging to orient the lateral freezing means adjacent to the target anatomical structure;
d. freezing the anatomical structure with said lateral freezing means,
whereby said lateral tissue thermal protection means prevents cryogenic injury to tissue adjacent to the target anatomical structure.
23. The method of claim 22 wherein the target anatomical structure is a nerve associated with chronic pain, and said adjacent tissue comprises blood vessels associated with said nerve.
24. The method of claim 22 wherein the target anatomical structure comprises a facial boundary separating one or more anatomical structures.
25. The method of claim 22 wherein the cryosurgical apparatus comprises an elongated rigid structure with a distal end, a proximal end, and a central lumen; with said distal end comprising a non-coring optically transparent needle tip with at least one lateral fenestration in communication with the central lumen, housing at least one imaging device configured for distal imaging; said proximal end comprising a handle with a means for connecting the imaging device(s) to an imaging display(s), and a means for accessing bodily tissue in the vicinity of the distal end with a cryo-ablation probe through the central lumen and the lateral fenestration(s) for diagnostic or therapeutic purposes.
26. The method of claim 25 wherein tissue diametrically opposed to the lateral fenestration is thermally protected from cryogenic injury due to the distance created between the target tissue and the opposing tissue by the intervening apparatus.
27. The method of claim 22 wherein the cryosurgical apparatus comprises an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an inflatable balloon structure configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device; with said proximal end comprising a means for introducing a liquid refrigerant into the distal balloon through a central lumen, a means of removing evaporated refrigerant from the cryosurgical apparatus at a predetermined pressure, a means for connecting the optical imaging device(s) to an imaging display, a means for inflating the balloon with a liquid or a gas, and a means spraying liquid refrigerant at a lateral interior portion of the balloon for the purpose of lateral tissue freezing.
28. The method of claim 27 wherein tissue diametrically opposed to the lateral tissue freezing is thermally protected from cryogenic injury due to the distance created between the target tissue and the opposing tissue by the balloon, or the thermal insulating properties of the refrigerant gas within the balloon.
29. The method of claim 22 wherein the cryosurgical apparatus comprises an elongated structure with a distal end, a proximal end, and at least one central lumen; with said distal end comprising an outer inflatable balloon structure configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon; with said proximal end comprising a means for introducing a liquid refrigerant into the cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas, and a means spraying liquid refrigerant at a lateral interior portion of the inner cryogenic evaporator balloon for the purpose of lateral tissue freezing.
30. The method of claim 29 wherein tissue diametrically opposed to the lateral tissue freezing is thermally protected from cryogenic injury due to the distance created between the target tissue and the opposing tissue by the outer balloon, or the thermal insulating properties of the refrigerant gas within the inner thermal insulation balloon.
31. A cryosurgical apparatus comprising:
a. an elongated rigid structure with a distal end, a proximal end, and a central lumen;
b. a non-coring optically transparent needle tip located at the distal end and having at least one lateral fenestration in communication with the central lumen, and housing at least one imaging device configured for distal imaging;
c. a handle located at the proximal end and having a means for connecting the imaging device(s) to an imaging display(s); and
d. a means for accessing bodily tissue in the vicinity of the distal end with a cryo-ablation probe through the central lumen and the lateral fenestration(s).
32. A cryosurgical apparatus comprising:
a. an elongated structure with a distal end, a proximal end, and at least one central lumen;
b. an inflatable balloon structure located at the distal end and configured as a refrigerant evaporation chamber, and as an optical imaging window, enclosing at least one optical imaging device;
c. an introducing means located at the proximal end for introducing a liquid refrigerant into the distal balloon through a central lumen;
d. a removal means located at the proximal end for removing evaporated refrigerant from the cryosurgical apparatus at a predetermined pressure;
e. a connecting means located at the proximal end for connecting the optical imaging device(s) to an imaging display;
f. an inflation means located at the proximal end for inflating the balloon with a liquid or a gas; and
g. a spraying means located at the proximal end for spraying liquid refrigerant at a lateral interior portion of the balloon for the purpose of lateral tissue freezing.
33. A cryosurgical apparatus comprising:
a. an elongated structure with a distal end, a proximal end, and at least one central lumen,
b. an outer inflatable balloon structure located at the distal end and configured as an optical imaging window, and as a tissue dilator enclosing at least one optical imaging device, at least one inner cryogenic evaporator balloon, and at least one inner thermal insulation balloon;
c. an introducing means located at the proximal end for introducing a liquid refrigerant into the inner cryogenic evaporator balloon through a central lumen, a means of removing evaporated refrigerant from the cryogenic evaporator balloon through a central lumen at a predetermined pressure, a means for inflating the thermal insulation balloon with the pressurized evaporated refrigerant gas, a means for connecting the optical imaging device(s) to an imaging display, and a means for inflating the outer balloon with a liquid or a gas; and
d. a spraying means located at the proximal end for spraying liquid refrigerant at a lateral interior portion of the inner cryogenic evaporator balloon for the purpose of lateral tissue freezing.
US14/339,024 2013-07-24 2014-07-23 Direct vision cryosurgical probe and methods of use Abandoned US20150031946A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/339,024 US20150031946A1 (en) 2013-07-24 2014-07-23 Direct vision cryosurgical probe and methods of use
US15/804,652 US10813533B2 (en) 2013-07-24 2017-11-06 Direct vision cryosurgical probe and methods of use
US17/030,047 US11576559B2 (en) 2013-07-24 2020-09-23 Direct vision cryosurgical probe and methods of use
US18/152,828 US20230157522A1 (en) 2013-07-24 2023-01-11 Direct Vision Cryosurgical Probe and Methods of Use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361858104P 2013-07-24 2013-07-24
US14/339,024 US20150031946A1 (en) 2013-07-24 2014-07-23 Direct vision cryosurgical probe and methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/804,652 Continuation US10813533B2 (en) 2013-07-24 2017-11-06 Direct vision cryosurgical probe and methods of use

Publications (1)

Publication Number Publication Date
US20150031946A1 true US20150031946A1 (en) 2015-01-29

Family

ID=52391054

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/339,024 Abandoned US20150031946A1 (en) 2013-07-24 2014-07-23 Direct vision cryosurgical probe and methods of use
US15/804,652 Active 2034-08-21 US10813533B2 (en) 2013-07-24 2017-11-06 Direct vision cryosurgical probe and methods of use
US17/030,047 Active 2035-03-20 US11576559B2 (en) 2013-07-24 2020-09-23 Direct vision cryosurgical probe and methods of use
US18/152,828 Pending US20230157522A1 (en) 2013-07-24 2023-01-11 Direct Vision Cryosurgical Probe and Methods of Use

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/804,652 Active 2034-08-21 US10813533B2 (en) 2013-07-24 2017-11-06 Direct vision cryosurgical probe and methods of use
US17/030,047 Active 2035-03-20 US11576559B2 (en) 2013-07-24 2020-09-23 Direct vision cryosurgical probe and methods of use
US18/152,828 Pending US20230157522A1 (en) 2013-07-24 2023-01-11 Direct Vision Cryosurgical Probe and Methods of Use

Country Status (1)

Country Link
US (4) US20150031946A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160331459A1 (en) * 2015-05-12 2016-11-17 National University Of Ireland, Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
US20170100020A1 (en) * 2015-05-08 2017-04-13 Samark Technology Llc Imaging needle apparatus
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
US20170245890A1 (en) * 2016-02-26 2017-08-31 Samark Technology Llc Video needle syringe
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
WO2017218854A1 (en) 2016-06-15 2017-12-21 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
US20180078513A1 (en) * 2015-07-07 2018-03-22 Toppan Printing Co., Ltd. Transdermal administration device
US20180084986A1 (en) * 2016-09-29 2018-03-29 Samark Technology Inc. Video needle syringe
US20180214015A1 (en) * 2017-02-01 2018-08-02 Boston Scienfific Scimed, Inc. Endoscope having multiple viewing directions
WO2018201158A1 (en) * 2017-04-28 2018-11-01 Arrinx, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
WO2019023185A1 (en) * 2017-07-26 2019-01-31 Cryterion Medical, Inc. Method for manufacturing cryogenic balloon for intravascular catheter system
US10201687B2 (en) 2013-02-08 2019-02-12 Arrinex, Inc. Surgical device with integrated visualization and cauterization
US20190289227A1 (en) * 2018-03-16 2019-09-19 Olympus Corporation Image pickup apparatus, image pickup system, and image pickup method
WO2019213405A1 (en) * 2018-05-02 2019-11-07 Canon U.S.A., Inc. Needle scope and/or endoscope apparatuses and direct approach needle scope and/or endoscope apparatuses, and needle tip mechanisms, methods and storage mediums for use therewith
EP3586902A3 (en) * 2015-03-30 2020-03-11 Acclarent, Inc. Guide catheter with image capture and light emission features
US10625073B2 (en) 2016-11-11 2020-04-21 National University Of Ireland, Galway Devices, systems, and methods for specializing, monitoring, and/or evaluating therapeutic nasal neuromodulation
US10813533B2 (en) 2013-07-24 2020-10-27 Arrinex, Inc. Direct vision cryosurgical probe and methods of use
US20210338045A1 (en) * 2020-04-30 2021-11-04 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Insertion sheath for modular disposable endoscope components
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
EP3988042A4 (en) * 2020-06-09 2022-08-10 Accu Target Medipharma (Shanghai) Co., Ltd. Double-layer freezing expansion balloon
US11419671B2 (en) 2018-12-11 2022-08-23 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11602260B2 (en) 2016-02-11 2023-03-14 Arrinex, Inc. Method and device for image guided post-nasal nerve ablation
US11883091B2 (en) 2020-04-09 2024-01-30 Neurent Medical Limited Systems and methods for improving sleep with therapeutic nasal treatment
US11896818B2 (en) 2020-04-09 2024-02-13 Neurent Medical Limited Systems and methods for therapeutic nasal treatment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409483A (en) * 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
US6096032A (en) * 1996-08-14 2000-08-01 Rowland; Stephen James Medical cryo-surgical device
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6537271B1 (en) * 2000-07-06 2003-03-25 Cryogen, Inc. Balloon cryogenic catheter
US20040215061A1 (en) * 2003-04-28 2004-10-28 Zebadiah Kimmel Visualization stylet for endotracheal intubation
US7022120B2 (en) * 1997-03-06 2006-04-04 Scimed Life Systems, Inc. Cryoplasty device and method
US7654997B2 (en) * 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US20100030031A1 (en) * 2008-07-30 2010-02-04 Acclarent, Inc. Swing prism endoscope
US20100125266A1 (en) * 2008-11-17 2010-05-20 The Foundry, Llc Methods and devices to treat compressive neuropathy and other diseases
US20130018367A1 (en) * 2011-07-11 2013-01-17 C2 Therapeutics Focal Ablation Assembly
US20130296647A1 (en) * 2009-10-27 2013-11-07 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8579890B2 (en) * 2008-03-13 2013-11-12 Boston Scientific Scimed, Inc. Cryo-ablation refrigerant distribution catheter

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5746224A (en) 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
FR2723305B1 (en) 1994-08-04 1996-11-22 Kamami Yves Victor HANDPIECE FOR LASER NOSE SURGERY DEVICE
US5527351A (en) 1994-09-21 1996-06-18 Friedman; Mark H. Treatment of vascular and tension headache atypical facial pain allergic rhinitis and cervical muscle hyperactivity
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US5899898A (en) 1997-02-27 1999-05-04 Cryocath Technologies Inc. Cryosurgical linear ablation
US6106518A (en) 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
US6270476B1 (en) 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US7935108B2 (en) 1999-07-14 2011-05-03 Cardiofocus, Inc. Deflectable sheath catheters
US6575966B2 (en) 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
EP1087627A3 (en) * 1999-09-24 2004-02-18 SANYO ELECTRIC Co., Ltd. Autostereoscopic image display device
US6526318B1 (en) 2000-06-16 2003-02-25 Mehdi M. Ansarinia Stimulation method for the sphenopalatine ganglia, sphenopalatine nerve, or vidian nerve for treatment of medical conditions
ATE308933T1 (en) 2000-06-23 2005-11-15 Cryocath Technologies Inc DEVICE FOR CRYOTREATMENT
US6709431B2 (en) * 2001-12-18 2004-03-23 Scimed Life Systems, Inc. Cryo-temperature monitoring
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
AU2003240831A1 (en) * 2002-05-30 2003-12-19 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for coronary sinus access
US6921385B2 (en) 2002-08-05 2005-07-26 Alcon, Inc. Apparatus for delivery of fluid to opthalmic surgical handpiece
US7104984B2 (en) 2003-08-22 2006-09-12 Cryocor, Inc. Reshapeable tip for a cryoprobe
US7418292B2 (en) 2003-10-01 2008-08-26 Medtronic, Inc. Device and method for attenuating an immune response
US20050075702A1 (en) 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US9089258B2 (en) * 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7582083B2 (en) 2004-05-10 2009-09-01 Boston Scientific Scimed, Inc. Probe based low temperature lesion formation apparatus, systems and methods
ES2625531T3 (en) 2005-01-18 2017-07-19 Acclarent, Inc. Paranasal insertion device
US7794455B2 (en) 2005-04-29 2010-09-14 Medtronic Cryocath Lp Wide area ablation of myocardial tissue
US8676324B2 (en) 2005-11-10 2014-03-18 ElectroCore, LLC Electrical and magnetic stimulators used to treat migraine/sinus headache, rhinitis, sinusitis, rhinosinusitis, and comorbid disorders
DE602006004004D1 (en) * 2006-04-21 2009-01-15 Fondazione Torino Wireless Endoscope with a digital viewing system
US20070299433A1 (en) 2006-06-27 2007-12-27 C2 Therapeutics Barrett's Esophagus Cryogenic Ablation System
EP2092957B2 (en) 2006-06-28 2019-11-20 Medtronic Ardian Luxembourg S.à.r.l. Systems for thermally-induced renal neuromodulation
US20080027423A1 (en) 2006-07-25 2008-01-31 Zoom Therapeutics, Inc. Systems for treatment of nasal tissue
WO2008051918A2 (en) 2006-10-23 2008-05-02 Allux Medical, Inc. Methods, devices and kits for phototherapy and photodynamic therapy treatment of body cavities
US8641711B2 (en) * 2007-05-04 2014-02-04 Covidien Lp Method and apparatus for gastrointestinal tract ablation for treatment of obesity
US20080312644A1 (en) * 2007-06-14 2008-12-18 Boston Scientific Scimed, Inc. Cryogenic balloon ablation instruments and systems
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
EP2529686B1 (en) 2008-05-09 2015-10-14 Holaira, Inc. System for treating a bronchial tree
US20130184532A1 (en) * 2011-07-25 2013-07-18 Eric A. Goldfarb Endoscopic method for viewing a sinus opening
US8388600B1 (en) 2008-09-04 2013-03-05 Dolor Technologies Apparatus, system, and method for treating atypical headaches
US8382746B2 (en) 2008-11-21 2013-02-26 C2 Therapeutics, Inc. Cryogenic ablation system and method
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100168739A1 (en) 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20110184402A1 (en) 2009-11-02 2011-07-28 Cpsi Biotech Flexible Cryogenic Probe Tip
US9317536B2 (en) 2010-04-27 2016-04-19 Cornell University System and methods for mapping and searching objects in multidimensional space
WO2012027641A2 (en) 2010-08-26 2012-03-01 Cryomedix, Llc Cryoablation balloon catheter and related method
US8911434B2 (en) 2010-10-22 2014-12-16 Medtronic Cryocath Lp Balloon catheter with deformable fluid delivery conduit
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US11246653B2 (en) * 2010-12-07 2022-02-15 Boaz Avitall Catheter systems for cardiac arrhythmia ablation
CN103930061B (en) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 Relevant low temperature sacculus for restricted conduit wall cryogenic ablation limits the device and method disposed
US20130018366A1 (en) 2011-07-11 2013-01-17 C2 Therapeutics Focal Ablation Assembly
WO2013035192A1 (en) 2011-09-09 2013-03-14 医療法人社団アドベント Method and device for treating symptom of rhinitis surgically
WO2013052501A1 (en) 2011-10-05 2013-04-11 Innovative Pulmonary Solutions, Inc. Apparatus for injuring nerve tissue
US20130253387A1 (en) 2012-03-08 2013-09-26 Sonitec, LLC Vibratory energy systems and methods for occluded body cavities
US20130310822A1 (en) 2012-05-18 2013-11-21 Holaira, Inc. Compact delivery pulmonary treatment systems and methods for improving pulmonary function
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US20140228875A1 (en) 2013-02-08 2014-08-14 Nidus Medical, Llc Surgical device with integrated visualization and cauterization
WO2014138709A1 (en) 2013-03-08 2014-09-12 Oculeve, Inc. Devices and methods for treating dry eye in animals
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US10206735B2 (en) 2013-03-13 2019-02-19 Nuvaira, Inc. Fluid delivery system and method for treatment
WO2014172693A2 (en) 2013-04-19 2014-10-23 Oculeve, Inc. Nasal stimulation devices and methods
US20150031946A1 (en) 2013-07-24 2015-01-29 Nidus Medical, Llc Direct vision cryosurgical probe and methods of use
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
WO2015066521A1 (en) 2013-11-01 2015-05-07 C2 Therapeutics, Inc. Cryogenic balloon ablation system
EP3110405B1 (en) 2014-02-25 2020-05-06 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
EP3673952A1 (en) 2014-07-25 2020-07-01 Oculeve, Inc. Stimulation patterns for treating dry eye
WO2016065211A1 (en) 2014-10-22 2016-04-28 Oculeve, Inc. Contact lens for increasing tear production
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409483A (en) * 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
US6096032A (en) * 1996-08-14 2000-08-01 Rowland; Stephen James Medical cryo-surgical device
US7022120B2 (en) * 1997-03-06 2006-04-04 Scimed Life Systems, Inc. Cryoplasty device and method
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6537271B1 (en) * 2000-07-06 2003-03-25 Cryogen, Inc. Balloon cryogenic catheter
US20040215061A1 (en) * 2003-04-28 2004-10-28 Zebadiah Kimmel Visualization stylet for endotracheal intubation
US7654997B2 (en) * 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8579890B2 (en) * 2008-03-13 2013-11-12 Boston Scientific Scimed, Inc. Cryo-ablation refrigerant distribution catheter
US20100030031A1 (en) * 2008-07-30 2010-02-04 Acclarent, Inc. Swing prism endoscope
US20100125266A1 (en) * 2008-11-17 2010-05-20 The Foundry, Llc Methods and devices to treat compressive neuropathy and other diseases
US20130296647A1 (en) * 2009-10-27 2013-11-07 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US20130018367A1 (en) * 2011-07-11 2013-01-17 C2 Therapeutics Focal Ablation Assembly

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10201687B2 (en) 2013-02-08 2019-02-12 Arrinex, Inc. Surgical device with integrated visualization and cauterization
US11154696B2 (en) 2013-02-08 2021-10-26 Arrinex, Inc. Surgical device with integrated visualization and cauterization
US10813533B2 (en) 2013-07-24 2020-10-27 Arrinex, Inc. Direct vision cryosurgical probe and methods of use
US10028781B2 (en) 2013-09-30 2018-07-24 Arrinex, Inc. Apparatus and methods for treating rhinitis
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10307200B2 (en) 2013-09-30 2019-06-04 Arrinex, Inc. Apparatus and methods for treating rhinitis
US9763723B2 (en) 2013-09-30 2017-09-19 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10512498B2 (en) 2013-09-30 2019-12-24 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10448985B2 (en) 2013-09-30 2019-10-22 Arrinex, Inc. Apparatus and methods for treating rhinitis
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
US10159538B2 (en) 2014-07-25 2018-12-25 Arrinex, Inc. Apparatus and method for treating rhinitis
US10470837B2 (en) 2014-07-25 2019-11-12 Arrinex, Inc. Apparatus and method for treating rhinitis
EP3586902A3 (en) * 2015-03-30 2020-03-11 Acclarent, Inc. Guide catheter with image capture and light emission features
US10687690B2 (en) 2015-03-30 2020-06-23 Acclarent, Inc. Guide catheter with image capture and light emission features
US10105040B2 (en) * 2015-05-08 2018-10-23 Nanosurgery Technology Corporation Imaging needle apparatus
EP3294145A4 (en) * 2015-05-08 2019-01-09 Samark Technology LLC Imaging needle apparatus
US20190038116A1 (en) * 2015-05-08 2019-02-07 Nanosurgery Technology Corporation Imaging needle apparatus
US20170100020A1 (en) * 2015-05-08 2017-04-13 Samark Technology Llc Imaging needle apparatus
US11690672B2 (en) 2015-05-12 2023-07-04 National University Of Ireland, Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
US11026746B2 (en) * 2015-05-12 2021-06-08 National University Of Ireland, Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
US20160331459A1 (en) * 2015-05-12 2016-11-17 National University Of Ireland, Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
US11771497B2 (en) 2015-05-12 2023-10-03 National University Of Ireland, Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
US20180078513A1 (en) * 2015-07-07 2018-03-22 Toppan Printing Co., Ltd. Transdermal administration device
US11602260B2 (en) 2016-02-11 2023-03-14 Arrinex, Inc. Method and device for image guided post-nasal nerve ablation
US10548633B2 (en) * 2016-02-26 2020-02-04 Nanosurgery Technology Corporation Video needle syringe
US20170245890A1 (en) * 2016-02-26 2017-08-31 Samark Technology Llc Video needle syringe
EP3471638A4 (en) * 2016-06-15 2020-03-11 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
CN109600988A (en) * 2016-06-15 2019-04-09 阿里内克斯股份有限公司 Device and method for treating nasal cavity outer surface
WO2017218854A1 (en) 2016-06-15 2017-12-21 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
US11026738B2 (en) 2016-06-15 2021-06-08 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
US20180084986A1 (en) * 2016-09-29 2018-03-29 Samark Technology Inc. Video needle syringe
US11166629B2 (en) * 2016-09-29 2021-11-09 Nanosurgery Technology Corporation Video needle syringe
US11786292B2 (en) 2016-10-17 2023-10-17 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US10625073B2 (en) 2016-11-11 2020-04-21 National University Of Ireland, Galway Devices, systems, and methods for specializing, monitoring, and/or evaluating therapeutic nasal neuromodulation
US10806921B2 (en) 2016-11-11 2020-10-20 National University Of Ireland, Galway Devices, systems, and methods for specializing, monitoring, and/or evaluating therapeutic nasal neuromodulation
US20180214015A1 (en) * 2017-02-01 2018-08-02 Boston Scienfific Scimed, Inc. Endoscope having multiple viewing directions
US11116391B2 (en) * 2017-02-01 2021-09-14 Boston Scientific Scimed, Inc. Endoscope having multiple viewing directions
US11278356B2 (en) 2017-04-28 2022-03-22 Arrinex, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
WO2018201158A1 (en) * 2017-04-28 2018-11-01 Arrinx, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
WO2019023185A1 (en) * 2017-07-26 2019-01-31 Cryterion Medical, Inc. Method for manufacturing cryogenic balloon for intravascular catheter system
US20190289227A1 (en) * 2018-03-16 2019-09-19 Olympus Corporation Image pickup apparatus, image pickup system, and image pickup method
WO2019213405A1 (en) * 2018-05-02 2019-11-07 Canon U.S.A., Inc. Needle scope and/or endoscope apparatuses and direct approach needle scope and/or endoscope apparatuses, and needle tip mechanisms, methods and storage mediums for use therewith
US11547472B2 (en) 2018-12-11 2023-01-10 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11576719B2 (en) 2018-12-11 2023-02-14 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11666378B2 (en) 2018-12-11 2023-06-06 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11684414B2 (en) 2018-12-11 2023-06-27 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11547473B2 (en) 2018-12-11 2023-01-10 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11701167B2 (en) 2018-12-11 2023-07-18 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11419671B2 (en) 2018-12-11 2022-08-23 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US11883091B2 (en) 2020-04-09 2024-01-30 Neurent Medical Limited Systems and methods for improving sleep with therapeutic nasal treatment
US11896818B2 (en) 2020-04-09 2024-02-13 Neurent Medical Limited Systems and methods for therapeutic nasal treatment
US20210338045A1 (en) * 2020-04-30 2021-11-04 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Insertion sheath for modular disposable endoscope components
EP3988042A4 (en) * 2020-06-09 2022-08-10 Accu Target Medipharma (Shanghai) Co., Ltd. Double-layer freezing expansion balloon

Also Published As

Publication number Publication date
US20210000331A1 (en) 2021-01-07
US10813533B2 (en) 2020-10-27
US20230157522A1 (en) 2023-05-25
US11576559B2 (en) 2023-02-14
US20180153375A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US11576559B2 (en) Direct vision cryosurgical probe and methods of use
EP1003430B1 (en) Endoscopic cryospray device
JP6652838B2 (en) Cryogenic spray catheter
US20180042655A1 (en) Cryosurgery system
US7993323B2 (en) High pressure and high temperature vapor catheters and systems
US8840626B2 (en) Systems for performing gynecological procedures with simultaneous tissue cutting and removal
US20150066005A1 (en) Cryospray catheters
US20180028250A1 (en) Method & apparatus to perform cryotherapy
US8790300B2 (en) Dual balloon catheter
US10792085B2 (en) Method and apparatus for performing cryotherapy of distal lung lesions
US11871977B2 (en) Catheter extension control
US11259858B1 (en) Endoscopy tube and device for cryotherapy
EP2964124B1 (en) Cryospray catheters
WO2000015129A1 (en) Cryosurgical instrument
US20230135845A1 (en) Percutaneous coiled catheter design for gallbladder cryoablation
US20180280046A1 (en) Guidewire with optics tube containing core wire

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIDUS MEDICAL, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAADAT, VAHID;HERRON, MATTHEW;EWERS, RICHARD C.;SIGNING DATES FROM 20140726 TO 20140820;REEL/FRAME:033595/0187

AS Assignment

Owner name: ARRINEX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIDUS MEDICAL, LLC;REEL/FRAME:040143/0656

Effective date: 20151202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION