US20150173628A1 - Methods, Systems and Devices for Measuring Fingertip Heart Rate - Google Patents

Methods, Systems and Devices for Measuring Fingertip Heart Rate Download PDF

Info

Publication number
US20150173628A1
US20150173628A1 US14/639,409 US201514639409A US2015173628A1 US 20150173628 A1 US20150173628 A1 US 20150173628A1 US 201514639409 A US201514639409 A US 201514639409A US 2015173628 A1 US2015173628 A1 US 2015173628A1
Authority
US
United States
Prior art keywords
heart beats
heart
light
estimate
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/639,409
Inventor
Shelten Yuen
Subramaniam Venkatraman
Eric Van Albert
James Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fitbit LLC
Original Assignee
Fitbit LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/156,381 external-priority patent/US8827906B2/en
Application filed by Fitbit LLC filed Critical Fitbit LLC
Priority to US14/639,409 priority Critical patent/US20150173628A1/en
Assigned to FITBIT, INC. reassignment FITBIT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBERT, ERIC VAN, PARK, JAMES, VENKATRAMAN, SUBRAMANIAM, YUEN, SHELTEN
Publication of US20150173628A1 publication Critical patent/US20150173628A1/en
Priority to US15/827,970 priority patent/US11259707B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6885Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/10Athletes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the present disclosure relates to systems and methods for capturing bodily activity and synchronizing data transfers between a capture device and a client device.
  • fitness trackers are used to measure activity, such as walking, motion, running, sleeping, being inactive, bicycling, exercising on an elliptical trainer, and the like.
  • activity such as walking, motion, running, sleeping, being inactive, bicycling, exercising on an elliptical trainer, and the like.
  • data collected by such fitness trackers can be transferred and viewed on a computing device.
  • data is often provided as a basic accumulation of activity data with complicated or confusing interfaces.
  • updates between a tracker and a client device usually require wired connectors and/or complex syncing schemes.
  • the present invention fills these needs by providing a system and method for detecting and measuring a user's heart rate. It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, computer readable media, or a device. Several inventive embodiments of the present invention are described below.
  • One embodiment provides an activity tracking device having a motion sensor and a processor in a housing.
  • the processor configured for processing motion data produced by the motion sensor.
  • a display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor.
  • a light source is integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing and a light detector is integrated within the housing.
  • the light detector configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel under a skin of a user when the user places the skin over the heart rate monitor location on the housing.
  • the processor is also in communication with the light detector to process the reflected light to identify heart beats of the user and produce an indication of a heart rate that can be displayed on the display screen, as an option, in addition to the metrics that quantify the motion data.
  • the processor can differentiate between a baseline light scattering and reflectance signal detected between the each one of multiple heart beats and a second light scattering and reflectance signal corresponding to at least one heart beat in the blood vessel.
  • the second reflectance signal being less than the baseline reflectance signal, where the blood vessel scatters more of the light during the at least one heart beat than between each one of the multiple heart beats.
  • the motion sensor can be one of or include an accelerometer, or a global positioning sensor, or a magnetometer, or a gyroscope, or a rotary encoder, or a calorie measurement sensor, or a moisture measurement sensor, or a displacement sensor, or an ultrasonic sensor, or a pedometer, or an altimeter, or a linear motion sensor, or an angular motion sensor, or a multi-axis motion sensor, or a combination of two or more thereof.
  • an accelerometer or a global positioning sensor, or a magnetometer, or a gyroscope, or a rotary encoder, or a calorie measurement sensor, or a moisture measurement sensor, or a displacement sensor, or an ultrasonic sensor, or a pedometer, or an altimeter, or a linear motion sensor, or an angular motion sensor, or a multi-axis motion sensor, or a combination of two or more thereof.
  • the activity tracking device can also include a communication transceiver configured for communicating via at least one a wireless network, an ambient light sensor, an indicator for visually identifying the heart rate monitor location on the housing and at least one infrared (IR) proximity sensor associated with the light source and light detector.
  • the IR proximity sensor can be configured to activate the light source and light detector upon detecting presence of the skin of the user. Detecting presence of the skin of the user can also function to navigate to one or more metrics of the display screen.
  • the activity tracking device can also include a pressure detecting system configured for detecting a pressure applied to the heart rate monitor location on the housing with the skin of the user during the identification of heart beats.
  • the activity tracking device can output at least one a feedback signal regarding the detected pressure applied to the heart rate monitor location, the feedback indication being indicative of more or less pressure desired to produce the heart rate, the feedback signal including at least one of a visual signal, a graphic signal, a tactile signal, and an audible signal.
  • the pressure detecting system can include at least one of processing of the reflected light to identify one of an excess pressure, an insufficient pressure or an acceptable pressure from the detected heart beats of the user, or a pressure sensor in the button.
  • the activity tracking device can also include a display of one or both of waveform data or numerical data when the skin of the user is over the heart rate monitor location and the heart beats are being identified over a sampling time period and upon concluding the sampling time period, displaying the heart rate on the display screen. At least one recalled heart rate can be displayed on the display screen.
  • the light detector can be disposed next to the light source.
  • the heart rate can be calculated based on an algorithm that detects multiple heart beats in the light received in the light detector within a sampling time period, measures a first time interval between a first beat of the detected heart beats and a second beat of the detected heart beats and divides the sample time interval by the first time interval to determine a first estimate of heart beats detected within the sampling time period.
  • the first estimate of heart beats is extrapolated within the sampling time period to a first estimated heart beats per minute and the first estimate heart beats per minute is output to the display screen.
  • the heart rate can be calculated based on an algorithm that adds at least one beat to the first estimate of heart beats to produce a second estimate of heart beats and subtracts at least one beat from the first estimate of beats to produce a third estimate of heart beats.
  • the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats are scored and a highest scoring estimate of heart beats is selected and output to the display screen.
  • the light source and the reflected light detector can be selected for any suitable wavelength or suitable band of wavelengths of light ranging from between infrared wavelengths through a human visible spectrum to ultraviolet wavelengths.
  • the light source includes at least one of an infrared (IR) light source, wherein the IR light emitted from the light source produces a deadfront at the heart rate monitor location of the housing or a green light source and the heart rate monitor location includes a translucent green window.
  • IR infrared
  • the heart rate monitor location includes a cover that enables infrared (IR) light of the light source or any other wavelength of light from the light source to pass while blocking substantially all light in a human visible spectrum.
  • the light source and light detector can additionally function as a proximity sensor to activate the display screen.
  • the heart rate monitor location can include a button.
  • the button can have an infrared (IR) light transmitting structure.
  • the light source and the light detector can be disposed substantially below the button.
  • the button can also function to navigate to one or more metrics of the display screen. The functions to navigate can be enabled while the heart beats are measured.
  • the skin can be of a finger of a user.
  • Another embodiment provides a method of tracking activity including sensing motion with a motion sensor, the motion sensor including a processor.
  • the processor is configured for processing motion data produced by the motion sensor.
  • Metrics that quantify the motion data produced by the motion sensing can be displayed on a device display screen integrated with a housing of the motion sensor.
  • a directed light is emitted from a light source, the light source being included in the housing at a heart rate monitor location on the housing and an amount of the light that is reflected back to a light detector is captured by the light detector integrated within the housing. At least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing.
  • the processor further being in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate.
  • the indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data.
  • the method can also include detecting a pressure applied to the heart rate monitor location of the housing with the skin of the user during the identification of heart beats, the pressure being detected by a pressure detecting system included in the housing and outputting a feedback signal regarding the detected pressure applied to the heart rate monitor location, the feedback indication being indicative of more or less pressure desired to produce the heart rate.
  • One or both of waveform data or numerical data can be displayed when the skin of the user is over the heart rate monitor location and the heart beats are being identified over a sampling time period.
  • the heart rate can be displayed on the display screen upon concluding the sampling time period.
  • a heart rate monitor including a light source and a light detector disposed to receive light emitted from the light source and reflected from a blood vessel disposed within in a heart rate monitor subject.
  • a display screen and a processor coupled to the light source, the light detector and the display screen, are also included.
  • Still another embodiment provides an activity tracking device including a housing including a motion sensor and a processor.
  • the processor is configured for processing motion data produced by the motion sensor.
  • a display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor.
  • a light source is also integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing and a light detector is integrated within the housing. The light detector is configured to capture an amount of the light that is reflected back to the light detector. At least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing.
  • the processor is also in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate that can be displayed on the display screen, as an option, in addition to the metrics that quantify the motion data.
  • FIG. 1A shows a block diagram of an activity tracking device, in accordance with embodiments of the present invention
  • FIG. 1B illustrates an example of an activity tracking device having a housing in the form of a wearable wrist attachable device.
  • FIG. 1C illustrates another example of an activity tracking device, in accordance with embodiments of the present invention.
  • FIG. 2A illustrates an example of activity tracking device of FIG. 1A , showing some additional example components utilized for tracking activity and motion of the device, and associated interfaces to display screen.
  • FIG. 2B illustrates an example of activity tracking device in communication with a remote device.
  • FIGS. 3A and 3B illustrate examples of activity tracking devices having a heart rate measuring system in the form of a wearable wrist attachable device, in accordance with embodiments of the present invention.
  • FIGS. 3C and 3D illustrate another example of an activity tracking device, in accordance with embodiments of the present invention.
  • FIG. 4A is a flowchart diagram of heart rate measuring system, in accordance with embodiments of the present invention.
  • FIG. 4B is a graphical representation of an example series of peaks corresponding to detected heart beats captured during a sampling time period STP, in accordance with embodiments of the present invention.
  • FIG. 4C is a graphical representation of the filtering process for the above example series of peaks, in accordance with embodiments of the present invention.
  • FIG. 5 is a flowchart diagram of the method operations for detecting a heart rate, in accordance with embodiments of the present invention.
  • FIGS. 6A-D illustrate different presentations of the calculated heart rate on the display screen, in accordance with embodiments of the present invention.
  • FIG. 7A is a flowchart diagram of the method operations for adjusting the user pressure on the activity tracking device while detecting a heart rate, in accordance with embodiments of the present invention.
  • FIGS. 7B and 7C show feedback signals on the activity tracing device display, in accordance with embodiments of the present invention.
  • FIG. 8 illustrates an example where various types of activities of users can be captured by activity tracking devices, in accordance with embodiments of the present invention.
  • the user's heart rate can be measured by directing a light of a suitable wavelength into a user's skin and capturing a portion of the light reflected from a user's blood vessel inside the user's body.
  • the reflected light includes data corresponding to the user's heart beats.
  • This heart beat data and filtering methods and systems provide a rapid, accurate measurement of the user's heart rate. Thereby allowing the user to monitor both his activity and his heart rate.
  • Motion data from a motion sensor within the activity tracking device can be used to identify false heart beats and provide a more accurate heart rate indication to the user, even while the user is engaged in a rigorous activity.
  • Embodiments described in the present disclosure provide systems, apparatus, computer readable media, and methods for analyzing tracked activity data and providing navigation screens and interfaces. Some embodiments are directed to providing navigation interfaces for an activity tracking device.
  • the activity tracking device includes sensors for detecting when physical contact occurs onto the activity tracking device and logic for providing a display action to the screen of the activity tracking device.
  • the physical contact in one embodiment, can be qualified as an input when the physical contact has a particular characteristic that is predefined. The characteristic can be, when the contact is the result of one or more taps, e.g., physical contact to the activity tracking device by a finger or hand of the user, or object held by a user and used to impart the contact.
  • the input can be non-physical, such as proximity sensing input.
  • the proximity sensing input can be processed by an infrared proximity sensor, a thermal sensor, etc.
  • the input can also be by way of a button, voice input, gaze detected input, input processed in response to motion or motion profiles, etc.
  • circuitry, architectures, structures, components, functions and/or elements, as well as combinations and/or permutations thereof are set forth. It should be understood that circuitry, architectures, structures, components, functions and/or elements other than those specifically described and illustrated, are contemplated and are within the scope of the present inventions, as well as combinations and/or permutations thereof.
  • FIG. 1A shows a block diagram of an activity tracking device 100 , in accordance with embodiments of the present invention.
  • the activity tracking device 100 is contained in a housing 101 , which may be worn or held by a user.
  • the housing 101 may be in the form of a wristband, a clip on device, a wearable device, or may be held by the user either in the user's hand or in a pocket or attached to the user's body.
  • the activity tracking device 100 includes device components 102 , which may be in the form of logic, storage, and glue logic, one or more processors, microelectronics, and interfacing circuitry.
  • the components 102 will include a processor 106 , memory 108 , a wireless transceiver 110 , a user interface 114 , biometric sensors 116 , and environmental sensors 118 .
  • the environmental sensors 118 may be in the form of motion detecting sensors 118 A.
  • a motion sensor 118 A can be one or more of an accelerometer, or a gyroscope, or a rotary encoder, or a calorie measurement sensor, or a heat measurement sensor, or a moisture measurement sensor, or a displacement sensor, or an ultrasonic sensor, or a pedometer, or an altimeter, or a linear motion sensor, or an angular motion sensor, or a multi-axis motion sensor, or a combination thereof.
  • the biometric sensors 116 can be defined to measure physiological characteristics of the user that is using the activity tracking device 100 .
  • the user interface 114 provides a way for communicating with the activity tracking device 100 , in response to user interaction 104 .
  • the user interaction 104 can be in the form of physical contact (e.g., without limitation, tapping, sliding, rubbing, multiple taps, gestures, etc.).
  • the biometric sensors 116 can be a one or more proximity sensors 184 capable of detecting the user's presence or touch within a predefined distance or proximity
  • the proximity sensor 184 can be an infrared (IR) proximity sensor associated with the light source 181 and light detector 182 , the IR proximity sensor configured to activate the light source and light detector upon detecting presence of the skin of the user.
  • IR infrared
  • the light source 181 and the light detector 182 are located near the external surface of the activity tracking device 100 at a heart rate monitor location 183 .
  • the heart rate monitor location 183 can include an indicator such as a marking or an image so the user can easily identify the heart rate monitor location 183 .
  • the marking or image can be a raised dot or dimple or a depression or an image of the fingerprint or the heart or any other suitable indication of the heart rate monitor location 183 .
  • the heart rate monitor location 183 can include a cover that enables infrared (IR) light of the light source 181 to pass while blocking substantially all light in a human visible spectrum.
  • the heart rate monitor location 183 can include the button 126 or be separate from the button.
  • the button 126 has an infrared (IR) light transmitting structure and the light source 181 and the light detector 182 are disposed below the button, inside the housing.
  • the button 126 can also provide navigation functions to one or more metrics of the display screen 122 .
  • the user interface 114 is configured to receive user interaction 104 that is in the form of noncontact input.
  • the noncontact input can be by way of one or more proximity sensors 184 , button presses, touch sensitive screen inputs, graphical user interface inputs, voice inputs, sound inputs, etc.
  • the activity tracking device 100 can communicate with a client and/or server 112 using the wireless transceiver 110 .
  • the wireless transceiver 110 will allow the activity tracking device 100 to communicate using a wireless connection, which is enabled by wireless communication logic.
  • the wireless communication logic can be in the form of a circuit having radio communication capabilities.
  • the radio communication capabilities can be in the form of a Wi-Fi connection, a Bluetooth connection, a low-energy Bluetooth connection, or any other form of wireless tethering or near field communication.
  • the activity tracking device 100 can communicate with other computing devices using a wired connection (not shown).
  • the environmental sensors 118 can detect motion of the activity tracking device 100 .
  • the motion can be activity of the user, such as walking, running, stair climbing, etc.
  • the motion can also be in the form of physical contact received on any surface of the activity tracking device 110 , so long as the environmental sensors 118 can detect such motion from the physical contact.
  • the physical contact may be in the form of a tap or multiple taps by a finger upon the housing of the activity tracking device 100 .
  • FIG. 1B illustrates an example of an activity tracking device 100 having a housing 130 in the form of a wearable wrist attachable device.
  • the sensors of the activity tracking device 100 can, as mentioned above, detect motion such as physical contact that is applied and received on a surface 120 of the housing 130 .
  • the physical contact 124 is in the form of a tap or multiple taps on the surface 120 .
  • Device components 102 are, in one embodiment, contained within the housing 130 .
  • the location at which the device components 102 are integrated into the housing 130 can vary.
  • the device components 102 can be integrated throughout various locations around the housing 130 , and not limited to the central portion of the wrist attachable device.
  • the device components 102 can be integrated into or with a smart watch device.
  • the device components 102 are positioned substantially in a central position of the wrist attachable device, such as under or proximate to a location where a display screen 122 is located.
  • the housing 130 also includes a button 126 . The button 126 can be pressed to activate the display screen 122 , navigate to various metrics displayed on the screen 122 , or turn off the screen 122 .
  • FIG. 1C illustrates another example of an activity tracking device 100 , in accordance with embodiments of the present invention.
  • the form factor of the activity tracking device 100 is shown as a clickable device that includes a screen 122 , a button 126 , and device components 102 integrated within the housing 130 ′.
  • the housing 130 ′ can include a clip that allows for attachment to clothing or articles of the user, or to simply place the device within a pocket or holder of the user.
  • the physical contact 124 such as a touch or a tap, as shown with respect to FIG. 1B , can also be implemented upon the surface 120 of activity tracking device 100 of FIG. 1C .
  • the form factor of the activity tracking device 100 can take on various configurations and should not be limited to the example configurations provided herein.
  • FIG. 2A illustrates an example of activity tracking device 100 of FIG. 1A , showing some additional example components utilized for tracking activity and motion of the device, and associated interfaces to display screen 122 .
  • the finger of a user can be used to tap and provide physical contact 124 onto any surface 120 of activity tracking device 100 .
  • the physical contact when sensed by sensors 184 of the activity tracking device 100 , will cause a response by the activity tracking device 100 , and therefore provide some metric on the display screen 122 .
  • examples of a display screen 122 can include, but are not limited to, liquid crystal display (LCD) screens, light emitting diode (LED) screens, organic light emitting diode (OLED) screens, plasma display screens, etc.
  • the activity tracking device 100 includes logic 158 .
  • Logic 158 may include activity tracking logic 140 , physical contact logic 142 , display interface logic 144 , alarm management logic 146 , wireless communication logic 148 , processor 106 , and sensors 184 . Additionally, storage (e.g. memory) 108 , and a battery 154 can be integrated within the activity tracking device 100 .
  • the activity tracking logic 140 can include logic that is configured to process motion data produced by motion sensors 118 , so as to quantify the motion and produce identifiable metrics associated with the motion.
  • the physical contact logic 142 can include logic that calculates or determines when particular physical contact can qualify as an input. To qualify as an input, the physical contact detected by biometric sensors 116 should have a particular pattern that is identifiable as input. For example, the input may be predefined to be a double tap input, and the physical contact logic 142 can analyze the motion to determine if a double tap indeed occurred in response to analyzing the sensor data produced by sensors 116 , 118 .
  • the physical contact logic can be programmed to determine when particular physical contacts occurred, the time in between the physical contacts, and whether the one or more physical contacts will qualify within predefined motion profiles that would indicate that an input is desired. If physical contact occurs that is not within some predefined profile or pattern, the physical contact logic will not indicate or qualify that physical contact as an input.
  • the display interface logic 144 is configured to interface with the processor and the physical contact logic to determine when specific metric data will be displayed on the display screen 122 of the activity tracking device 100 .
  • the display interface logic 144 can act to turn on the screen, display metric information, display characters or alphanumeric information, display graphical user interface graphics, or combinations thereof.
  • Alarm management logic 146 can function to provide a user interface and settings for managing and receiving input from a user to set an alarm.
  • the alarm management logic can interface with a timekeeping module (e.g., clock, calendar, time zone, etc.), and can trigger the activation of an alarm.
  • the alarm can be in the form of an audible alarm or a non-audible alarm.
  • a non-audible alarm can provide such alarm by way of a vibration.
  • the vibration can be produced by a motor integrated in the activity tracking device 100 .
  • the vibration can be defined to include various vibration patterns, intensities, and custom set patterns.
  • the vibration produced by the motor or motors of the activity tracking device 100 can be managed by the alarm management logic 146 in conjunction with processing by the processor 106 .
  • the wireless communication logic 148 is configured for communication of the activity tracking device with another computing device by way of a wireless signal.
  • the wireless signal can be in the form of a radio signal.
  • the radio signal can be in the form of a Wi-Fi signal, a Bluetooth signal, a low energy Bluetooth signal, or combinations thereof.
  • the wireless communication logic can interface with the processor 106 , storage 108 and battery 154 of device 100 , for transferring activity data, which may be in the form of motion data or processed motion data, stored in the storage 108 to the computing device.
  • processor 106 functions in conjunction with the various logic components 140 , 142 , 144 , 146 , and 148 .
  • the processor 106 can, in one embodiment, provide the functionality of any one or all of the logic components. In other embodiments, multiple chips can be used to separate the processing performed by any one of the logic components and the processor 106 .
  • Sensors 116 , 118 can communicate via a bus with the processor 106 and/or the logic components.
  • the storage 108 is also in communication with the bus for providing storage of the motion data processed or tracked by the activity tracking device 100 .
  • Battery 154 is provided for providing power to the activity tracking device 100 .
  • FIG. 2B illustrates an example of activity tracking device 100 in communication with a remote device 200 .
  • Remote device 200 is a computing device that is capable of communicating wirelessly with activity tracking device 100 and with the Internet 160 .
  • Remote device 200 can support installation and execution of applications. Such applications can include an activity tracking application 202 .
  • Activity tracking application 202 can be downloaded from a server.
  • the server 220 can be a specialized server or a server that provides applications to devices, such as an application store.
  • the remote device 200 can communicate or be set to communicate with activity tracking device 100 (Device A).
  • the remote device 200 can be a smartphone, a handheld computer, a tablet computer, a laptop computer, a desktop computer, or any other computing device capable of wirelessly interfacing with Device A 100 and the Internet 160 .
  • remote device 200 communicates with activity tracking device 100 over a Bluetooth connection.
  • the Bluetooth connection is a low energy Bluetooth connection (e.g., Bluetooth LE, BLE, or Bluetooth Smart).
  • Low energy Bluetooth is configured for providing low power consumption relative to standard Bluetooth circuitry.
  • Low energy Bluetooth uses, in one embodiment, a 2.4 GHz radio frequency, which allows for dual mode devices to share a single radio antenna.
  • low energy Bluetooth connections can function at distances up to 50 meters, with over the air data rates ranging between 1-3 megabits (Mb) per second.
  • a proximity distance for communication can be defined by the particular wireless link, and is not tied to any specific standard. It should be understood that the proximity distance limitation will change in accordance with changes to existing standards and in view of future standards and/or circuitry and capabilities.
  • Remote device 200 can also communicate with the Internet 160 using an Internet connection.
  • the Internet connection of the remote device 200 can include cellular connections, wireless connections such as Wi-Fi, and combinations thereof (such as connections to switches between different types of connection links).
  • the remote device as mentioned above, can be a smartphone or tablet computer, or any other type of computing device having access to the Internet and with capabilities for communicating with the activity tracking device 100 .
  • a server 220 is also provided, which is interfaced with the Internet 160 .
  • the server 220 can include a number of applications that service the activity tracking device 100 , and the associated users of the activity tracking device 100 by way of user accounts.
  • the server 220 can include an activity management application 224 .
  • the activity management application 224 can include logic for providing access to various devices 100 , which are associated with user accounts managed by server 220 .
  • Server 220 can include storage 226 that includes various user profiles associated with the various user accounts.
  • the user account 228 a for user A and the user account 228 n for user N are shown to include various information.
  • the information can include, without limitation, data associated with a display scroll order 230 , user data, etc.
  • the display scroll order 230 includes information regarding a user's preferences, settings, and configurations which are settable by the user or set by default at the server 220 when accessing a respective user account.
  • the storage 226 will include any number of user profiles, depending on the number of registered users having user accounts for their respective activity tracking devices. It should also be noted that a single user account can have various or multiple devices associated therewith, and the multiple devices can be individually customized, managed and accessed by a user.
  • the server 220 provides access to a user to view the user data 232 associated with activity tracking device.
  • the user data 232 viewable by the user includes the tracked motion data, which is processed to identify a plurality of metrics associated with the motion data.
  • the user data 232 viewable by the user can include user heart beat and heart rate data 232 A, which is processed to identify a plurality of metrics associated with the user's heart beat.
  • the metrics are shown in various graphical user interfaces of a website enabled by the server 220 .
  • the website can include various pages with graphical user interfaces for rendering and displaying the various metrics for view by the user associated with the user account.
  • the website can also include interfaces that allow for data entry and configuration by the user.
  • the configurations can include defining which metrics will be displayed on the activity tracking device 100 .
  • the configurations can include identification of which metrics will be a first metric to be displayed on the activity tracking device.
  • the first metric to be displayed by the activity tracking device can be in response to a user input at the activity tracked device 100 .
  • the user input can be by way of physical contact.
  • the physical contact is qualified by the processor and/or logic of the activity tracking device 100 to determine if the physical contact should be treated as an input.
  • the input can trigger or cause the display screen of the activity tracking device 100 to be turned on to display a specific metric, that is selected by the user as the first metric to display.
  • the first metric displayed in response to the input can be predefined by the system as a default.
  • the configuration provided by the user by way of the server 220 and the activity management application 224 can also be provided by way of the activity tracking application 202 of the computing device 200 .
  • the activity tracking application 202 can include a plurality of screens that also display metrics associated with the captured motion data of the activity tracking device 100 .
  • the activity tracking application 202 can also allow for user input and configuration at various graphical user interface screens to set and define which input will produce display of the first metric.
  • the configuration in addition to identifying the first metric to be displayed in response to the input, which may be physical contact, the configuration can allow an ordering of which metrics will be displayed in a specific scroll order.
  • the scroll order of the metrics is predefined.
  • the input provided by the user by way of the physical contact can be pre-assigned to a specific metric in the scroll order.
  • the scroll order can remain the same, while the input can allow the screen to jump to a specific entry in the scroll order. Jumping to a specific entry can be viewed as a shortcut to a specific entry that is desired to be seen first by the user upon providing physical contact or input to the device 100 .
  • FIGS. 3A and 3B illustrate examples of activity tracking devices 300 , 300 ′ having a heart rate measuring system in the form of a wearable wrist attachable device, in accordance with embodiments of the present invention.
  • the form factor of the activity tracking devices 300 , 300 ′ can be similar to the above activity tracking devices 100 and includes substantially similar components with the addition of the heart rate measuring system.
  • the user's finger 302 is shown touching the activity tracking device at the heart rate monitor location 183 .
  • the light source is emitting light 320 into the user's skin 306 . A portion 322 of the light 320 is reflected from the user's blood vessel 304 .
  • FIGS. 3C and 3D illustrate another example of an activity tracking device 300 ′′, in accordance with embodiments of the present invention.
  • the form factor of the activity tracking device 300 ′′ is shown as a clipable device that includes a spring loaded hinge 340 , a screen 122 , a button 126 , and device components 102 integrated within the housing 190 .
  • the housing 190 can be a shape capable of receiving a user's finger 302 and pressing down on the finger from one or both sides of the finger. Inserting the user's finger 302 can provide the physical contact or tap needed to initiate certain functions of the tracking device 100 as will be described in more detail below.
  • the heart rate measuring system includes a light source 181 and a reflected light detector 182 .
  • the light source 181 and the reflected light detector 182 are located close together in the activity tracking devices 300 , 300 ′, 300 ′′. In one embodiment the light source 181 and the reflected light detector 182 can be immediately adjacent.
  • the light source 181 and the reflected light detector 182 can be included in a single package and/or a single integrated circuit.
  • the light source 181 and the reflected light detector 182 can be selected for any one suitable wavelength or suitable band of wavelengths of light ranging from between infrared, through a human visible spectrum to ultraviolet wavelengths.
  • the heart rate monitor location 183 can include a cover that enables light of the light source to pass while blocking substantially all light in a human visible spectrum.
  • the cover can be a smoked filter or other suitable filter color or shaded plastic or glass or shaded glass, transparent or translucent glass or plastic or ceramic or any other suitable material capable of allowing the desired wavelengths of light to pass through the cover.
  • the light source 181 uses an infrared (IR) light and the IR light produces a deadfront at the heart rate monitor location 183 . Where a deadfront is defined as a continuous surface such that the cover is not easily discernable from the remaining surface of the housing. A deadfront cover is substantially hidden from the user however a light source 181 or the display screen 122 can emits sufficient light to pass through the cover.
  • the light source 181 can be a green light and the heart rate monitor location 183 can include a translucent green window.
  • the user places the skin 306 of a finger tip 302 or other body part over the light source 181 .
  • the light source 181 directs the light 310 into the skin 306 .
  • the light 310 passes through the skin 306 to a blood vessel 304 such as an artery, vein, or a capillary within the finger 302 .
  • a reflected portion 312 of the light 310 is reflected from the blood vessel 304 toward the reflected light detector 182 .
  • the light detector 182 outputs a signal corresponding to the reflected portion 312 of the light.
  • the signal is coupled to a processor 106 for processing configured to identify heart beats of the user and produce an indication of a heart rate.
  • the indication of the heart rate can be displayed on the display screen 122 .
  • One embodiment may use a portion of the teachings of detecting heart beats by reflecting light from a blood vessel, as taught, in part by “Plug-and-Play, Single-Chip Photoplethysmography” by Deepak Chandrasekar, et al., pages 3243-3246, presented 34th Annual International Conference of the IEEE EMBS, San Diego, Calif. USA, 28 Aug.-1 Sep. 2012 which is incorporated by reference herein for all purposes.
  • a digital OPS can be used as a high-performance, reflectance-mode PPG sensor . . . LED emits light into the tissue, where it experiences diffuse reflection from the tissue and capillary bed. This establishes a baseline reflectance signal which is detected at the PD. When a pulse wave propagates through the capillary bed, the reflectance signal falls slightly (0.5-5%) due to light scattering. The change is detected by the PD and processed by embedded amplification and signal processing circuitry” (Page 3244, column 1, line 34 through column 2, line 7 and FIG. 2 ). Where an OPS is defined as an optical proximity sensor, a PPG sensor is defined as a photoplethysmographic sensor and a PD is defined as a photodiode.
  • Chandrasekar et al only examples and other examples can include different and additional processes and systems as described in more detail throughout this disclosure. Further, Chandrasekar, et al, fails to teach suitable filtering to provide accurate hear rate indications. Further still, Chandrasekar, et al, cannot discern motion caused false heart beat detections from actual heart beat detections.
  • FIG. 4A is a flowchart diagram of heart rate measuring system, in accordance with embodiments of the present invention.
  • the heart rate measuring system detects the heart beats and interprets the detected heart beats to peaks.
  • the detected peaks include timing information corresponding to the time interval between the detected peaks.
  • the detected peaks also include information of the number of detected peaks within a selected sampling time period.
  • the sampling time period can be determined by extent peaks such as the first detected peak and the last detected peak.
  • the number of detected peaks within the sampling time period can be used to calculate an estimated heart rate in the form of beats per minute.
  • the timing of the detected peaks can be used to evaluate the estimated heart rate to determine a best guess of the user's actual heart rate.
  • FIG. 4B is a graphical representation 420 of an example series of peaks corresponding to detected heart beats captured during a sampling time period STP, in accordance with embodiments of the present invention.
  • the solid line peaks A, B, C, E, G and I the dashed peak F represent the raw data detected during the sampling time period STP.
  • the solid line peaks A, B, C, E, G and I correspond to actual detected heart beats.
  • the dashed peak F corresponds to a phantom beat detection.
  • the phantom peak F can be caused by movement of the user's finger or the activity tracking device 300 .
  • the phantom peak F can be caused by noise or some other cause.
  • the dotted peaks D and H correspond to approximate occurrences of heart beats that should have been detected, based on the timing of the actually detected peaks A, B, C, E, G and I.
  • the dotted peaks D and H are not actually detected peaks and are shown in the graphical representation 420 for reference purposes as will be described in more detail below.
  • FIG. 4C is a graphical representation 450 of the filtering process for the above example series of peaks, in accordance with embodiments of the present invention.
  • the peaks A-I are transferred to FIG. 4C as a reference.
  • Each of the horizontal lines of small circles represents a different estimate of peaks.
  • Six actual peaks A, B, C, E, G and I correspond to six actual heart beats that were detected and one phantom peak F was detected giving a total of seven detected peaks.
  • Human heart beats are typically substantially evenly spaced, thus the seven detected peaks are separated by even time intervals across the sampling time period STP as shown in the estimated 7 peaks detected line.
  • the filtering process evaluates the detection process to determine if the initial estimate of seven peaks is accurate as described in FIG. 5 .
  • FIG. 5 is a flowchart diagram of the method operations 500 for detecting a heart rate, in accordance with embodiments of the present invention.
  • the user touches the heart rate monitor location 183 and/or presses the button 126 on the activity monitor to initiate the heart rate detection.
  • the light source 181 and detector 182 are located inside the activity tracking device near the heart rate detector heart rate monitor location 183 .
  • the heart rate monitor location 183 can include a proximity sensor and/or the button 126 as described above.
  • the light source 181 emits a light 320 into the user's skin and at least a portion of the light 322 is reflected off of a blood vessel 304 inside the user's skin.
  • the detector 182 receives the reflected light 322 in an operation 515 and outputs the raw data of the detected beats within a sampling time period STP, as shown in FIG. 4B , to the processor 106 in an operation 520 .
  • the raw data of the detected beats is refined and evaluated to produce a more accurate heart rate.
  • the initial estimate of the seven detected heart beats are illustrated as seven, evenly spaced peaks.
  • at least one beat is added to the initial estimate of seven beats to produce a corresponding at least one added estimate.
  • two peaks are added resulting in corresponding added estimates of an eight beat estimate and a nine beat estimate. It should be understood that only one or more than two beats could be added.
  • At least one peak is subtracted from the initial estimate of seven beats to produce a corresponding at least one subtracted estimate.
  • two beats are subtracted resulting in corresponding subtracted estimates of a six beat estimate and a five beat estimate. It should be understood that only one or more than two beats could be subtracted.
  • estimated lines of beats corresponding to five, six, eight and nine peaks are shown evenly distributed across the sampling time period STP.
  • each of the five estimated lines of beats are compared to the actually detected peaks A, B, C, E, F, G and I to determine how well each line of beats scores as most closely matching the actually detected peaks A, B, C, E, F, G and I.
  • the five beats estimate line closely corresponds to only actually detected peak A and phantom peak F resulting in a corresponding score of 2.
  • the six beats estimate line closely corresponds to only actually detected peaks A, E and G resulting in a corresponding score of 3.
  • the initial estimate of seven beats estimate line closely corresponds to only actually detected peaks A, B and C and phantom peak F resulting in a corresponding score of 4.
  • the eight beats estimate line closely corresponds to peaks A, B, C, E, G and I resulting in a corresponding score of 6.
  • the nine beats estimate line closely corresponds to peaks A, B, C and I and phantom peak F resulting in a corresponding score of 5.
  • the eight beats estimate provides the highest score of 6 and is therefore selected as a potential heart rate for further evaluation. However, only seven peaks were detected by the heart rate monitoring system and thus the eight beats potential heart rate could be an error.
  • intervals between the seven detected beats are measured. Recall that human heart beats are substantially evenly spaced and there are three substantially evenly spaced peaks A, B, C in the seven detected beats. The time interval between the substantially evenly spaced peaks A, B, C is selected as a potential beat interval.
  • the potential beat interval is compared to the remaining detected beat intervals between peaks C and E, between peaks E and F, between peaks F and G, and between peaks G and I to identify any timing intervals closely corresponding to whole number multiples of the potential beat interval so as to identify missed beats.
  • missed peak D is found between detected peaks C and E
  • missed peak H is found between detected peaks G and I.
  • the timing intervals between peaks E and F and between peaks F and G are substantially less than the potential beat interval and thus peak F is identified as a phantom peak and the phantom peak F is eliminated in an operation 555 .
  • the estimated heart beats are scored similar to the scoring in operation 535 above.
  • the combination of the actually detected peaks A, B, C, E, G and I and the missed peaks D and H can be evaluated for each of the estimated lines of beats.
  • the eight beats potential heart rate would yield a resulting score of 8, which would be higher than the scores of 3, 2, 3, 4 corresponding to five, six, seven and nine beats estimate lines, respectively.
  • the eight beats potential heart rate can therefore be determined as the best guess in an operation 565 .
  • the processor 106 calculates the heart rate.
  • the sampling time period STP is extrapolated to 60 seconds and the corresponding heart rate in heart beats per minute is output to the display screen.
  • the sampling time period STP is 5.2 seconds in the above example.
  • 60 seconds divided by 5.2 seconds is equal to 11.54.
  • 11.54 multiplied by the seven time intervals between the evenly spaced estimated eight beats yields a calculated heart rate of 81 beats per minute.
  • the processor 106 outputs the calculated heart rate to the display screen 122 .
  • the heart rate measuring system can continue to detect, refine and filter the detected heart beats as long as the user's skin is in sufficiently close proximity to the light source 181 and detector 182 .
  • FIGS. 6A-D illustrate different presentations of the calculated heart rate on the display screen 122 , in accordance with embodiments of the present invention.
  • the initially detected heart beats are displayed as peaks 602 and the heart rate 610 is displayed numerically “61 HRT”.
  • the heart rate is more accurately detected and the displayed heart rate 610 is updated as shown in FIG. 6B .
  • the detected heart beats are displayed as lines 612 and as a sinewave 614 in FIG. 6D .
  • these examples are merely some examples of displaying the user's heart rate and others examples could include flashing an icon or a portion of or the entire the display 122 or vibrating the activity tracking device in time with the detected heart beats and combinations thereof.
  • FIG. 7A is a flowchart diagram of the method operations for adjusting the user pressure on the activity tracking device while detecting a heart rate, in accordance with embodiments of the present invention.
  • FIGS. 7B and 7C show feedback signals on the activity tracing device display, in accordance with embodiments of the present invention.
  • the button 126 can also include a pressure sensor that can be used to determine the user's pressure on the heart rate monitor location 183 .
  • the pressure sensor can include at least one of a strain gauge, a push resistance built into the button 126 , or a force sensitive film under, within or on a surface of the button and combinations thereof and any other suitable pressure sensor.
  • the excessive pressure or insufficient pressure can degrade the quality of the heart beat data in the reflected light 322 to a level that the heart rate cannot be suitably monitored.
  • the user's motion such as running, can interfere with and produce artifacts and false readings.
  • the processor 106 can use the motion sensor to identify and filter out the falsely detected heart beats from the detected heart beats.
  • the processor can detect when the user steps down and the vibration through the user's body and identify a detected heart beat coinciding with the step as a suspected false heart beat.
  • the processor may determine that the detected heart beats are too erratic to accurately measure in an operation 710 .
  • the detected heart beats are too erratic can be too erratic due to pressing the user's finger too lightly or too hard on the activity tracking device.
  • a feedback to the user is provided to increase pressure on the activity tracking device.
  • the increase pressure feedback can be in the form of one or more arrows pointing down or toward the user's finger.
  • the activity device can flash a portion or all of the display 122 or display words such as “press down” or icons, or vibrate or other suitable tactile feedback, visual feedback, or audible feedback to the user.
  • the detected heart beats are constantly monitored for usability, in an operation 720 . If increasing the pressure provides usable heart beat data then the method operations return to operation 525 in FIG. 5 . If increasing the pressure does not provide usable heart beat data then the method operations continue in an operation 725 where the user is provided feedback to decrease the pressure on the activity tracking device. As shown in FIG. 7C the decrease pressure feedback can be in the form of one or more arrows pointing up or away from the user's finger. Alternatively, the activity device can flash a portion or all of the display 122 or display icons or words such as “lighten up” or vibrate or other suitable tactile feedback, visual feedback, or audible feedback to the user.
  • the detected heart beats are constantly monitored for usability, in an operation 730 . If decreasing the pressure provides usable heart beat data then the method operations return to operation 525 in FIG. 5 . If decreasing the pressure does not provide usable heart beat data then the method operations continue in operation 715 as described above.
  • FIG. 8 illustrates an example where various types of activities of users 800 A- 800 I can be captured by activity tracking devices 100 , in accordance with embodiments of the present invention.
  • the various types of activities can generate different types of data that can be captured by the activity tracking device 100 .
  • the data which can be represented as motion data (or processed motion data) can be transferred 820 to a network 176 for processing and saving by a server, as described above.
  • the activity tracking device 100 can communicate to a device using a wireless connection, and the device is capable of communicating and synchronizing the captured data with an application running on the server.
  • an application running on a local device such as a smart phone or tablet or smart watch can capture or receive data from the activity tracking device 100 and represent the tract motion data in a number of metrics.
  • the device collects one or more types of physiological and/or environmental data from embedded sensors and/or external devices and communicates or relays such metric information to other devices, including devices capable of serving as Internet-accessible data sources, thus permitting the collected data to be viewed, for example, using a web browser or network-based application.
  • the device may calculate and store the user's step count using one or more sensors.
  • the device transmits data representative of the user's step count to an account on a web service, computer, mobile phone, or health station where the data may be stored, processed, and visualized by the user.
  • the device may measure or calculate a plurality of other physiological metrics in addition to, or in place of, the user's step count.
  • Some physiological metrics include, but are not limited to, energy expenditure (for example, calorie burn), floors climbed and/or descended, heart rate, heart rate variability, heart rate recovery, location and/or heading (for example, through GPS), elevation, ambulatory speed and/or distance traveled, swimming lap count, bicycle distance and/or speed, blood pressure, blood glucose, skin conduction, skin and/or body temperature, electromyography, electroencephalography, weight, body fat, caloric intake, nutritional intake from food, medication intake, sleep periods (i.e., clock time), sleep phases, sleep quality and/or duration, pH levels, hydration levels, and respiration rate.
  • energy expenditure for example, calorie burn
  • floors climbed and/or descended for example, heart rate, heart rate variability, heart rate recovery, location and/or heading (for example, through GPS), elevation, ambulatory speed and/or distance traveled, swimming lap count, bicycle distance and/or speed, blood pressure, blood glucose, skin conduction, skin and/or body temperature, electromyography, electroencephalography, weight, body fat,
  • the device may also measure or calculate metrics related to the environment around the user such as barometric pressure, weather conditions (for example, temperature, humidity, pollen count, air quality, rain/snow conditions, wind speed), light exposure (for example, ambient light, UV light exposure, time and/or duration spent in darkness), noise exposure, radiation exposure, and magnetic field.
  • metrics related to the environment around the user such as barometric pressure, weather conditions (for example, temperature, humidity, pollen count, air quality, rain/snow conditions, wind speed), light exposure (for example, ambient light, UV light exposure, time and/or duration spent in darkness), noise exposure, radiation exposure, and magnetic field.
  • other metrics can include, without limitation, calories burned by a user, weight gained by a user, weight lost by a user, stairs ascended, e.g., climbed, etc., by a user, stairs descended by a user, variation in the user's altitude, steps taken by a user during walking or running, a number of rotations of a bicycle pedal rotated by a user, sedentary activity data, driving a vehicle, a number of golf swings taken by a user, a number of forehands of a sport played by a user, a number of backhands of a sport played by a user, or a combination thereof.
  • sedentary activity data is referred to herein as inactive activity data or as passive activity data.
  • a user when a user is not sedentary and is not sleeping, the user is active.
  • a user may stand on a monitoring device that determines a physiological parameter of the user. For example, a user stands on a scale that measures a weight, a body fat percentage, a biomass index, or a combination thereof, of the user.
  • the device or the system collating the data streams may calculate metrics derived from this data. For example, the device or system may calculate the user's stress and/or relaxation levels through a combination of heart rate variability, skin conduction, noise pollution, and sleep quality. In another example, the device or system may determine the efficacy of a medical intervention (for example, medication) through the combination of medication intake, sleep and/or activity data. In yet another example, the device or system may determine the efficacy of an allergy medication through the combination of pollen data, medication intake, sleep and/or activity data. These examples are provided for illustration only and are not intended to be limiting or exhaustive.
  • This information can be associated to the users account, which can be managed by an activity management application on the server.
  • the activity management application can provide access to the users account and data saved thereon.
  • the activity manager application running on the server can be in the form of a web application.
  • the web application can provide access to a number of websites screens and pages that illustrate information regarding the metrics in various formats. This information can be viewed by the user, and synchronized with a computing device of the user, such as a smart phone.
  • the data captured by the activity tracking device 100 is received by the computing device, and the data is synchronized with the activity measured application on the server.
  • data viewable on the computing device e.g. smart phone
  • an activity tracking application app
  • information entered into the activity tracking application on the computing device can be synchronized with application illustrated in the various screens of the activity management application provided by the server on the website.
  • the user can therefore access the data associated with the user account using any device having access to the Internet.
  • Data received by the network 176 can then be synchronized with the user's various devices, and analytics on the server can provide data analysis to provide recommendations for additional activity, and or improvements in physical health.
  • the process therefore continues where data is captured, analyzed, synchronized, and recommendations are produced.
  • the captured data can be itemized and partitioned based on the type of activity being performed, and such information can be provided to the user on the website via graphical user interfaces, or by way of the application executed on the users smart phone (by way of graphical user interfaces).
  • the sensor or sensors of a device 100 can determine or capture data to determine an amount of movement of the monitoring device over a period of time.
  • the sensors can include, for example, an accelerometer, a magnetometer, a gyroscope, or combinations thereof. Broadly speaking, these sensors are inertial sensors, which capture some movement data, in response to the device 100 being moved.
  • the amount of movement e.g., motion sensed
  • the monitoring device may be worn on a wrist, carried by a user, worn on clothing (using a clip, or placed in a pocket), attached to a leg or foot, attached to the user's chest, waist, or integrated in an article of clothing such as a shirt, hat, pants, blouse, glasses, and the like.
  • a biological sensor can determine any number of physiological characteristics of a user.
  • the biological sensor may determine heart rate, a hydration level, body fat, bone density, fingerprint data, sweat rate, and/or a bioimpedance of the user.
  • the biological sensors include, without limitation, a biometric sensor, a physiological parameter sensor, a pedometer, or a combination thereof.
  • data associated with the user's activity can be monitored by the applications on the server and the users device, and activity associated with the user's friends, acquaintances, or social network peers can also be shared, based on the user's authorization. This provides for the ability for friends to compete regarding their fitness, achieve goals, receive badges for achieving goals, get reminders for achieving such goals, rewards or discounts for achieving certain goals, etc.
  • the heart beats are detected by processing the light received in the light detector, within the sampling time period.
  • a first time interval between a first beat of the detected heart beats and a second heart beat is measured.
  • the sample time interval can be divided by the first time interval to determine a first estimate of heart beats detected within the sampling time period and the first estimate of heart beats within the sampling time period can be extrapolated to a first estimated heart beats per minute.
  • the first estimate heart beats per minute can be output to the display screen.
  • At least one beat can be added to the first estimate of heart beats to produce a second estimate of heart beats that can be scored with the first estimate of heart beats.
  • a highest scoring of the first estimate of heart beats and the second estimate of heart beats can be selected and output to the display screen.
  • At least one beat can be subtracted from the first estimate of beats to produce a third estimate of heart beats.
  • the first estimate of heart beats and the third estimate of heart beats can be scored. A highest scoring of the first estimate of heart beats and the third estimate of heart beats can be selected and output to the display screen.
  • identifying the heart beats of the user and producing an indication of a heart rate can include identifying and filtering a falsely detected heart beat coinciding with motion detected by the motion sensor.
  • a user's motion may be erroneously identified as a heart beat.
  • the processor can compare detected motion (i.e., motion data, instantaneous shocks, etc.) to the detected heart beats and identify heart beats that coincide with motion data. Further, as the motion data and heart beat data are compiled over time, detected motions that often produce corresponding erroneously detected heart beats can be identified and filtered from the detected heart beats.
  • activity tracking device in another embodiment, includes a housing including a motion sensor and a processor.
  • the processor is configured for processing motion data produced by the motion sensor.
  • a display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor.
  • a light source is integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing.
  • a light detector is also integrated within the housing. The light detector is configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing.
  • the processor can be in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate.
  • the indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data.
  • the heart rate can be calculated based on an algorithm that calculates a first estimate of heart beats per minute corresponding to detected heart beats in the light received in the light detector within a sampling time period.
  • a refined estimate of heart beats per minute can be calculated by adding at least one beat to the first estimate of heart beats to produce a second estimate of heart beats and subtracting at least one beat from the first estimate of beats to produce a third estimate of heart beats.
  • the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats are scored and a highest scoring estimate of heart beats is selected and output to the display screen.
  • an activity tracking device 100 can communicate with a computing device (e.g., a smartphone, a tablet computer, a desktop computer, or computer device having wireless communication access and/or access to the Internet).
  • the computing device can communicate over a network, such as the Internet or an Intranet to provide data synchronization.
  • the network may be a wide area network, a local area network, or a combination thereof.
  • the network may be coupled to one or more servers, one or more virtual machines, or a combination thereof.
  • a server, a virtual machine, a controller of a monitoring device, or a controller of a computing device is sometimes referred to herein as a computing resource. Examples of a controller include a processor and a memory device.
  • the processor may be a general purpose processor.
  • the processor can be a customized processor configured to run specific algorithms or operations.
  • Such processors can include digital signal processors (DSPs), which are designed to execute or interact with specific chips, signals, wires, and perform certain algorithms, processes, state diagrams, feedback, detection, execution, or the like.
  • DSPs digital signal processors
  • a processor can include or be interfaced with an application specific integrated circuit (ASIC), a programmable logic device (PLD), a central processing unit (CPU), or a combination thereof, etc.
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • CPU central processing unit
  • one or more chips, modules, devices, or logic can be defined to execute instructions or logic, which collectively can be viewed or characterized to be a processor. Therefore, it should be understood that a processor does not necessarily have to be one single chip or module, but can be defined from a collection of electronic or connecting components, logic, firmware, code, and combinations thereof.
  • Examples of a memory device include a random access memory (RAM) and a read-only memory (ROM).
  • RAM random access memory
  • ROM read-only memory
  • a memory device may be a Flash memory, a redundant array of disks (RAID), a hard disk, or a combination thereof.
  • Embodiments described in the present disclosure may be practiced with various computer system configurations including hand-held devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like.
  • Several embodiments described in the present disclosure can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.
  • the computer-readable medium is any data storage device that can store data, which can thereafter be read by a computer system.
  • Examples of the computer-readable medium include hard drives, network attached storage (NAS), ROM, RAM, compact disc-ROMs (CD-ROMs), CD-recordables (CD-Rs), CD-rewritables (RWs), magnetic tapes and other optical and non-optical data storage devices.
  • the computer-readable medium can include computer-readable tangible medium distributed over a network-coupled computer system so that the computer-readable code is stored and executed in a distributed fashion.

Abstract

A system and method of tracking activity includes a motion sensor, a light source and a light detector. The light detector is configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing. A processor is in communication with the motion sensor and the light detector and can process the reflected light to identify heart beats of the user and produce an indication of a heart rate. The indication of the heart rate can be displayed on the display screen as an option, in addition to the metrics that quantify the motion data.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority from co-pending U.S. patent application Ser. No. 14/302,360, filed on Jun. 11, 2014 and entitled “Methods, Systems and Devices for Measuring Fingertip Heart Rate,” which is incorporated herein by reference in its entirety. This application is also a continuation of and claims priority from U.S. Pat. No. 8,827,906, filed on Jan. 15, 2014 and entitled “Methods, Systems and Devices for Measuring Fingertip Heart Rate,” which is incorporated herein by reference in its entirety. This application also claims priority, through U.S. Pat. No. 8,827,906, from U.S. Provisional Patent Application No. 61/924,547 filed on Jan. 7, 2014 and entitled “Methods, Systems and Devices for Measuring Fingertip Heart Rate,” which is incorporated herein by reference in its entirety. This application also claims priority, through U.S. Pat. No. 8,827,906, from U.S. Provisional Patent Application No. 61/752,826 filed on Jan 15, 2013 and entitled “Portable Monitoring Devices and Methods of Operating Same,” which is incorporated herein by reference in its entirety. This application also claims priority through U.S. Pat. No. 8,827,906, from U.S. Provisional Patent Application No. 61/830,600 filed on Jun. 3, 2013 and entitled “Portable Monitoring Devices and Methods of Operating Same,” which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • The present disclosure relates to systems and methods for capturing bodily activity and synchronizing data transfers between a capture device and a client device.
  • In recent years, the need for health and fitness has grown tremendously. The growth has occurred due to a better understanding of the benefits of good fitness to overall health and wellness. Unfortunately, although today's modern culture has brought about many new technologies, such as the Internet, connected devices and computers, people have become less active. Additionally, many office jobs require people to sit in front of computer screens for long periods of time, which further reduces a person's activity levels. Furthermore, much of today's entertainment options involve viewing multimedia content, computer social networking, and other types of computer involved interfacing. Although such computer activity can be very productive as well as entertaining, such activity tends to reduce a person's overall physical activity.
  • To provide users concerned with health and fitness a way of measuring or accounting for their activity or lack thereof, fitness trackers are often used. Fitness trackers are used to measure activity, such as walking, motion, running, sleeping, being inactive, bicycling, exercising on an elliptical trainer, and the like. Usually, the data collected by such fitness trackers can be transferred and viewed on a computing device. However, such data is often provided as a basic accumulation of activity data with complicated or confusing interfaces. In addition, updates between a tracker and a client device usually require wired connectors and/or complex syncing schemes.
  • It is in this context that embodiments described herein arise.
  • SUMMARY
  • Broadly speaking, the present invention fills these needs by providing a system and method for detecting and measuring a user's heart rate. It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, computer readable media, or a device. Several inventive embodiments of the present invention are described below.
  • One embodiment provides an activity tracking device having a motion sensor and a processor in a housing. The processor configured for processing motion data produced by the motion sensor. A display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor. A light source is integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing and a light detector is integrated within the housing. The light detector configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel under a skin of a user when the user places the skin over the heart rate monitor location on the housing. The processor is also in communication with the light detector to process the reflected light to identify heart beats of the user and produce an indication of a heart rate that can be displayed on the display screen, as an option, in addition to the metrics that quantify the motion data.
  • The processor can differentiate between a baseline light scattering and reflectance signal detected between the each one of multiple heart beats and a second light scattering and reflectance signal corresponding to at least one heart beat in the blood vessel. The second reflectance signal being less than the baseline reflectance signal, where the blood vessel scatters more of the light during the at least one heart beat than between each one of the multiple heart beats.
  • The motion sensor can be one of or include an accelerometer, or a global positioning sensor, or a magnetometer, or a gyroscope, or a rotary encoder, or a calorie measurement sensor, or a moisture measurement sensor, or a displacement sensor, or an ultrasonic sensor, or a pedometer, or an altimeter, or a linear motion sensor, or an angular motion sensor, or a multi-axis motion sensor, or a combination of two or more thereof.
  • The activity tracking device can also include a communication transceiver configured for communicating via at least one a wireless network, an ambient light sensor, an indicator for visually identifying the heart rate monitor location on the housing and at least one infrared (IR) proximity sensor associated with the light source and light detector. The IR proximity sensor can be configured to activate the light source and light detector upon detecting presence of the skin of the user. Detecting presence of the skin of the user can also function to navigate to one or more metrics of the display screen.
  • The activity tracking device can also include a pressure detecting system configured for detecting a pressure applied to the heart rate monitor location on the housing with the skin of the user during the identification of heart beats. The activity tracking device can output at least one a feedback signal regarding the detected pressure applied to the heart rate monitor location, the feedback indication being indicative of more or less pressure desired to produce the heart rate, the feedback signal including at least one of a visual signal, a graphic signal, a tactile signal, and an audible signal. The pressure detecting system can include at least one of processing of the reflected light to identify one of an excess pressure, an insufficient pressure or an acceptable pressure from the detected heart beats of the user, or a pressure sensor in the button.
  • The activity tracking device can also include a display of one or both of waveform data or numerical data when the skin of the user is over the heart rate monitor location and the heart beats are being identified over a sampling time period and upon concluding the sampling time period, displaying the heart rate on the display screen. At least one recalled heart rate can be displayed on the display screen. The light detector can be disposed next to the light source.
  • The heart rate can be calculated based on an algorithm that detects multiple heart beats in the light received in the light detector within a sampling time period, measures a first time interval between a first beat of the detected heart beats and a second beat of the detected heart beats and divides the sample time interval by the first time interval to determine a first estimate of heart beats detected within the sampling time period. The first estimate of heart beats is extrapolated within the sampling time period to a first estimated heart beats per minute and the first estimate heart beats per minute is output to the display screen.
  • The heart rate can be calculated based on an algorithm that adds at least one beat to the first estimate of heart beats to produce a second estimate of heart beats and subtracts at least one beat from the first estimate of beats to produce a third estimate of heart beats. The first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats are scored and a highest scoring estimate of heart beats is selected and output to the display screen.
  • The light source and the reflected light detector can be selected for any suitable wavelength or suitable band of wavelengths of light ranging from between infrared wavelengths through a human visible spectrum to ultraviolet wavelengths. The light source includes at least one of an infrared (IR) light source, wherein the IR light emitted from the light source produces a deadfront at the heart rate monitor location of the housing or a green light source and the heart rate monitor location includes a translucent green window.
  • The heart rate monitor location includes a cover that enables infrared (IR) light of the light source or any other wavelength of light from the light source to pass while blocking substantially all light in a human visible spectrum. The light source and light detector can additionally function as a proximity sensor to activate the display screen. The heart rate monitor location can include a button. The button can have an infrared (IR) light transmitting structure. The light source and the light detector can be disposed substantially below the button. The button can also function to navigate to one or more metrics of the display screen. The functions to navigate can be enabled while the heart beats are measured. The skin can be of a finger of a user.
  • Another embodiment provides a method of tracking activity including sensing motion with a motion sensor, the motion sensor including a processor. The processor is configured for processing motion data produced by the motion sensor. Metrics that quantify the motion data produced by the motion sensing can be displayed on a device display screen integrated with a housing of the motion sensor. A directed light is emitted from a light source, the light source being included in the housing at a heart rate monitor location on the housing and an amount of the light that is reflected back to a light detector is captured by the light detector integrated within the housing. At least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing. The processor further being in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate. The indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data.
  • The method can also include detecting a pressure applied to the heart rate monitor location of the housing with the skin of the user during the identification of heart beats, the pressure being detected by a pressure detecting system included in the housing and outputting a feedback signal regarding the detected pressure applied to the heart rate monitor location, the feedback indication being indicative of more or less pressure desired to produce the heart rate. One or both of waveform data or numerical data can be displayed when the skin of the user is over the heart rate monitor location and the heart beats are being identified over a sampling time period. The heart rate can be displayed on the display screen upon concluding the sampling time period.
  • Yet another embodiment provides a heart rate monitor including a light source and a light detector disposed to receive light emitted from the light source and reflected from a blood vessel disposed within in a heart rate monitor subject. A display screen and a processor coupled to the light source, the light detector and the display screen, are also included.
  • Still another embodiment provides an activity tracking device including a housing including a motion sensor and a processor. The processor is configured for processing motion data produced by the motion sensor. A display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor. A light source is also integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing and a light detector is integrated within the housing. The light detector is configured to capture an amount of the light that is reflected back to the light detector. At least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing. The processor is also in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate that can be displayed on the display screen, as an option, in addition to the metrics that quantify the motion data. Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings.
  • FIG. 1A shows a block diagram of an activity tracking device, in accordance with embodiments of the present invention
  • FIG. 1B illustrates an example of an activity tracking device having a housing in the form of a wearable wrist attachable device.
  • FIG. 1C illustrates another example of an activity tracking device, in accordance with embodiments of the present invention.
  • FIG. 2A illustrates an example of activity tracking device of FIG. 1A, showing some additional example components utilized for tracking activity and motion of the device, and associated interfaces to display screen.
  • FIG. 2B illustrates an example of activity tracking device in communication with a remote device.
  • FIGS. 3A and 3B illustrate examples of activity tracking devices having a heart rate measuring system in the form of a wearable wrist attachable device, in accordance with embodiments of the present invention.
  • FIGS. 3C and 3D illustrate another example of an activity tracking device, in accordance with embodiments of the present invention.
  • FIG. 4A is a flowchart diagram of heart rate measuring system, in accordance with embodiments of the present invention.
  • FIG. 4B is a graphical representation of an example series of peaks corresponding to detected heart beats captured during a sampling time period STP, in accordance with embodiments of the present invention.
  • FIG. 4C is a graphical representation of the filtering process for the above example series of peaks, in accordance with embodiments of the present invention.
  • FIG. 5 is a flowchart diagram of the method operations for detecting a heart rate, in accordance with embodiments of the present invention.
  • FIGS. 6A-D illustrate different presentations of the calculated heart rate on the display screen, in accordance with embodiments of the present invention.
  • FIG. 7A is a flowchart diagram of the method operations for adjusting the user pressure on the activity tracking device while detecting a heart rate, in accordance with embodiments of the present invention.
  • FIGS. 7B and 7C show feedback signals on the activity tracing device display, in accordance with embodiments of the present invention.
  • FIG. 8 illustrates an example where various types of activities of users can be captured by activity tracking devices, in accordance with embodiments of the present invention.
  • DETAILED DESCRIPTION
  • Several exemplary embodiments for activity tracking devices and methods capable monitoring and displaying both a user's activities and the user's heart rate will now be described. It will be apparent to those skilled in the art that the present invention may be practiced without some or all of the specific details set forth herein.
  • The user's heart rate can be measured by directing a light of a suitable wavelength into a user's skin and capturing a portion of the light reflected from a user's blood vessel inside the user's body. The reflected light includes data corresponding to the user's heart beats. Using this heart beat data and filtering methods and systems provide a rapid, accurate measurement of the user's heart rate. Thereby allowing the user to monitor both his activity and his heart rate. Motion data from a motion sensor within the activity tracking device can be used to identify false heart beats and provide a more accurate heart rate indication to the user, even while the user is engaged in a rigorous activity.
  • Embodiments described in the present disclosure provide systems, apparatus, computer readable media, and methods for analyzing tracked activity data and providing navigation screens and interfaces. Some embodiments are directed to providing navigation interfaces for an activity tracking device. The activity tracking device includes sensors for detecting when physical contact occurs onto the activity tracking device and logic for providing a display action to the screen of the activity tracking device. The physical contact, in one embodiment, can be qualified as an input when the physical contact has a particular characteristic that is predefined. The characteristic can be, when the contact is the result of one or more taps, e.g., physical contact to the activity tracking device by a finger or hand of the user, or object held by a user and used to impart the contact.
  • In other embodiments, the input can be non-physical, such as proximity sensing input. The proximity sensing input can be processed by an infrared proximity sensor, a thermal sensor, etc. The input can also be by way of a button, voice input, gaze detected input, input processed in response to motion or motion profiles, etc.
  • It should be noted that there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
  • Further, in the course of describing and illustrating the present inventions, various circuitry, architectures, structures, components, functions and/or elements, as well as combinations and/or permutations thereof, are set forth. It should be understood that circuitry, architectures, structures, components, functions and/or elements other than those specifically described and illustrated, are contemplated and are within the scope of the present inventions, as well as combinations and/or permutations thereof.
  • FIG. 1A shows a block diagram of an activity tracking device 100, in accordance with embodiments of the present invention. The activity tracking device 100 is contained in a housing 101, which may be worn or held by a user. The housing 101 may be in the form of a wristband, a clip on device, a wearable device, or may be held by the user either in the user's hand or in a pocket or attached to the user's body. The activity tracking device 100 includes device components 102, which may be in the form of logic, storage, and glue logic, one or more processors, microelectronics, and interfacing circuitry. In one example, the components 102 will include a processor 106, memory 108, a wireless transceiver 110, a user interface 114, biometric sensors 116, and environmental sensors 118.
  • The environmental sensors 118 may be in the form of motion detecting sensors 118A. In some embodiments, a motion sensor 118A can be one or more of an accelerometer, or a gyroscope, or a rotary encoder, or a calorie measurement sensor, or a heat measurement sensor, or a moisture measurement sensor, or a displacement sensor, or an ultrasonic sensor, or a pedometer, or an altimeter, or a linear motion sensor, or an angular motion sensor, or a multi-axis motion sensor, or a combination thereof.
  • The biometric sensors 116 can be defined to measure physiological characteristics of the user that is using the activity tracking device 100. The user interface 114 provides a way for communicating with the activity tracking device 100, in response to user interaction 104. The user interaction 104 can be in the form of physical contact (e.g., without limitation, tapping, sliding, rubbing, multiple taps, gestures, etc.). The biometric sensors 116 can be a one or more proximity sensors 184 capable of detecting the user's presence or touch within a predefined distance or proximity The proximity sensor 184 can be an infrared (IR) proximity sensor associated with the light source 181 and light detector 182, the IR proximity sensor configured to activate the light source and light detector upon detecting presence of the skin of the user.
  • The light source 181 and the light detector 182 are located near the external surface of the activity tracking device 100 at a heart rate monitor location 183. The heart rate monitor location 183 can include an indicator such as a marking or an image so the user can easily identify the heart rate monitor location 183. The marking or image can be a raised dot or dimple or a depression or an image of the fingerprint or the heart or any other suitable indication of the heart rate monitor location 183. The heart rate monitor location 183 can include a cover that enables infrared (IR) light of the light source 181 to pass while blocking substantially all light in a human visible spectrum. The heart rate monitor location 183 can include the button 126 or be separate from the button. In one embodiment, the button 126 has an infrared (IR) light transmitting structure and the light source 181 and the light detector 182 are disposed below the button, inside the housing. The button 126 can also provide navigation functions to one or more metrics of the display screen 122.
  • In some embodiments, the user interface 114 is configured to receive user interaction 104 that is in the form of noncontact input. The noncontact input can be by way of one or more proximity sensors 184, button presses, touch sensitive screen inputs, graphical user interface inputs, voice inputs, sound inputs, etc. The activity tracking device 100 can communicate with a client and/or server 112 using the wireless transceiver 110. The wireless transceiver 110 will allow the activity tracking device 100 to communicate using a wireless connection, which is enabled by wireless communication logic. The wireless communication logic can be in the form of a circuit having radio communication capabilities. The radio communication capabilities can be in the form of a Wi-Fi connection, a Bluetooth connection, a low-energy Bluetooth connection, or any other form of wireless tethering or near field communication. In still other embodiments, the activity tracking device 100 can communicate with other computing devices using a wired connection (not shown). As mentioned, the environmental sensors 118 can detect motion of the activity tracking device 100.
  • The motion can be activity of the user, such as walking, running, stair climbing, etc. The motion can also be in the form of physical contact received on any surface of the activity tracking device 110, so long as the environmental sensors 118 can detect such motion from the physical contact. As will be explained in more detail below, the physical contact may be in the form of a tap or multiple taps by a finger upon the housing of the activity tracking device 100.
  • FIG. 1B illustrates an example of an activity tracking device 100 having a housing 130 in the form of a wearable wrist attachable device. The sensors of the activity tracking device 100 can, as mentioned above, detect motion such as physical contact that is applied and received on a surface 120 of the housing 130. In the example shown, the physical contact 124 is in the form of a tap or multiple taps on the surface 120. Device components 102 are, in one embodiment, contained within the housing 130. The location at which the device components 102 are integrated into the housing 130 can vary. For example, the device components 102 can be integrated throughout various locations around the housing 130, and not limited to the central portion of the wrist attachable device. In some embodiments, the device components 102 can be integrated into or with a smart watch device.
  • In other embodiments, the device components 102 are positioned substantially in a central position of the wrist attachable device, such as under or proximate to a location where a display screen 122 is located. In the illustrated example, the housing 130 also includes a button 126. The button 126 can be pressed to activate the display screen 122, navigate to various metrics displayed on the screen 122, or turn off the screen 122.
  • FIG. 1C illustrates another example of an activity tracking device 100, in accordance with embodiments of the present invention. The form factor of the activity tracking device 100 is shown as a clickable device that includes a screen 122, a button 126, and device components 102 integrated within the housing 130′. The housing 130′ can include a clip that allows for attachment to clothing or articles of the user, or to simply place the device within a pocket or holder of the user. Accordingly, the physical contact 124 such as a touch or a tap, as shown with respect to FIG. 1B, can also be implemented upon the surface 120 of activity tracking device 100 of FIG. 1C. It should be understood, therefore, that the form factor of the activity tracking device 100 can take on various configurations and should not be limited to the example configurations provided herein.
  • FIG. 2A illustrates an example of activity tracking device 100 of FIG. 1A, showing some additional example components utilized for tracking activity and motion of the device, and associated interfaces to display screen 122. In this example, the finger of a user can be used to tap and provide physical contact 124 onto any surface 120 of activity tracking device 100. The physical contact, when sensed by sensors 184 of the activity tracking device 100, will cause a response by the activity tracking device 100, and therefore provide some metric on the display screen 122. In one embodiment, examples of a display screen 122 can include, but are not limited to, liquid crystal display (LCD) screens, light emitting diode (LED) screens, organic light emitting diode (OLED) screens, plasma display screens, etc.
  • As shown in FIG. 2A, the activity tracking device 100 includes logic 158. Logic 158 may include activity tracking logic 140, physical contact logic 142, display interface logic 144, alarm management logic 146, wireless communication logic 148, processor 106, and sensors 184. Additionally, storage (e.g. memory) 108, and a battery 154 can be integrated within the activity tracking device 100. The activity tracking logic 140 can include logic that is configured to process motion data produced by motion sensors 118, so as to quantify the motion and produce identifiable metrics associated with the motion.
  • Some motions will produce and quantify various types of metrics, such as step count, stairs climbed, distance traveled, very active minutes, calories burned, etc. The physical contact logic 142 can include logic that calculates or determines when particular physical contact can qualify as an input. To qualify as an input, the physical contact detected by biometric sensors 116 should have a particular pattern that is identifiable as input. For example, the input may be predefined to be a double tap input, and the physical contact logic 142 can analyze the motion to determine if a double tap indeed occurred in response to analyzing the sensor data produced by sensors 116, 118.
  • In other embodiments, the physical contact logic can be programmed to determine when particular physical contacts occurred, the time in between the physical contacts, and whether the one or more physical contacts will qualify within predefined motion profiles that would indicate that an input is desired. If physical contact occurs that is not within some predefined profile or pattern, the physical contact logic will not indicate or qualify that physical contact as an input.
  • The display interface logic 144 is configured to interface with the processor and the physical contact logic to determine when specific metric data will be displayed on the display screen 122 of the activity tracking device 100. The display interface logic 144 can act to turn on the screen, display metric information, display characters or alphanumeric information, display graphical user interface graphics, or combinations thereof. Alarm management logic 146 can function to provide a user interface and settings for managing and receiving input from a user to set an alarm. The alarm management logic can interface with a timekeeping module (e.g., clock, calendar, time zone, etc.), and can trigger the activation of an alarm. The alarm can be in the form of an audible alarm or a non-audible alarm.
  • A non-audible alarm can provide such alarm by way of a vibration. The vibration can be produced by a motor integrated in the activity tracking device 100. The vibration can be defined to include various vibration patterns, intensities, and custom set patterns. The vibration produced by the motor or motors of the activity tracking device 100 can be managed by the alarm management logic 146 in conjunction with processing by the processor 106. The wireless communication logic 148 is configured for communication of the activity tracking device with another computing device by way of a wireless signal. The wireless signal can be in the form of a radio signal. As noted above, the radio signal can be in the form of a Wi-Fi signal, a Bluetooth signal, a low energy Bluetooth signal, or combinations thereof. The wireless communication logic can interface with the processor 106, storage 108 and battery 154 of device 100, for transferring activity data, which may be in the form of motion data or processed motion data, stored in the storage 108 to the computing device.
  • In one embodiment, processor 106 functions in conjunction with the various logic components 140, 142, 144, 146, and 148. The processor 106 can, in one embodiment, provide the functionality of any one or all of the logic components. In other embodiments, multiple chips can be used to separate the processing performed by any one of the logic components and the processor 106. Sensors 116, 118 can communicate via a bus with the processor 106 and/or the logic components. The storage 108 is also in communication with the bus for providing storage of the motion data processed or tracked by the activity tracking device 100. Battery 154 is provided for providing power to the activity tracking device 100.
  • FIG. 2B illustrates an example of activity tracking device 100 in communication with a remote device 200. Remote device 200 is a computing device that is capable of communicating wirelessly with activity tracking device 100 and with the Internet 160. Remote device 200 can support installation and execution of applications. Such applications can include an activity tracking application 202. Activity tracking application 202 can be downloaded from a server. The server 220 can be a specialized server or a server that provides applications to devices, such as an application store. Once the activity tracking application 202 is installed in the remote device 200, the remote device 200 can communicate or be set to communicate with activity tracking device 100 (Device A). The remote device 200 can be a smartphone, a handheld computer, a tablet computer, a laptop computer, a desktop computer, or any other computing device capable of wirelessly interfacing with Device A 100 and the Internet 160.
  • In one embodiment, remote device 200 communicates with activity tracking device 100 over a Bluetooth connection. In one embodiment, the Bluetooth connection is a low energy Bluetooth connection (e.g., Bluetooth LE, BLE, or Bluetooth Smart). Low energy Bluetooth is configured for providing low power consumption relative to standard Bluetooth circuitry. Low energy Bluetooth uses, in one embodiment, a 2.4 GHz radio frequency, which allows for dual mode devices to share a single radio antenna. In one embodiment, low energy Bluetooth connections can function at distances up to 50 meters, with over the air data rates ranging between 1-3 megabits (Mb) per second. In one embodiment, a proximity distance for communication can be defined by the particular wireless link, and is not tied to any specific standard. It should be understood that the proximity distance limitation will change in accordance with changes to existing standards and in view of future standards and/or circuitry and capabilities.
  • Remote device 200 can also communicate with the Internet 160 using an Internet connection. The Internet connection of the remote device 200 can include cellular connections, wireless connections such as Wi-Fi, and combinations thereof (such as connections to switches between different types of connection links). The remote device, as mentioned above, can be a smartphone or tablet computer, or any other type of computing device having access to the Internet and with capabilities for communicating with the activity tracking device 100.
  • A server 220 is also provided, which is interfaced with the Internet 160. The server 220 can include a number of applications that service the activity tracking device 100, and the associated users of the activity tracking device 100 by way of user accounts. For example, the server 220 can include an activity management application 224. The activity management application 224 can include logic for providing access to various devices 100, which are associated with user accounts managed by server 220. Server 220 can include storage 226 that includes various user profiles associated with the various user accounts. The user account 228 a for user A and the user account 228 n for user N are shown to include various information.
  • The information can include, without limitation, data associated with a display scroll order 230, user data, etc. As will be described in greater detail below, the display scroll order 230 includes information regarding a user's preferences, settings, and configurations which are settable by the user or set by default at the server 220 when accessing a respective user account. The storage 226 will include any number of user profiles, depending on the number of registered users having user accounts for their respective activity tracking devices. It should also be noted that a single user account can have various or multiple devices associated therewith, and the multiple devices can be individually customized, managed and accessed by a user. In one embodiment, the server 220 provides access to a user to view the user data 232 associated with activity tracking device.
  • The user data 232 viewable by the user includes the tracked motion data, which is processed to identify a plurality of metrics associated with the motion data. The user data 232 viewable by the user can include user heart beat and heart rate data 232A, which is processed to identify a plurality of metrics associated with the user's heart beat.
  • The metrics are shown in various graphical user interfaces of a website enabled by the server 220. The website can include various pages with graphical user interfaces for rendering and displaying the various metrics for view by the user associated with the user account. In one embodiment, the website can also include interfaces that allow for data entry and configuration by the user.
  • The configurations can include defining which metrics will be displayed on the activity tracking device 100. In addition, the configurations can include identification of which metrics will be a first metric to be displayed on the activity tracking device. The first metric to be displayed by the activity tracking device can be in response to a user input at the activity tracked device 100. As noted above, the user input can be by way of physical contact. The physical contact is qualified by the processor and/or logic of the activity tracking device 100 to determine if the physical contact should be treated as an input. The input can trigger or cause the display screen of the activity tracking device 100 to be turned on to display a specific metric, that is selected by the user as the first metric to display. In another embodiment, the first metric displayed in response to the input can be predefined by the system as a default.
  • The configuration provided by the user by way of the server 220 and the activity management application 224 can also be provided by way of the activity tracking application 202 of the computing device 200. For example, the activity tracking application 202 can include a plurality of screens that also display metrics associated with the captured motion data of the activity tracking device 100. The activity tracking application 202 can also allow for user input and configuration at various graphical user interface screens to set and define which input will produce display of the first metric. In other embodiments, in addition to identifying the first metric to be displayed in response to the input, which may be physical contact, the configuration can allow an ordering of which metrics will be displayed in a specific scroll order.
  • In another embodiment, the scroll order of the metrics is predefined. In some embodiments, the input provided by the user by way of the physical contact can be pre-assigned to a specific metric in the scroll order. For example, the scroll order can remain the same, while the input can allow the screen to jump to a specific entry in the scroll order. Jumping to a specific entry can be viewed as a shortcut to a specific entry that is desired to be seen first by the user upon providing physical contact or input to the device 100.
  • FIGS. 3A and 3B illustrate examples of activity tracking devices 300, 300′ having a heart rate measuring system in the form of a wearable wrist attachable device, in accordance with embodiments of the present invention. The form factor of the activity tracking devices 300, 300′ can be similar to the above activity tracking devices 100 and includes substantially similar components with the addition of the heart rate measuring system. The user's finger 302 is shown touching the activity tracking device at the heart rate monitor location 183. The light source is emitting light 320 into the user's skin 306. A portion 322 of the light 320 is reflected from the user's blood vessel 304.
  • FIGS. 3C and 3D illustrate another example of an activity tracking device 300″, in accordance with embodiments of the present invention. The form factor of the activity tracking device 300″ is shown as a clipable device that includes a spring loaded hinge 340, a screen 122, a button 126, and device components 102 integrated within the housing 190. The housing 190 can be a shape capable of receiving a user's finger 302 and pressing down on the finger from one or both sides of the finger. Inserting the user's finger 302 can provide the physical contact or tap needed to initiate certain functions of the tracking device 100 as will be described in more detail below.
  • The heart rate measuring system includes a light source 181 and a reflected light detector 182. The light source 181 and the reflected light detector 182 are located close together in the activity tracking devices 300, 300′, 300″. In one embodiment the light source 181 and the reflected light detector 182 can be immediately adjacent. The light source 181 and the reflected light detector 182 can be included in a single package and/or a single integrated circuit. The light source 181 and the reflected light detector 182 can be selected for any one suitable wavelength or suitable band of wavelengths of light ranging from between infrared, through a human visible spectrum to ultraviolet wavelengths. The heart rate monitor location 183 can include a cover that enables light of the light source to pass while blocking substantially all light in a human visible spectrum. The cover can be a smoked filter or other suitable filter color or shaded plastic or glass or shaded glass, transparent or translucent glass or plastic or ceramic or any other suitable material capable of allowing the desired wavelengths of light to pass through the cover. In one embodiment, the light source 181 uses an infrared (IR) light and the IR light produces a deadfront at the heart rate monitor location 183. Where a deadfront is defined as a continuous surface such that the cover is not easily discernable from the remaining surface of the housing. A deadfront cover is substantially hidden from the user however a light source 181 or the display screen 122 can emits sufficient light to pass through the cover. In another embodiment, the light source 181 can be a green light and the heart rate monitor location 183 can include a translucent green window.
  • In operation, the user places the skin 306 of a finger tip 302 or other body part over the light source 181. The light source 181 directs the light 310 into the skin 306. The light 310 passes through the skin 306 to a blood vessel 304 such as an artery, vein, or a capillary within the finger 302. A reflected portion 312 of the light 310 is reflected from the blood vessel 304 toward the reflected light detector 182. The light detector 182 outputs a signal corresponding to the reflected portion 312 of the light. The signal is coupled to a processor 106 for processing configured to identify heart beats of the user and produce an indication of a heart rate. The indication of the heart rate can be displayed on the display screen 122.
  • One embodiment may use a portion of the teachings of detecting heart beats by reflecting light from a blood vessel, as taught, in part by “Plug-and-Play, Single-Chip Photoplethysmography” by Deepak Chandrasekar, et al., pages 3243-3246, presented 34th Annual International Conference of the IEEE EMBS, San Diego, Calif. USA, 28 Aug.-1 Sep. 2012 which is incorporated by reference herein for all purposes.
  • Chandrasekar, et al, provides in pertinent part “a digital OPS can be used as a high-performance, reflectance-mode PPG sensor . . . LED emits light into the tissue, where it experiences diffuse reflection from the tissue and capillary bed. This establishes a baseline reflectance signal which is detected at the PD. When a pulse wave propagates through the capillary bed, the reflectance signal falls slightly (0.5-5%) due to light scattering. The change is detected by the PD and processed by embedded amplification and signal processing circuitry” (Page 3244, column 1, line 34 through column 2, line 7 and FIG. 2). Where an OPS is defined as an optical proximity sensor, a PPG sensor is defined as a photoplethysmographic sensor and a PD is defined as a photodiode.
  • It should be understood that the teachings described by are Chandrasekar, et al only examples and other examples can include different and additional processes and systems as described in more detail throughout this disclosure. Further, Chandrasekar, et al, fails to teach suitable filtering to provide accurate hear rate indications. Further still, Chandrasekar, et al, cannot discern motion caused false heart beat detections from actual heart beat detections.
  • FIG. 4A is a flowchart diagram of heart rate measuring system, in accordance with embodiments of the present invention. The heart rate measuring system detects the heart beats and interprets the detected heart beats to peaks. The detected peaks include timing information corresponding to the time interval between the detected peaks. The detected peaks also include information of the number of detected peaks within a selected sampling time period. The sampling time period can be determined by extent peaks such as the first detected peak and the last detected peak. The number of detected peaks within the sampling time period can be used to calculate an estimated heart rate in the form of beats per minute. The timing of the detected peaks can be used to evaluate the estimated heart rate to determine a best guess of the user's actual heart rate.
  • FIG. 4B is a graphical representation 420 of an example series of peaks corresponding to detected heart beats captured during a sampling time period STP, in accordance with embodiments of the present invention. The solid line peaks A, B, C, E, G and I the dashed peak F represent the raw data detected during the sampling time period STP.
  • The solid line peaks A, B, C, E, G and I correspond to actual detected heart beats. The dashed peak F corresponds to a phantom beat detection. The phantom peak F can be caused by movement of the user's finger or the activity tracking device 300. The phantom peak F can be caused by noise or some other cause.
  • The dotted peaks D and H correspond to approximate occurrences of heart beats that should have been detected, based on the timing of the actually detected peaks A, B, C, E, G and I. The dotted peaks D and H are not actually detected peaks and are shown in the graphical representation 420 for reference purposes as will be described in more detail below.
  • The raw heart beat data is next filtered to determine a best guess heart rate. FIG. 4C is a graphical representation 450 of the filtering process for the above example series of peaks, in accordance with embodiments of the present invention. The peaks A-I are transferred to FIG. 4C as a reference. Each of the horizontal lines of small circles represents a different estimate of peaks. Six actual peaks A, B, C, E, G and I correspond to six actual heart beats that were detected and one phantom peak F was detected giving a total of seven detected peaks.
  • Human heart beats are typically substantially evenly spaced, thus the seven detected peaks are separated by even time intervals across the sampling time period STP as shown in the estimated 7 peaks detected line. However, the filtering process evaluates the detection process to determine if the initial estimate of seven peaks is accurate as described in FIG. 5.
  • FIG. 5 is a flowchart diagram of the method operations 500 for detecting a heart rate, in accordance with embodiments of the present invention. In an operation 505, the user touches the heart rate monitor location 183 and/or presses the button 126 on the activity monitor to initiate the heart rate detection. The light source 181 and detector 182 are located inside the activity tracking device near the heart rate detector heart rate monitor location 183. The heart rate monitor location 183 can include a proximity sensor and/or the button 126 as described above.
  • In an operation 510, the light source 181 emits a light 320 into the user's skin and at least a portion of the light 322 is reflected off of a blood vessel 304 inside the user's skin. The detector 182 receives the reflected light 322 in an operation 515 and outputs the raw data of the detected beats within a sampling time period STP, as shown in FIG. 4B, to the processor 106 in an operation 520. The raw data of the detected beats is refined and evaluated to produce a more accurate heart rate.
  • As shown in FIG. 4C, the initial estimate of the seven detected heart beats are illustrated as seven, evenly spaced peaks. In an operation 525 at least one beat is added to the initial estimate of seven beats to produce a corresponding at least one added estimate. In the example above two peaks are added resulting in corresponding added estimates of an eight beat estimate and a nine beat estimate. It should be understood that only one or more than two beats could be added.
  • In an operation 530, at least one peak is subtracted from the initial estimate of seven beats to produce a corresponding at least one subtracted estimate. In the example above two beats are subtracted resulting in corresponding subtracted estimates of a six beat estimate and a five beat estimate. It should be understood that only one or more than two beats could be subtracted. As shown in the graphical representation 450, estimated lines of beats corresponding to five, six, eight and nine peaks are shown evenly distributed across the sampling time period STP.
  • In an operation 535, each of the five estimated lines of beats are compared to the actually detected peaks A, B, C, E, F, G and I to determine how well each line of beats scores as most closely matching the actually detected peaks A, B, C, E, F, G and I. By way of example, the five beats estimate line closely corresponds to only actually detected peak A and phantom peak F resulting in a corresponding score of 2. Further, the six beats estimate line closely corresponds to only actually detected peaks A, E and G resulting in a corresponding score of 3. Further, the initial estimate of seven beats estimate line closely corresponds to only actually detected peaks A, B and C and phantom peak F resulting in a corresponding score of 4. The eight beats estimate line closely corresponds to peaks A, B, C, E, G and I resulting in a corresponding score of 6. Finally, the nine beats estimate line closely corresponds to peaks A, B, C and I and phantom peak F resulting in a corresponding score of 5.
  • In an operation 540, the eight beats estimate provides the highest score of 6 and is therefore selected as a potential heart rate for further evaluation. However, only seven peaks were detected by the heart rate monitoring system and thus the eight beats potential heart rate could be an error.
  • In an operation 545, intervals between the seven detected beats are measured. Recall that human heart beats are substantially evenly spaced and there are three substantially evenly spaced peaks A, B, C in the seven detected beats. The time interval between the substantially evenly spaced peaks A, B, C is selected as a potential beat interval.
  • In an operation 550, the potential beat interval is compared to the remaining detected beat intervals between peaks C and E, between peaks E and F, between peaks F and G, and between peaks G and I to identify any timing intervals closely corresponding to whole number multiples of the potential beat interval so as to identify missed beats. In the above example, missed peak D is found between detected peaks C and E and missed peak H is found between detected peaks G and I. The timing intervals between peaks E and F and between peaks F and G are substantially less than the potential beat interval and thus peak F is identified as a phantom peak and the phantom peak F is eliminated in an operation 555.
  • In an operation 560, the estimated heart beats are scored similar to the scoring in operation 535 above. The combination of the actually detected peaks A, B, C, E, G and I and the missed peaks D and H can be evaluated for each of the estimated lines of beats. The eight beats potential heart rate would yield a resulting score of 8, which would be higher than the scores of 3, 2, 3, 4 corresponding to five, six, seven and nine beats estimate lines, respectively. The eight beats potential heart rate can therefore be determined as the best guess in an operation 565.
  • In an operation 570, the processor 106 calculates the heart rate. The sampling time period STP is extrapolated to 60 seconds and the corresponding heart rate in heart beats per minute is output to the display screen. By way of example, the sampling time period STP is 5.2 seconds in the above example. And 60 seconds divided by 5.2 seconds is equal to 11.54. And further, 11.54 multiplied by the seven time intervals between the evenly spaced estimated eight beats yields a calculated heart rate of 81 beats per minute. In an operation 575, the processor 106 outputs the calculated heart rate to the display screen 122.
  • It should be noted that the heart rate measuring system can continue to detect, refine and filter the detected heart beats as long as the user's skin is in sufficiently close proximity to the light source 181 and detector 182.
  • FIGS. 6A-D illustrate different presentations of the calculated heart rate on the display screen 122, in accordance with embodiments of the present invention. By way of example, in FIG. 6A the initially detected heart beats are displayed as peaks 602 and the heart rate 610 is displayed numerically “61 HRT”. As the user's finger remains on the activity tracking device the heart rate is more accurately detected and the displayed heart rate 610 is updated as shown in FIG. 6B. As shown in FIG. 6C the detected heart beats are displayed as lines 612 and as a sinewave 614 in FIG. 6D. It should be noted these examples are merely some examples of displaying the user's heart rate and others examples could include flashing an icon or a portion of or the entire the display 122 or vibrating the activity tracking device in time with the detected heart beats and combinations thereof.
  • FIG. 7A is a flowchart diagram of the method operations for adjusting the user pressure on the activity tracking device while detecting a heart rate, in accordance with embodiments of the present invention. FIGS. 7B and 7C show feedback signals on the activity tracing device display, in accordance with embodiments of the present invention. The button 126 can also include a pressure sensor that can be used to determine the user's pressure on the heart rate monitor location 183. In one embodiment, the pressure sensor can include at least one of a strain gauge, a push resistance built into the button 126, or a force sensitive film under, within or on a surface of the button and combinations thereof and any other suitable pressure sensor.
  • Alternatively, the excessive pressure or insufficient pressure can degrade the quality of the heart beat data in the reflected light 322 to a level that the heart rate cannot be suitably monitored. Similarly, the user's motion, such as running, can interfere with and produce artifacts and false readings. The processor 106 can use the motion sensor to identify and filter out the falsely detected heart beats from the detected heart beats. By way of example, the processor can detect when the user steps down and the vibration through the user's body and identify a detected heart beat coinciding with the step as a suspected false heart beat.
  • From operation 520 in FIG. 5 above, the processor may determine that the detected heart beats are too erratic to accurately measure in an operation 710. The detected heart beats are too erratic can be too erratic due to pressing the user's finger too lightly or too hard on the activity tracking device. In an operation 715, a feedback to the user is provided to increase pressure on the activity tracking device. As shown in FIG. 7B the increase pressure feedback can be in the form of one or more arrows pointing down or toward the user's finger. Alternatively, the activity device can flash a portion or all of the display 122 or display words such as “press down” or icons, or vibrate or other suitable tactile feedback, visual feedback, or audible feedback to the user.
  • The detected heart beats are constantly monitored for usability, in an operation 720. If increasing the pressure provides usable heart beat data then the method operations return to operation 525 in FIG. 5. If increasing the pressure does not provide usable heart beat data then the method operations continue in an operation 725 where the user is provided feedback to decrease the pressure on the activity tracking device. As shown in FIG. 7C the decrease pressure feedback can be in the form of one or more arrows pointing up or away from the user's finger. Alternatively, the activity device can flash a portion or all of the display 122 or display icons or words such as “lighten up” or vibrate or other suitable tactile feedback, visual feedback, or audible feedback to the user.
  • The detected heart beats are constantly monitored for usability, in an operation 730. If decreasing the pressure provides usable heart beat data then the method operations return to operation 525 in FIG. 5. If decreasing the pressure does not provide usable heart beat data then the method operations continue in operation 715 as described above.
  • FIG. 8 illustrates an example where various types of activities of users 800A-800I can be captured by activity tracking devices 100, in accordance with embodiments of the present invention. As shown, the various types of activities can generate different types of data that can be captured by the activity tracking device 100. The data, which can be represented as motion data (or processed motion data) can be transferred 820 to a network 176 for processing and saving by a server, as described above. In one embodiment, the activity tracking device 100 can communicate to a device using a wireless connection, and the device is capable of communicating and synchronizing the captured data with an application running on the server. In one embodiment, an application running on a local device, such as a smart phone or tablet or smart watch can capture or receive data from the activity tracking device 100 and represent the tract motion data in a number of metrics.
  • In one embodiment, the device collects one or more types of physiological and/or environmental data from embedded sensors and/or external devices and communicates or relays such metric information to other devices, including devices capable of serving as Internet-accessible data sources, thus permitting the collected data to be viewed, for example, using a web browser or network-based application. For example, while the user is wearing an activity tracking device, the device may calculate and store the user's step count using one or more sensors. The device then transmits data representative of the user's step count to an account on a web service, computer, mobile phone, or health station where the data may be stored, processed, and visualized by the user. Indeed, the device may measure or calculate a plurality of other physiological metrics in addition to, or in place of, the user's step count.
  • Some physiological metrics include, but are not limited to, energy expenditure (for example, calorie burn), floors climbed and/or descended, heart rate, heart rate variability, heart rate recovery, location and/or heading (for example, through GPS), elevation, ambulatory speed and/or distance traveled, swimming lap count, bicycle distance and/or speed, blood pressure, blood glucose, skin conduction, skin and/or body temperature, electromyography, electroencephalography, weight, body fat, caloric intake, nutritional intake from food, medication intake, sleep periods (i.e., clock time), sleep phases, sleep quality and/or duration, pH levels, hydration levels, and respiration rate. The device may also measure or calculate metrics related to the environment around the user such as barometric pressure, weather conditions (for example, temperature, humidity, pollen count, air quality, rain/snow conditions, wind speed), light exposure (for example, ambient light, UV light exposure, time and/or duration spent in darkness), noise exposure, radiation exposure, and magnetic field.
  • Still further, other metrics can include, without limitation, calories burned by a user, weight gained by a user, weight lost by a user, stairs ascended, e.g., climbed, etc., by a user, stairs descended by a user, variation in the user's altitude, steps taken by a user during walking or running, a number of rotations of a bicycle pedal rotated by a user, sedentary activity data, driving a vehicle, a number of golf swings taken by a user, a number of forehands of a sport played by a user, a number of backhands of a sport played by a user, or a combination thereof. In some embodiments, sedentary activity data is referred to herein as inactive activity data or as passive activity data. In some embodiments, when a user is not sedentary and is not sleeping, the user is active. In some embodiments, a user may stand on a monitoring device that determines a physiological parameter of the user. For example, a user stands on a scale that measures a weight, a body fat percentage, a biomass index, or a combination thereof, of the user.
  • Furthermore, the device or the system collating the data streams may calculate metrics derived from this data. For example, the device or system may calculate the user's stress and/or relaxation levels through a combination of heart rate variability, skin conduction, noise pollution, and sleep quality. In another example, the device or system may determine the efficacy of a medical intervention (for example, medication) through the combination of medication intake, sleep and/or activity data. In yet another example, the device or system may determine the efficacy of an allergy medication through the combination of pollen data, medication intake, sleep and/or activity data. These examples are provided for illustration only and are not intended to be limiting or exhaustive.
  • This information can be associated to the users account, which can be managed by an activity management application on the server. The activity management application can provide access to the users account and data saved thereon. The activity manager application running on the server can be in the form of a web application. The web application can provide access to a number of websites screens and pages that illustrate information regarding the metrics in various formats. This information can be viewed by the user, and synchronized with a computing device of the user, such as a smart phone.
  • In one embodiment, the data captured by the activity tracking device 100 is received by the computing device, and the data is synchronized with the activity measured application on the server. In this example, data viewable on the computing device (e.g. smart phone) using an activity tracking application (app) can be synchronized with the data present on the server, and associated with the user's account. In this way, information entered into the activity tracking application on the computing device can be synchronized with application illustrated in the various screens of the activity management application provided by the server on the website.
  • The user can therefore access the data associated with the user account using any device having access to the Internet. Data received by the network 176 can then be synchronized with the user's various devices, and analytics on the server can provide data analysis to provide recommendations for additional activity, and or improvements in physical health. The process therefore continues where data is captured, analyzed, synchronized, and recommendations are produced. In some embodiments, the captured data can be itemized and partitioned based on the type of activity being performed, and such information can be provided to the user on the website via graphical user interfaces, or by way of the application executed on the users smart phone (by way of graphical user interfaces).
  • In an embodiment, the sensor or sensors of a device 100 can determine or capture data to determine an amount of movement of the monitoring device over a period of time. The sensors can include, for example, an accelerometer, a magnetometer, a gyroscope, or combinations thereof. Broadly speaking, these sensors are inertial sensors, which capture some movement data, in response to the device 100 being moved. The amount of movement (e.g., motion sensed) may occur when the user is performing an activity of climbing stairs over the time period, walking, running, etc. The monitoring device may be worn on a wrist, carried by a user, worn on clothing (using a clip, or placed in a pocket), attached to a leg or foot, attached to the user's chest, waist, or integrated in an article of clothing such as a shirt, hat, pants, blouse, glasses, and the like. These examples are not limiting to all the possible ways the sensors of the device can be associated with a user or thing being monitored.
  • In other embodiments, a biological sensor can determine any number of physiological characteristics of a user. As another example, the biological sensor may determine heart rate, a hydration level, body fat, bone density, fingerprint data, sweat rate, and/or a bioimpedance of the user. Examples of the biological sensors include, without limitation, a biometric sensor, a physiological parameter sensor, a pedometer, or a combination thereof.
  • In some embodiments, data associated with the user's activity can be monitored by the applications on the server and the users device, and activity associated with the user's friends, acquaintances, or social network peers can also be shared, based on the user's authorization. This provides for the ability for friends to compete regarding their fitness, achieve goals, receive badges for achieving goals, get reminders for achieving such goals, rewards or discounts for achieving certain goals, etc.
  • In some embodiments the heart beats are detected by processing the light received in the light detector, within the sampling time period. A first time interval between a first beat of the detected heart beats and a second heart beat is measured. The sample time interval can be divided by the first time interval to determine a first estimate of heart beats detected within the sampling time period and the first estimate of heart beats within the sampling time period can be extrapolated to a first estimated heart beats per minute. The first estimate heart beats per minute can be output to the display screen. At least one beat can be added to the first estimate of heart beats to produce a second estimate of heart beats that can be scored with the first estimate of heart beats. A highest scoring of the first estimate of heart beats and the second estimate of heart beats can be selected and output to the display screen.
  • In another embodiment, at least one beat can be subtracted from the first estimate of beats to produce a third estimate of heart beats. The first estimate of heart beats and the third estimate of heart beats can be scored. A highest scoring of the first estimate of heart beats and the third estimate of heart beats can be selected and output to the display screen.
  • In another embodiment, identifying the heart beats of the user and producing an indication of a heart rate can include identifying and filtering a falsely detected heart beat coinciding with motion detected by the motion sensor. By way of example, a user's motion may be erroneously identified as a heart beat. The processor can compare detected motion (i.e., motion data, instantaneous shocks, etc.) to the detected heart beats and identify heart beats that coincide with motion data. Further, as the motion data and heart beat data are compiled over time, detected motions that often produce corresponding erroneously detected heart beats can be identified and filtered from the detected heart beats.
  • In another embodiment, activity tracking device includes a housing including a motion sensor and a processor. The processor is configured for processing motion data produced by the motion sensor. A display screen is integrated with the housing to display metrics that quantify the motion data produced by the motion sensor. A light source is integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing. A light detector is also integrated within the housing. The light detector is configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing. The processor can be in communication with the light detector to enable processing of the reflected light to identify heart beats of the user and produce an indication of a heart rate. The indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data. The heart rate can be calculated based on an algorithm that calculates a first estimate of heart beats per minute corresponding to detected heart beats in the light received in the light detector within a sampling time period. A refined estimate of heart beats per minute can be calculated by adding at least one beat to the first estimate of heart beats to produce a second estimate of heart beats and subtracting at least one beat from the first estimate of beats to produce a third estimate of heart beats. The first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats are scored and a highest scoring estimate of heart beats is selected and output to the display screen.
  • As noted, an activity tracking device 100 can communicate with a computing device (e.g., a smartphone, a tablet computer, a desktop computer, or computer device having wireless communication access and/or access to the Internet). The computing device, in turn, can communicate over a network, such as the Internet or an Intranet to provide data synchronization. The network may be a wide area network, a local area network, or a combination thereof. The network may be coupled to one or more servers, one or more virtual machines, or a combination thereof. A server, a virtual machine, a controller of a monitoring device, or a controller of a computing device is sometimes referred to herein as a computing resource. Examples of a controller include a processor and a memory device.
  • In one embodiment, the processor may be a general purpose processor. In another embodiment, the processor can be a customized processor configured to run specific algorithms or operations. Such processors can include digital signal processors (DSPs), which are designed to execute or interact with specific chips, signals, wires, and perform certain algorithms, processes, state diagrams, feedback, detection, execution, or the like. In some embodiments, a processor can include or be interfaced with an application specific integrated circuit (ASIC), a programmable logic device (PLD), a central processing unit (CPU), or a combination thereof, etc.
  • In some embodiments, one or more chips, modules, devices, or logic can be defined to execute instructions or logic, which collectively can be viewed or characterized to be a processor. Therefore, it should be understood that a processor does not necessarily have to be one single chip or module, but can be defined from a collection of electronic or connecting components, logic, firmware, code, and combinations thereof.
  • Examples of a memory device include a random access memory (RAM) and a read-only memory (ROM). A memory device may be a Flash memory, a redundant array of disks (RAID), a hard disk, or a combination thereof.
  • Embodiments described in the present disclosure may be practiced with various computer system configurations including hand-held devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. Several embodiments described in the present disclosure can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.
  • With the above embodiments in mind, it should be understood that a number of embodiments described in the present disclosure can employ various computer-implemented operations involving data stored in computer systems. These operations are those requiring physical manipulation of physical quantities. Any of the operations described herein that form part of various embodiments described in the present disclosure are useful machine operations. Several embodiments described in the present disclosure also relate to a device or an apparatus for performing these operations. The apparatus can be specially constructed for a purpose, or the apparatus can be a computer selectively activated or configured by a computer program stored in the computer. In particular, various machines can be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations.
  • Various embodiments described in the present disclosure can also be embodied as computer-readable code on a non-transitory computer-readable medium. The computer-readable medium is any data storage device that can store data, which can thereafter be read by a computer system. Examples of the computer-readable medium include hard drives, network attached storage (NAS), ROM, RAM, compact disc-ROMs (CD-ROMs), CD-recordables (CD-Rs), CD-rewritables (RWs), magnetic tapes and other optical and non-optical data storage devices. The computer-readable medium can include computer-readable tangible medium distributed over a network-coupled computer system so that the computer-readable code is stored and executed in a distributed fashion.
  • Although the method operations were described in a specific order, it should be understood that other housekeeping operations may be performed in between operations, or operations may be performed in an order other than that shown, or operations may be adjusted so that they occur at slightly different times, or may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.
  • Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the various embodiments described in the present disclosure are not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (20)

What is claimed is:
1. A method of tracking activity, comprising,
sensing motion with a motion sensor, the motion sensor including a processor, the processor configured for processing motion data produced by the motion sensor; displaying metrics that quantify the motion data produced by the motion sensing, the metrics being displayed on a device display screen integrated with a housing of the motion sensor;
directing light emitted from a light source, the light source being included in the housing at a heart rate monitor location on the housing; and
capturing an amount of the light that is reflected back to a light detector, the light detector integrated within the housing, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing, the processor further being in communication with the light detector to enable processing of the reflected light, the processing configured to identify heart beats of the user and produce an indication of a heart rate, the indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data, wherein identifying heart beats includes measuring a baseline reflectance signal of the light reflected from the blood vessel between each one of the heart beats and for detecting a second reflectance signal corresponding to at least one heart beat in the blood vessel, the second reflectance signal being less than the baseline reflectance signal, where the blood vessel scatters more of the light during the at least one heart beat than between each one of the heart beats.
2. The method of claim 1, wherein identifying heart beats includes identifying and filtering at least one falsely detected heart beat coinciding with motion detected by the motion sensor.
3. The method of claim 1, wherein the heart rate is calculated including:
detecting the plurality of heart beats in the light received in the light detector within a sampling time period;
measuring a first time interval between a first beat of the detected plurality of heart beats and a second beat of the detected plurality of heart beats;
dividing the sample time interval by the first time interval to determine a first estimate of heart beats detected within the sampling time period;
extrapolating the first estimate of heart beats within the sampling time period to a first estimated heart beats per minute; and
outputting the first estimate heart beats per minute to the display screen.
4. The method of claim 3, wherein calculating the heart rate further includes:
adding at least one beat to the first estimate of heart beats to produce a second estimate of heart beats;
subtracting at least one beat from the first estimate of beats to produce a third estimate of heart beats;
scoring the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats;
selecting a highest scoring of the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats; and
outputting the selected estimated heart beats per minute to the display screen.
5. The method of claim 1, wherein the heart rate is calculated including:
detecting the plurality of heart beats in the light received in the light detector within a sampling time period;
estimating a first estimated heart beats per minute corresponding to the plurality of heart beats detected in the sampling time period;
estimating a second estimated heart beats per minute, wherein the second estimated heart beats per minute is greater than the first estimated heart beats per minute;
estimating a third estimated heart beats per minute, wherein the third estimated heart beats per minute is less than first estimated heart beats per minute;
scoring the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats;
selecting a highest scoring of the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats; and
outputting the selected estimated heart beats per minute to the display screen.
6. The method of claim 5, wherein the second estimated heart beats per minute includes at least one heart beat more than the plurality of heart beats in the light received in the light detector within a sampling time period and the third estimated heart beats per minute includes at least one heart beat less than the plurality of heart beats in the light received in the light detector within a sampling time period.
7. The method of claim 1, further comprising,
detecting a pressure applied to the heart rate monitor location of the housing with the skin of the user during the identification of heart beats, the pressure being detected by a pressure detecting system included in the housing; and
outputting a feedback signal regarding the detected pressure applied to the heart rate monitor location, the feedback indication being indicative of more or less pressure desired to produce the heart rate.
8. The method of claim 7, wherein detecting the pressure includes at least one of a group consisting of:
processing the reflected light, the processing configured to identify one of an excess pressure, an insufficient pressure or an acceptable pressure from the detected heart beats of the user; or
detecting a pressure with a pressure sensor disposed near light source and the light detector.
9. The method of claim 1, further comprising, displaying one or both of waveform data or numerical data when the skin of the user is over the heart rate monitor location and the heart beats are being identified over a sampling time period; and
displaying the heart rate on the display screen upon concluding the sampling time period.
10. The method of claim 9, further comprising, displaying at least one recalled heart rate to be displayed on the display screen.
11. The method of claim 1, wherein the processing configured to identify heart beats of the user and produce an indication of a heart rate includes identifying and filtering a falsely detected heart beat coinciding with motion detected by the motion sensor.
12. The method of claim 1, further comprising, detecting an infrared (IR) proximity with at least one infrared (IR) proximity sensor associated with the light source and light detector, the IR proximity sensor configured to activate the light source and light detector upon detecting presence of the skin of the user, wherein detecting presence of the skin of the user further functions to navigate to one or more metrics of the display screen.
13. The method of claim 1, wherein the light detector is disposed next to the light source.
14. The method of claim 1, wherein the heart rate monitor location includes a button and the button has an infrared (IR) light transmitting structure, the light source and the light detector are disposed substantially below the button.
15. The method of claim 1, further comprising:
Communicating to a computer with a communication transceiver configured for communicating via at least one a wireless network;
an ambient light sensor; and
an indicator for visually identifying the heart rate monitor location on the housing.
16. The method of claim 1, wherein the light source and the reflected light detector can be selected for any suitable wavelength or suitable band of wavelengths of light ranging from between infrared wavelengths through a human visible spectrum to ultraviolet wavelengths.
17. The method of claim 1, wherein the light source includes at least one of:
an infrared (IR) light source, wherein the IR light emitted from the light source produces a deadfront at the heart rate monitor location of the housing; or
a green light source and the heart rate monitor location includes a translucent green window.
18. The method of claim 1, wherein the housing includes at least one marking to identify a location of the heart rate monitor on the housing.
19. A heart rate monitor comprising:
a light source;
a light detector disposed to receive light emitted from the light source and reflected from a blood vessel disposed within in a heart rate monitor subject;
a display screen; and
a processor coupled to the light source, the light detector and the display screen, the controller including memory and processor including computer executable instructions for:
detecting a plurality of heart beats in the light received in the light detector within a sampling time period including measuring a baseline reflectance signal of the light reflected from the blood vessel between each one of the heart beats and for detecting a second reflectance signal corresponding to at least one heart beat in the blood vessel, the second reflectance signal being less than the baseline reflectance signal, where the blood vessel scatters more of the light during the at least one heart beat than between each one of the heart beats;
estimating a first estimated heart beats per minute corresponding to the plurality of heart beats detected in the sampling time period;
estimating a second estimated heart beats per minute, wherein the second estimated heart beats per minute is greater than the first estimated heart beats per minute;
estimating a third estimated heart beats per minute, wherein the third estimated heart beats per minute is less than first estimated heart beats per minute;
scoring the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats;
selecting a highest scoring of the first estimate of heart beats, the second estimate of heart beats and the third estimate of heart beats; and
outputting the selected estimated heart beats per minute to the display screen.
20. An activity tracking device, comprising,
a housing, the housing including:
a motion sensor and a processor, the processor configured for processing motion data produced by the motion sensor;
a display screen integrated with the housing to display metrics that quantify the motion data produced by the motion sensor;
a light source integrated within the housing to enable light to be directed out of the housing at a heart rate monitor location on the housing; and
a light detector integrated within the housing, the light detector configured to capture an amount of the light that is reflected back to the light detector, at least a first portion of the light reflected back to the light detector is reflected from a blood vessel disposed under a skin of a user when the user places the skin over the heart rate monitor location on the housing, the processor further being in communication with the light detector to enable processing of the reflected light, the processing configured to identify heart beats of the user and produce an indication of a heart rate, the indication of the heart rate being displayable on the display screen as an option, in addition to the metrics that quantify the motion data, wherein the heart rate is calculated based on an algorithm that:
calculates a first estimate of heart beats per minute corresponding to detected plurality of heart beats in the light received in the light detector within a sampling time period;
calculates a refined estimate of heart beats per minute; and
identifies and filters at least one falsely detected heart beat coinciding with motion detected by the motion sensor.
US14/639,409 2013-01-15 2015-03-05 Methods, Systems and Devices for Measuring Fingertip Heart Rate Abandoned US20150173628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/639,409 US20150173628A1 (en) 2013-01-15 2015-03-05 Methods, Systems and Devices for Measuring Fingertip Heart Rate
US15/827,970 US11259707B2 (en) 2013-01-15 2017-11-30 Methods, systems and devices for measuring heart rate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361752826P 2013-01-15 2013-01-15
US201361830600P 2013-06-03 2013-06-03
US201461924547P 2014-01-07 2014-01-07
US14/156,381 US8827906B2 (en) 2013-01-15 2014-01-15 Methods, systems and devices for measuring fingertip heart rate
US14/302,360 US9039614B2 (en) 2013-01-15 2014-06-11 Methods, systems and devices for measuring fingertip heart rate
US14/639,409 US20150173628A1 (en) 2013-01-15 2015-03-05 Methods, Systems and Devices for Measuring Fingertip Heart Rate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/302,360 Continuation US9039614B2 (en) 2013-01-15 2014-06-11 Methods, systems and devices for measuring fingertip heart rate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/827,970 Continuation US11259707B2 (en) 2013-01-15 2017-11-30 Methods, systems and devices for measuring heart rate

Publications (1)

Publication Number Publication Date
US20150173628A1 true US20150173628A1 (en) 2015-06-25

Family

ID=51621503

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/302,360 Active US9039614B2 (en) 2013-01-15 2014-06-11 Methods, systems and devices for measuring fingertip heart rate
US14/639,409 Abandoned US20150173628A1 (en) 2013-01-15 2015-03-05 Methods, Systems and Devices for Measuring Fingertip Heart Rate
US15/827,970 Active 2036-04-01 US11259707B2 (en) 2013-01-15 2017-11-30 Methods, systems and devices for measuring heart rate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/302,360 Active US9039614B2 (en) 2013-01-15 2014-06-11 Methods, systems and devices for measuring fingertip heart rate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/827,970 Active 2036-04-01 US11259707B2 (en) 2013-01-15 2017-11-30 Methods, systems and devices for measuring heart rate

Country Status (1)

Country Link
US (3) US9039614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717424B2 (en) 2015-10-19 2017-08-01 Garmin Switzerland Gmbh System and method for generating a PPG signal
US11259707B2 (en) 2013-01-15 2022-03-01 Fitbit, Inc. Methods, systems and devices for measuring heart rate

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2939445C (en) * 2009-09-04 2019-05-07 Nike Innovate C.V. Monitoring and tracking athletic activity
US9195799B2 (en) * 2011-02-08 2015-11-24 Aulisa Medtech International, Inc. Wireless patient monitoring system
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
WO2014153158A1 (en) 2013-03-14 2014-09-25 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US9753436B2 (en) 2013-06-11 2017-09-05 Apple Inc. Rotary input mechanism for an electronic device
KR102430508B1 (en) 2013-08-09 2022-08-09 애플 인크. Tactile switch for an electronic device
US9880052B2 (en) * 2013-10-02 2018-01-30 The Joan and Irwin Jacobs Technion-Cornell Innovation Institute Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure
US20150102208A1 (en) * 2013-10-02 2015-04-16 The Joan & Irwin Jacobs Technion-Cornell Innovation Institute (Jacobs Institute) Wearable system and method to measure and monitor ultraviolet, visible light, and infrared radiations in order to provide personalized medical recommendations, prevent diseases, and improve disease management
US9798458B2 (en) 2013-10-02 2017-10-24 The Joan and Irwin Jacobs Technion-Cornell Innovation Institute Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure
EP3623020A1 (en) 2013-12-26 2020-03-18 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
WO2015122885A1 (en) 2014-02-12 2015-08-20 Bodhi Technology Ventures Llc Rejection of false turns of rotary inputs for electronic devices
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9848823B2 (en) * 2014-05-29 2017-12-26 Apple Inc. Context-aware heart rate estimation
CN106470739B (en) 2014-06-09 2019-06-21 爱康保健健身有限公司 It is incorporated to the funicular system of treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10190891B1 (en) 2014-07-16 2019-01-29 Apple Inc. Optical encoder for detecting rotational and axial movement
WO2016036747A1 (en) 2014-09-02 2016-03-10 Apple Inc. Wearable electronic device
CA2962502A1 (en) 2014-10-14 2016-04-21 Arsil Nayyar Hussain Systems, devices, and methods for capturing and outputting data regarding a bodily characteristic
CN104367309B (en) * 2014-11-03 2016-09-14 深圳市莱通光学科技有限公司 A kind of reflective wrist cardiotachometer and reflective wrist method for measuring heart rate
CN104382578A (en) * 2014-11-21 2015-03-04 广西智通节能环保科技有限公司 Heart rate monitoring system
CN104473627A (en) * 2014-11-21 2015-04-01 广西智通节能环保科技有限公司 Intelligent pulse monitoring wrist watch
BR112017012758A2 (en) * 2014-12-18 2017-12-26 Koninklijke Philips Nv detection device to be used together body, and method to measure a physiological parameter
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
KR101940943B1 (en) 2015-03-05 2019-01-21 애플 인크. Optical encoder with direction dependent optical properties
KR102163612B1 (en) 2015-03-08 2020-10-08 애플 인크. Compressible seal for rotatable and translatable input mechanisms
EP3108807A1 (en) * 2015-06-26 2016-12-28 Stryker European Holdings I, LLC Bone healing probe
WO2017035384A1 (en) 2015-08-25 2017-03-02 The Joan and Irwin Jacobs Technion-Cornell Innovation Institute Methods, systems, and apparatuses for accurate measurement and real-time feedback of solar ultraviolet exposure
US10016160B2 (en) * 2015-09-08 2018-07-10 Polar Electro Oy Wrist band for measuring heart rate of the user
US9743838B2 (en) * 2015-10-02 2017-08-29 Fitbit, Inc. Circuits and methods for photoplethysmographic sensors
CN106691424A (en) * 2015-12-18 2017-05-24 深圳市汇顶科技股份有限公司 Method and device for detecting heart rate
US9891651B2 (en) 2016-02-27 2018-02-13 Apple Inc. Rotatable input mechanism having adjustable output
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10551798B1 (en) 2016-05-17 2020-02-04 Apple Inc. Rotatable crown for an electronic device
US10739253B2 (en) 2016-06-07 2020-08-11 Youv Labs, Inc. Methods, systems, and devices for calibrating light sensing devices
US10061399B2 (en) 2016-07-15 2018-08-28 Apple Inc. Capacitive gap sensor ring for an input device
US10019097B2 (en) 2016-07-25 2018-07-10 Apple Inc. Force-detecting input structure
USD829112S1 (en) 2016-08-25 2018-09-25 The Joan and Irwin Jacobs Technion-Cornell Innovation Institute Sensing device
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10709390B2 (en) 2017-03-02 2020-07-14 Logos Care, Inc. Deep learning algorithms for heartbeats detection
US10664074B2 (en) 2017-06-19 2020-05-26 Apple Inc. Contact-sensitive crown for an electronic watch
CN110809489B (en) * 2017-07-05 2021-09-03 索尼公司 Information processing apparatus, information processing method, and storage medium
US10962935B1 (en) 2017-07-18 2021-03-30 Apple Inc. Tri-axis force sensor
US11360440B2 (en) 2018-06-25 2022-06-14 Apple Inc. Crown for an electronic watch
US11561515B2 (en) 2018-08-02 2023-01-24 Apple Inc. Crown for an electronic watch
CN211293787U (en) 2018-08-24 2020-08-18 苹果公司 Electronic watch
US11181863B2 (en) 2018-08-24 2021-11-23 Apple Inc. Conductive cap for watch crown
US11194298B2 (en) 2018-08-30 2021-12-07 Apple Inc. Crown assembly for an electronic watch
CN209625187U (en) 2018-08-30 2019-11-12 苹果公司 Electronic watch and electronic equipment
US11596833B2 (en) * 2018-09-20 2023-03-07 Pacebycolor, INC. Pace management systems and methods
WO2020082084A1 (en) 2018-10-19 2020-04-23 Youv Labs, Inc. Methods, systems, and apparatus for accurate measurement of health relevant uv exposure from sunlight
US11194299B1 (en) 2019-02-12 2021-12-07 Apple Inc. Variable frictional feedback device for a digital crown of an electronic watch
KR20210046346A (en) 2019-10-18 2021-04-28 삼성전자주식회사 Electronic device capable of measuring blood pressure and measuring blood pressure method with the same
US11550268B2 (en) 2020-06-02 2023-01-10 Apple Inc. Switch module for electronic crown assembly
WO2022011106A1 (en) * 2020-07-08 2022-01-13 Owlet Baby Care Inc. Heart rate correction using external data
US11723556B1 (en) 2022-07-21 2023-08-15 University Of Houston System Instructional technologies for positioning a lower limb during muscular activity and detecting and tracking performance of a muscular activity

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930518A (en) * 1988-09-26 1990-06-05 Hrushesky William J M Sinus arrhythmia monitor
US20050187481A1 (en) * 2003-12-05 2005-08-25 Feras Hatib Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis
US20060047447A1 (en) * 2004-08-24 2006-03-02 Impact Sports Technologies, Inc. System, method and device for monitoring an athlete
US20100298656A1 (en) * 2009-05-20 2010-11-25 Triage Wireless, Inc. Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds
US20100298651A1 (en) * 2009-05-20 2010-11-25 Triage Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US20100324384A1 (en) * 2009-06-17 2010-12-23 Jim Moon Body-worn pulse oximeter
US20110066044A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US20110066010A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US20110066009A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US20120179011A1 (en) * 2007-06-12 2012-07-12 Jim Moon Optical sensors for use in vital sign monitoring
US20120229270A1 (en) * 2011-03-11 2012-09-13 Christopher Morley Wearable biofeedback system
US20120245439A1 (en) * 2008-11-20 2012-09-27 David Andre Method and apparatus for determining critical care parameters
US20120271121A1 (en) * 2010-12-29 2012-10-25 Basis Science, Inc. Integrated Biometric Sensing and Display Device
US8321004B2 (en) * 2009-09-15 2012-11-27 Sotera Wireless, Inc. Body-worn vital sign monitor
US8364250B2 (en) * 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US20140073486A1 (en) * 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
US9241646B2 (en) * 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20160374567A1 (en) * 2015-06-25 2016-12-29 Whoop, Inc. Heart rate variability with sleep detection

Family Cites Families (507)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2284849A (en) 1941-08-29 1942-06-02 Edward P Schreyer Book end
US2717736A (en) 1951-07-17 1955-09-13 Robert A Schlesinger Exercise counting apparatus
US2883255A (en) 1954-04-28 1959-04-21 Panellit Inc Automatic process logging system
US2827309A (en) 1955-06-23 1958-03-18 Mark S Fred Wrist band and insert memoranda tape combination
US3163856A (en) 1961-11-14 1964-12-29 Frederick G Kirby Alarm device for indicating lack of motion
US3250270A (en) 1962-09-19 1966-05-10 Bloom Walter Lyon Device and method for measuring the calories an individual expends
US3522383A (en) 1967-06-13 1970-07-28 Bell Telephone Labor Inc Block precoding for multiple speed data transmission
US3608545A (en) 1968-11-25 1971-09-28 Medical Engineering Research C Heart rate monitor
US3918658A (en) 1973-06-15 1975-11-11 Klippan Nv Seat belt retractor having inertial device activated by two stimuli
US4192000A (en) 1977-07-14 1980-03-04 Calorie Counter Limited Partnership Electronic calorie counter
GB1593839A (en) 1978-05-26 1981-07-22 Pringle R D Performance testing device
US4258719A (en) 1978-12-04 1981-03-31 Hughes Aircraft Company Heart rate measurement system
US4244020A (en) 1979-01-15 1981-01-06 Ratcliff Lloyd P Caloric and/or carbohydrate calculator
US4312358A (en) 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
US4284849A (en) 1979-11-14 1981-08-18 Gte Products Corporation Monitoring and signalling system
US4367752A (en) 1980-04-30 1983-01-11 Biotechnology, Inc. Apparatus for testing physical condition of a subject
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
JPS57120009U (en) * 1981-01-19 1982-07-26
US4390922A (en) 1982-02-04 1983-06-28 Pelliccia Raymond A Vibration sensor and electrical power shut off device
US4578769A (en) 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US4575804A (en) 1983-08-01 1986-03-11 Ratcliff Lloyd P Diet calculator
US4617525A (en) 1984-01-30 1986-10-14 Lloyd Stephen R Sleep posture monitor and alarm system
US4771792A (en) 1985-02-19 1988-09-20 Seale Joseph B Non-invasive determination of mechanical characteristics in the body
US4846183A (en) 1987-12-02 1989-07-11 The Boc Group, Inc. Blood parameter monitoring apparatus and methods
US4781195A (en) 1987-12-02 1988-11-01 The Boc Group, Inc. Blood monitoring apparatus and methods with amplifier input dark current correction
US4960126A (en) 1988-01-15 1990-10-02 Criticare Systems, Inc. ECG synchronized pulse oximeter
US4887249A (en) 1988-04-19 1989-12-12 Timex Corporation Bicycle watch - dual mode circuit
US5224059A (en) 1988-06-07 1993-06-29 Citizen Watch Co., Ltd. Device for measuring altitude and barometric pressure
US4977509A (en) 1988-12-09 1990-12-11 Campsport, Inc. Personal multi-purpose navigational apparatus and method for operation thereof
JPH0341926A (en) 1989-07-07 1991-02-22 Matsushita Electric Works Ltd Detector for change in sleeping state and sleeping state controller
US5036856A (en) 1990-07-19 1991-08-06 Thornton William E Cardiovascular monitoring system
US5058427A (en) 1990-09-28 1991-10-22 Avocet, Inc. Accumulating altimeter with ascent/descent accumulation thresholds
US5446705A (en) 1991-02-04 1995-08-29 Temtec, Inc. Time indicator having discrete adhesive
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
IL97526A0 (en) 1991-03-12 1992-06-21 Tius Elcon Ltd Exercise monitor
JP3006123B2 (en) * 1991-03-18 2000-02-07 ソニー株式会社 Arterial stiffness observation device
US5645509A (en) 1991-07-02 1997-07-08 Icon Health & Fitness, Inc. Remote exercise control system
US5295085A (en) 1992-02-25 1994-03-15 Avocet, Inc. Pressure measurement device with selective pressure threshold crossings accumulator
US5301154A (en) 1992-07-16 1994-04-05 Casio Computer Co., Ltd. Time calculating device
US5323650A (en) 1993-01-14 1994-06-28 Fullen Systems, Inc. System for continuously measuring forces applied to the foot
US5318597A (en) 1993-03-15 1994-06-07 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device control algorithm using trans-thoracic ventilation
DE69330026T2 (en) 1993-05-28 2001-10-31 Sun Microsystems Inc Power control through a touch screen in a computer system
JP3094799B2 (en) 1993-10-25 2000-10-03 セイコーエプソン株式会社 Portable equipment
US5941828A (en) * 1993-11-09 1999-08-24 Medwave, Inc. Hand-held non-invasive blood pressure measurement device
US5456648A (en) 1994-03-14 1995-10-10 Edinburg; Peter J. Reward granting exercise machine
US5513649A (en) 1994-03-22 1996-05-07 Sam Technology, Inc. Adaptive interference canceler for EEG movement and eye artifacts
US5704350A (en) 1994-03-25 1998-01-06 Nutritec Corporation Nutritional microcomputer and method
US5490523A (en) 1994-06-29 1996-02-13 Nonin Medical Inc. Finger clip pulse oximeter
US6539336B1 (en) 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US5583776A (en) 1995-03-16 1996-12-10 Point Research Corporation Dead reckoning navigational system using accelerometer to measure foot impacts
US6183425B1 (en) 1995-10-13 2001-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for monitoring of daily activity in terms of ground reaction forces
US5671162A (en) 1995-10-23 1997-09-23 Werbin; Roy Geoffrey Device for recording descent data for skydiving
US5738104A (en) 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US6122960A (en) 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US5899963A (en) 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US5724265A (en) 1995-12-12 1998-03-03 Hutchings; Lawrence J. System and method for measuring movement of objects
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5890128A (en) 1996-03-04 1999-03-30 Diaz; H. Benjamin Personalized hand held calorie computer (ECC)
JP3608204B2 (en) 1996-04-08 2005-01-05 セイコーエプソン株式会社 Exercise prescription support device
EP1424038B1 (en) 1996-06-12 2006-01-04 Seiko Epson Corporation Device for measuring calorie expenditure
US5941836A (en) 1996-06-12 1999-08-24 Friedman; Mark B. Patient position monitor
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
CA2218242C (en) 1996-10-11 2005-12-06 Kenneth R. Fyfe Motion analysis system
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US6145389A (en) 1996-11-12 2000-11-14 Ebeling; W. H. Carl Pedometer effective for both walking and running
US5830137A (en) 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US6085248A (en) 1997-02-11 2000-07-04 Xaqtu Corporation Media access control transmitter and parallel network management system
JP3592051B2 (en) 1997-10-03 2004-11-24 任天堂株式会社 Pedometer
US6309360B1 (en) 1997-03-17 2001-10-30 James R. Mault Respiratory calorimeter
JP3523978B2 (en) 1997-03-18 2004-04-26 セイコーエプソン株式会社 Pulse meter
US5954644A (en) 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
FI111801B (en) 1997-05-21 2003-09-30 Polar Electro Oy In training with the user, the following measuring device for non-invasive measurement of at least one signal from his body and method for controlling it
US20030171189A1 (en) 1997-06-05 2003-09-11 Kaufman Arthur H. Audible electronic exercise monitor
US5947868A (en) 1997-06-27 1999-09-07 Dugan; Brian M. System and method for improving fitness equipment and exercise
US6131076A (en) 1997-07-25 2000-10-10 Arch Development Corporation Self tuning system for industrial surveillance
US5976083A (en) 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US5891042A (en) 1997-09-09 1999-04-06 Acumen, Inc. Fitness monitoring device having an electronic pedometer and a wireless heart rate monitor
US6876947B1 (en) 1997-10-02 2005-04-05 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6018705A (en) 1997-10-02 2000-01-25 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6882955B1 (en) 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6307576B1 (en) 1997-10-02 2001-10-23 Maury Rosenfeld Method for automatically animating lip synchronization and facial expression of animated characters
US20060069619A1 (en) 1997-10-09 2006-03-30 Walker Jay S Systems and methods for facilitating group rewards
US6301964B1 (en) 1997-10-14 2001-10-16 Dyhastream Innovations Inc. Motion analysis system
US6730047B2 (en) 1997-10-24 2004-05-04 Creative Sports Technologies, Inc. Head gear including a data augmentation unit for detecting head motion and providing feedback relating to the head motion
US6076015A (en) 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6077193A (en) 1998-04-03 2000-06-20 Unisen, Inc. Tracking system for promoting health fitness
US6255962B1 (en) 1998-05-15 2001-07-03 System Excelerator, Inc. Method and apparatus for low power, micro-electronic mechanical sensing and processing
JP3978700B2 (en) 1998-06-05 2007-09-19 光 猪岡 Calorie consumption calculation device
AU4970499A (en) 1998-07-07 2000-01-24 Lightouch Medical, Inc. Tissue modulation process for quantitative noninvasive in vivo spectroscopic analysis of tissues
US6078874A (en) 1998-08-04 2000-06-20 Csi Technology, Inc. Apparatus and method for machine data collection
US7073129B1 (en) 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
US6402690B1 (en) 1999-04-23 2002-06-11 Massachusetts Institute Of Technology Isolating ring sensor design
US6675041B2 (en) * 1999-05-18 2004-01-06 Physi-Cal Enterprises Lp Electronic apparatus and method for monitoring net calorie intake
US7605940B2 (en) 1999-09-17 2009-10-20 Silverbrook Research Pty Ltd Sensing device for coded data
CA2386811A1 (en) 1999-10-08 2001-04-19 Healthetech, Inc. Monitoring caloric expenditure rate and caloric diet
WO2001028495A2 (en) 1999-10-08 2001-04-26 Healthetech, Inc. Indirect calorimeter for weight control
FI115290B (en) 1999-10-13 2005-04-15 Polar Electro Oy Procedure and arrangement for determining the identity of a person who has made a sporting achievement
US6527711B1 (en) 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6811516B1 (en) 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
US6529827B1 (en) 1999-11-01 2003-03-04 Garmin Corporation GPS device with compass and altimeter and method for displaying navigation information
US6585622B1 (en) 1999-12-03 2003-07-01 Nike, Inc. Interactive use an athletic performance monitoring and reward method, system, and computer program product
US20050037844A1 (en) 2002-10-30 2005-02-17 Nike, Inc. Sigils for use with apparel
US6360113B1 (en) 1999-12-17 2002-03-19 Datex-Ohmeda, Inc. Photoplethysmographic instrument
US7156809B2 (en) 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6513532B2 (en) 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
JP3854047B2 (en) 2000-01-31 2006-12-06 セイコーインスツル株式会社 Portable altimeter and advanced calculation method
US7171251B2 (en) 2000-02-01 2007-01-30 Spo Medical Equipment Ltd. Physiological stress detector device and system
RU2178588C1 (en) 2000-05-03 2002-01-20 Марков Валерий Николаевич Light panel
US20020077219A1 (en) 2000-05-24 2002-06-20 Cohen Michael Alvarez Incentive awards for use of exercise equipment
US6520197B2 (en) 2000-06-02 2003-02-18 The Regents Of The University Of California Continuous laminar fluid mixing in micro-electromechanical systems
US7536557B2 (en) 2001-03-22 2009-05-19 Ensign Holdings Method for biometric authentication through layering biometric traits
BRPI0414359A (en) 2000-06-16 2006-11-14 Bodymedia Inc body weight monitoring and management system and other psychological conditions that include interactive and personalized planning, intervention and reporting
US7261690B2 (en) 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6699188B2 (en) 2000-06-22 2004-03-02 Guidance Interactive Technologies Interactive reward devices and methods
EP1702560B1 (en) 2000-06-23 2014-11-19 BodyMedia, Inc. System for monitoring health, wellness and fitness
US6720860B1 (en) 2000-06-30 2004-04-13 International Business Machines Corporation Password protection using spatial and temporal variation in a high-resolution touch sensitive display
WO2002011019A1 (en) 2000-08-01 2002-02-07 First Usa Bank, N.A. System and method for transponder-enabled account transactions
US6862575B1 (en) 2000-08-17 2005-03-01 Nokia Corporation Electronic coupon system
GB0022979D0 (en) 2000-09-19 2000-11-01 Lall Sardool S System for controlling the seconds display on a watch
AU2002243370A1 (en) 2000-10-26 2002-06-24 Healthetech, Inc. Body supported activity and condition monitor
WO2002079762A2 (en) 2000-10-27 2002-10-10 Dumas David P Apparatus for fluorescence detection on arrays
US6558335B1 (en) * 2000-11-22 2003-05-06 Medwave, Inc Wrist-mounted blood pressure measurement device
US6620078B2 (en) 2000-12-11 2003-09-16 Aerobics And Fitness Association Of America Fitness triage system and nutrition gets personal
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US6561951B2 (en) 2000-12-21 2003-05-13 Agere Systems, Inc. Networked biometrically secured fitness device scheduler
US20020013717A1 (en) 2000-12-28 2002-01-31 Masahiro Ando Exercise body monitor with functions to verify individual policy holder and wear of the same, and a business model for a discounted insurance premium for policy holder wearing the same
US6581000B2 (en) 2001-01-04 2003-06-17 Carnegie Mellon University Position location system and method
US7921297B2 (en) 2001-01-10 2011-04-05 Luis Melisendro Ortiz Random biometric authentication utilizing unique biometric signatures
KR100397779B1 (en) 2001-02-16 2003-09-13 주식회사 현원 A pulsimeter having a function of radio receiver and digital music player and method thereof
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
JP3735284B2 (en) 2001-03-05 2006-01-18 コナミスポーツライフ株式会社 Health appliance, point grant server, point grant system, point grant method, and program
US6583369B2 (en) 2001-04-10 2003-06-24 Sunbeam Products, Inc. Scale with a transiently visible display
US6808473B2 (en) 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US20020178060A1 (en) 2001-05-25 2002-11-28 Sheehan Patrick M. System and method for providing and redeeming electronic paperless coupons
CA2349656C (en) 2001-06-04 2005-09-06 Strategic Vista International Inc. Method and apparatus for two-way communications amongst a plurality of communications devices
US6731967B1 (en) 2001-07-16 2004-05-04 Pacesetter, Inc. Methods and devices for vascular plethysmography via modulation of source intensity
US20030018523A1 (en) 2001-07-20 2003-01-23 Ethan Rappaport Rewards program using electronically encoded instruments
ATE481922T1 (en) 2001-09-28 2010-10-15 Csem Ct Suisse Electronique METHOD AND DEVICE FOR PULSE MEASUREMENT
US8078492B2 (en) 2001-10-02 2011-12-13 International Business Machines Corporation Providing consumers with incentives for healthy eating habits
JP3810669B2 (en) 2001-11-19 2006-08-16 セイコーインスツル株式会社 Movement detection altimeter
US6614392B2 (en) 2001-12-07 2003-09-02 Delaware Capital Formation, Inc. Combination RFID and GPS functionality on intelligent label
US20030107487A1 (en) 2001-12-10 2003-06-12 Ronen Korman Method and device for measuring physiological parameters at the wrist
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US20030131059A1 (en) 2002-01-08 2003-07-10 International Business Machines Corporation Method, system, and program for providing information on scheduled events to wireless devices
US7041032B1 (en) 2002-03-05 2006-05-09 Calvano Robert T Wrist band workout display
GB0212177D0 (en) 2002-05-27 2002-07-03 Symbian Ltd Location awareness on the Symbian platform
US6813582B2 (en) 2002-07-31 2004-11-02 Point Research Corporation Navigation device for personnel on foot
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7828739B2 (en) * 2002-08-27 2010-11-09 Precision Pulsus, Inc. Apnea detection system
US6856938B2 (en) 2002-09-12 2005-02-15 Anthony D. Kurtz Weight monitoring computer
JP4813058B2 (en) 2002-10-09 2011-11-09 ボディーメディア インコーポレイテッド Device for detecting, receiving, deriving and displaying human physiological and contextual information
US6907802B2 (en) 2002-11-14 2005-06-21 Robert H. Schneider Tool for detecting the release of energy
US7805149B2 (en) 2004-01-16 2010-09-28 Adidas Ag Location-aware fitness training device, methods, and program products that support real-time interactive communication and automated route generation
US7480512B2 (en) 2004-01-16 2009-01-20 Bones In Motion, Inc. Wireless device, program products and methods of using a wireless device to deliver services
US20050107723A1 (en) 2003-02-15 2005-05-19 Wehman Thomas C. Methods and apparatus for determining work performed by an individual from measured physiological parameters
JP3760920B2 (en) 2003-02-28 2006-03-29 株式会社デンソー Sensor
US7310441B2 (en) 2003-04-11 2007-12-18 Intel Corporation Method and apparatus for three-dimensional tracking of infra-red beacons
US7255437B2 (en) 2003-10-09 2007-08-14 Howell Thomas A Eyeglasses with activity monitoring
US20070159926A1 (en) 2003-04-17 2007-07-12 Nike, Inc. Adaptive Watch
US20050054940A1 (en) 2003-04-23 2005-03-10 Almen Adam J. Apparatus and method for monitoring heart rate variability
CH696516A5 (en) 2003-05-21 2007-07-31 Asulab Sa Portable instrument for measuring a physiological quantity comprising a device for illuminating the surface of an organic tissue.
US7526327B2 (en) 2003-06-04 2009-04-28 Eta Sa Manufacture Horlogère Suisse Instrument having optical device measuring a physiological quantity and means for transmitting and/or receiving data
US20040249299A1 (en) 2003-06-06 2004-12-09 Cobb Jeffrey Lane Methods and systems for analysis of physiological signals
US6837827B1 (en) 2003-06-17 2005-01-04 Garmin Ltd. Personal training device using GPS data
US6992772B2 (en) 2003-06-19 2006-01-31 Optix Lp Method and apparatus for optical sampling to reduce interfering variances
US20060129436A1 (en) 2003-07-11 2006-06-15 Short Douglas J Method of reducing employer health related costs while promoting employee wellness and health benefit plan strategy for same
US20050038679A1 (en) 2003-07-11 2005-02-17 Short Douglas J. Method of promoting employee wellness and health insurance strategy for same
US20050054938A1 (en) 2003-07-29 2005-03-10 Wehman Thomas C. Method and apparatus including altimeter and accelerometers for determining work performed by an individual
US20060195020A1 (en) 2003-08-01 2006-08-31 Martin James S Methods, systems, and apparatus for measuring a pulse rate
EP2319410A1 (en) * 2003-09-12 2011-05-11 BodyMedia, Inc. Apparatus for measuring heart related parameters
US20060008256A1 (en) 2003-10-01 2006-01-12 Khedouri Robert K Audio visual player apparatus and system and method of content distribution using the same
US20060111944A1 (en) 2003-10-31 2006-05-25 Sirmans James R Jr System and method for encouraging performance of health-promoting measures
WO2005045621A2 (en) 2003-10-31 2005-05-19 Rubicon Insurance & Risk Management System and method for evaluating insurance member activity and pricing insurance products
US7133690B2 (en) 2004-01-23 2006-11-07 Nokia Corporation Method and apparatus for fast data rate ramp up in Node B scheduling of UE uplink
US7278966B2 (en) 2004-01-31 2007-10-09 Nokia Corporation System, method and computer program product for managing physiological information relating to a terminal user
US7729748B2 (en) 2004-02-17 2010-06-01 Joseph Florian Optical in-vivo monitoring systems
US20050195830A1 (en) 2004-02-18 2005-09-08 Interdigital Technology Corporation User directed background transfer and data storage
WO2005083546A1 (en) 2004-02-27 2005-09-09 Simon Richard Daniel Wearable modular interface strap
US7794897B2 (en) 2004-03-02 2010-09-14 Kabushiki Kaisha Toshiba Mask pattern correcting method, mask pattern inspecting method, photo mask manufacturing method, and semiconductor device manufacturing method
US20050195094A1 (en) 2004-03-05 2005-09-08 White Russell W. System and method for utilizing a bicycle computer to monitor athletic performance
AU2005226671B8 (en) 2004-03-19 2008-05-08 Arbitron Inc. Gathering data concerning publication usage
US20050228244A1 (en) * 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
US20050228692A1 (en) 2004-04-08 2005-10-13 Hodgdon Darren W Incentive based health care insurance program
US20050234742A1 (en) 2004-04-08 2005-10-20 Hodgdon Darren W Incentive based health care insurance program
US20050245793A1 (en) 2004-04-14 2005-11-03 Hilton Theodore C Personal wellness monitor system and process
DE602004004243D1 (en) 2004-04-15 2007-02-22 Suisse Electronique Microtech Method and device for measuring the effectiveness of a sports movement
JP4515148B2 (en) 2004-05-17 2010-07-28 セイコーインスツル株式会社 Biological information measuring apparatus and biological information measuring method
US20050272564A1 (en) 2004-06-02 2005-12-08 Johnson Health Tech Co., Ltd. Exercise apparatus and method for tracking number of steps
FI6796U1 (en) 2004-06-16 2005-09-26 Firstbeat Technologies Oy A system for monitoring and predicting physiological conditions under physical exertion
US9492084B2 (en) 2004-06-18 2016-11-15 Adidas Ag Systems and methods for monitoring subjects in potential physiological distress
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7909768B1 (en) 2004-07-19 2011-03-22 Pacesetter, Inc. Reducing data acquisition, power and processing for hemodynamic signal sampling
EP1618844B1 (en) 2004-07-21 2011-04-27 Panasonic Electric Works Co., Ltd. Physical activity measuring system
KR100786703B1 (en) 2004-07-24 2007-12-21 삼성전자주식회사 Device and method for measuring physical exercise using acceleration sensor
US8109858B2 (en) 2004-07-28 2012-02-07 William G Redmann Device and method for exercise prescription, detection of successful performance, and provision of reward therefore
CN100362963C (en) 2004-08-05 2008-01-23 香港理工大学 Portable health-care monitoring arrangement with motion compensation function and its compensation method
US20060039348A1 (en) 2004-08-20 2006-02-23 Nokia Corporation System, device and method for data transfer
KR20060019869A (en) 2004-08-30 2006-03-06 삼성전자주식회사 Device for exercise measure through pressure film sensor and method thereof
US20060052727A1 (en) 2004-09-09 2006-03-09 Laurence Palestrant Activity monitoring device and weight management method utilizing same
WO2006028248A1 (en) * 2004-09-10 2006-03-16 Terumo Kabushiki Kaisha Sphygmomanometer
TWI244310B (en) 2004-09-23 2005-11-21 Inventec Appliances Corp Mobile phone having a step-counting function
US8172761B1 (en) 2004-09-28 2012-05-08 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
KR100612864B1 (en) * 2004-10-14 2006-08-14 삼성전자주식회사 Method and apparatus for calculating calory
US7993276B2 (en) 2004-10-15 2011-08-09 Pulse Tracer, Inc. Motion cancellation of optical input signals for physiological pulse measurement
CN101039617A (en) 2004-10-15 2007-09-19 普尔塞特拉瑟技术有限公司 Motion cancellation of optical input signals for physiological pulse measurement
US20060089542A1 (en) 2004-10-25 2006-04-27 Safe And Sound Solutions, Inc. Mobile patient monitoring system with automatic data alerts
US7162368B2 (en) 2004-11-09 2007-01-09 Honeywell International Inc. Barometric floor level indicator
US7793361B2 (en) 2004-11-12 2010-09-14 Nike, Inc. Article of apparel incorporating a separable electronic device
US7373820B1 (en) 2004-11-23 2008-05-20 James Terry L Accelerometer for data collection and communication
GB0427643D0 (en) 2004-12-17 2005-01-19 Carnall Murat Method and apparatus for recording events
EP1684238A1 (en) 2005-01-21 2006-07-26 Swisscom Mobile AG Identification method and system and device therefor
US7778601B2 (en) 2005-01-24 2010-08-17 Broadcom Corporation Pairing modular wireless earpiece/microphone (HEADSET) to a serviced base portion and subsequent access thereto
WO2006090371A2 (en) 2005-02-22 2006-08-31 Health-Smart Limited Methods and systems for physiological and psycho-physiological monitoring and uses thereof
EP1851606A1 (en) 2005-02-24 2007-11-07 Nokia Corporation Motion-input device for a computing terminal and method of its operation
US7559877B2 (en) 2005-03-24 2009-07-14 Walkstyles, Inc. Interactive exercise device and system
JP2009500047A (en) 2005-04-14 2009-01-08 イダルゴ リミテッド Apparatus and method for monitoring
US20060247952A1 (en) 2005-04-28 2006-11-02 Visual Telecommunications Network, Inc. Method and apparatus of transmitting patient medical data between a client computer and a server using electronic mail
US20060282021A1 (en) 2005-05-03 2006-12-14 Devaul Richard W Method and system for fall detection and motion analysis
US8842666B2 (en) 2005-05-13 2014-09-23 Qualcomm Incorporated Methods and apparatus for packetization of content for transmission over a network
JP4284301B2 (en) 2005-05-13 2009-06-24 ソフトバンクモバイル株式会社 Information distribution apparatus and information distribution system
US8027822B2 (en) 2005-06-20 2011-09-27 Virgin Healthmiles, Inc. Interactive, internet supported health and fitness management system
US8028443B2 (en) 2005-06-27 2011-10-04 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear
US7752059B2 (en) 2005-07-05 2010-07-06 Cardiac Pacemakers, Inc. Optimization of timing for data collection and analysis in advanced patient management system
US20070155277A1 (en) 2005-07-25 2007-07-05 Avi Amitai Mobile/portable and personal pre-recorded sound effects electronic amplifier device/gadget
US8033996B2 (en) 2005-07-26 2011-10-11 Adidas Ag Computer interfaces including physiologically guided avatars
US8142298B2 (en) 2005-07-27 2012-03-27 Landscape Structures, Inc. Interactive activity system
US20070072156A1 (en) 2005-08-05 2007-03-29 Abk Ventures Lifestyle coach behavior modification system
US7691069B2 (en) * 2005-08-23 2010-04-06 Joshua Adams Method, system and computer program product for performance monitoring and planning
US7720306B2 (en) 2005-08-29 2010-05-18 Photomed Technologies, Inc. Systems and methods for displaying changes in biological responses to therapy
JP2007101526A (en) 2005-09-06 2007-04-19 Sony Corp Apparatus, method, and program for detecting speed and position and navigation system
KR100697646B1 (en) 2005-09-08 2007-03-20 삼성전자주식회사 Apparatus of calculating consumption of calory and method for operating the apparatus
US20070061593A1 (en) 2005-09-15 2007-03-15 Ufuk Celikkan Sending secured data
US20070071643A1 (en) * 2005-09-29 2007-03-29 Berkeley Heartlab, Inc. Internet based system for monitoring blood test, vital sign and exercise information from a patient
US20130228063A1 (en) 2005-10-06 2013-09-05 William D. Turner System and method for pacing repetitive motion activities
US8572275B2 (en) 2005-10-06 2013-10-29 Wrapmail, Inc. Method, system and software for dynamically extracting content for integration with electronic mail
US20070083095A1 (en) 2005-10-07 2007-04-12 Rippo Anthony J External exercise monitor
US20070136093A1 (en) 2005-10-11 2007-06-14 Rankin Innovations, Inc. Methods, systems, and programs for health and wellness management
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US7942824B1 (en) 2005-11-04 2011-05-17 Cleveland Medical Devices Inc. Integrated sleep diagnostic and therapeutic system and method
US7469827B2 (en) 2005-11-17 2008-12-30 Google Inc. Vehicle information systems and methods
EP1955259A1 (en) 2005-11-28 2008-08-13 Samsung Electronics Co., Ltd. Exercise management function providing system and method
US8016776B2 (en) 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
US20070135264A1 (en) 2005-12-09 2007-06-14 Outland Research, Llc Portable exercise scripting and monitoring device
US8280503B2 (en) 2008-10-27 2012-10-02 Michael Linderman EMG measured during controlled hand movement for biometric analysis, medical diagnosis and related analysis
US20070146116A1 (en) 2005-12-22 2007-06-28 Sony Ericsson Mobile Communications Ab Wireless communications device with integrated user activity module
US7582061B2 (en) 2005-12-22 2009-09-01 Cardiac Pacemakers, Inc. Method and apparatus for morphology-based arrhythmia classification using cardiac and other physiological signals
US20070179356A1 (en) 2005-12-29 2007-08-02 Guidance Interactive Healthcare, Inc. Programmable devices, systems and methods for encouraging the monitoring of medical parameters
CA2675826A1 (en) 2006-01-30 2007-08-02 Cardiosense Ltd. Apparatus, system and method for determining cardio-respiratory state
DE102006022055A1 (en) 2006-02-20 2007-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for reducing noise component in time-discrete signal, has primary provisioning unit for provisioning time-discrete signal with noise component, where secondary provisioning device provisions primary time-discrete reference signal
US8677515B2 (en) 2006-02-22 2014-03-25 Nike, Inc. Article of apparel incorporating a covered electronic device
US8055469B2 (en) 2006-03-03 2011-11-08 Garmin Switzerland Gmbh Method and apparatus for determining the attachment position of a motion sensing apparatus
US7827000B2 (en) 2006-03-03 2010-11-02 Garmin Switzerland Gmbh Method and apparatus for estimating a motion parameter
US7467060B2 (en) 2006-03-03 2008-12-16 Garmin Ltd. Method and apparatus for estimating a motion parameter
EP1832227A1 (en) 2006-03-08 2007-09-12 EM Microelectronic-Marin SA Conditioning circuit for a signal between an optical detector and a processor
US7246033B1 (en) 2006-03-13 2007-07-17 Susan Leeds Kudo Pedometer for pets
US20070219059A1 (en) 2006-03-17 2007-09-20 Schwartz Mark H Method and system for continuous monitoring and training of exercise
US9047648B1 (en) 2006-03-30 2015-06-02 At&T Mobility Ii Llc Measurement, collection, reporting and processing of health condition data
WO2007113743A1 (en) * 2006-04-04 2007-10-11 Koninklijke Philips Electronics N.V. Expressive pen
US7579946B2 (en) 2006-04-20 2009-08-25 Nike, Inc. Footwear products including data transmission capabilities
US8188868B2 (en) 2006-04-20 2012-05-29 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with apparel
US7643873B2 (en) 2006-04-28 2010-01-05 Idt Technology Limited Exercise data apparatus
US20070288265A1 (en) 2006-04-28 2007-12-13 Thomas Quinian Intelligent device and data network
US8684922B2 (en) 2006-05-12 2014-04-01 Bao Tran Health monitoring system
US7539532B2 (en) 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
US8968195B2 (en) 2006-05-12 2015-03-03 Bao Tran Health monitoring appliance
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US8684900B2 (en) 2006-05-16 2014-04-01 Bao Tran Health monitoring appliance
US7608050B2 (en) 2006-05-25 2009-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Motion detector for a mobile device
US8341397B2 (en) 2006-06-26 2012-12-25 Mlr, Llc Security system for handheld wireless devices using-time variable encryption keys
US20080032864A1 (en) * 2006-08-04 2008-02-07 Ayman Hakki Internet Enabled Motivational Exercise System and Apparatus
KR100827138B1 (en) 2006-08-10 2008-05-02 삼성전자주식회사 Apparatus for measuring living body information
US7771320B2 (en) 2006-09-07 2010-08-10 Nike, Inc. Athletic performance sensing and/or tracking systems and methods
US8924248B2 (en) 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
US8177260B2 (en) 2006-09-26 2012-05-15 Switch2Health Inc. Coupon redeemable upon completion of a predetermined threshold of physical activity
JP4899767B2 (en) 2006-10-06 2012-03-21 ソニー株式会社 Data communication apparatus, data communication method, and program
US20080097550A1 (en) 2006-10-24 2008-04-24 Kent Dicks Systems and methods for remote patient monitoring and command execution
US7890576B2 (en) 2006-11-13 2011-02-15 Microsoft Corporation Selective communication of targeted information
US20080134102A1 (en) 2006-12-05 2008-06-05 Sony Ericsson Mobile Communications Ab Method and system for detecting movement of an object
US20080139910A1 (en) 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
US7885712B2 (en) 2006-12-06 2011-02-08 Medtronic, Inc. Medical device programming safety
US8082122B2 (en) 2006-12-12 2011-12-20 Samsung Electronics Co., Ltd. Mobile device having a motion detector
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US20080155077A1 (en) 2006-12-20 2008-06-26 James Terry L Activity Monitor for Collecting, Converting, Displaying, and Communicating Data
US7653508B1 (en) 2006-12-22 2010-01-26 Dp Technologies, Inc. Human activity monitoring device
WO2010093503A2 (en) * 2007-01-05 2010-08-19 Myskin, Inc. Skin analysis methods
US20080176655A1 (en) 2007-01-19 2008-07-24 James Terry L System and Method for Implementing an Interactive Online Community Utilizing an Activity Monitor
US7690556B1 (en) 2007-01-26 2010-04-06 Dp Technologies, Inc. Step counter accounting for incline
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
US9044136B2 (en) 2007-02-16 2015-06-02 Cim Technology Inc. Wearable mini-size intelligent healthcare system
GB0705033D0 (en) 2007-03-15 2007-04-25 Imp Innovations Ltd Heart rate measurement
US8639563B2 (en) 2007-04-03 2014-01-28 International Business Machines Corporation Generating customized marketing messages at a customer level using current events data
US8040758B1 (en) 2007-05-01 2011-10-18 Physi-Cal Enterprises Lp Golf watch having heart rate monitoring for improved golf game
WO2008153450A1 (en) 2007-06-13 2008-12-18 St. Jude Medical Ab An implantable medical device and a method comprising means for detecting and classifying ventricular tachyarrhytmias
WO2008157622A1 (en) 2007-06-18 2008-12-24 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method, apparatus and system for food intake and physical activity assessment
US8892171B2 (en) 2007-06-20 2014-11-18 Qualcomm Incorporated System and method for user profiling from gathering user data through interaction with a wireless communication device
US8533269B2 (en) 2007-12-03 2013-09-10 Stephen J. Brown User-calibrated activity newsfeed on a social network
WO2009007410A2 (en) 2007-07-09 2009-01-15 Velti Plc Mobile device marketing and advertising platforms, methods, and systems
US7774156B2 (en) 2007-07-12 2010-08-10 Polar Electro Oy Portable apparatus for monitoring user speed and/or distance traveled
JP5561897B2 (en) 2007-07-13 2014-07-30 富士通株式会社 Measuring method, measuring apparatus and measuring program
ATE498969T1 (en) 2007-07-27 2011-03-15 Research In Motion Ltd REMOTE CONTROL IN A WIRELESS COMMUNICATION SYSTEM
US7647196B2 (en) 2007-08-08 2010-01-12 Dp Technologies, Inc. Human activity monitoring device with distance calculation
JP4714194B2 (en) * 2007-08-09 2011-06-29 オムロンヘルスケア株式会社 Blood pressure measurement device
US8221290B2 (en) 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
US20090054751A1 (en) 2007-08-22 2009-02-26 Bruce Babashan Touchless Sensor for Physiological Monitor Device
US8926509B2 (en) 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
US20090063193A1 (en) 2007-08-31 2009-03-05 Mike Barton Dashboard diagnostics for wireless patient communicator
US9569806B2 (en) 2007-09-04 2017-02-14 Apple Inc. Dynamic presentation of location-specific information
WO2009042965A1 (en) 2007-09-26 2009-04-02 Switch2Health Inc. System and method for activating a device based on a record of physical activity
US20090093341A1 (en) 2007-10-03 2009-04-09 James Terry L Music and Accelerometer Combination Device for Collecting, Converting, Displaying and Communicating Data
CN101919273B (en) 2007-11-09 2013-07-10 谷歌公司 Activating applications based on accelerometer data
TW200929974A (en) 2007-11-19 2009-07-01 Ibm System and method for performing electronic transactions
US20090144456A1 (en) 2007-11-30 2009-06-04 Alexander David Gelf Interface Device for Securely Extending Computer Functionality
US8892999B2 (en) 2007-11-30 2014-11-18 Nike, Inc. Interactive avatar for social network services
US20090150178A1 (en) 2007-12-05 2009-06-11 Rick Douglas Sutton Method And System For Tracking Physical Metrics In A Social Commerce System
US8260367B2 (en) 2007-12-12 2012-09-04 Sharp Laboratories Of America, Inc. Motion driven follow-up alerts for mobile electronic device
JP5358831B2 (en) 2007-12-18 2013-12-04 新世代株式会社 Exercise form discrimination device, exercise form discrimination method, and computer program
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
EP2291739B1 (en) 2008-02-01 2020-01-15 Google LLC Situationally aware and self-configuring electronic data and communication device
EP2252196A4 (en) 2008-02-21 2013-05-15 Dexcom Inc Systems and methods for processing, transmitting and displaying sensor data
US8152745B2 (en) 2008-02-25 2012-04-10 Shriners Hospitals For Children Activity monitoring
US8634796B2 (en) 2008-03-14 2014-01-21 William J. Johnson System and method for location based exchanges of data facilitating distributed location applications
EP2265341A1 (en) 2008-04-02 2010-12-29 Nike International Ltd. Wearable device assembly having athletic functionality
CA2720871A1 (en) 2008-04-03 2009-10-08 Kai Medical, Inc. Non-contact physiologic motion sensors and methods for use
US20100152600A1 (en) 2008-04-03 2010-06-17 Kai Sensors, Inc. Non-contact physiologic motion sensors and methods for use
CN102083505B (en) 2008-04-16 2013-09-04 耐克国际有限公司 Athletic performance user interface for mobile device
JP5042111B2 (en) 2008-04-28 2012-10-03 セイコーインスツル株式会社 Pedometer
EP2701131A2 (en) 2008-05-12 2014-02-26 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
JP5657526B2 (en) 2008-05-14 2015-01-21 ハートマイルズ、リミテッド ライアビリティー カンパニー Physical activity monitor and data collection unit
US8209744B2 (en) 2008-05-16 2012-06-26 Microsoft Corporation Mobile device assisted secure computer network communication
US8132037B2 (en) 2008-06-06 2012-03-06 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated data and clock information within an electronic device
US20090309742A1 (en) 2008-06-11 2009-12-17 Jillian Alexander Disaster alert display (dad) emergency and natural disaster warning system that automatically detects if people are caught in an emergency or disaster, determines if they are ok, and notifies their emergency contacts
US20100030040A1 (en) 2008-08-04 2010-02-04 Masimo Laboratories, Inc. Multi-stream data collection system for noninvasive measurement of blood constituents
US20100023348A1 (en) 2008-07-22 2010-01-28 International Business Machines Corporation Remotely taking real-time programmatic actions responsive to health metrics received from worn health monitoring devices
US8187182B2 (en) 2008-08-29 2012-05-29 Dp Technologies, Inc. Sensor fusion for activity identification
JP5417779B2 (en) 2008-09-18 2014-02-19 オムロンヘルスケア株式会社 Activity meter
US20100079291A1 (en) 2008-09-26 2010-04-01 Muve, Inc. Personalized Activity Monitor and Weight Management System
DE102008056251A1 (en) 2008-10-07 2010-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for detecting a vital parameter
US8647287B2 (en) 2008-12-07 2014-02-11 Andrew Greenberg Wireless synchronized movement monitoring apparatus and system
US20100158494A1 (en) 2008-12-07 2010-06-24 Leap Devices, LLC Radio Wireless Mesh Network System and Method for Photographic Camera Integration
US20120123232A1 (en) 2008-12-16 2012-05-17 Kayvan Najarian Method and apparatus for determining heart rate variability using wavelet transformation
US8275412B2 (en) 2008-12-31 2012-09-25 Motorola Mobility Llc Portable electronic device having directional proximity sensors based on device orientation
JP2010169410A (en) 2009-01-20 2010-08-05 Seiko Epson Corp Optical characteristic measuring device and optical characteristic measurement system
EP2210557A1 (en) 2009-01-21 2010-07-28 Koninklijke Philips Electronics N.V. Determining energy expenditure of a user
US8938279B1 (en) 2009-01-26 2015-01-20 VioOptix, Inc. Multidepth tissue oximeter
US9526429B2 (en) 2009-02-06 2016-12-27 Resmed Sensor Technologies Limited Apparatus, system and method for chronic disease monitoring
US8539359B2 (en) * 2009-02-11 2013-09-17 Jeffrey A. Rapaport Social network driven indexing system for instantly clustering people with concurrent focus on same topic into on-topic chat rooms and/or for generating on-topic search results tailored to user preferences regarding topic
JP5789199B2 (en) * 2009-02-25 2015-10-07 ヴァレンセル,インコーポレイテッド Headset and earbud
US7972245B2 (en) 2009-02-27 2011-07-05 T-Mobile Usa, Inc. Presenting information to users during an activity, such as information from a previous or concurrent outdoor, physical activity
US20100240972A1 (en) 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US10729357B2 (en) 2010-04-22 2020-08-04 Leaf Healthcare, Inc. Systems and methods for generating and/or adjusting a repositioning schedule for a person
CN101848609A (en) 2009-03-25 2010-09-29 深圳富泰宏精密工业有限公司 Manufacturing method of shell
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
FR2943554B1 (en) 2009-03-31 2012-06-01 Movea SYSTEM AND METHOD FOR OBSERVING A SWIMMER ACTIVITY OF A PERSON
US20110087076A1 (en) 2009-04-03 2011-04-14 Intrapace, Inc. Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
US8140143B2 (en) 2009-04-16 2012-03-20 Massachusetts Institute Of Technology Washable wearable biosensor
US20130245436A1 (en) 2009-04-22 2013-09-19 Joe Paul Tupin, Jr. Fetal monitoring device and methods
EP2425303B1 (en) 2009-04-26 2019-01-16 NIKE Innovate C.V. Gps features and functionality in an athletic watch system
US9141087B2 (en) 2009-04-26 2015-09-22 Nike, Inc. Athletic watch
US20120165684A1 (en) 2009-05-13 2012-06-28 Monitoring Information Technologies, Inc. Systems and Methods for Heart and Activity Monitoring
US8033959B2 (en) 2009-05-18 2011-10-11 Adidas Ag Portable fitness monitoring systems, and applications thereof
US8200323B2 (en) 2009-05-18 2012-06-12 Adidas Ag Program products, methods, and systems for providing fitness monitoring services
US8487771B2 (en) 2009-05-21 2013-07-16 Silverplus, Inc. Personal health management device
CN101615098A (en) 2009-07-31 2009-12-30 深圳市易优特科技有限公司 A kind of anti-optical road of infrared touch panel and anti-light method
CA2771286C (en) 2009-08-11 2016-08-30 Certusview Technologies, Llc Locating equipment communicatively coupled to or equipped with a mobile/portable device
KR101103596B1 (en) 2009-08-27 2012-01-09 주식회사 자원메디칼 Blood pressure monitor and blood pressure measuring method which measures blood pressure while detecting movement of subject simultaneously
EP4070729A1 (en) 2009-08-31 2022-10-12 Abbott Diabetes Care, Inc. Displays for a medical device
CA2939445C (en) 2009-09-04 2019-05-07 Nike Innovate C.V. Monitoring and tracking athletic activity
US8970507B2 (en) 2009-10-02 2015-03-03 Blackberry Limited Method of waking up and a portable electronic device configured to perform the same
US8566032B2 (en) 2009-10-30 2013-10-22 CSR Technology Holdings Inc. Methods and applications for altitude measurement and fusion of user context detection with elevation motion for personal navigation systems
US8386042B2 (en) 2009-11-03 2013-02-26 Medtronic Minimed, Inc. Omnidirectional accelerometer device and medical device incorporating same
TWI393579B (en) 2009-11-13 2013-04-21 Inst Information Industry The state of the muscle movement state analysis system, methods and computer program products
US9391853B2 (en) 2009-12-23 2016-07-12 Apple Inc. Efficient service advertisement and discovery in a peer-to-peer networking environment with dynamic advertisement and discovery periods based on operating conditions
US9071441B2 (en) 2010-01-04 2015-06-30 Google Inc. Identification and authorization of communication devices
JP5471490B2 (en) 2010-01-20 2014-04-16 オムロンヘルスケア株式会社 Body motion detection device
WO2011091439A2 (en) 2010-01-25 2011-07-28 Oregon Health & Science University Fiberoptic probe for measuring tissue oxygenation and method for using same
JP5804405B2 (en) * 2010-01-27 2015-11-04 任天堂株式会社 Information processing program, information processing apparatus, information processing method, and information processing system
EP2531250A4 (en) 2010-02-01 2014-03-05 Rensselaer Polytech Inst Method and system for facilitating adjusting a circadian pacemaker
WO2011104654A1 (en) 2010-02-26 2011-09-01 International Business Machines Corporation Transaction auditing for data security devices
US20110224564A1 (en) * 2010-03-10 2011-09-15 Sotera Wireless, Inc. Body-worn vital sign monitor
DE102010034055A1 (en) 2010-03-19 2011-09-22 Werner Wittling Method for assessing the health of a living being
ITBO20100310A1 (en) 2010-05-17 2011-11-18 Technogym Spa SYSTEM FOR MONITORING THE PHYSICAL ACTIVITY OF A USER, PORTABLE MONITORING SUPPORT AND MONITORING METHOD.
EP2400723A1 (en) 2010-06-23 2011-12-28 Gemalto SA Data transfer management method using a Bluetooth type interface
WO2012006549A2 (en) 2010-07-09 2012-01-12 The Regents Of The University Of California System comprised of sensors, communications, processing and inference on servers and other devices
US9532734B2 (en) 2010-08-09 2017-01-03 Nike, Inc. Monitoring fitness using a mobile device
CN102008811B (en) 2010-08-23 2011-12-21 大连交通大学 Intelligent monitoring system for track cycling training
CN101940476B (en) 2010-09-03 2016-02-03 深圳市索莱瑞医疗技术有限公司 A kind of method for detecting blood oxygen saturation and system
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US10216893B2 (en) 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US20130211265A1 (en) 2010-10-18 2013-08-15 3M Innovative Properties Company Multifunctional medical device for telemedicine applications
US9011292B2 (en) 2010-11-01 2015-04-21 Nike, Inc. Wearable device assembly having athletic functionality
WO2012061438A2 (en) 2010-11-01 2012-05-10 Nike International Ltd. Wearable device assembly having athletic functionality
US9283429B2 (en) 2010-11-05 2016-03-15 Nike, Inc. Method and system for automated personal training
US9081889B2 (en) 2010-11-10 2015-07-14 Apple Inc. Supporting the monitoring of a physical activity
US8610582B2 (en) 2010-11-16 2013-12-17 Lg Electronics Inc. Exercise monitoring apparatus, system and controlling method thereof
US9259160B2 (en) 2010-12-01 2016-02-16 Nellcor Puritan Bennett Ireland Systems and methods for determining when to measure a physiological parameter
EP2649422B1 (en) 2010-12-07 2023-10-18 Thomas L. Rockwell Apparatus and method for detecting the presence of water on a remote surface
US11064910B2 (en) 2010-12-08 2021-07-20 Activbody, Inc. Physical activity monitoring system
US9113793B2 (en) 2010-12-10 2015-08-25 Rohm Co., Ltd. Pulse wave sensor
CN202069586U (en) 2010-12-12 2011-12-14 邵明省 Device for dynamically monitoring heart rate of athletes
US20120150052A1 (en) 2010-12-13 2012-06-14 James Buchheim Heart rate monitor
EP2652657B1 (en) 2010-12-16 2021-08-18 NIKE Innovate C.V. Methods and systems for encouraging athletic activity
JP2012137930A (en) 2010-12-27 2012-07-19 Fujitsu Ltd Exercise management device, exercise management method and recording medium
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
US8761853B2 (en) 2011-01-20 2014-06-24 Nitto Denko Corporation Devices and methods for non-invasive optical physiological measurements
US9289177B2 (en) * 2011-01-20 2016-03-22 Nitto Denko Corporation Sensing device, a method of preparing a sensing device and a personal mobile sensing system
US9232915B2 (en) * 2011-01-20 2016-01-12 Nitto Denko Corporation Method and apparatus for deriving a health index for determining cardiovascular health
JP5966135B2 (en) 2011-02-23 2016-08-10 国立大学法人静岡大学 Optical measuring device
US20120215328A1 (en) 2011-02-23 2012-08-23 Richard Schmelzer Physical activity monitoring and recording system and device
FI20115301A0 (en) 2011-03-30 2011-03-30 Polar Electro Oy A method for calibrating a training device
US9317660B2 (en) 2011-03-31 2016-04-19 Adidas Ag Group performance monitoring system and method
US9002390B2 (en) 2011-04-08 2015-04-07 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
CN102750015A (en) 2011-04-22 2012-10-24 鸿富锦精密工业(深圳)有限公司 Mouse with physiological parameter measurement function
US8806023B2 (en) 2011-05-20 2014-08-12 Microsoft Corporation Auto-connect in a peer-to-peer network
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
US20120316456A1 (en) 2011-06-10 2012-12-13 Aliphcom Sensory user interface
AU2012267525A1 (en) 2011-06-10 2013-04-11 Aliphcom Motion profile templates and movement languages for wearable devices
US20130002435A1 (en) 2011-06-10 2013-01-03 Aliphcom Sleep management method and apparatus for a wellness application using data from a data-capable band
US20130173171A1 (en) 2011-06-10 2013-07-04 Aliphcom Data-capable strapband
CA2817145A1 (en) 2011-06-10 2012-12-13 Aliphcom Determinative processes for wearable devices
US20120316458A1 (en) 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US9109902B1 (en) 2011-06-13 2015-08-18 Impact Sports Technologies, Inc. Monitoring device with a pedometer
CA2776434A1 (en) 2011-07-01 2013-01-01 Certusview Technologies, Llc Methods, apparatus and systems for chronicling the activities of field technicians
US8199126B1 (en) 2011-07-18 2012-06-12 Google Inc. Use of potential-touch detection to improve responsiveness of devices
CN102389313B (en) 2011-08-17 2014-05-28 天津大学 Device and method for measuring square wave modulated photoelectric volume pulse wave
GB2494622A (en) 2011-08-30 2013-03-20 Oxitone Medical Ltd Wearable pulse oximetry device
US20130053661A1 (en) 2011-08-31 2013-02-28 Motorola Mobility, Inc. System for enabling reliable skin contract of an electrical wearable device
CN103781414B (en) * 2011-09-16 2016-08-24 皇家飞利浦有限公司 For estimating equipment and the method for the heart rate during motion
US9020185B2 (en) 2011-09-28 2015-04-28 Xerox Corporation Systems and methods for non-contact heart rate sensing
US8847988B2 (en) * 2011-09-30 2014-09-30 Microsoft Corporation Exercising applications for personal audio/visual system
US9531501B2 (en) 2011-10-25 2016-12-27 Apple Inc. Data transfer between electronic devices
US8279716B1 (en) 2011-10-26 2012-10-02 Google Inc. Smart-watch including flip up display
CN103093420B (en) 2011-11-02 2016-08-03 原相科技股份有限公司 Picture system and interference elimination method thereof
US20130132500A1 (en) 2011-11-18 2013-05-23 Apple Inc. Selection of a master in a peer-to-peer network environment
US8462591B1 (en) 2011-12-21 2013-06-11 Sanaa Marhaben Islamic prayer and pedometer watch
US9643050B2 (en) 2011-12-22 2017-05-09 Adidas Ag Fitness activity monitoring systems and methods
WO2013109780A2 (en) 2012-01-19 2013-07-25 Nike International Ltd. Energy expenditure
US9352207B2 (en) 2012-01-19 2016-05-31 Nike, Inc. Action detection and activity classification
US9474970B2 (en) 2012-01-26 2016-10-25 David H. Kil System and method for processing motion-related sensor data with social mind-body games for health application
US9171482B2 (en) 2012-02-09 2015-10-27 Abraham Carter Providing diet and exercise plans with real time tracking, modification, and notification
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9241248B2 (en) 2012-02-29 2016-01-19 Qualcomm Incorporated Modified present signal mode for mobile device
US9649055B2 (en) 2012-03-30 2017-05-16 General Electric Company System and methods for physiological monitoring
US20130268687A1 (en) 2012-04-09 2013-10-10 Mcafee, Inc. Wireless token device
US8849312B2 (en) 2012-04-10 2014-09-30 Yellowpages.Com Llc User description based on contexts of location and time
US9504414B2 (en) 2012-04-13 2016-11-29 Adidas Ag Wearable athletic activity monitoring methods and systems
US8639266B2 (en) 2012-04-18 2014-01-28 Google Inc. Using peer devices to locate a mobile device
US20130296672A1 (en) * 2012-05-02 2013-11-07 Masimo Corporation Noninvasive physiological sensor cover
US20130331058A1 (en) 2012-06-12 2013-12-12 Help Now Technologies, Llc Emergency alert system
US20150366504A1 (en) 2014-06-20 2015-12-24 Medibotics Llc Electromyographic Clothing
US10102345B2 (en) * 2012-06-19 2018-10-16 Activbody, Inc. Personal wellness management platform
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US9597014B2 (en) 2012-06-22 2017-03-21 Fitbit, Inc. GPS accuracy refinement using external sensors
US9168419B2 (en) 2012-06-22 2015-10-27 Fitbit, Inc. Use of gyroscopes in personal fitness tracking devices
US9042971B2 (en) 2012-06-22 2015-05-26 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US9049998B2 (en) 2012-06-22 2015-06-09 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US8954135B2 (en) 2012-06-22 2015-02-10 Fitbit, Inc. Portable biometric monitoring devices and methods of operating same
US9044149B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
US9579048B2 (en) 2012-07-30 2017-02-28 Treefrog Developments, Inc Activity monitoring system with haptic feedback
US8704687B2 (en) 2012-08-01 2014-04-22 International Business Machines Corporation Code set conversion management optimization
US20140074431A1 (en) 2012-09-10 2014-03-13 Apple Inc. Wrist Pedometer Step Detection
EP2709037A3 (en) * 2012-09-17 2015-04-08 Tata Consultancy Services Limited Enclosure for biometric sensor
US20140099614A1 (en) 2012-10-08 2014-04-10 Lark Technologies, Inc. Method for delivering behavior change directives to a user
US20150366469A1 (en) 2012-12-13 2015-12-24 Cnv Systems Ltd. System for measurement of cardiovascular health
RU2663633C2 (en) 2012-12-14 2018-08-07 Конинклейке Филипс Н.В. Device for measuring physiological parameter of user
US8690578B1 (en) 2013-01-03 2014-04-08 Mark E. Nusbaum Mobile computing weight, diet, nutrition, and exercise tracking system with enhanced feedback and data acquisition functionality
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9070043B2 (en) 2013-02-28 2015-06-30 Korea University Research And Business Foundation Method and apparatus for analyzing video based on spatiotemporal patterns
US9636048B2 (en) 2013-03-14 2017-05-02 Group Mee Llc Specialized sensors and techniques for monitoring personal activity
US10188329B2 (en) * 2013-03-14 2019-01-29 Nonin Medical, Inc. Self-contained regional oximetry
US9014790B2 (en) 2013-06-03 2015-04-21 Fitbit, Inc. Heart rate data collection
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
US9606721B2 (en) 2013-07-22 2017-03-28 Lg Electronics Inc. Mobile terminal and control method thereof
US8742325B1 (en) 2013-07-31 2014-06-03 Google Inc. Photodetector array on curved substrate
US20150230743A1 (en) 2014-02-17 2015-08-20 Covidien Lp Sensor configurations for anatomical variations
EP3089658A4 (en) 2014-02-24 2017-10-11 Sony Corporation Smart wearable devices and methods for acquisition of sensorial information from wearable devices to activate functions in other devices
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
US9226663B2 (en) 2014-04-07 2016-01-05 Physical Enterprises, Inc. Systems and methods for optical isolation in measuring physiological parameters
US10058254B2 (en) 2014-04-07 2018-08-28 Physical Enterprises Inc. Systems and methods for optical sensor arrangements
US9936886B2 (en) 2014-06-09 2018-04-10 Stmicroelectronics S.R.L. Method for the estimation of the heart-rate and corresponding system
US20170172476A1 (en) 2014-06-30 2017-06-22 Scint B.V. Body worn measurement device
US20160029968A1 (en) 2014-08-04 2016-02-04 Analog Devices, Inc. Tracking slow varying frequency in a noisy environment and applications in healthcare
US10092197B2 (en) 2014-08-27 2018-10-09 Apple Inc. Reflective surfaces for PPG signal detection
US10215698B2 (en) 2014-09-02 2019-02-26 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
JP2016083030A (en) 2014-10-23 2016-05-19 ローム株式会社 Pulse wave sensor, and semi-conductor module
US9392946B1 (en) 2015-05-28 2016-07-19 Fitbit, Inc. Heart rate sensor with high-aspect-ratio photodetector element
CN105266786A (en) 2015-06-03 2016-01-27 上海兆观信息科技有限公司 Anti-motion interference reflection-type pulse rate detection device
US9877824B2 (en) 2015-07-23 2018-01-30 Elwha Llc Intraocular lens systems and related methods
US10128401B2 (en) 2015-09-17 2018-11-13 Lite-On Opto Technology (Changzhou) Co., Ltd. Optical sensor
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
EP3448249A4 (en) 2016-04-29 2019-10-09 Fitbit, Inc. Multi-channel photoplethysmography sensor

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930518A (en) * 1988-09-26 1990-06-05 Hrushesky William J M Sinus arrhythmia monitor
US20050187481A1 (en) * 2003-12-05 2005-08-25 Feras Hatib Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis
US20060047447A1 (en) * 2004-08-24 2006-03-02 Impact Sports Technologies, Inc. System, method and device for monitoring an athlete
US20120179011A1 (en) * 2007-06-12 2012-07-12 Jim Moon Optical sensors for use in vital sign monitoring
US20120245439A1 (en) * 2008-11-20 2012-09-27 David Andre Method and apparatus for determining critical care parameters
US20100298656A1 (en) * 2009-05-20 2010-11-25 Triage Wireless, Inc. Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds
US8738118B2 (en) * 2009-05-20 2014-05-27 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US20100298651A1 (en) * 2009-05-20 2010-11-25 Triage Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US9596999B2 (en) * 2009-06-17 2017-03-21 Sotera Wireless, Inc. Body-worn pulse oximeter
US20140088385A1 (en) * 2009-06-17 2014-03-27 Sotera Wireless, Inc. Body-worn pulse oximeter
US20100324384A1 (en) * 2009-06-17 2010-12-23 Jim Moon Body-worn pulse oximeter
US8554297B2 (en) * 2009-06-17 2013-10-08 Sotera Wireless, Inc. Body-worn pulse oximeter
US8437824B2 (en) * 2009-06-17 2013-05-07 Sotera Wireless, Inc. Body-worn pulse oximeter
US8364250B2 (en) * 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110066010A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US8527038B2 (en) * 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
US8321004B2 (en) * 2009-09-15 2012-11-27 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110066044A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US20110066009A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US20120271121A1 (en) * 2010-12-29 2012-10-25 Basis Science, Inc. Integrated Biometric Sensing and Display Device
US20120229270A1 (en) * 2011-03-11 2012-09-13 Christopher Morley Wearable biofeedback system
US20140323827A1 (en) * 2012-09-04 2014-10-30 Whoop, Inc. Physiological measurement system with a multi-chip module
US20140323828A1 (en) * 2012-09-04 2014-10-30 Whoop, Inc. Physiological measurement system with motion sensing
US20140343372A1 (en) * 2012-09-04 2014-11-20 Whoop, Inc. Automatic location detection of a physiological measurement system on a user's body
US20140350356A1 (en) * 2012-09-04 2014-11-27 Whoop Inc. Determining heart rate with reflected light data
US20160374569A1 (en) * 2012-09-04 2016-12-29 Whoop, Inc. Heart rate variability with sleep detection
US20140073486A1 (en) * 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
US9241646B2 (en) * 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20160374567A1 (en) * 2015-06-25 2016-12-29 Whoop, Inc. Heart rate variability with sleep detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259707B2 (en) 2013-01-15 2022-03-01 Fitbit, Inc. Methods, systems and devices for measuring heart rate
US9717424B2 (en) 2015-10-19 2017-08-01 Garmin Switzerland Gmbh System and method for generating a PPG signal
US9801587B2 (en) 2015-10-19 2017-10-31 Garmin Switzerland Gmbh Heart rate monitor with time varying linear filtering

Also Published As

Publication number Publication date
US20140296658A1 (en) 2014-10-02
US9039614B2 (en) 2015-05-26
US11259707B2 (en) 2022-03-01
US20180092551A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US11259707B2 (en) Methods, systems and devices for measuring heart rate
US8827906B2 (en) Methods, systems and devices for measuring fingertip heart rate
US11432721B2 (en) Methods, systems and devices for physical contact activated display and navigation
US11883195B2 (en) Multimode sensor devices
US9646481B2 (en) Alarm setting and interfacing with gesture contact interfacing controls
US9044150B2 (en) Biometric monitoring device with heart rate measurement activated by a single user-gesture
US20220260389A1 (en) Methods, Systems and Devices for Generating Real-Time Activity Data Updates to Display Devices
US9042971B2 (en) Biometric monitoring device with heart rate measurement activated by a single user-gesture
US8812259B2 (en) Alarm setting and interfacing with gesture contact interfacing controls
US8768648B2 (en) Selection of display power mode based on sensor data
US8781791B2 (en) Touchscreen with dynamically-defined areas having different scanning modes
US9188460B2 (en) Methods, systems and devices for generating real-time activity data updates to display devices
US8751194B2 (en) Power consumption management of display in portable device based on prediction of user input
KR102349961B1 (en) Health care apparatus and method of operating of the apparatus
JP2017217255A (en) Biological information processing device and biological information processing method
US20230114269A1 (en) Techniques for measuring blood oxygen levels
US11850071B1 (en) Pressure sensor integration into wearable device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FITBIT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUEN, SHELTEN;VENKATRAMAN, SUBRAMANIAM;ALBERT, ERIC VAN;AND OTHERS;REEL/FRAME:035100/0578

Effective date: 20140115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION