US20170117214A1 - Semiconductor device with through-mold via - Google Patents

Semiconductor device with through-mold via Download PDF

Info

Publication number
US20170117214A1
US20170117214A1 US15/390,568 US201615390568A US2017117214A1 US 20170117214 A1 US20170117214 A1 US 20170117214A1 US 201615390568 A US201615390568 A US 201615390568A US 2017117214 A1 US2017117214 A1 US 2017117214A1
Authority
US
United States
Prior art keywords
conductive
conductive pattern
semiconductor device
substrate
package body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/390,568
Inventor
Dong Joo Park
Jin Seong Kim
Ki Wook Lee
Dae Byoung Kang
Ho Choi
Kwang Ho Kim
Jae Dong Kim
Yeon Soo JUNG
Sung Hwan Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amkor Technology Inc
Original Assignee
Amkor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amkor Technology Inc filed Critical Amkor Technology Inc
Priority to US15/390,568 priority Critical patent/US20170117214A1/en
Publication of US20170117214A1 publication Critical patent/US20170117214A1/en
Priority to US16/025,465 priority patent/US10811341B2/en
Assigned to BANK OF AMERICA, N.A., AS AGENT reassignment BANK OF AMERICA, N.A., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMKOR TECHNOLOGY, INC.
Assigned to AMKOR TECHNOLOGY, INC. reassignment AMKOR TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, DAE BYOUNG, CHO, SUNG HWAN, CHOI, HO, KIM, JAE DONG, KIM, JIN SEONG, KIM, KWANG HO, LEE, KI WOOK, PARK, DONG JOO, JUNG, YEON SOO
Priority to US16/925,599 priority patent/US11869829B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/244Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73259Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92224Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates generally to semiconductor devices, and more particularly to a semiconductor device having a thin profile and optimized electrical signal paths to provide enhanced electrical performance.
  • One method to minimize the space needed to accommodate semiconductor devices is to stack plural semiconductor dies in a single semiconductor device which is itself fabricated to be of a reduced size.
  • semiconductor devices including stacked plural semiconductor dies are typically connected to an external circuit board through the use of solder balls or lands disposed solely on a lower external surface thereof.
  • the available space for input/output terminals e.g., lands
  • POP package on package
  • PIP package in package
  • a typical PIP semiconductor device comprises various combinations of electronic components including passive devices, semiconductor dies, semiconductor packages, and/or other elements which are arranged in a horizontal direction, or stacked in a vertical direction on an underlying substrate.
  • the substrate and the electronic components are interconnected to one another through the use of conductive wires alone or in combination with conductive bumps, with such electronic components thereafter being encapsulated by a suitable encapsulant material which hardens into a package body of the PIP device.
  • the semiconductor device comprises a substrate having a conductive pattern formed thereon.
  • each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device.
  • through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate.
  • through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body.
  • the semiconductor device comprise one or more interposers which are electrically connected to the through-mold vias, and may be covered by the package body and/or disposed in spaced relation thereto.
  • the interposer may not be electrically connected to the through mold vias, but may have one or more semiconductor dies of the semiconductor device electrically connected thereto.
  • FIG. 1 is a cross-sectional view of a semiconductor device constructed in accordance with a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a semiconductor device constructed in accordance with a second embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a semiconductor device constructed in accordance with a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a semiconductor device constructed in accordance with a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a semiconductor device constructed in accordance with a fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device constructed in accordance with a sixth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a semiconductor device constructed in accordance with a seventh embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a semiconductor device constructed in accordance with an eighth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a semiconductor device constructed in accordance with a ninth embodiment of the present invention.
  • FIG. 10 is a flow chart illustrating an exemplary fabrication method for the semiconductor device shown in FIG. 1 ;
  • FIGS. 11A, 11B, 11C, 11D, 11E, 11F, 11G, and 11H are views illustrating an exemplary fabrication method for the semiconductor package shown in FIG. 1 ;
  • FIG. 12 is a flow chart illustrating an exemplary fabrication method for the semiconductor device shown in FIG. 6 ;
  • FIGS. 13A, 13B, 13C, 13D, 13E, 13F, 13G, and 13H are views illustrating an exemplary fabrication method for the semiconductor package shown in FIG. 6 .
  • FIG. 1 depicts in cross-section a semiconductor device 100 constructed in accordance with a first embodiment of the present invention.
  • the semiconductor device 100 comprises a substrate 110 which preferably has a generally quadrangular configuration.
  • the substrate 110 can be selected from common circuit boards (e.g., rigid circuit boards and flexible circuit boards) and equivalents thereof.
  • the present invention is not intended to be limited to any particular type of substrate 110 .
  • the substrate 110 may include an insulating layer 114 having opposed, generally planar top and bottom surfaces.
  • an electrically conductive pattern 112 Disposed on the top surface is an electrically conductive pattern 112 , while disposed on the bottom surface are conductive lands 113 .
  • the conductive pattern 112 and lands 113 are electrically interconnected to each other in a prescribed pattern or arrangement through the use of conductive vias 111 which extend through the insulation layer 114 in a direction generally perpendicularly between the top and bottom surfaces thereof.
  • a solder mask 115 is preferably coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114 . The solder mask 115 is used to protect portions of the lands 113 which would otherwise be exposed to the ambient environment.
  • the semiconductor device 100 further comprises a semiconductor die 120 which is electrically connected to the substrate 110 , and in particular to the conductive pattern 112 thereof.
  • the semiconductor die 120 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 121 disposed on the top surface thereof.
  • each of the bond pads 121 is depicted as projecting upwardly from the generally planar top surface of the semiconductor die 120 .
  • the semiconductor die 120 further includes a plurality of through electrodes 122 formed therein and passing between the top and bottom surfaces thereof. As seen in FIG.
  • each electrode 122 is electrically coupled to a respective one of the bond pads 121 , with the remaining end (the bottom end as viewed from the perspective shown in FIG. 1 ) extending to the bottom surface of the semiconductor die 120 .
  • each of the electrodes 122 is electrically connected to the conductive pattern 112 of the substrate 110 through the use of respective ones of a plurality of conductive bumps 130 .
  • suitable material for the conductive bumps 130 include, but are not limited to, gold, silver, copper, soldering materials or equivalents thereto.
  • the conductive bumps 130 which are formed between the semiconductor die 120 and the substrate 110 , effectively transmit electrical signals between the semiconductor die 120 and the substrate 110 .
  • an underfill material may be disposed between the bottom surface of the semiconductor die 120 and the top surface of the insulating layer 114 , the underfill material also covering portions of the conductive pattern 112 and the conductive bumps 130 .
  • the underfill material if included, would serve to protect the semiconductor die 120 by absorbing stress according to differences between the thermal expansion coefficients of the substrate 110 and the semiconductor die 120 .
  • the semiconductor die 120 may comprise a circuit that includes transistors, resistors and capacitors integrated on a silicon substrate.
  • the semiconductor device 100 further comprises a plurality of solder balls 160 which are electrically connected to the respective ones of the lands 113 of the substrate 110 in a prescribed pattern or arrangement. As seen in FIG. 1 , the solder mask 115 extends into contact with the solder balls 160 .
  • suitable materials for the solder balls 160 include, but are not limited to, eutectic solders (e.g., Sn37Pb), high-lead solders (e.g., Sn95Pb) having a high melting point, lead-free solders (e.g., SnAg, SnCu, SnZn, SnZnBi, SnAgCu and SnAgBi), or equivalents thereto.
  • the solder balls 160 are used to electrically couple the substrate 110 , and hence the semiconductor die 120 , to an external circuit.
  • the semiconductor die 120 at least portions of the semiconductor die 120 , the conductive bumps 130 , the top surface of the insulating layer 114 , and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 140 of the semiconductor device 100 .
  • the present invention is not intended to be limited to any specific material which could be used to facilitate the fabrication of the package body 140 .
  • the package body 140 can be formed from epoxy molding compounds or equivalents thereto.
  • the fully formed package body 140 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the package body 140 includes a plurality of through-mold vias 150 formed therein.
  • Each through-mold via (TMV) 150 extends from the top surface of the package body 140 to a respective one of the bond pads 121 disposed on the top surface of the semiconductor die 120 .
  • Each TMV 150 is preferably formed by creating a hole in the package body 140 using a laser or an etching solution, and filling such hole with a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • each TMV 150 may be facilitated by the completion of a reflow process subsequent to placing a ball fabricated from one of the aforementioned materials on top of the hole formed in the package body 140 through the use of one of the aforementioned processes.
  • each TMV 150 has a generally conical configuration. More particularly, each TMV 150 is of a first diameter at a respective one of the bond pads 121 , and a second diameter at the top surface of the package body 140 , the second diameter exceeding the first diameter. As such, each TMV 150 defines a continuous side wall which is inclined at a predetermined angle relative to the top surface of the package body 140 .
  • each TMV 150 creates an electrically conductive path from the semiconductor die 120 to the top surface of the package body 140 , whereas the conductive bumps 130 , substrate 110 and solder balls 160 collectively define an electrically conductive path which extends from the semiconductor die 120 in an opposite direction, such as toward an underlying substrate to which the semiconductor device 110 may ultimately be electrically connected through the use of the solder balls 160 .
  • each TMV 150 may have a shape or configuration differing from that shown in FIG. 1 without departing from the spirit and scope of the present invention.
  • the semiconductor device 100 is particularly suited for having another semiconductor device stacked thereon and electrically connected thereto.
  • the lands or solder balls of a second semiconductor device can be electrically coupled to respective ones of the TMV's 150 exposed in the top surface of the package body 140 .
  • the end of each TMV 150 extending to the top surface of the package body 140 have a generally concave configuration to partially accommodate the solder balls of a conventional BGA (Ball Grid Array) semiconductor device which may be stacked upon the semiconductor device 100 , thus reducing the overall height or profile of the stack.
  • BGA Ball Grid Array
  • Another semiconductor device suitable for stacking upon the semiconductor device 100 is an LGA (Land Grid Array) device, the stack comprising the semiconductor device 100 and the LGA device also being of comparatively reduced thickness due to the use of the TMV's 150 to facilitate the electrical interconnection therebetween.
  • LGA Land Grid Array
  • FIG. 10 there is provided a flow chart which sets forth an exemplary method for fabricating the semiconductor device 100 of the present invention shown in FIG. 1 .
  • the method comprises the steps of preparing the substrate (S 1 ), preparing the semiconductor die (S 2 ), forming conductive bumps on the semiconductor die (S 3 ), attaching and electrically connecting the semiconductor die to the substrate (S 4 ), encapsulation to form a package body (S 5 ), forming TMV's in the package body (S 6 ), and the connection of solder balls to the substrate (S 7 ).
  • FIGS. 11A-11H provide illustrations corresponding to these particular steps, as will be discussed in more detail below.
  • the substrate 110 having the above-described structural attributes is provided in the initial step S 1 of the fabrication process for the semiconductor device 100 .
  • a solder mask 115 may be coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114 .
  • the semiconductor die 120 is prepared. More particularly, as shown in FIG. 11B , the semiconductor die 120 is formed to include the aforementioned bond pads 121 on the top surface thereof, and the through-electrodes 122 which pass through the semiconductor die 120 between the top and bottom surfaces thereof, the electrodes 122 being electrically coupled to respective ones of the bond pads 121 as indicated above. Thereafter, as illustrated in FIG. 11C , step S 3 is completed wherein the conductive bumps 130 are electrically connected to those ends of the through electrodes 122 opposite those ends electrically coupled to the bond pads 121 . Thus, the electrodes 122 effectively electrically couple the bond pads 121 to respective ones of the conductive bumps 130 .
  • the semiconductor die 120 is electrically connected to the substrate 110 . More particularly, the conductive bumps 130 electrically connected to the semiconductor die 120 as described above in relation to step S 3 are each electrically connected to the conductive pattern 112 of the substrate 110 . As also indicated above, an underfill material may be interposed between the semiconductor die 120 and the substrate 110 , such underfill material thus covering or encapsulating at least portions of the conductive bumps 130 .
  • the fully formed package body 140 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the encapsulation step S 5 can be carried out by transfer molding using a mold or dispensing molding using a dispenser.
  • the TMV's 150 are formed in the package body 140 . More particularly, the formation of the TMV's 150 comprises the initial step of forming vias or holes 140 a in the package body 140 as shown in FIG. 11F . Each of the holes 140 a extends from the top surface of the package body 140 to a respective one of the bond pads 121 . As indicated above, the holes 140 a may be formed through the use of a laser drilling or chemical etching process. After being formed in the package body 140 in the aforementioned manner, each of the holes 140 a is filled with a conductive metal material as shown in FIG. 11G , thus completing the formation of the TMV's 150 .
  • each hole 140 a with the metal material may be accomplished through the completion of a reflow process subsequent to the placement of a ball fabricated from a suitable conductive metal material upon that end of each hole 140 extending to the top surface of the package body 140 .
  • the solder balls 160 are electrically connected to respective ones of the lands 113 of the substrate 110 .
  • the solder mask 115 may extend into contact with the solder balls 160 .
  • the solder balls 160 may be fabricated from the materials described above in relation thereto.
  • FIG. 2 there is shown a semiconductor device 200 constructed in accordance with a second embodiment of the present invention.
  • the semiconductor device 200 is substantially similar to the above-described semiconductor device 100 , with only the differences between the semiconductor devices 200 , 100 being described below.
  • each of the TMV's 250 extends from the top surface of the package body 140 to a corresponding portion of the conductive pattern 112 of the substrate 110 .
  • Each TMV 250 is preferably fabricated using the same process described above in relation to each TMV 150 .
  • the inclusion of the TMV's 250 increases the available number of input/output terminals of the semiconductor device 200 in comparison to the semiconductor device 100 .
  • the semiconductor device 300 comprises the above-described substrate 110 .
  • the semiconductor device 300 comprises a first (upper) semiconductor die 320 which is attached to the top surface of the insulating layer 114 of the substrate 110 (as viewed from the perspective shown in FIG. 3 ) through the use of an adhesive layer 323 .
  • the first semiconductor die 320 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 321 disposed on the top surface thereof.
  • the bottom surface of the first semiconductor die 320 is that surface which is attached to the substrate 110 through the use of the adhesive layer 323 .
  • each conductive wire 330 may be formed by the completion of a normal wire bonding method, that is, by forming a ball bond at the corresponding bond pad 321 of the first semiconductor die 320 , and then forming a stitch bonding region at a prescribed portion of the conductive pattern 112 of the substrate 110 .
  • each conductive wire 330 may be formed by a reverse loop wire bonding method, that is, by forming a ball bond at the corresponding bond pad 321 and corresponding portion of the conductive pattern 112 , and then connecting such ball bonds to each other.
  • the semiconductor device 300 includes a second (lower) semiconductor die 325 which is also electrically connected to the substrate 110 , and in particular the lands 113 thereof.
  • the second semiconductor die 325 defines opposed, generally planar top and bottom surfaces, and includes a plurality of bond pads 326 on that surface which defines the top surface as viewed from the perspective shown in FIG. 3 .
  • each of the bond pads 326 of the second semiconductor die 325 is electrically connected to a respective one of the lands 113 through the use of respective ones of a plurality of conductive bumps 331 .
  • the conductive bumps 331 are each preferably fabricated from the same material described above in relation to the conductive bumps 130 of the semiconductor device 100 .
  • the package body 340 includes a plurality of through-mold vias (TMV's) 350 disposed therein. As seen in FIG. 3 , certain ones of the TMV's 350 extend from the top surface of the package body 340 to a corresponding portion of the conductive pattern 112 of the substrate 110 . The remaining TMV's 350 extend from the bottom surface of the package body 340 to respective ones of the lands 113 of the substrate 110 .
  • Each TMV 350 is identically configured to the above-described TMV's 250 of the semiconductor device 200 , and is preferably fabricated using the same process described above in relation to each TMV 150 of the semiconductor device 100 .
  • each TMV 350 extending to the top surface and/or the bottom surface of the package body 340 may have a generally concave configuration to partially accommodate solder balls of a conventional BGA semiconductor device which may be stacked on the top surface and/or the bottom surface of the semiconductor device 300 .
  • the inclusion of the TMV's 350 in the semiconductor device 300 makes the semiconductor device 300 particularly suited for having one or more additional semiconductor devices stacked on the top and/or bottom surfaces thereof.
  • the semiconductor device 400 comprises the above-described substrate 110 . Additionally, in the semiconductor device 400 , the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110 . Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110 , the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160 .
  • the semiconductor device 400 comprises a first (lower) semiconductor die 320 which is electrically connected to the conductive pattern 112 of the substrate 110 .
  • the first semiconductor die 420 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 421 disposed on the bottom surface thereof.
  • Each of the bond pads 421 is electrically connected to the conductive pattern 112 through the use of a respective one of a plurality of conductive bumps 430 .
  • the conductive bumps 430 are each preferably fabricated from the same material described above in relation to the conductive bumps 130 of the semiconductor device 100 .
  • the semiconductor device 400 further comprises an interposer 423 which is attached to the top surface of the first semiconductor die 420 through the use of an adhesive layer 415 .
  • the interposer 423 includes an interposer body 424 having a first conductive pattern 423 a formed within the top surface thereof, a second conductive pattern 423 b formed therein, and a third conductive pattern 423 c which is also formed therein and electrically connects the first and second conductive patterns 423 a , 423 b to each other. That surface of the body 424 disposed furthest from the first conductive pattern 423 a is secured to the top surface of the first semiconductor die 420 through the use of the aforementioned adhesive layer 413 . As seen in FIG.
  • the first and second conductive patterns 423 a , 423 b are formed within the body 424 of the interposer 423 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 423 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second patterns 423 a , 423 b extend.
  • the semiconductor device 400 further comprises a second (upper) semiconductor die 425 which is electrically connected to the interposer 423 , and in particular to the first conductive pattern 423 a formed on the body 424 thereof.
  • the second semiconductor die 425 defines opposed, generally planar top and bottom surfaces.
  • Disposed on the bottom surface of the first semiconductor die 425 is a plurality of conductive terminals or bond pads 426 .
  • the bond pads 426 are each electrically connected to the first conductive pattern 423 a through the use of respective ones of a plurality of conductive bumps 431 which are each preferably fabricated from the same material used in relation to the conductive bumps 430 . As seen in FIG.
  • the second and third conductive patterns 423 b , 423 c of the interposer 423 are configured to effectively route signals between a portion of the first conductive pattern 423 a to which the second semiconductor die 425 is electrically connected to another portion of the first conductive pattern 423 a which is located outwardly beyond the lateral side surfaces of the second semiconductor die 425 .
  • a peripheral portion of the interposer 423 protrudes beyond the lateral side surfaces of each of the first and second semiconductor dies 420 , 425 .
  • a portion of the first conductive pattern 423 a is exposed in the body 424 of such peripheral portion of the interposer 423 .
  • the interposer 423 (and hence the second semiconductor die 425 ) is electrically connected to the conductive pattern 112 of the substrate 110 through the use of one or more electrically conductive wires 432 . More particularly, one end of each conductive wire 432 extends and is electrically connected to a portion of the first conductive pattern 423 a which is exposed in the peripheral portion of the substrate 423 , and in particular the body 424 thereof. The remaining, opposite end of the conductive wire 432 is electrically connected to a prescribed portion of the conductive pattern 112 of the substrate 110 .
  • the second semiconductor die 425 is capable of receiving electrical signals from and outputting electrical signals to an external circuit via the interposer 423 , conductive wire(s) 432 , and substrate 110 .
  • the semiconductor device 400 at least portions of the first and second semiconductor dies 420 , 425 , the conductive bumps 430 , 431 , the interposer 423 , the conductive wires 432 , the insulating layer 114 of the substrate 110 , and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 440 of the semiconductor device 100 .
  • the package body 440 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100 .
  • the fully formed package body 440 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the package body 440 preferably includes a plurality of through-mold vias (TMV's) 450 formed therein. As seen in FIG. 4 , each of the TMV's 450 extends from the top surface of the package body 440 to a corresponding portion of the conductive pattern 112 of the substrate 110 .
  • Each TMV 450 is identically configured to the above-described TMV's 250 , 350 , and is preferably fabricated using the same process described above in relation to each TMV 150 .
  • the semiconductor device 500 comprises the above-described substrate 110 . Additionally, in the semiconductor device 500 , the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110 . Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110 , the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160 .
  • the semiconductor device 500 also includes a first semiconductor die 120 which is identical to the above-described semiconductor 120 of the semiconductor device 100 , and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 130 in the same manner described above in relation to the semiconductor device 100 .
  • a plurality of conductive balls 551 is also electrically connected to the conductive pattern 112 of the substrate 110 .
  • the conductive balls 551 are electrically connected to a peripheral portion of the conductive pattern 112 .
  • Each of the conductive balls 551 is preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • the semiconductor device 500 further comprises an interposer 523 which is disposed on the top surface of the first semiconductor die 420 and electrically connected to the first semiconductor die 120 .
  • the interposer 523 includes an interposer body 524 having a first conductive pattern 523 a formed within the top surface thereof, a second conductive pattern 523 b formed therein, and a third conductive pattern 523 c which is also formed therein and electrically connects the first and second conductive patterns 523 a , 523 b to each other.
  • the first and second conductive patterns 523 a , 523 b are formed within the body 524 of the interposer 523 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 523 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 523 a , 523 b extend.
  • the second conductive pattern 523 b of the interposer 523 is electrically connected to the bond pads 121 of the first semiconductor die 121 .
  • the interposer 523 is sized relative to the first semiconductor die 120 such that the side surfaces of the body 524 extend in substantially co-planar relation to respective side surfaces of the first semiconductor die 120 .
  • the semiconductor device 500 further comprises the second (upper) semiconductor die 425 described above in relation to the semiconductor device 400 .
  • the second semiconductor die 425 is electrically connected to the interposer 523 , and in particular to the first conductive pattern 523 a formed on the body 524 thereof.
  • the bond pads 426 of the second semiconductor die 425 are each electrically connected to the first conductive pattern 523 a through the use of respective ones of the aforementioned conductive bumps 431 .
  • the side surfaces of the body 524 of the interposer 523 also extend in substantially co-planar to respective side surfaces of the second semiconductor die 425 .
  • the side surfaces of the body 524 of the interposer 523 extend in generally co-planar relation to respective ones of the lateral side surfaces of each of the first and second semiconductor dies 120 , 425 .
  • the semiconductor device 500 at least portions of the first and second semiconductor dies 120 , 425 , the conductive bumps 130 , 431 , the interposer 523 , the conductive balls 551 , the insulating layer 114 of the substrate 110 , and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 540 of the semiconductor device 500 .
  • the package body 540 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100 .
  • the fully formed package body 540 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the package body 140 preferably includes a plurality of through-mold vias (TMV's) 550 formed therein.
  • TMV's through-mold vias
  • Each TMV 550 includes a first region which is defined by a respective one of the conductive balls 551 electrically connected to the conductive pattern 112 of the substrate 110 .
  • each TMV 550 includes a second region 552 which extends from the top surface of the package body 140 to a respective one of the conductive balls 551 .
  • the second region 552 of each TMV 550 is identically configured to the above-described TMV's 250 , 350 , 450 , and is preferably fabricated using the same process described above in relation to each TMV 150 .
  • each TMV 550 is defined by a metal-filled hole which is formed in the package body 540 to extend from the top surface thereof to a corresponding conductive ball 551 (i.e., the first region of the same TMV 550 ).
  • each TMV 550 (comprising the second region 552 and the first region or conductive ball 551 ) extends from the top surface of the package body 540 to (and in electrical communication with) the conductive pattern 112 .
  • each second region 552 of the TMV's 550 extends to respective ones of the conductive balls 551 rather than to the conductive pattern 112 , each second region 552 is of a shorter height in comparison to the TMV's 450 included in the semiconductor device 400 , though being fabricated in the same manner as indicated above. Due to the shortened height of height of the second regions 552 of the TMV's 550 , including the holes used to form the same, potential adverse effects on the first and second semiconductor dies 120 , 425 attributable to the formation of the holes is reduced, thus improving the reliability of the semiconductor device 500 .
  • the semiconductor device 600 comprises the above-described substrate 110 . Additionally, in the semiconductor device 600 , the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110 . Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110 , the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160 .
  • the semiconductor device 600 also includes a semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400 , and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400 .
  • the semiconductor die 420 In the semiconductor device 600 , at least portions of the semiconductor die 420 , the conductive bumps 430 , the insulating layer 114 of the substrate 110 , and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 640 of the semiconductor device 600 .
  • the package body 640 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100 .
  • the fully formed package body 640 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the generally planar top surface of the semiconductor die 420 is preferably exposed in and substantially flush with the top surface of the package body 640 .
  • the package body 640 preferably includes a plurality of through-mold vias (TMV's) 650 formed therein.
  • TMV 650 preferably comprises a conductive ball which is electrically connected to a peripheral portion of the conductive pattern 112 .
  • the conductive balls used to define the TMV's 650 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • the package body 640 is formed in a manner wherein portions of the conductive balls used to form the TMV's 650 protrude from the top surface of the package body 640 in the manner shown in FIG. 6 .
  • each TMV 650 slightly exceeds the height or thickness of the package body 640 . It is also contemplated that the package body 640 may be fabricated by attaching a mold film to the substrate 110 , such mold film partially covering the semiconductor die 420 and TMV's 650 in the aforementioned manner.
  • the semiconductor device 600 further comprises an interposer 623 which is disposed on and electrically connected to the TMV's 650 .
  • the interposer 623 includes an interposer body 624 having a first conductive pattern 623 a formed within the top surface thereof, a second conductive pattern 623 b formed therein, and a third conductive pattern 623 c which is also formed therein and electrically connects the first and second conductive patterns 623 a , 623 b to each other.
  • the first and second conductive patterns 623 a , 623 b are formed within the body 624 of the interposer 623 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 623 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 623 a , 623 b extend.
  • the second conductive pattern 623 b of the interposer 623 is electrically connected to the exposed portions of the TMV's 650 in the manner shown in FIG. 6 .
  • a narrow space or gap 615 is defined between the top surface of the package body 640 (as well as the top surface of the semiconductor die 420 ) and the interposer 623 (i.e., the bottom surface of the body 624 ).
  • the formation of the gap 615 between the package body 640 and the interposer 623 enhances the ability of the semiconductor die 420 to dissipate heat outside of the semiconductor device 600 .
  • the inclusion of the interposer 623 in the semiconductor device 600 allows a wiring pattern of the TMV's 650 to be selectively redistributed using the interposer 623 .
  • the interposer 623 is sized relative to the package body 640 such that the side surfaces of the body 624 extend in substantially co-planar relation to respective side surfaces of the package body 640 .
  • FIG. 12 there is provided a flow chart which sets forth an exemplary method for fabricating the semiconductor device 600 of the present invention shown in FIG. 6 .
  • the method comprises the steps of preparing the substrate (S 1 ), preparing the semiconductor die (S 2 ), forming conductive bumps on the semiconductor die (S 3 ), attaching and electrically connecting the semiconductor die to the substrate (S 4 ), forming TMV's on the substrate (S 5 ), encapsulation to form a package body (S 6 ), attaching an interposer to the TMV's (S 7 ), and the connection of solder balls to the substrate (S 8 ).
  • FIGS. 13A-13H provide illustrations corresponding to these particular steps, as will be discussed in more detail below.
  • the substrate 110 having the above-described structural attributes is provided in the initial step S 1 of the fabrication process for the semiconductor device 600 .
  • a solder mask 115 may be coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114 .
  • the semiconductor die 420 is prepared. More particularly, as shown in FIG. 13B , the semiconductor die 420 is formed to include the aforementioned bond pads 421 on the bottom surface thereof. As shown in FIG. 13B , the bond pads 421 are formed on the bottom surface of the semiconductor die 420 so as to protrude therefrom. In this regard, those of ordinary skill in the art will recognize that the bond pads 421 may alternatively be formed so as to be at least partially embedded in the semiconductor die 420 and to extend in substantially flush relation to the bottom surface thereof. Thereafter, as illustrated in FIG. 13C , step S 3 is completed wherein the conductive bumps 430 are electrically connected to respective ones of the bond pads 121 .
  • the semiconductor die 420 is electrically connected to the substrate 110 . More particularly, the conductive bumps 430 electrically connected to the semiconductor die 420 as described above in relation to step S 3 are each electrically connected to the conductive pattern 112 of the substrate 110 , and hence to the lands 113 .
  • the TMV's 650 are formed on the substrate 110 . More particularly, as explained above, the formation of the TMV's 650 is facilitated by forming the aforementioned conductive balls on respective peripheral portions of the conductive pattern 112 of the substrate 110 . Thus, the TMV's 650 extend at least partially about the periphery of the semiconductor die 420 in the manner shown in FIG. 13E .
  • the fully formed package body 640 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the package body 640 is formed such that the top surface of the semiconductor die 420 extends in substantially flush relation to the top surface of the package body, with the TMV's 650 protruding slightly beyond the top surface of the package body 640 .
  • the encapsulation step S 6 can be carried out by transfer molding using a mold, dispensing molding using a dispenser, or through the use of the aforementioned mold film.
  • the interposer 623 is electrically connected to the TMV's 650 . More particularly, the second conductive pattern 623 b of the interposer 623 is electrically connected to the exposed portions of the TMV's 650 such that the aforementioned gap 615 is defined between the bottom surface of the body 624 of the interposer 623 and the top surface of the package body 640 .
  • the solder balls 160 are electrically connected to respective ones of the lands 113 of the substrate 110 .
  • the solder mask 115 may extend into contact with the solder balls 160 .
  • the solder balls 160 may be fabricated from the materials described above in relation thereto.
  • the semiconductor device 700 comprises the above-described substrate 110 . Additionally, in the semiconductor device 700 , the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110 . Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110 , the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160 .
  • the semiconductor device 700 also includes a first (lower) semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400 , and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400 .
  • a plurality of conductive balls (which ultimately define lower through-mold vias or TMV's 650 as described below) are electrically connected to a peripheral portion of the first conductive pattern 112 .
  • the conductive balls used to define the TMV's 650 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • the semiconductor device 700 further comprises a first (lower) interposer 723 which is disposed on and electrically connected to the conductive balls ultimately defining the TMV's 650 .
  • the first interposer 723 includes an interposer body 724 having a first conductive pattern 723 a formed within the top surface thereof, a second conductive pattern 723 b formed therein, and a third conductive pattern 723 c which is also formed therein and electrically connects the first and second conductive patterns 723 a , 723 b to each other. As seen in FIG.
  • the first and second conductive patterns 723 a , 723 b are formed within the body 724 of the first interposer 723 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 723 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 723 a , 723 b extend.
  • the second conductive pattern 723 b of the first interposer 723 is electrically connected to the conductive balls ultimately defining the TMV's 650 in the manner shown in FIG. 7 .
  • the first interposer 723 and in particular a central portion of the bottom surface of the body 724 thereof, is attached to the top surface of the first semiconductor die through the use of an adhesive layer 415 .
  • the semiconductor device 700 also includes a second (upper) semiconductor die 425 which is identical to the above-described semiconductor 425 of the semiconductor device 400 , and is electrically connected to a central portion of the first conductive pattern 723 a of the first interposer 723 through the use of the conductive bumps 431 in the same manner described above in relation to electrical connection of the second semiconductor die 425 of the semiconductor device 400 to the first conductive pattern 423 a of the interposer 423 thereof.
  • a plurality of conductive balls (which ultimately define upper through-mold vias or TMV's 750 as described below) are electrically connected to a peripheral portion of the first conductive pattern 723 a of the first interposer 723 .
  • the conductive balls used to define the TMV's 750 are also preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • the semiconductor device 700 at least portions of the first and second semiconductor dies 420 , 425 , the first interposer 723 , the conductive bumps 430 , the conductive balls ultimately defining the TMV's 650 , 750 , the insulating layer 114 of the substrate 110 , and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 740 of the semiconductor device 700 .
  • the package body 740 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100 .
  • the fully formed package body 740 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • the generally planar top surface of the second semiconductor die 425 is preferably exposed in and substantially flush with the top surface of the package body 740 .
  • the TMVs 650 are defined by the encapsulation of the conductive balls electrically connected to and extending between the conductive pattern 112 of the substrate 110 and the second conductive pattern 723 b of the interposer 723 .
  • the upper TMVs 750 are defined by the partial encapsulation of the conductive balls electrically connected to the first conductive pattern 723 a of the interposer 723 with the package body 740 .
  • the package body 740 is formed in a manner wherein portions of the conductive balls used to form the TMV's 750 protrude from the top surface of the package body 740 in the manner shown in FIG. 7 .
  • each TMV 750 slightly exceeds the height or thickness of the package body 740 .
  • each TMV 650 , 750 preferably comprises a respective one of the aforementioned conductive balls which are each electrically connected to a peripheral portion of the first interposer 723 .
  • the semiconductor device 700 further comprises a second (upper) interposer 770 which is disposed on and electrically connected to the TMV's 750 .
  • the second interposer 770 includes an interposer body 774 having a first conductive pattern 771 formed within the top surface thereof, a second conductive pattern 772 formed therein, and a third conductive pattern 773 which is also formed therein and electrically connects the first and second conductive patterns 771 , 772 to each other.
  • the first and second conductive patterns 771 , 772 are formed within the body 774 of the second interposer 770 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 773 is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 771 , 772 extend.
  • the second conductive pattern 772 of the second interposer 770 is electrically connected to the exposed portions of the TMV's 750 in the manner shown in FIG. 7 .
  • a narrow space or gap 715 is defined between the top surface of the package body 740 (as well as the top surface of the second semiconductor die 425 ) and the second interposer 770 (i.e., the bottom surface of the body 774 ).
  • the formation of the gap 715 between the package body 740 and the second interposer 770 enhances the ability of the second semiconductor die 425 to dissipate heat outside of the semiconductor device 700 .
  • the inclusion of the second interposer 770 in the semiconductor device 700 allows a wiring pattern of the TMV's 750 to be selectively redistributed using the interposer 770 .
  • FIG. 8 there is shown a semiconductor device 800 constructed in accordance with an eighth embodiment of the present invention.
  • the semiconductor device 800 is substantially similar to the above-described semiconductor device 700 , with only the differences between the semiconductor devices 800 , 700 being described below.
  • the semiconductor devices 800 , 700 lies in the omission of the above-described second interposer 770 in the semiconductor device 800 . Additionally, in the semiconductor device 800 , the package body 740 described above in relation to the semiconductor device 700 is substituted with the package body 840 which is formed to completely cover the top surface of the second semiconductor die 425 . This is in contrast to the semiconductor device 700 wherein the top surface of the second semiconductor die 425 is exposed in the top surface of the package body 740 .
  • each of the TMV's 850 bears substantial structural similarity to the TMV's 550 described above in relation to the semiconductor device 500 . More particularly, as seen in FIG. 8 , each TMV 850 includes a first region which is defined by a respective one of a plurality of conductive balls 851 which are each electrically connected to a peripheral portion of the first conductive pattern 723 a of the interposer 723 .
  • each TMV 850 includes a second region 852 which extends from the top surface of the package body 840 to a respective one of the conductive balls 851 .
  • the second region 852 of each TMV 850 is identically configured to the above-described TMV's 250 , 350 , 450 , 550 , and is preferably fabricated using the same process described above in relation to each TMV 150 .
  • the second region 852 of each TMV 850 is defined by a metal-filled hole which is formed in the package body 840 to extend from the top surface thereof to a corresponding conductive ball 851 (i.e., the first region of the same TMV 850 ).
  • each TMV 850 (comprising the second region 852 and the first region or conductive ball 851 ) extends from the top surface of the package body 840 to (and in electrical communication with) the first conductive pattern 723 a of the interposer 723 .
  • the semiconductor device 900 comprises the above-described substrate 110 . Additionally, in the semiconductor device 900 , the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110 . Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110 , the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160 .
  • the semiconductor device 900 also includes a first (lower) semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400 , and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400 .
  • the semiconductor device 900 further comprises a second (upper) semiconductor die 925 .
  • the second semiconductor die 925 defines opposed, generally planar top and bottom surfaces, and includes a plurality of conductive terminals or bond pads 926 disposed on the top surface thereof when viewed from the perspective shown in FIG. 9 .
  • the bottom surface of the second semiconductor die 925 is attached to the top surface of the first semiconductor die 420 through the use of an intervening adhesive layer 415 .
  • the first and second semiconductor dies 420 , 925 are preferably sized relative to each other such that the side surfaces thereof extend in substantially flush relation to each other when the first and second semiconductor dies 420 , 925 are attached to each other through the use of the adhesive layer 415 .
  • each of the bond pads 926 is a respective one of a plurality of conductive bumps 931 , each of which is preferably fabricated from the same material used to facilitate the fabrication of conductive bumps 430 used to electrically connect the first semiconductor die 420 to the conductive pattern 112 of the substrate 110 .
  • the semiconductor device 900 at least portions of the first and second semiconductor dies 420 , 925 , the conductive bumps 430 , 931 , the insulating layer 114 of the substrate 110 and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 940 of the semiconductor device 900 .
  • the package body 940 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100 .
  • the fully formed package body 940 preferably includes a generally planar top surface, and generally planar side surfaces which extend in substantially flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110 .
  • portions of each of the conductive bumps 931 preferably protrude from the top surface of the package body 940 .
  • the package body 940 preferably includes a plurality of through-mold vias (TMV's) 950 formed therein.
  • TMV 950 preferably comprises a conductive ball which is electrically connected to a peripheral portion of the conductive pattern 112 .
  • the conductive balls used to define the TMV's 950 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • the package body 940 is formed in a manner wherein portions of the conductive balls used to form the TMV's 950 protrude from the top surface of the package body 940 in the manner shown in FIG. 9 .
  • the height of each TMV 950 slightly exceeds the height or thickness of the package body 940 .
  • the semiconductor device 900 further comprises an interposer 970 which is disposed on and electrically connected to the conductive bumps 931 and the TMV's 950 .
  • the interposer 970 includes an interposer body 974 having a first conductive pattern 971 formed within the top surface thereof, a second conductive pattern 972 formed therein, and a third conductive pattern 973 which is also formed therein and electrically connects the first and second conductive patterns 971 , 972 to each other.
  • the first and second conductive patterns 971 , 972 are formed within the body 974 of the interposer 623 so as to extend along respective ones of a spaced, generally parallel pair of planes.
  • the third conductive pattern 973 is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 971 , 972 extend.
  • the second conductive pattern 972 of the interposer 970 is electrically connected to the exposed portions of the conductive bumps 931 and the TMV's 950 in the manner shown in FIG. 9 .
  • no space or gap such as the aforementioned gaps 615 , 715 is defined between the interposer 970 and the top surface of the package body 940 .
  • the interposer 970 and in particular the bottom surface of the body 974 thereof, is in direct contact with the top surface of the package body 940 .
  • the inclusion of the interposer 970 in the semiconductor device 900 allows a wiring pattern of the conductive bumps 931 and the TMV's 950 to be selectively redistributed using the interposer 970 .
  • the interposer 970 is sized relative to the package body 940 such that the side surfaces of the body 974 extend in substantially co-planar relation to respective side surfaces of the package body 940 .

Abstract

In accordance with the present invention, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body. Other embodiments of the semiconductor device comprise one or more interposers which are electrically connected to the through-mold vias, and may be covered by the package body and/or disposed in spaced relation thereto. In yet other embodiments of the semiconductor device, the interposer may not be electrically connected to the through mold vias, but may have one or more semiconductor dies of the semiconductor device electrically connected thereto.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of co-pending U.S. patent application Ser. No. 12/348,813 filed on Jan. 5, 2009, which is expressly incorporated by reference herein.
  • STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • Not Applicable
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention relates generally to semiconductor devices, and more particularly to a semiconductor device having a thin profile and optimized electrical signal paths to provide enhanced electrical performance.
  • 2. Description of the Related Art
  • The variety of electronic devices utilizing semiconductor devices or packages has grown dramatically in recent years. These electronic devices include cellular phones, portable computers, etc. Each of these electronic devices typically includes a printed circuit board on which a significant number of such semiconductor devices or packages are secured to provide multiple electronic functions. These electronic devices are typically manufactured in reduced sizes and at reduced costs, which results in increased consumer demand. However, even though many semiconductor devices have been miniaturized, space on a printed circuit board remains limited and precious. Thus, there is a continuing need to develop semiconductor device designs (e.g., semiconductor devices which are of increasingly reduced thickness) to maximize the number of semiconductor devices that may be integrated into an electronic device, yet minimize the space needed to accommodate these semiconductor devices. The need also exists for new semiconductor device designs to possess increased functionality, despite the smaller size of slimmer/thinner profiles thereof.
  • One method to minimize the space needed to accommodate semiconductor devices is to stack plural semiconductor dies in a single semiconductor device which is itself fabricated to be of a reduced size. However, semiconductor devices including stacked plural semiconductor dies are typically connected to an external circuit board through the use of solder balls or lands disposed solely on a lower external surface thereof. In this regard, when the size of the semiconductor device itself is reduced, the available space for input/output terminals (e.g., lands) is restricted. As a result, when the size of the semiconductor device is reduced, it is often difficult to realize various functions thereof due the insufficient availability of input/output terminals. Stated another way, when plural semiconductor dies are stacked in a single semiconductor device, the need arises for an increased number of input/output terminals for inputting/outputting electrical signals to each semiconductor die, though the smaller size of the semiconductor device creates limits in the available space for increasing the number of input/output terminals. Thus, the problem that arises is that is often difficult to form the input/output terminals when the size of the semiconductor device is reduced. When the input/output terminals are formed using solder balls, this particular problem becomes even more severe due to the volume of solder balls.
  • In an effort to address the aforementioned problems, there has been developed POP (package on package) technology to stack a semiconductor device on another semiconductor device, and PIP (package in package) technology to install a semiconductor device in another semiconductor device. A typical PIP semiconductor device comprises various combinations of electronic components including passive devices, semiconductor dies, semiconductor packages, and/or other elements which are arranged in a horizontal direction, or stacked in a vertical direction on an underlying substrate. In many PIP devices, the substrate and the electronic components are interconnected to one another through the use of conductive wires alone or in combination with conductive bumps, with such electronic components thereafter being encapsulated by a suitable encapsulant material which hardens into a package body of the PIP device. However, the drawbacks of both POP and PIP technology is that it is difficult to secure and stack the input/output terminals through the use of either technology as a result of the input/output terminals of the semiconductor device typically being formed only on one surface (e.g., the lower surface) thereof. The present invention addresses these and other shortcomings of prior art POP and PIP devices, as will be described in more detail below.
  • BRIEF SUMMARY
  • In accordance with the present invention, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body. Other embodiments of the semiconductor device comprise one or more interposers which are electrically connected to the through-mold vias, and may be covered by the package body and/or disposed in spaced relation thereto. In yet other embodiments of the semiconductor device, the interposer may not be electrically connected to the through mold vias, but may have one or more semiconductor dies of the semiconductor device electrically connected thereto.
  • The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
  • FIG. 1 is a cross-sectional view of a semiconductor device constructed in accordance with a first embodiment of the present invention;
  • FIG. 2 is a cross-sectional view of a semiconductor device constructed in accordance with a second embodiment of the present invention;
  • FIG. 3 is a cross-sectional view of a semiconductor device constructed in accordance with a third embodiment of the present invention;
  • FIG. 4 is a cross-sectional view of a semiconductor device constructed in accordance with a fourth embodiment of the present invention;
  • FIG. 5 is a cross-sectional view of a semiconductor device constructed in accordance with a fifth embodiment of the present invention;
  • FIG. 6 is a cross-sectional view of a semiconductor device constructed in accordance with a sixth embodiment of the present invention;
  • FIG. 7 is a cross-sectional view of a semiconductor device constructed in accordance with a seventh embodiment of the present invention;
  • FIG. 8 is a cross-sectional view of a semiconductor device constructed in accordance with an eighth embodiment of the present invention;
  • FIG. 9 is a cross-sectional view of a semiconductor device constructed in accordance with a ninth embodiment of the present invention;
  • FIG. 10 is a flow chart illustrating an exemplary fabrication method for the semiconductor device shown in FIG. 1;
  • FIGS. 11A, 11B, 11C, 11D, 11E, 11F, 11G, and 11H are views illustrating an exemplary fabrication method for the semiconductor package shown in FIG. 1;
  • FIG. 12 is a flow chart illustrating an exemplary fabrication method for the semiconductor device shown in FIG. 6; and
  • FIGS. 13A, 13B, 13C, 13D, 13E, 13F, 13G, and 13H are views illustrating an exemplary fabrication method for the semiconductor package shown in FIG. 6.
  • Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings wherein the showings are for purposes of illustrating various embodiments of the present invention and not for purposes of limiting the same, FIG. 1 depicts in cross-section a semiconductor device 100 constructed in accordance with a first embodiment of the present invention. The semiconductor device 100 comprises a substrate 110 which preferably has a generally quadrangular configuration. The substrate 110 can be selected from common circuit boards (e.g., rigid circuit boards and flexible circuit boards) and equivalents thereof. In this regard, the present invention is not intended to be limited to any particular type of substrate 110. By way of example and not by way of limitation, the substrate 110 may include an insulating layer 114 having opposed, generally planar top and bottom surfaces. Disposed on the top surface is an electrically conductive pattern 112, while disposed on the bottom surface are conductive lands 113. The conductive pattern 112 and lands 113 are electrically interconnected to each other in a prescribed pattern or arrangement through the use of conductive vias 111 which extend through the insulation layer 114 in a direction generally perpendicularly between the top and bottom surfaces thereof. A solder mask 115 is preferably coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114. The solder mask 115 is used to protect portions of the lands 113 which would otherwise be exposed to the ambient environment.
  • The semiconductor device 100 further comprises a semiconductor die 120 which is electrically connected to the substrate 110, and in particular to the conductive pattern 112 thereof. The semiconductor die 120 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 121 disposed on the top surface thereof. In FIG. 1, each of the bond pads 121 is depicted as projecting upwardly from the generally planar top surface of the semiconductor die 120. However, those of ordinary skill in the art will recognize that each of the bond pads 121 may be partially embedded within the semiconductor 120 so as to extend in substantially flush relation to the top surface thereof. The semiconductor die 120 further includes a plurality of through electrodes 122 formed therein and passing between the top and bottom surfaces thereof. As seen in FIG. 1, one end (the top end as viewed from the perspective shown in FIG. 1) of each electrode 122 is electrically coupled to a respective one of the bond pads 121, with the remaining end (the bottom end as viewed from the perspective shown in FIG. 1) extending to the bottom surface of the semiconductor die 120.
  • As further seen in FIG. 1, each of the electrodes 122 is electrically connected to the conductive pattern 112 of the substrate 110 through the use of respective ones of a plurality of conductive bumps 130. Examples of suitable material for the conductive bumps 130 include, but are not limited to, gold, silver, copper, soldering materials or equivalents thereto. As will be recognized by those of ordinary skill in the art, the conductive bumps 130, which are formed between the semiconductor die 120 and the substrate 110, effectively transmit electrical signals between the semiconductor die 120 and the substrate 110. Though not shown, it is contemplated that an underfill material may be disposed between the bottom surface of the semiconductor die 120 and the top surface of the insulating layer 114, the underfill material also covering portions of the conductive pattern 112 and the conductive bumps 130. The underfill material, if included, would serve to protect the semiconductor die 120 by absorbing stress according to differences between the thermal expansion coefficients of the substrate 110 and the semiconductor die 120. It is contemplated that the semiconductor die 120 may comprise a circuit that includes transistors, resistors and capacitors integrated on a silicon substrate.
  • The semiconductor device 100 further comprises a plurality of solder balls 160 which are electrically connected to the respective ones of the lands 113 of the substrate 110 in a prescribed pattern or arrangement. As seen in FIG. 1, the solder mask 115 extends into contact with the solder balls 160. Examples of suitable materials for the solder balls 160 include, but are not limited to, eutectic solders (e.g., Sn37Pb), high-lead solders (e.g., Sn95Pb) having a high melting point, lead-free solders (e.g., SnAg, SnCu, SnZn, SnZnBi, SnAgCu and SnAgBi), or equivalents thereto. As will be recognized, the solder balls 160 are used to electrically couple the substrate 110, and hence the semiconductor die 120, to an external circuit.
  • In the semiconductor device 100, at least portions of the semiconductor die 120, the conductive bumps 130, the top surface of the insulating layer 114, and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 140 of the semiconductor device 100. The present invention is not intended to be limited to any specific material which could be used to facilitate the fabrication of the package body 140. For example, and not by way of limitation, the package body 140 can be formed from epoxy molding compounds or equivalents thereto. The fully formed package body 140 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110.
  • In the semiconductor device 100, the package body 140 includes a plurality of through-mold vias 150 formed therein. Each through-mold via (TMV) 150 extends from the top surface of the package body 140 to a respective one of the bond pads 121 disposed on the top surface of the semiconductor die 120. Each TMV 150 is preferably formed by creating a hole in the package body 140 using a laser or an etching solution, and filling such hole with a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto. In this regard, it is contemplated that the fabrication of each TMV 150 may be facilitated by the completion of a reflow process subsequent to placing a ball fabricated from one of the aforementioned materials on top of the hole formed in the package body 140 through the use of one of the aforementioned processes.
  • As seen in FIG. 1, each TMV 150 has a generally conical configuration. More particularly, each TMV 150 is of a first diameter at a respective one of the bond pads 121, and a second diameter at the top surface of the package body 140, the second diameter exceeding the first diameter. As such, each TMV 150 defines a continuous side wall which is inclined at a predetermined angle relative to the top surface of the package body 140. As will be recognized by those of ordinary skill in the art, each TMV 150 creates an electrically conductive path from the semiconductor die 120 to the top surface of the package body 140, whereas the conductive bumps 130, substrate 110 and solder balls 160 collectively define an electrically conductive path which extends from the semiconductor die 120 in an opposite direction, such as toward an underlying substrate to which the semiconductor device 110 may ultimately be electrically connected through the use of the solder balls 160. Those of ordinary skill in the art will recognize that each TMV 150 may have a shape or configuration differing from that shown in FIG. 1 without departing from the spirit and scope of the present invention.
  • Due to the inclusion of the TMV's 150 therein, the semiconductor device 100 is particularly suited for having another semiconductor device stacked thereon and electrically connected thereto. In this regard, the lands or solder balls of a second semiconductor device can be electrically coupled to respective ones of the TMV's 150 exposed in the top surface of the package body 140. Along these lines, it is contemplated that the end of each TMV 150 extending to the top surface of the package body 140 have a generally concave configuration to partially accommodate the solder balls of a conventional BGA (Ball Grid Array) semiconductor device which may be stacked upon the semiconductor device 100, thus reducing the overall height or profile of the stack. Another semiconductor device suitable for stacking upon the semiconductor device 100 is an LGA (Land Grid Array) device, the stack comprising the semiconductor device 100 and the LGA device also being of comparatively reduced thickness due to the use of the TMV's 150 to facilitate the electrical interconnection therebetween.
  • Referring now to FIG. 10, there is provided a flow chart which sets forth an exemplary method for fabricating the semiconductor device 100 of the present invention shown in FIG. 1. The method comprises the steps of preparing the substrate (S1), preparing the semiconductor die (S2), forming conductive bumps on the semiconductor die (S3), attaching and electrically connecting the semiconductor die to the substrate (S4), encapsulation to form a package body (S5), forming TMV's in the package body (S6), and the connection of solder balls to the substrate (S7). FIGS. 11A-11H provide illustrations corresponding to these particular steps, as will be discussed in more detail below.
  • Referring now to FIG. 11A, in the initial step S1 of the fabrication process for the semiconductor device 100, the substrate 110 having the above-described structural attributes is provided. As indicated above, a solder mask 115 may be coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114.
  • In the next step S2 of the fabrication process for the semiconductor device 100, the semiconductor die 120 is prepared. More particularly, as shown in FIG. 11B, the semiconductor die 120 is formed to include the aforementioned bond pads 121 on the top surface thereof, and the through-electrodes 122 which pass through the semiconductor die 120 between the top and bottom surfaces thereof, the electrodes 122 being electrically coupled to respective ones of the bond pads 121 as indicated above. Thereafter, as illustrated in FIG. 11C, step S3 is completed wherein the conductive bumps 130 are electrically connected to those ends of the through electrodes 122 opposite those ends electrically coupled to the bond pads 121. Thus, the electrodes 122 effectively electrically couple the bond pads 121 to respective ones of the conductive bumps 130.
  • Referring now to FIG. 11D, in the next step S4 of the fabrication process for the semiconductor device 100, the semiconductor die 120 is electrically connected to the substrate 110. More particularly, the conductive bumps 130 electrically connected to the semiconductor die 120 as described above in relation to step S3 are each electrically connected to the conductive pattern 112 of the substrate 110. As also indicated above, an underfill material may be interposed between the semiconductor die 120 and the substrate 110, such underfill material thus covering or encapsulating at least portions of the conductive bumps 130.
  • Referring now to FIG. 11E, in the next step S5 of the fabrication process for the semiconductor device 100, at least portions of the semiconductor die 120, the conductive bumps 130, the conductive pattern 112 and the top surface of the insulating layer 114 are each encapsulated or covered by an encapsulant material which ultimately hardens into the package body 140 of the semiconductor device 100. As indicated above, the fully formed package body 140 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110. The encapsulation step S5 can be carried out by transfer molding using a mold or dispensing molding using a dispenser.
  • In the next step S6 of the fabrication process for the semiconductor device 100, the TMV's 150 are formed in the package body 140. More particularly, the formation of the TMV's 150 comprises the initial step of forming vias or holes 140 a in the package body 140 as shown in FIG. 11F. Each of the holes 140 a extends from the top surface of the package body 140 to a respective one of the bond pads 121. As indicated above, the holes 140 a may be formed through the use of a laser drilling or chemical etching process. After being formed in the package body 140 in the aforementioned manner, each of the holes 140 a is filled with a conductive metal material as shown in FIG. 11G, thus completing the formation of the TMV's 150. As also indicated above, the filling of each hole 140 a with the metal material may be accomplished through the completion of a reflow process subsequent to the placement of a ball fabricated from a suitable conductive metal material upon that end of each hole 140 extending to the top surface of the package body 140.
  • Referring now to FIG. 11H, in the next step S7 of the fabrication process for the semiconductor device 100, the solder balls 160 are electrically connected to respective ones of the lands 113 of the substrate 110. As seen in FIG. 11H, the solder mask 115 may extend into contact with the solder balls 160. The solder balls 160 may be fabricated from the materials described above in relation thereto.
  • Referring now to FIG. 2, there is shown a semiconductor device 200 constructed in accordance with a second embodiment of the present invention. The semiconductor device 200 is substantially similar to the above-described semiconductor device 100, with only the differences between the semiconductor devices 200, 100 being described below.
  • The sole distinction between the semiconductor devices 100, 200 lies in the addition of through-mold vias (TMV's) 250 to the package body 140 of the semiconductor device 200. As seen in FIG. 2, each of the TMV's 250 extends from the top surface of the package body 140 to a corresponding portion of the conductive pattern 112 of the substrate 110. Each TMV 250 is preferably fabricated using the same process described above in relation to each TMV 150. Advantageously, in the semiconductor device 200, the inclusion of the TMV's 250 increases the available number of input/output terminals of the semiconductor device 200 in comparison to the semiconductor device 100.
  • Referring now to FIG. 3, there is shown a semiconductor device 300 constructed in accordance with a third embodiment of the present invention. The semiconductor device 300 comprises the above-described substrate 110. In addition to the substrate 110, the semiconductor device 300 comprises a first (upper) semiconductor die 320 which is attached to the top surface of the insulating layer 114 of the substrate 110 (as viewed from the perspective shown in FIG. 3) through the use of an adhesive layer 323. The first semiconductor die 320 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 321 disposed on the top surface thereof. In this regard, the bottom surface of the first semiconductor die 320 is that surface which is attached to the substrate 110 through the use of the adhesive layer 323. In the semiconductor device 300, the bond pads 321 of the first semiconductor die 320 are electrically connected to the conductive pattern 112 of the substrate 110 through the use of a plurality of conductive wires 330. Each conductive wire 330 may be formed by the completion of a normal wire bonding method, that is, by forming a ball bond at the corresponding bond pad 321 of the first semiconductor die 320, and then forming a stitch bonding region at a prescribed portion of the conductive pattern 112 of the substrate 110. Alternatively, each conductive wire 330 may be formed by a reverse loop wire bonding method, that is, by forming a ball bond at the corresponding bond pad 321 and corresponding portion of the conductive pattern 112, and then connecting such ball bonds to each other.
  • In addition to the first semiconductor die 320, the semiconductor device 300 includes a second (lower) semiconductor die 325 which is also electrically connected to the substrate 110, and in particular the lands 113 thereof. Like the first semiconductor die 320, the second semiconductor die 325 defines opposed, generally planar top and bottom surfaces, and includes a plurality of bond pads 326 on that surface which defines the top surface as viewed from the perspective shown in FIG. 3. In this regard, each of the bond pads 326 of the second semiconductor die 325 is electrically connected to a respective one of the lands 113 through the use of respective ones of a plurality of conductive bumps 331. The conductive bumps 331 are each preferably fabricated from the same material described above in relation to the conductive bumps 130 of the semiconductor device 100.
  • In the semiconductor device 300, at least portions of the first and second semiconductor dies 320, 325, the conductive wires 330, the conductive bumps 331, the top and bottom surfaces of the insulating layer 114, the conductive pattern 112, and the lands 113 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 340 of the semiconductor device 300. The package body 340 may be fabricated from the same material described above in relation to the package body 140 of the semiconductor device 100. As seen in FIG. 3, the fully formed package body 340 preferably includes a generally planar top surface when viewed from the perspective shown in FIG. 3, a generally planar bottom surface when viewed from the same perspective, and generally planar side surfaces which extend generally perpendicularly between the top and bottom surfaces in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110.
  • In the semiconductor device 300, the package body 340 includes a plurality of through-mold vias (TMV's) 350 disposed therein. As seen in FIG. 3, certain ones of the TMV's 350 extend from the top surface of the package body 340 to a corresponding portion of the conductive pattern 112 of the substrate 110. The remaining TMV's 350 extend from the bottom surface of the package body 340 to respective ones of the lands 113 of the substrate 110. Each TMV 350 is identically configured to the above-described TMV's 250 of the semiconductor device 200, and is preferably fabricated using the same process described above in relation to each TMV 150 of the semiconductor device 100. Along these lines, it is contemplated that the end of each TMV 350 extending to the top surface and/or the bottom surface of the package body 340 may have a generally concave configuration to partially accommodate solder balls of a conventional BGA semiconductor device which may be stacked on the top surface and/or the bottom surface of the semiconductor device 300. In this regard, the inclusion of the TMV's 350 in the semiconductor device 300 makes the semiconductor device 300 particularly suited for having one or more additional semiconductor devices stacked on the top and/or bottom surfaces thereof.
  • Referring now to FIG. 4, there is shown a semiconductor device 400 constructed in accordance with a fourth embodiment of the present invention. The semiconductor device 400 comprises the above-described substrate 110. Additionally, in the semiconductor device 400, the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110. Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110, the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160.
  • In addition to the substrate 110, the semiconductor device 400 comprises a first (lower) semiconductor die 320 which is electrically connected to the conductive pattern 112 of the substrate 110. More particularly, the first semiconductor die 420 defines opposed, generally planar top and bottom surfaces, and includes a plurality of terminals or bond pads 421 disposed on the bottom surface thereof. Each of the bond pads 421 is electrically connected to the conductive pattern 112 through the use of a respective one of a plurality of conductive bumps 430. The conductive bumps 430 are each preferably fabricated from the same material described above in relation to the conductive bumps 130 of the semiconductor device 100.
  • The semiconductor device 400 further comprises an interposer 423 which is attached to the top surface of the first semiconductor die 420 through the use of an adhesive layer 415. The interposer 423 includes an interposer body 424 having a first conductive pattern 423 a formed within the top surface thereof, a second conductive pattern 423 b formed therein, and a third conductive pattern 423 c which is also formed therein and electrically connects the first and second conductive patterns 423 a, 423 b to each other. That surface of the body 424 disposed furthest from the first conductive pattern 423 a is secured to the top surface of the first semiconductor die 420 through the use of the aforementioned adhesive layer 413. As seen in FIG. 4, the first and second conductive patterns 423 a, 423 b are formed within the body 424 of the interposer 423 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 423 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second patterns 423 a, 423 b extend.
  • The semiconductor device 400 further comprises a second (upper) semiconductor die 425 which is electrically connected to the interposer 423, and in particular to the first conductive pattern 423 a formed on the body 424 thereof. Like the first semiconductor die 420, the second semiconductor die 425 defines opposed, generally planar top and bottom surfaces. Disposed on the bottom surface of the first semiconductor die 425 is a plurality of conductive terminals or bond pads 426. The bond pads 426 are each electrically connected to the first conductive pattern 423 a through the use of respective ones of a plurality of conductive bumps 431 which are each preferably fabricated from the same material used in relation to the conductive bumps 430. As seen in FIG. 4, the second and third conductive patterns 423 b, 423 c of the interposer 423 are configured to effectively route signals between a portion of the first conductive pattern 423 a to which the second semiconductor die 425 is electrically connected to another portion of the first conductive pattern 423 a which is located outwardly beyond the lateral side surfaces of the second semiconductor die 425. In this regard, when the interposer 423 is captured between the first and second semiconductor dies 420, 425 in the manner shown in FIG. 4, a peripheral portion of the interposer 423 protrudes beyond the lateral side surfaces of each of the first and second semiconductor dies 420, 425. Additionally, a portion of the first conductive pattern 423 a is exposed in the body 424 of such peripheral portion of the interposer 423.
  • In the semiconductor device 400, the interposer 423 (and hence the second semiconductor die 425) is electrically connected to the conductive pattern 112 of the substrate 110 through the use of one or more electrically conductive wires 432. More particularly, one end of each conductive wire 432 extends and is electrically connected to a portion of the first conductive pattern 423 a which is exposed in the peripheral portion of the substrate 423, and in particular the body 424 thereof. The remaining, opposite end of the conductive wire 432 is electrically connected to a prescribed portion of the conductive pattern 112 of the substrate 110. Thus, the second semiconductor die 425 is capable of receiving electrical signals from and outputting electrical signals to an external circuit via the interposer 423, conductive wire(s) 432, and substrate 110.
  • In the semiconductor device 400, at least portions of the first and second semiconductor dies 420, 425, the conductive bumps 430, 431, the interposer 423, the conductive wires 432, the insulating layer 114 of the substrate 110, and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 440 of the semiconductor device 100. The package body 440 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100. The fully formed package body 440 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110.
  • In the semiconductor device 400, the package body 440 preferably includes a plurality of through-mold vias (TMV's) 450 formed therein. As seen in FIG. 4, each of the TMV's 450 extends from the top surface of the package body 440 to a corresponding portion of the conductive pattern 112 of the substrate 110. Each TMV 450 is identically configured to the above-described TMV's 250, 350, and is preferably fabricated using the same process described above in relation to each TMV 150.
  • Referring now to FIG. 5, there is shown a semiconductor device 500 constructed in accordance with a fifth embodiment of the present invention. The semiconductor device 500 comprises the above-described substrate 110. Additionally, in the semiconductor device 500, the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110. Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110, the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160. The semiconductor device 500 also includes a first semiconductor die 120 which is identical to the above-described semiconductor 120 of the semiconductor device 100, and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 130 in the same manner described above in relation to the semiconductor device 100. In addition to the first semiconductor die 120, also electrically connected to the conductive pattern 112 of the substrate 110 is a plurality of conductive balls 551. As seen in FIG. 5, the conductive balls 551 are electrically connected to a peripheral portion of the conductive pattern 112. Each of the conductive balls 551 is preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • The semiconductor device 500 further comprises an interposer 523 which is disposed on the top surface of the first semiconductor die 420 and electrically connected to the first semiconductor die 120. The interposer 523 includes an interposer body 524 having a first conductive pattern 523 a formed within the top surface thereof, a second conductive pattern 523 b formed therein, and a third conductive pattern 523 c which is also formed therein and electrically connects the first and second conductive patterns 523 a, 523 b to each other. As seen in FIG. 5, the first and second conductive patterns 523 a, 523 b are formed within the body 524 of the interposer 523 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 523 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 523 a, 523 b extend. In the semiconductor device 500, the second conductive pattern 523 b of the interposer 523 is electrically connected to the bond pads 121 of the first semiconductor die 121. As is also seen in FIG. 5, the interposer 523 is sized relative to the first semiconductor die 120 such that the side surfaces of the body 524 extend in substantially co-planar relation to respective side surfaces of the first semiconductor die 120.
  • The semiconductor device 500 further comprises the second (upper) semiconductor die 425 described above in relation to the semiconductor device 400. In this regard, the second semiconductor die 425 is electrically connected to the interposer 523, and in particular to the first conductive pattern 523 a formed on the body 524 thereof. The bond pads 426 of the second semiconductor die 425 are each electrically connected to the first conductive pattern 523 a through the use of respective ones of the aforementioned conductive bumps 431. As seen in FIG. 5, the side surfaces of the body 524 of the interposer 523 also extend in substantially co-planar to respective side surfaces of the second semiconductor die 425. Thus, when the interposer 523 is captured between the first and second semiconductor dies 120, 425 in the manner shown in FIG. 5, the side surfaces of the body 524 of the interposer 523 extend in generally co-planar relation to respective ones of the lateral side surfaces of each of the first and second semiconductor dies 120, 425.
  • In the semiconductor device 500, at least portions of the first and second semiconductor dies 120, 425, the conductive bumps 130, 431, the interposer 523, the conductive balls 551, the insulating layer 114 of the substrate 110, and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 540 of the semiconductor device 500. The package body 540 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100. The fully formed package body 540 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110.
  • In the semiconductor device 500, the package body 140 preferably includes a plurality of through-mold vias (TMV's) 550 formed therein. Each TMV 550 includes a first region which is defined by a respective one of the conductive balls 551 electrically connected to the conductive pattern 112 of the substrate 110. In addition to the first region, each TMV 550 includes a second region 552 which extends from the top surface of the package body 140 to a respective one of the conductive balls 551. The second region 552 of each TMV 550 is identically configured to the above-described TMV's 250, 350, 450, and is preferably fabricated using the same process described above in relation to each TMV 150. In this regard, the second region 552 of each TMV 550 is defined by a metal-filled hole which is formed in the package body 540 to extend from the top surface thereof to a corresponding conductive ball 551 (i.e., the first region of the same TMV 550). Thus, each TMV 550 (comprising the second region 552 and the first region or conductive ball 551) extends from the top surface of the package body 540 to (and in electrical communication with) the conductive pattern 112. Since the second regions 552 of the TMV's 550 extend to respective ones of the conductive balls 551 rather than to the conductive pattern 112, each second region 552 is of a shorter height in comparison to the TMV's 450 included in the semiconductor device 400, though being fabricated in the same manner as indicated above. Due to the shortened height of height of the second regions 552 of the TMV's 550, including the holes used to form the same, potential adverse effects on the first and second semiconductor dies 120, 425 attributable to the formation of the holes is reduced, thus improving the reliability of the semiconductor device 500.
  • Referring now to FIG. 6, there is shown a semiconductor device 600 constructed in accordance with a sixth embodiment of the present invention. The semiconductor device 600 comprises the above-described substrate 110. Additionally, in the semiconductor device 600, the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110. Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110, the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160. The semiconductor device 600 also includes a semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400, and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400.
  • In the semiconductor device 600, at least portions of the semiconductor die 420, the conductive bumps 430, the insulating layer 114 of the substrate 110, and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 640 of the semiconductor device 600. The package body 640 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100. The fully formed package body 640 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110. The generally planar top surface of the semiconductor die 420 is preferably exposed in and substantially flush with the top surface of the package body 640.
  • In the semiconductor device 600, the package body 640 preferably includes a plurality of through-mold vias (TMV's) 650 formed therein. Each TMV 650 preferably comprises a conductive ball which is electrically connected to a peripheral portion of the conductive pattern 112. The conductive balls used to define the TMV's 650 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto. Importantly, in the semiconductor device 600, the package body 640 is formed in a manner wherein portions of the conductive balls used to form the TMV's 650 protrude from the top surface of the package body 640 in the manner shown in FIG. 6. Thus, the height of each TMV 650 slightly exceeds the height or thickness of the package body 640. It is also contemplated that the package body 640 may be fabricated by attaching a mold film to the substrate 110, such mold film partially covering the semiconductor die 420 and TMV's 650 in the aforementioned manner.
  • The semiconductor device 600 further comprises an interposer 623 which is disposed on and electrically connected to the TMV's 650. The interposer 623 includes an interposer body 624 having a first conductive pattern 623 a formed within the top surface thereof, a second conductive pattern 623 b formed therein, and a third conductive pattern 623 c which is also formed therein and electrically connects the first and second conductive patterns 623 a, 623 b to each other. As seen in FIG. 6, the first and second conductive patterns 623 a, 623 b are formed within the body 624 of the interposer 623 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 623 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 623 a, 623 b extend. In the semiconductor device 600, the second conductive pattern 623 b of the interposer 623 is electrically connected to the exposed portions of the TMV's 650 in the manner shown in FIG. 6. Due to those portions of the TMV's 650 to which the interposer 623 is electrically connected protruding above the top surface of the package body 640, a narrow space or gap 615 is defined between the top surface of the package body 640 (as well as the top surface of the semiconductor die 420) and the interposer 623 (i.e., the bottom surface of the body 624). The formation of the gap 615 between the package body 640 and the interposer 623 enhances the ability of the semiconductor die 420 to dissipate heat outside of the semiconductor device 600.
  • Advantageously, the inclusion of the interposer 623 in the semiconductor device 600 allows a wiring pattern of the TMV's 650 to be selectively redistributed using the interposer 623. As is also seen in FIG. 6, the interposer 623 is sized relative to the package body 640 such that the side surfaces of the body 624 extend in substantially co-planar relation to respective side surfaces of the package body 640.
  • Referring now to FIG. 12, there is provided a flow chart which sets forth an exemplary method for fabricating the semiconductor device 600 of the present invention shown in FIG. 6. The method comprises the steps of preparing the substrate (S1), preparing the semiconductor die (S2), forming conductive bumps on the semiconductor die (S3), attaching and electrically connecting the semiconductor die to the substrate (S4), forming TMV's on the substrate (S5), encapsulation to form a package body (S6), attaching an interposer to the TMV's (S7), and the connection of solder balls to the substrate (S8). FIGS. 13A-13H provide illustrations corresponding to these particular steps, as will be discussed in more detail below.
  • Referring now to FIG. 13A, in the initial step S1 of the fabrication process for the semiconductor device 600, the substrate 110 having the above-described structural attributes is provided. As indicated above, a solder mask 115 may be coated on at least portions of the lands 113 and the bottom surface of the insulating layer 114.
  • In the next step S2 of the fabrication process for the semiconductor device 600, the semiconductor die 420 is prepared. More particularly, as shown in FIG. 13B, the semiconductor die 420 is formed to include the aforementioned bond pads 421 on the bottom surface thereof. As shown in FIG. 13B, the bond pads 421 are formed on the bottom surface of the semiconductor die 420 so as to protrude therefrom. In this regard, those of ordinary skill in the art will recognize that the bond pads 421 may alternatively be formed so as to be at least partially embedded in the semiconductor die 420 and to extend in substantially flush relation to the bottom surface thereof. Thereafter, as illustrated in FIG. 13C, step S3 is completed wherein the conductive bumps 430 are electrically connected to respective ones of the bond pads 121.
  • Referring now to FIG. 13D, in the next step S4 of the fabrication process for the semiconductor device 600, the semiconductor die 420 is electrically connected to the substrate 110. More particularly, the conductive bumps 430 electrically connected to the semiconductor die 420 as described above in relation to step S3 are each electrically connected to the conductive pattern 112 of the substrate 110, and hence to the lands 113.
  • Referring now to FIG. 13E, in the next step S5 of the fabrication process for the semiconductor device 600, the TMV's 650 are formed on the substrate 110. More particularly, as explained above, the formation of the TMV's 650 is facilitated by forming the aforementioned conductive balls on respective peripheral portions of the conductive pattern 112 of the substrate 110. Thus, the TMV's 650 extend at least partially about the periphery of the semiconductor die 420 in the manner shown in FIG. 13E.
  • Referring now to FIG. 13F, in the next step S6 of the fabrication process for the semiconductor device 600, at least portions of the semiconductor die 420, the conductive bumps 430, the TMV's 650, the conductive pattern 112 and the top surface of the insulating layer 114 are each encapsulated or covered by an encapsulant material which ultimately hardens into the package body 640 of the semiconductor device 600. As indicated above, the fully formed package body 640 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110. As also indicated above, the package body 640 is formed such that the top surface of the semiconductor die 420 extends in substantially flush relation to the top surface of the package body, with the TMV's 650 protruding slightly beyond the top surface of the package body 640. The encapsulation step S6 can be carried out by transfer molding using a mold, dispensing molding using a dispenser, or through the use of the aforementioned mold film.
  • In the next step S7 of the fabrication process for the semiconductor device 600 shown in FIG. 13G, the interposer 623 is electrically connected to the TMV's 650. More particularly, the second conductive pattern 623 b of the interposer 623 is electrically connected to the exposed portions of the TMV's 650 such that the aforementioned gap 615 is defined between the bottom surface of the body 624 of the interposer 623 and the top surface of the package body 640.
  • Referring now to FIG. 13H, in the next step S8 of the fabrication process for the semiconductor device 600, the solder balls 160 are electrically connected to respective ones of the lands 113 of the substrate 110. As seen in FIG. 13H, the solder mask 115 may extend into contact with the solder balls 160. The solder balls 160 may be fabricated from the materials described above in relation thereto.
  • Referring now to FIG. 7, there is shown a semiconductor device 700 constructed in accordance with a seventh embodiment of the present invention. The semiconductor device 700 comprises the above-described substrate 110. Additionally, in the semiconductor device 700, the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110. Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110, the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160. The semiconductor device 700 also includes a first (lower) semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400, and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400.
  • In the semiconductor device 700, a plurality of conductive balls (which ultimately define lower through-mold vias or TMV's 650 as described below) are electrically connected to a peripheral portion of the first conductive pattern 112. The conductive balls used to define the TMV's 650 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • The semiconductor device 700 further comprises a first (lower) interposer 723 which is disposed on and electrically connected to the conductive balls ultimately defining the TMV's 650. The first interposer 723 includes an interposer body 724 having a first conductive pattern 723 a formed within the top surface thereof, a second conductive pattern 723 b formed therein, and a third conductive pattern 723 c which is also formed therein and electrically connects the first and second conductive patterns 723 a, 723 b to each other. As seen in FIG. 7, the first and second conductive patterns 723 a, 723 b are formed within the body 724 of the first interposer 723 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 723 c is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 723 a, 723 b extend. In the semiconductor device 700, the second conductive pattern 723 b of the first interposer 723 is electrically connected to the conductive balls ultimately defining the TMV's 650 in the manner shown in FIG. 7. Additionally, the first interposer 723, and in particular a central portion of the bottom surface of the body 724 thereof, is attached to the top surface of the first semiconductor die through the use of an adhesive layer 415.
  • The semiconductor device 700 also includes a second (upper) semiconductor die 425 which is identical to the above-described semiconductor 425 of the semiconductor device 400, and is electrically connected to a central portion of the first conductive pattern 723 a of the first interposer 723 through the use of the conductive bumps 431 in the same manner described above in relation to electrical connection of the second semiconductor die 425 of the semiconductor device 400 to the first conductive pattern 423 a of the interposer 423 thereof. In the semiconductor device 700, a plurality of conductive balls (which ultimately define upper through-mold vias or TMV's 750 as described below) are electrically connected to a peripheral portion of the first conductive pattern 723 a of the first interposer 723. The conductive balls used to define the TMV's 750 are also preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto.
  • In the semiconductor device 700, at least portions of the first and second semiconductor dies 420, 425, the first interposer 723, the conductive bumps 430, the conductive balls ultimately defining the TMV's 650, 750, the insulating layer 114 of the substrate 110, and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 740 of the semiconductor device 700. The package body 740 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100. The fully formed package body 740 preferably includes a generally planar top surface, and generally planar side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110. The generally planar top surface of the second semiconductor die 425 is preferably exposed in and substantially flush with the top surface of the package body 740.
  • In the semiconductor device 700, the TMVs 650 are defined by the encapsulation of the conductive balls electrically connected to and extending between the conductive pattern 112 of the substrate 110 and the second conductive pattern 723 b of the interposer 723. Similarly, the upper TMVs 750 are defined by the partial encapsulation of the conductive balls electrically connected to the first conductive pattern 723 a of the interposer 723 with the package body 740. Importantly, in the semiconductor device 700, the package body 740 is formed in a manner wherein portions of the conductive balls used to form the TMV's 750 protrude from the top surface of the package body 740 in the manner shown in FIG. 7. Thus, the height of each TMV 750 slightly exceeds the height or thickness of the package body 740. As indicated above, each TMV 650, 750 preferably comprises a respective one of the aforementioned conductive balls which are each electrically connected to a peripheral portion of the first interposer 723.
  • The semiconductor device 700 further comprises a second (upper) interposer 770 which is disposed on and electrically connected to the TMV's 750. The second interposer 770 includes an interposer body 774 having a first conductive pattern 771 formed within the top surface thereof, a second conductive pattern 772 formed therein, and a third conductive pattern 773 which is also formed therein and electrically connects the first and second conductive patterns 771, 772 to each other. As seen in FIG. 7, the first and second conductive patterns 771, 772 are formed within the body 774 of the second interposer 770 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 773 is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 771, 772 extend. In the semiconductor device 700, the second conductive pattern 772 of the second interposer 770 is electrically connected to the exposed portions of the TMV's 750 in the manner shown in FIG. 7. Due to those portions of the TMV's 750 to which the second interposer 770 is electrically connected protruding above the top surface of the package body 740, a narrow space or gap 715 is defined between the top surface of the package body 740 (as well as the top surface of the second semiconductor die 425) and the second interposer 770 (i.e., the bottom surface of the body 774). The formation of the gap 715 between the package body 740 and the second interposer 770 enhances the ability of the second semiconductor die 425 to dissipate heat outside of the semiconductor device 700. Advantageously, the inclusion of the second interposer 770 in the semiconductor device 700 allows a wiring pattern of the TMV's 750 to be selectively redistributed using the interposer 770.
  • Referring now to FIG. 8, there is shown a semiconductor device 800 constructed in accordance with an eighth embodiment of the present invention. The semiconductor device 800 is substantially similar to the above-described semiconductor device 700, with only the differences between the semiconductor devices 800, 700 being described below.
  • One of the differences between the semiconductor devices 800, 700 lies in the omission of the above-described second interposer 770 in the semiconductor device 800. Additionally, in the semiconductor device 800, the package body 740 described above in relation to the semiconductor device 700 is substituted with the package body 840 which is formed to completely cover the top surface of the second semiconductor die 425. This is in contrast to the semiconductor device 700 wherein the top surface of the second semiconductor die 425 is exposed in the top surface of the package body 740.
  • Another distinction between the semiconductor devices 800, 700 lies in the substitution of the above-described TMV's 750 of the semiconductor device 700 with the TMV's 850 included in the semiconductor device 800. In this regard, each of the TMV's 850 bears substantial structural similarity to the TMV's 550 described above in relation to the semiconductor device 500. More particularly, as seen in FIG. 8, each TMV 850 includes a first region which is defined by a respective one of a plurality of conductive balls 851 which are each electrically connected to a peripheral portion of the first conductive pattern 723 a of the interposer 723. In addition to the first region, each TMV 850 includes a second region 852 which extends from the top surface of the package body 840 to a respective one of the conductive balls 851. The second region 852 of each TMV 850 is identically configured to the above-described TMV's 250, 350, 450, 550, and is preferably fabricated using the same process described above in relation to each TMV 150. In this regard, the second region 852 of each TMV 850 is defined by a metal-filled hole which is formed in the package body 840 to extend from the top surface thereof to a corresponding conductive ball 851 (i.e., the first region of the same TMV 850). Thus, each TMV 850 (comprising the second region 852 and the first region or conductive ball 851) extends from the top surface of the package body 840 to (and in electrical communication with) the first conductive pattern 723 a of the interposer 723.
  • Referring now to FIG. 9, there is shown a semiconductor device 900 constructed in accordance with a ninth embodiment of the present invention. The semiconductor device 900 comprises the above-described substrate 110. Additionally, in the semiconductor device 900, the above-described solder balls 160 are formed on and electrically connected to respective ones of the lands 113 of the substrate 110. Further, the above-described solder mask 115 is preferably applied to the bottom surface of the insulating layer 114 of the substrate 110, the solder mask 115 being coated on at least portions of the lands 113 and extending into contact with portions of each of the solder balls 160. The semiconductor device 900 also includes a first (lower) semiconductor die 420 which is identical to the above-described semiconductor 420 of the semiconductor device 400, and is electrically connected to the conductive pattern 112 of the substrate 110 through the use of the conductive bumps 430 in the same manner described above in relation to the semiconductor device 400.
  • The semiconductor device 900 further comprises a second (upper) semiconductor die 925. The second semiconductor die 925 defines opposed, generally planar top and bottom surfaces, and includes a plurality of conductive terminals or bond pads 926 disposed on the top surface thereof when viewed from the perspective shown in FIG. 9. The bottom surface of the second semiconductor die 925 is attached to the top surface of the first semiconductor die 420 through the use of an intervening adhesive layer 415. The first and second semiconductor dies 420, 925 are preferably sized relative to each other such that the side surfaces thereof extend in substantially flush relation to each other when the first and second semiconductor dies 420, 925 are attached to each other through the use of the adhesive layer 415. Formed on and electrically connected to each of the bond pads 926 is a respective one of a plurality of conductive bumps 931, each of which is preferably fabricated from the same material used to facilitate the fabrication of conductive bumps 430 used to electrically connect the first semiconductor die 420 to the conductive pattern 112 of the substrate 110.
  • In the semiconductor device 900, at least portions of the first and second semiconductor dies 420, 925, the conductive bumps 430, 931, the insulating layer 114 of the substrate 110 and the conductive pattern 112 are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 940 of the semiconductor device 900. The package body 940 may be fabricated from the same materials described above in relation to the package body 140 of the semiconductor device 100. The fully formed package body 940 preferably includes a generally planar top surface, and generally planar side surfaces which extend in substantially flush or co-planar relation to respective side surfaces of the insulating layer 114 of the substrate 110. As seen in FIG. 9, portions of each of the conductive bumps 931 preferably protrude from the top surface of the package body 940.
  • In the semiconductor device 900, the package body 940 preferably includes a plurality of through-mold vias (TMV's) 950 formed therein. Each TMV 950 preferably comprises a conductive ball which is electrically connected to a peripheral portion of the conductive pattern 112. The conductive balls used to define the TMV's 950 are preferably fabricated from a conductive material selected from copper, aluminum, gold, silver, tin, lead, bismuth, soldering materials or equivalents thereto. Importantly, in the semiconductor device 900, the package body 940 is formed in a manner wherein portions of the conductive balls used to form the TMV's 950 protrude from the top surface of the package body 940 in the manner shown in FIG. 9. Thus, the height of each TMV 950 slightly exceeds the height or thickness of the package body 940.
  • The semiconductor device 900 further comprises an interposer 970 which is disposed on and electrically connected to the conductive bumps 931 and the TMV's 950. The interposer 970 includes an interposer body 974 having a first conductive pattern 971 formed within the top surface thereof, a second conductive pattern 972 formed therein, and a third conductive pattern 973 which is also formed therein and electrically connects the first and second conductive patterns 971, 972 to each other. As seen in FIG. 9, the first and second conductive patterns 971, 972 are formed within the body 974 of the interposer 623 so as to extend along respective ones of a spaced, generally parallel pair of planes. On the other hand, the third conductive pattern 973 is formed in a direction which extends generally perpendicularly between the planes along which respective ones of the first and second conductive patterns 971, 972 extend. In the semiconductor device 900, the second conductive pattern 972 of the interposer 970 is electrically connected to the exposed portions of the conductive bumps 931 and the TMV's 950 in the manner shown in FIG. 9. However, no space or gap such as the aforementioned gaps 615, 715 is defined between the interposer 970 and the top surface of the package body 940. Rather, the interposer 970, and in particular the bottom surface of the body 974 thereof, is in direct contact with the top surface of the package body 940. Advantageously, the inclusion of the interposer 970 in the semiconductor device 900 allows a wiring pattern of the conductive bumps 931 and the TMV's 950 to be selectively redistributed using the interposer 970. As is also seen in FIG. 9, the interposer 970 is sized relative to the package body 940 such that the side surfaces of the body 974 extend in substantially co-planar relation to respective side surfaces of the package body 940.
  • This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims (20)

1. A packaged semiconductor device structure comprising:
a first redistribution structure comprising:
a first insulative structure including at least one insulating layer, the first insulative structure having a first major surface and an opposing second major surface;
a first conductive pattern disposed proximate to the first major surface of the first insulative structure and exposed to the outside of the first insulative structure, wherein the first conductive pattern comprises a first portion disposed proximate to a perimeter part of the first redistribution structure and a second portion disposed proximate to a central part of the first redistribution structure; and
a second conductive pattern disposed proximate to the second major surface of the first insulative structure and electrically coupled to the first conductive pattern, wherein at least a portion of the second conductive pattern is exposed to the outside of the first insulative structure;
a first semiconductor device electrically coupled to the second portion of the first conductive pattern with conductive bumps;
first conductive structures projecting outward from and electrically coupled to the first portion of the first conductive pattern;
a package body encapsulating the first semiconductor device, at least portions of the first redistribution structure, and parts of the first conductive structures, wherein portions of the first conductive structures distal to the first redistribution structure are exposed to the outside of the package body, and wherein the portions of the first conductive structures distal to the first redistribution structure reside on a plane that is elevated above at least a portion of the package body; and
a second redistribution structure electrically coupled to the portions of the first conductive structures distal to the first redistribution structure.
2. The structure of claim 1, wherein the first conductive structures comprise conductive vias.
3. The structure of claim 1, wherein the first conductive structures comprise conductive balls.
4. The structure of claim 1, wherein the first conductive structures comprise a combination of conductive balls and conductive vias.
5. The structure of claim 1, wherein the portions of the first conductive structures distal to the first redistribution structure provide a gap between the package body and the second redistribution structure.
6. The structure of claim 5, wherein a major surface of the first semiconductor device is exposed to the outside of the package body in the gap.
7. The structure of claim 1, wherein the second redistribution structure is configured to selectively redistribute a wiring pattern of the first conductive structures.
8. The structure of claim 1 further comprising:
a third conductive pattern disposed within the first insulative structure and electrically coupling the first conductive pattern to the second conductive pattern; and
second conductive structures projecting outward from and electrically coupled to the portion of the second conductive layer exposed to the outside of the first insulative structure.
9. The structure of claim 8 further comprising:
a substrate comprising a substrate conductive pattern; and
a second semiconductor device electrically coupled to a first portion of the substrate conductive pattern, wherein:
the second conductive structures are further electrically coupled to a second portion of the substrate conductive pattern; and
the package body further encapsulates the second semiconductor device, the second conductive structures, and at least portions of the substrate conductive pattern.
10. The structure of claim 9 further comprising an adhesive layer interposed between the first redistribution structure and the first semiconductor device.
11. The structure of claim 1, wherein the second redistribution structure comprises:
a second insulative structure including at least one insulating layer, the second insulative structure having a first major surface and an opposing second major surface;
a third conductive pattern disposed proximate to the first major surface of the second insulative structure and exposed to the outside of the second insulative structure and configured for receiving an electronic component;
a fourth conductive pattern disposed proximate to the second major surface of the second insulative structure, wherein at least a portion of the fourth conductive pattern is exposed to the outside of the second insulative structure, and wherein the fourth conductive pattern is electrically coupled to the first conductive structures; and
a fifth conductive pattern disposed within the second insulative structure and electrically coupling the third conductive pattern to the fourth conductive pattern.
12. A packaged semiconductor device structure comprising:
a first redistribution structure comprising:
a first insulative structure including at least one insulating layer, the first insulative structure having a first major surface and an opposing second major surface;
a first conductive pattern disposed proximate to the first major surface of the first insulative structure and exposed to the outside of the first insulative structure;
a second conductive pattern disposed proximate to the second major surface of the first insulative structure, wherein at least a portion of the second conductive pattern is exposed to the outside of the first insulative structure; and
a third conductive pattern disposed within the first insulative structure and electrically coupling the first conductive pattern to the second conductive pattern;
a first semiconductor device electrically coupled to the first conductive pattern;
a substrate comprising a substrate conductive pattern, wherein the second conductive pattern is electrically coupled to the substrate conductive pattern;
first conductive structures projecting outward from and electrically coupled to the substrate conductive pattern and laterally spaced apart from the first semiconductor device; and
a package body encapsulating the first redistribution structure, the first semiconductor device, and the first conductive structures, wherein portions of the first conductive structures distal to the substrate conductive pattern are exposed to the outside of the package body.
13. The structure of claim 12, wherein the first conductive structures each comprise:
a first region attached to the substrate conductive pattern; and
a second region different than the first region coupled to the first region, wherein the portions of the first conductive structures exposed to the outside of the package body are part of the second region, and wherein:
the portions of the first conductive structures distal to the substrate conductive pattern reside on a plane that is elevated above the first semiconductor device.
14. The structure of claim 13, wherein:
the first region comprises a conductive ball; and
the second region comprises a conductive via.
15. The structure of claim 12 further comprising a second semiconductor device having a plurality of conductive vias disposed extending through the second semiconductor device, wherein the plurality of conductive vias electrically couple the second conductive pattern of the first redistribution structure to the substrate conductive pattern, and wherein the package body completely encapsulates the first redistribution structure.
16. A packaged semiconductor device structure comprising:
a first substrate structure having a first major surface and an opposing second major surface, the first substrate structure comprising:
a first conductive pattern disposed proximate to the first major surface of the first substrate structure; and
a second conductive pattern disposed proximate to the second major surface of the first substrate structure and electrically coupled to the first conductive pattern;
a first semiconductor device electrically coupled to the first conductive pattern;
a second substrate structure comprising:
a first insulative structure including at least one insulating layer, the first insulative structure having a first major surface and an opposing second major surface;
a third conductive pattern disposed proximate to the first major surface of the first insulative structure and exposed to the outside of the first insulative structure; and
a fourth conductive pattern disposed proximate to the second major surface of the first insulative structure and electrically coupled to the third conductive pattern, wherein at least a portion of the fourth conductive pattern is exposed to the outside of the first insulative structure;
a second semiconductor device electrically coupled to the third conductive pattern;
an adhesive layer interposed between the first semiconductor device and the second major surface of the second substrate structure;
first conductive structures extending upright from and electrically coupled to the first conductive pattern and electrically coupled to the fourth conductive pattern;
and
a package body encapsulating at least portions of the first semiconductor device and the first conductive structures.
17. The structure of claim 16 further comprising:
second conductive structures extending upright and electrically coupled to the third conductive pattern, wherein:
at least portions of the second semiconductor device, at least portions of the second substrate structure, and first portions of the second conductive structures are encapsulated by the package body; and
second portions of the second conductive structures are exposed to the outside of the package body; and
a third substrate structure electrically coupled to the second portions of the second conductive.
18. The structure of claim 17, wherein:
distal ends of the second portions of the second conductive structures reside on a plane that is elevated above the package body to provide a gap between the package body and the third substrate structure.
19. The structure of claim 16, wherein the first semiconductor device is electrically coupled to the first conductive pattern with conductive bumps.
20. The structure of claim 17, wherein the second substrate structure is completely encapsulated by the package body.
US15/390,568 2009-01-05 2016-12-26 Semiconductor device with through-mold via Abandoned US20170117214A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/390,568 US20170117214A1 (en) 2009-01-05 2016-12-26 Semiconductor device with through-mold via
US16/025,465 US10811341B2 (en) 2009-01-05 2018-07-02 Semiconductor device with through-mold via
US16/925,599 US11869829B2 (en) 2009-01-05 2020-07-10 Semiconductor device with through-mold via

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34881309A 2009-01-05 2009-01-05
US15/390,568 US20170117214A1 (en) 2009-01-05 2016-12-26 Semiconductor device with through-mold via

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US34881309A Division 2009-01-05 2009-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/025,465 Division US10811341B2 (en) 2009-01-05 2018-07-02 Semiconductor device with through-mold via

Publications (1)

Publication Number Publication Date
US20170117214A1 true US20170117214A1 (en) 2017-04-27

Family

ID=58559016

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/390,568 Abandoned US20170117214A1 (en) 2009-01-05 2016-12-26 Semiconductor device with through-mold via
US16/025,465 Active 2029-03-29 US10811341B2 (en) 2009-01-05 2018-07-02 Semiconductor device with through-mold via
US16/925,599 Active 2029-07-12 US11869829B2 (en) 2009-01-05 2020-07-10 Semiconductor device with through-mold via

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/025,465 Active 2029-03-29 US10811341B2 (en) 2009-01-05 2018-07-02 Semiconductor device with through-mold via
US16/925,599 Active 2029-07-12 US11869829B2 (en) 2009-01-05 2020-07-10 Semiconductor device with through-mold via

Country Status (1)

Country Link
US (3) US20170117214A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190123424A1 (en) * 2017-10-20 2019-04-25 Siliconware Precision Industries Co., Ltd. Electronic package and method for fabricating the same
CN111755344A (en) * 2019-03-28 2020-10-09 台湾积体电路制造股份有限公司 Package structure and method for forming the same
WO2023157747A1 (en) * 2022-02-16 2023-08-24 株式会社村田製作所 Circuit module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151514A (en) 2019-06-28 2020-12-29 西部数据技术公司 Semiconductor device including vertically stacked semiconductor die
WO2022160084A1 (en) 2021-01-26 2022-08-04 Yangtze Memory Technologies Co., Ltd. Substrate structure, and fabrication and packaging methods thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489676B2 (en) * 2000-12-04 2002-12-03 Fujitsu Limited Semiconductor device having an interconnecting post formed on an interposer within a sealing resin
US6740964B2 (en) * 2000-11-17 2004-05-25 Oki Electric Industry Co., Ltd. Semiconductor package for three-dimensional mounting, fabrication method thereof, and semiconductor device
US6828665B2 (en) * 2002-10-18 2004-12-07 Siliconware Precision Industries Co., Ltd. Module device of stacked semiconductor packages and method for fabricating the same
US6847109B2 (en) * 2002-09-25 2005-01-25 Samsung Electronics Co., Ltd. Area array semiconductor package and 3-dimensional stack thereof
US7242081B1 (en) * 2006-04-24 2007-07-10 Advanced Semiconductor Engineering Inc. Stacked package structure
US7276799B2 (en) * 2003-08-26 2007-10-02 Samsung Electronics Co., Ltd. Chip stack package and manufacturing method thereof
US20080017968A1 (en) * 2006-07-18 2008-01-24 Samsung Electronics Co., Ltd. Stack type semiconductor package and method of fabricating the same
US7345361B2 (en) * 2003-12-04 2008-03-18 Intel Corporation Stackable integrated circuit packaging
US7372151B1 (en) * 2003-09-12 2008-05-13 Asat Ltd. Ball grid array package and process for manufacturing same
US20080230887A1 (en) * 2007-03-23 2008-09-25 Advanced Semiconductor Engineering, Inc. Semiconductor package and the method of making the same
US20080258289A1 (en) * 2007-04-23 2008-10-23 Pendse Rajendra D Integrated circuit package system for package stacking
US7642133B2 (en) * 2006-09-27 2010-01-05 Advanced Semiconductor Engineering, Inc. Method of making a semiconductor package and method of making a semiconductor device
US20100019360A1 (en) * 2007-10-22 2010-01-28 Broadcom Corporation Integrated circuit package with etched leadframe for package-on-package interconnects
US7671457B1 (en) * 2002-05-01 2010-03-02 Amkor Technology, Inc. Semiconductor package including top-surface terminals for mounting another semiconductor package
US7737539B2 (en) * 2006-01-12 2010-06-15 Stats Chippac Ltd. Integrated circuit package system including honeycomb molding
US7777351B1 (en) * 2007-10-01 2010-08-17 Amkor Technology, Inc. Thin stacked interposer package
US20120306078A1 (en) * 2008-08-08 2012-12-06 Reza Argenty Pagaila Exposed interconnect for a package on package system

Family Cites Families (463)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596993A (en) 1949-01-13 1952-05-20 United Shoe Machinery Corp Method and mold for covering of eyelets by plastic injection
US3435815A (en) 1966-07-15 1969-04-01 Micro Tech Mfg Inc Wafer dicer
US3734660A (en) 1970-01-09 1973-05-22 Tuthill Pump Co Apparatus for fabricating a bearing device
US4189342A (en) 1971-10-07 1980-02-19 U.S. Philips Corporation Semiconductor device comprising projecting contact layers
JPS5129473B2 (en) 1972-04-06 1976-08-25
US3838984A (en) 1973-04-16 1974-10-01 Sperry Rand Corp Flexible carrier and interconnect for uncased ic chips
US4054238A (en) 1976-03-23 1977-10-18 Western Electric Company, Inc. Method, apparatus and lead frame for assembling leads with terminals on a substrate
JPS5479563A (en) 1977-12-07 1979-06-25 Kyushu Nippon Electric Lead frame for semiconductor
CH642006A5 (en) 1978-04-10 1984-03-30 Goeran Toernebaeck SLIDING PROTECTION DEVICE FOR VEHICLE WHEELS ON A MOTOR VEHICLE.
US4332537A (en) 1978-07-17 1982-06-01 Dusan Slepcevic Encapsulation mold with removable cavity plates
JPS5521128A (en) 1978-08-02 1980-02-15 Hitachi Ltd Lead frame used for semiconductor device and its assembling
US4221925A (en) 1978-09-18 1980-09-09 Western Electric Company, Incorporated Printed circuit board
JPS5588356A (en) 1978-12-27 1980-07-04 Hitachi Ltd Semiconductor device
JPS55163868A (en) 1979-06-08 1980-12-20 Fujitsu Ltd Lead frame and semiconductor device using the same
JPS567734A (en) 1979-06-28 1981-01-27 Takeda Chem Ind Ltd Preparation of quinone derivative
US4289922A (en) 1979-09-04 1981-09-15 Plessey Incorporated Integrated circuit package and lead frame
JPS56105199A (en) 1980-01-21 1981-08-21 Kawasaki Heavy Ind Ltd Antifreezing structure for low temperature underground tank bottom
US4394712A (en) 1981-03-18 1983-07-19 General Electric Company Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers
US4499655A (en) 1981-03-18 1985-02-19 General Electric Company Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
JPS5819384A (en) 1981-07-27 1983-02-04 Osaka Gas Co Ltd Heating of coke oven
JPS5820813A (en) 1981-07-28 1983-02-07 Mitsui Eng & Shipbuild Co Ltd Fabrication of landing and elevating type offshore working platform
US4417266A (en) 1981-08-14 1983-11-22 Amp Incorporated Power and ground plane structure for chip carrier
JPS5868570A (en) 1981-10-19 1983-04-23 Matsushita Electric Ind Co Ltd Proportional control valve
JPS605439B2 (en) 1982-03-16 1985-02-12 株式会社 日立工機原町工場 Braking device in meat cutting machine
US4451224A (en) 1982-03-25 1984-05-29 General Electric Company Mold device for making plastic articles from resin
FR2524707B1 (en) 1982-04-01 1985-05-31 Cit Alcatel METHOD OF ENCAPSULATION OF SEMICONDUCTOR COMPONENTS, AND ENCAPSULATED COMPONENTS OBTAINED
JPS5953946A (en) 1982-09-22 1984-03-28 Fujitsu Ltd Error processing system in pushing-off control of store operation
US4646710A (en) 1982-09-22 1987-03-03 Crystal Systems, Inc. Multi-wafer slicing with a fixed abrasive
JPS59208756A (en) 1983-05-12 1984-11-27 Sony Corp Manufacture of semiconductor device package
JPS59227143A (en) 1983-06-07 1984-12-20 Dainippon Printing Co Ltd Package of integrated circuit
JPS6010756A (en) 1983-06-30 1985-01-19 Nec Corp Manufacture of beam-lead type semiconductor device
JPS60116239A (en) 1983-11-28 1985-06-22 Nec Corp Radio communication equipment
JPS60195957A (en) 1984-03-19 1985-10-04 Hitachi Ltd Lead frame
US4737839A (en) 1984-03-19 1988-04-12 Trilogy Computer Development Partners, Ltd. Semiconductor chip mounting system
JPS60168820U (en) 1984-04-16 1985-11-09 東陽精工株式会社 Victim movement equipment
JPS60231349A (en) 1984-05-01 1985-11-16 Toshiba Corp Lead frame
JPH0612796B2 (en) 1984-06-04 1994-02-16 株式会社日立製作所 Semiconductor device
US4862246A (en) 1984-09-26 1989-08-29 Hitachi, Ltd. Semiconductor device lead frame with etched through holes
US4862245A (en) 1985-04-18 1989-08-29 International Business Machines Corporation Package semiconductor chip
JPS61248541A (en) 1985-04-26 1986-11-05 Matsushita Electronics Corp Semiconductor device
US4727633A (en) 1985-08-08 1988-03-01 Tektronix, Inc. Method of securing metallic members together
US4756080A (en) 1986-01-27 1988-07-12 American Microsystems, Inc. Metal foil semiconductor interconnection method
JPS6367762A (en) 1986-09-09 1988-03-26 Fujitsu Ltd Lead frame for resin sealed semiconductor device
US4812896A (en) 1986-11-13 1989-03-14 Olin Corporation Metal electronic package sealed with thermoplastic having a grafted metal deactivator and antioxidant
US5087961A (en) 1987-01-28 1992-02-11 Lsi Logic Corporation Semiconductor device package
JPS63188964A (en) 1987-01-31 1988-08-04 Dainippon Printing Co Ltd Integrated circuit package
US4812696A (en) 1987-02-17 1989-03-14 Louis Stanley Motor core with winding slots having reduced air gaps
JPS63205935A (en) 1987-02-23 1988-08-25 Toshiba Corp Resin-sealed type semiconductor device equipped with heat sink
KR960006710B1 (en) 1987-02-25 1996-05-22 가부시기가이샤 히다찌세이사꾸쇼 Surface mount plastic package semiconductor integrated circuit and the manufacturing method thereof and well asmount struct
JP2509607B2 (en) 1987-03-23 1996-06-26 株式会社東芝 Resin-sealed semiconductor device
JPS63249345A (en) 1987-04-06 1988-10-17 Olympus Optical Co Ltd Flexible mounting substrate
JP2548939B2 (en) 1987-05-22 1996-10-30 大日本印刷株式会社 Lead frame for IC card
JP2656495B2 (en) 1987-06-19 1997-09-24 株式会社フロンテック Method for manufacturing thin film transistor
US5059379A (en) 1987-07-20 1991-10-22 Mitsubishi Denki Kabushiki Kaisha Method of resin sealing semiconductor devices
US4942454A (en) 1987-08-05 1990-07-17 Mitsubishi Denki Kabushiki Kaisha Resin sealed semiconductor device
KR920008509B1 (en) 1987-08-26 1992-09-30 마쯔시다덴기산교 가부시기가이샤 Integration circuits apparatus and manufacturing method
JPS6454749A (en) 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH062076Y2 (en) 1987-09-17 1994-01-19 ジャトコ株式会社 Automatic transaxle
JPH01106456A (en) 1987-10-19 1989-04-24 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPH01175250A (en) 1987-12-28 1989-07-11 Sony Corp Lead frame and semiconductor device using it
JPH01205544A (en) 1988-02-12 1989-08-17 Seiko Epson Corp Assembly tape of integrated circuit device
US4987475A (en) 1988-02-29 1991-01-22 Digital Equipment Corporation Alignment of leads for ceramic integrated circuit packages
JPH01251747A (en) 1988-03-31 1989-10-06 Toshiba Corp Semiconductor device and manufacture thereof
US4907067A (en) 1988-05-11 1990-03-06 Texas Instruments Incorporated Thermally efficient power device package
US5096852A (en) 1988-06-02 1992-03-17 Burr-Brown Corporation Method of making plastic encapsulated multichip hybrid integrated circuits
US5157475A (en) 1988-07-08 1992-10-20 Oki Electric Industry Co., Ltd. Semiconductor device having a particular conductive lead structure
US4935803A (en) 1988-09-09 1990-06-19 Motorola, Inc. Self-centering electrode for power devices
US5277972B1 (en) 1988-09-29 1996-11-05 Tomoegawa Paper Co Ltd Adhesive tapes
EP0361975B1 (en) 1988-09-29 1995-05-24 Tomoegawa Paper Co. Ltd. Adhesive tapes
US5057900A (en) 1988-10-17 1991-10-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device and a manufacturing method for the same
US5018003A (en) 1988-10-20 1991-05-21 Mitsubishi Denki Kabushiki Kaisha Lead frame and semiconductor device
JPH02129948A (en) 1988-11-09 1990-05-18 Dainippon Printing Co Ltd Pre-molded type semiconductor device
US5266834A (en) 1989-03-13 1993-11-30 Hitachi Ltd. Semiconductor device and an electronic device with the semiconductor devices mounted thereon
US5070039A (en) 1989-04-13 1991-12-03 Texas Instruments Incorporated Method of making an integrated circuit using a pre-served dam bar to reduce mold flash and to facilitate flash removal
US4999700A (en) 1989-04-20 1991-03-12 Honeywell Inc. Package to board variable pitch tab
JPH02306639A (en) 1989-05-22 1990-12-20 Toshiba Corp Resin encapsulating method for semiconductor device
FR2659157B2 (en) 1989-05-26 1994-09-30 Lemaire Gerard METHOD FOR MANUFACTURING A CARD, SAID CARD, AND CARD OBTAINED BY THIS PROCESS.
US5417905A (en) 1989-05-26 1995-05-23 Esec (Far East) Limited Method of making a card having decorations on both faces
DE69023819T2 (en) 1989-05-31 1996-04-11 Fujitsu Ltd Packing structure with a pin grid.
WO1993017457A1 (en) 1989-07-01 1993-09-02 Ryo Enomoto Substrate for mounting semiconductor and method of producing the same
JPH0369248A (en) 1989-08-08 1991-03-25 Nec Off Syst Ltd Telephone set
JPH0671062B2 (en) 1989-08-30 1994-09-07 株式会社東芝 Resin-sealed semiconductor device
US5200362A (en) 1989-09-06 1993-04-06 Motorola, Inc. Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film
US5041902A (en) 1989-12-14 1991-08-20 Motorola, Inc. Molded electronic package with compression structures
JP2738772B2 (en) 1990-04-05 1998-04-08 ローム株式会社 Surface mount type electronic components
US5151039A (en) 1990-04-06 1992-09-29 Advanced Interconnections Corporation Integrated circuit adapter having gullwing-shaped leads
US5118298A (en) 1991-04-04 1992-06-02 Advanced Interconnections Corporation Through hole mounting of integrated circuit adapter leads
JP2540652B2 (en) 1990-06-01 1996-10-09 株式会社東芝 Semiconductor device
CA2047486C (en) 1990-07-21 2002-03-05 Shigeru Katayama Semiconductor device and method for manufacturing the same
WO1992003035A1 (en) 1990-08-01 1992-02-20 Staktek Corporation Ultra high density integrated circuit packages, method and apparatus
JPH0498864A (en) 1990-08-16 1992-03-31 Nec Kyushu Ltd Resin sealed type semiconductor device
US5029386A (en) 1990-09-17 1991-07-09 Hewlett-Packard Company Hierarchical tape automated bonding method
US5335771A (en) 1990-09-25 1994-08-09 R. H. Murphy Company, Inc. Spacer trays for stacking storage trays with integrated circuits
US5391439A (en) 1990-09-27 1995-02-21 Dai Nippon Printing Co., Ltd. Leadframe adapted to support semiconductor elements
US5356661A (en) * 1990-11-21 1994-10-18 Sumitomo Electric Industries, Ltd. Heat transfer insulated parts and manufacturing method thereof
US5216278A (en) 1990-12-04 1993-06-01 Motorola, Inc. Semiconductor device having a pad array carrier package
US5172214A (en) 1991-02-06 1992-12-15 Motorola, Inc. Leadless semiconductor device and method for making the same
US5157480A (en) 1991-02-06 1992-10-20 Motorola, Inc. Semiconductor device having dual electrical contact sites
US5250843A (en) 1991-03-27 1993-10-05 Integrated System Assemblies Corp. Multichip integrated circuit modules
US5281849A (en) 1991-05-07 1994-01-25 Singh Deo Narendra N Semiconductor package with segmented lead frame
US5168368A (en) 1991-05-09 1992-12-01 International Business Machines Corporation Lead frame-chip package with improved configuration
US5172213A (en) 1991-05-23 1992-12-15 At&T Bell Laboratories Molded circuit package having heat dissipating post
US5221642A (en) 1991-08-15 1993-06-22 Staktek Corporation Lead-on-chip integrated circuit fabrication method
JP2658661B2 (en) 1991-09-18 1997-09-30 日本電気株式会社 Method for manufacturing multilayer printed wiring board
JP2518569B2 (en) 1991-09-19 1996-07-24 三菱電機株式会社 Semiconductor device
ATE273386T1 (en) 1991-09-20 2004-08-15 Hutchinson Fred Cancer Res HUMAN CYCLIN E
US5200809A (en) 1991-09-27 1993-04-06 Vlsi Technology, Inc. Exposed die-attach heatsink package
JPH05166992A (en) 1991-12-13 1993-07-02 Fujitsu Ltd Semiconductor device
US5332864A (en) 1991-12-27 1994-07-26 Vlsi Technology, Inc. Integrated circuit package having an interposer
JPH06120374A (en) 1992-03-31 1994-04-28 Amkor Electron Inc Semiconductor package structure, semicon- ductor packaging method and heat sink for semiconductor package
JP3480950B2 (en) 1992-04-02 2003-12-22 新光電気工業株式会社 Semiconductor device and film carrier for semiconductor device
US5250841A (en) 1992-04-06 1993-10-05 Motorola, Inc. Semiconductor device with test-only leads
JP3177060B2 (en) 1992-04-13 2001-06-18 株式会社リコー Reversible thermosensitive recording label and card
US5539251A (en) 1992-05-11 1996-07-23 Micron Technology, Inc. Tie bar over chip lead frame design
US5214845A (en) 1992-05-11 1993-06-01 Micron Technology, Inc. Method for producing high speed integrated circuits
DE69329542T2 (en) 1992-06-05 2001-02-08 Mitsui Chemicals Inc THREE-DIMENSIONAL CIRCUIT, ELECTRONIC COMPONENT ARRANGEMENT USING THIS CIRCUIT AND MANUFACTURING METHOD FOR THIS CIRCUIT
US5278446A (en) 1992-07-06 1994-01-11 Motorola, Inc. Reduced stress plastic package
JPH0629639A (en) 1992-07-08 1994-02-04 Tokyo Electric Co Ltd Circuit board
US5285352A (en) 1992-07-15 1994-02-08 Motorola, Inc. Pad array semiconductor device with thermal conductor and process for making the same
JPH0637202A (en) 1992-07-20 1994-02-10 Mitsubishi Electric Corp Package for microwave ic
JPH0653394A (en) 1992-07-28 1994-02-25 Shinko Electric Ind Co Ltd Plane support for multilayer lead frame
JPH0652333A (en) 1992-07-29 1994-02-25 Nec Corp Single chip microcomputer
US5592025A (en) 1992-08-06 1997-01-07 Motorola, Inc. Pad array semiconductor device
JPH0661401A (en) 1992-08-11 1994-03-04 Mitsui High Tec Inc Lead frame and its manufacture
KR0128251Y1 (en) 1992-08-21 1998-10-15 문정환 Lead exposed type semiconductor device
JPH0692076A (en) 1992-09-16 1994-04-05 Oki Electric Ind Co Ltd Lead frame form for ic card module
US5608267A (en) 1992-09-17 1997-03-04 Olin Corporation Molded plastic semiconductor package including heat spreader
US5299647A (en) 1992-10-16 1994-04-05 Schiller-Pfeiffer, Inc. Tined rotary blade for cultivators
JP2670408B2 (en) 1992-10-27 1997-10-29 株式会社東芝 Resin-sealed semiconductor device and method of manufacturing the same
US5859471A (en) 1992-11-17 1999-01-12 Shinko Electric Industries Co., Ltd. Semiconductor device having tab tape lead frame with reinforced outer leads
US5409362A (en) 1992-11-24 1995-04-25 Neu Dynamics Corp. Encapsulation molding equipment
KR940010938A (en) 1992-11-25 1994-06-20 오정학 Processing method of seaweed
US5406124A (en) 1992-12-04 1995-04-11 Mitsui Toatsu Chemicals, Inc. Insulating adhesive tape, and lead frame and semiconductor device employing the tape
JPH06196603A (en) 1992-12-23 1994-07-15 Shinko Electric Ind Co Ltd Manufacture of lead frame
KR960009089B1 (en) 1993-03-04 1996-07-10 문정환 Mold for package molding and plastic charge-coupled device and the manufacturing method using the mold
JPH06268101A (en) 1993-03-17 1994-09-22 Hitachi Ltd Semiconductor device and its manufacture, electronic device, lead frame, and mounting substrate
US5340771A (en) 1993-03-18 1994-08-23 Lsi Logic Corporation Techniques for providing high I/O count connections to semiconductor dies
US5327008A (en) 1993-03-22 1994-07-05 Motorola Inc. Semiconductor device having universal low-stress die support and method for making the same
US5358905A (en) 1993-04-02 1994-10-25 Texas Instruments Incorporated Semiconductor device having die pad locking to substantially reduce package cracking
US5474958A (en) 1993-05-04 1995-12-12 Motorola, Inc. Method for making semiconductor device having no die supporting surface
KR0152901B1 (en) 1993-06-23 1998-10-01 문정환 Plastic package and method for manufacture thereof
JP2526787B2 (en) 1993-07-01 1996-08-21 日本電気株式会社 Lead frame for semiconductor device
JPH0730051A (en) 1993-07-09 1995-01-31 Fujitsu Ltd Semiconductor device
JP2875139B2 (en) 1993-07-15 1999-03-24 株式会社東芝 Method for manufacturing semiconductor device
US6326678B1 (en) 1993-09-03 2001-12-04 Asat, Limited Molded plastic package with heat sink and enhanced electrical performance
US5336931A (en) 1993-09-03 1994-08-09 Motorola, Inc. Anchoring method for flow formed integrated circuit covers
US5641997A (en) 1993-09-14 1997-06-24 Kabushiki Kaisha Toshiba Plastic-encapsulated semiconductor device
US5414299A (en) 1993-09-24 1995-05-09 Vlsi Technology, Inc. Semi-conductor device interconnect package assembly for improved package performance
US5517056A (en) 1993-09-30 1996-05-14 Motorola, Inc. Molded carrier ring leadframe having a particular resin injecting area design for gate removal and semiconductor device employing the same
US5467252A (en) 1993-10-18 1995-11-14 Motorola, Inc. Method for plating using nested plating buses and semiconductor device having the same
US5545923A (en) 1993-10-22 1996-08-13 Lsi Logic Corporation Semiconductor device assembly with minimized bond finger connections
US5452511A (en) 1993-11-04 1995-09-26 Chang; Alexander H. C. Composite lead frame manufacturing method
KR960011206B1 (en) 1993-11-09 1996-08-21 삼성전자 주식회사 Word-line driving circuit of semiconductor memory device
JP3289162B2 (en) 1993-11-12 2002-06-04 本田技研工業株式会社 Casting method for casting parts
JPH07142627A (en) 1993-11-18 1995-06-02 Fujitsu Ltd Semiconductor device and manufacture thereof
US5521429A (en) 1993-11-25 1996-05-28 Sanyo Electric Co., Ltd. Surface-mount flat package semiconductor device
KR0125109B1 (en) 1993-12-09 1997-11-27 박홍기 Process for the preparation of suede artificial leather
US5673479A (en) 1993-12-20 1997-10-07 Lsi Logic Corporation Method for mounting a microelectronic circuit peripherally-leaded package including integral support member with spacer
US5434057A (en) 1994-02-02 1995-07-18 Quidel Corporation Sperm motility assay and devices
US5637922A (en) 1994-02-07 1997-06-10 General Electric Company Wireless radio frequency power semiconductor devices using high density interconnect
US5821457A (en) 1994-03-11 1998-10-13 The Panda Project Semiconductor die carrier having a dielectric epoxy between adjacent leads
KR970010676B1 (en) 1994-03-29 1997-06-30 엘지반도체 주식회사 Package and the lead frame thereof
JPH07288309A (en) 1994-04-19 1995-10-31 Mitsubishi Electric Corp Semiconductor device, manufacture thereof and semiconductor module
JPH07297344A (en) 1994-04-25 1995-11-10 Toshiba Corp Lead frame
US5701034A (en) 1994-05-03 1997-12-23 Amkor Electronics, Inc. Packaged semiconductor die including heat sink with locking feature
JP3243116B2 (en) 1994-05-17 2002-01-07 株式会社日立製作所 Semiconductor device
US5544412A (en) 1994-05-24 1996-08-13 Motorola, Inc. Method for coupling a power lead to a bond pad in an electronic module
US5429992A (en) 1994-05-25 1995-07-04 Texas Instruments Incorporated Lead frame structure for IC devices with strengthened encapsulation adhesion
US5766972A (en) 1994-06-02 1998-06-16 Mitsubishi Denki Kabushiki Kaisha Method of making resin encapsulated semiconductor device with bump electrodes
JPH07335783A (en) 1994-06-13 1995-12-22 Fujitsu Ltd Semiconductor device and semiconductor device unit
JPH07335804A (en) 1994-06-14 1995-12-22 Dainippon Printing Co Ltd Lead frame and its manufacture
US5604376A (en) 1994-06-30 1997-02-18 Digital Equipment Corporation Paddleless molded plastic semiconductor chip package
JPH0883877A (en) 1994-07-12 1996-03-26 Sony Corp Lead frame
JPH0837252A (en) 1994-07-22 1996-02-06 Nec Corp Semiconductor device
US5454905A (en) 1994-08-09 1995-10-03 National Semiconductor Corporation Method for manufacturing fine pitch lead frame
KR0145768B1 (en) 1994-08-16 1998-08-01 김광호 Method for manufacturing a semiconductor package using lead frame
JPH0864364A (en) 1994-08-17 1996-03-08 Seikosha Co Ltd Illumination flickering device
US5723899A (en) 1994-08-30 1998-03-03 Amkor Electronics, Inc. Semiconductor lead frame having connection bar and guide rings
US5508556A (en) 1994-09-02 1996-04-16 Motorola, Inc. Leaded semiconductor device having accessible power supply pad terminals
US5543657A (en) 1994-10-07 1996-08-06 International Business Machines Corporation Single layer leadframe design with groundplane capability
US5581122A (en) 1994-10-25 1996-12-03 Industrial Technology Research Institute Packaging assembly with consolidated common voltage connections for integrated circuits
JP3475306B2 (en) 1994-10-26 2003-12-08 大日本印刷株式会社 Method for manufacturing resin-encapsulated semiconductor device
JPH08167630A (en) 1994-12-15 1996-06-25 Hitachi Ltd Chip connection structure
US5665996A (en) 1994-12-30 1997-09-09 Siliconix Incorporated Vertical power mosfet having thick metal layer to reduce distributed resistance
US5767546A (en) 1994-12-30 1998-06-16 Siliconix Incorporated Laternal power mosfet having metal strap layer to reduce distributed resistance
US5528076A (en) 1995-02-01 1996-06-18 Motorola, Inc. Leadframe having metal impregnated silicon carbide mounting area
JPH08222682A (en) 1995-02-14 1996-08-30 Dainippon Printing Co Ltd Lead frame and manufacturing method thereof
JPH08222681A (en) 1995-02-14 1996-08-30 Toshiba Corp Resin sealed semiconductor device
JP2679681B2 (en) 1995-04-28 1997-11-19 日本電気株式会社 Semiconductor device, package for semiconductor device, and manufacturing method thereof
JPH08306853A (en) 1995-05-09 1996-11-22 Fujitsu Ltd Semiconductor device, manufacture thereof and manufacture of lead frame
KR0163526B1 (en) 1995-05-17 1999-02-01 김광호 Semiconductor device fabrication method involving formation step of protection layer on a contact pad by irradiate ultraviolet rays/ozone
US5682062A (en) 1995-06-05 1997-10-28 Harris Corporation System for interconnecting stacked integrated circuits
US6323550B1 (en) 1995-06-06 2001-11-27 Analog Devices, Inc. Package for sealing an integrated circuit die
KR100214463B1 (en) 1995-12-06 1999-08-02 구본준 Lead frame of clip type and method manufacture of the package
JPH098205A (en) 1995-06-14 1997-01-10 Dainippon Printing Co Ltd Resin sealed semiconductor device
JP3432963B2 (en) 1995-06-15 2003-08-04 沖電気工業株式会社 Semiconductor integrated circuit
JPH098206A (en) 1995-06-19 1997-01-10 Dainippon Printing Co Ltd Lead frame and bga resin sealed semiconductor device
JPH098207A (en) 1995-06-21 1997-01-10 Dainippon Printing Co Ltd Resin sealed semiconductor device
US5650663A (en) 1995-07-03 1997-07-22 Olin Corporation Electronic package with improved thermal properties
US5745984A (en) 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
JP3170182B2 (en) 1995-08-15 2001-05-28 株式会社東芝 Resin-sealed semiconductor device and method of manufacturing the same
TW359880B (en) 1995-08-30 1999-06-01 Samsung Electronics Co Ltd Method of manufacturing semiconductor chip package
US6239384B1 (en) 1995-09-18 2001-05-29 Tessera, Inc. Microelectric lead structures with plural conductors
JP3163961B2 (en) 1995-09-22 2001-05-08 日立電線株式会社 Semiconductor device
JP3123638B2 (en) 1995-09-25 2001-01-15 株式会社三井ハイテック Semiconductor device
JPH0992776A (en) 1995-09-28 1997-04-04 Mitsubishi Electric Corp Lead frame and semiconductor device
JP3292798B2 (en) 1995-10-04 2002-06-17 三菱電機株式会社 Semiconductor device
US5801440A (en) 1995-10-10 1998-09-01 Acc Microelectronics Corporation Chip package board having utility rings
US5696666A (en) 1995-10-11 1997-12-09 Motorola, Inc. Low profile exposed die chip carrier package
JP3426811B2 (en) 1995-10-18 2003-07-14 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3176542B2 (en) 1995-10-25 2001-06-18 シャープ株式会社 Semiconductor device and manufacturing method thereof
US5854511A (en) 1995-11-17 1998-12-29 Anam Semiconductor, Inc. Semiconductor package including heat sink with layered conductive plate and non-conductive tape bonding to leads
KR0167297B1 (en) 1995-12-18 1998-12-15 문정환 L.o.c package and the manufacturing method thereof
US5689135A (en) 1995-12-19 1997-11-18 Micron Technology, Inc. Multi-chip device and method of fabrication employing leads over and under processes
US5646831A (en) 1995-12-28 1997-07-08 Vlsi Technology, Inc. Electrically enhanced power quad flat pack arrangement
KR0179803B1 (en) 1995-12-29 1999-03-20 문정환 Lead-exposured semiconductor package
KR0157929B1 (en) 1995-12-30 1999-01-15 문정환 Semiconductor package molding apparatus of multi-layer mold type
US5661088A (en) 1996-01-11 1997-08-26 Motorola, Inc. Electronic component and method of packaging
US5866939A (en) 1996-01-21 1999-02-02 Anam Semiconductor Inc. Lead end grid array semiconductor package
US5760465A (en) 1996-02-01 1998-06-02 International Business Machines Corporation Electronic package with strain relief means
US5973396A (en) 1996-02-16 1999-10-26 Micron Technology, Inc. Surface mount IC using silicon vias in an area array format or same size as die array
US5977613A (en) 1996-03-07 1999-11-02 Matsushita Electronics Corporation Electronic component, method for making the same, and lead frame and mold assembly for use therein
JPH09260575A (en) 1996-03-22 1997-10-03 Mitsubishi Electric Corp Semiconductor device and lead frame
JPH09260568A (en) 1996-03-27 1997-10-03 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH09260538A (en) 1996-03-27 1997-10-03 Miyazaki Oki Electric Co Ltd Resin sealed semiconductor device manufacturing method and its mounting structure
KR100220154B1 (en) 1996-04-01 1999-09-01 김규현 Method manufacture of semiconductor package
US6169329B1 (en) 1996-04-02 2001-01-02 Micron Technology, Inc. Semiconductor devices having interconnections using standardized bonding locations and methods of designing
US6001671A (en) 1996-04-18 1999-12-14 Tessera, Inc. Methods for manufacturing a semiconductor package having a sacrificial layer
JPH09293822A (en) 1996-04-25 1997-11-11 Seiko Epson Corp Semiconductor device with lead frame for power source only
JP2811170B2 (en) 1996-06-28 1998-10-15 株式会社後藤製作所 Resin-sealed semiconductor device and method of manufacturing the same
US5776798A (en) 1996-09-04 1998-07-07 Motorola, Inc. Semiconductor package and method thereof
US5902959A (en) 1996-09-05 1999-05-11 International Rectifier Corporation Lead frame with waffled front and rear surfaces
US5886397A (en) 1996-09-05 1999-03-23 International Rectifier Corporation Crushable bead on lead finger side surface to improve moldability
US5736432A (en) 1996-09-20 1998-04-07 National Semiconductor Corporation Lead frame with lead finger locking feature and method for making same
US5854512A (en) 1996-09-20 1998-12-29 Vlsi Technology, Inc. High density leaded ball-grid array package
US5817540A (en) 1996-09-20 1998-10-06 Micron Technology, Inc. Method of fabricating flip-chip on leads devices and resulting assemblies
DE69635518T2 (en) 1996-09-30 2006-08-17 Stmicroelectronics S.R.L., Agrate Brianza Plastic package for electronic arrangements
US5814884C1 (en) 1996-10-24 2002-01-29 Int Rectifier Corp Commonly housed diverse semiconductor die
JP2936062B2 (en) 1996-11-11 1999-08-23 富士通株式会社 Method for manufacturing semiconductor device
US5856911A (en) 1996-11-12 1999-01-05 National Semiconductor Corporation Attachment assembly for integrated circuits
EP0844665A3 (en) 1996-11-21 1999-10-27 Texas Instruments Incorporated Wafer level packaging
US5814881A (en) 1996-12-20 1998-09-29 Lsi Logic Corporation Stacked integrated chip package and method of making same
TW351008B (en) 1996-12-24 1999-01-21 Matsushita Electronics Corp Lead holder, manufacturing method of lead holder, semiconductor and manufacturing method of semiconductor
KR100703830B1 (en) 1996-12-26 2007-04-05 가부시키가이샤 히타치세이사쿠쇼 Method for manufacturing resin-encapsulated semiconductor device
JP3538290B2 (en) 1997-01-09 2004-06-14 株式会社ルネサステクノロジ Wiring member and lead frame having the same
JPH10256240A (en) 1997-01-10 1998-09-25 Sony Corp Manufacture of semiconductor device
JPH10199934A (en) 1997-01-13 1998-07-31 Hitachi Ltd Mounting structure of semiconductor element and mounting method thereof
US5994166A (en) 1997-03-10 1999-11-30 Micron Technology, Inc. Method of constructing stacked packages
US6201292B1 (en) 1997-04-02 2001-03-13 Dai Nippon Insatsu Kabushiki Kaisha Resin-sealed semiconductor device, circuit member used therefor
KR100230515B1 (en) 1997-04-04 1999-11-15 윤종용 Method for producting lead frame with uneven surface
US6271582B1 (en) 1997-04-07 2001-08-07 Micron Technology, Inc. Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die
KR100235308B1 (en) 1997-06-30 1999-12-15 윤종용 A semiconductor chip package having twice bent tie bar and small die pad
EP0895287A3 (en) 1997-07-31 2006-04-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and lead frame for the same
KR100300666B1 (en) 1997-08-04 2001-10-27 기타지마 요시토시 Resin-sealed semiconductor device, circuit member used therefor and method of manufacturing circuit member
US5889318A (en) 1997-08-12 1999-03-30 Micron Technology, Inc. Lead frame including angle iron tie bar and method of making the same
US5977630A (en) 1997-08-15 1999-11-02 International Rectifier Corp. Plural semiconductor die housed in common package with split heat sink
JPH1175250A (en) 1997-08-29 1999-03-16 Fujikura Ltd Cell forming method for mobile communication
HUP0100348A3 (en) 1997-10-20 2002-12-28 Hoffmann La Roche Bicycles containing a six menbered ring with one or two nitrogen atoms, process for their preparation, use of them, pharmaceutical compositions containing the same and intermediates
JP3638771B2 (en) 1997-12-22 2005-04-13 沖電気工業株式会社 Semiconductor device
JP4098864B2 (en) 1997-12-26 2008-06-11 東北リコー株式会社 Paper discharge device
JPH11233712A (en) 1998-02-12 1999-08-27 Hitachi Ltd Semiconductor device, its manufacture and electric apparatus using the semiconductor device
KR100260997B1 (en) 1998-04-08 2000-07-01 마이클 디. 오브라이언 Semiconductor package
JP3461720B2 (en) 1998-04-20 2003-10-27 松下電器産業株式会社 Resin-sealed semiconductor device
JPH11307719A (en) 1998-04-20 1999-11-05 Mitsubishi Electric Corp Semiconductor device
US6329224B1 (en) 1998-04-28 2001-12-11 Tessera, Inc. Encapsulation of microelectronic assemblies
JP3420057B2 (en) 1998-04-28 2003-06-23 株式会社東芝 Resin-sealed semiconductor device
US6335564B1 (en) 1998-05-06 2002-01-01 Conexant Systems, Inc. Single Paddle having a semiconductor device and a passive electronic component
JP2000049184A (en) 1998-05-27 2000-02-18 Hitachi Ltd Semiconductor device and production thereof
JP3562311B2 (en) 1998-05-27 2004-09-08 松下電器産業株式会社 Method for manufacturing lead frame and resin-encapsulated semiconductor device
US6294100B1 (en) 1998-06-10 2001-09-25 Asat Ltd Exposed die leadless plastic chip carrier
US6585905B1 (en) 1998-06-10 2003-07-01 Asat Ltd. Leadless plastic chip carrier with partial etch die attach pad
US6229200B1 (en) 1998-06-10 2001-05-08 Asat Limited Saw-singulated leadless plastic chip carrier
US6933594B2 (en) 1998-06-10 2005-08-23 Asat Ltd. Leadless plastic chip carrier with etch back pad singulation
US6498099B1 (en) 1998-06-10 2002-12-24 Asat Ltd. Leadless plastic chip carrier with etch back pad singulation
US6143981A (en) 1998-06-24 2000-11-07 Amkor Technology, Inc. Plastic integrated circuit package and method and leadframe for making the package
US6194777B1 (en) 1998-06-27 2001-02-27 Texas Instruments Incorporated Leadframes with selective palladium plating
US6201186B1 (en) 1998-06-29 2001-03-13 Motorola, Inc. Electronic component assembly and method of making the same
US6297548B1 (en) 1998-06-30 2001-10-02 Micron Technology, Inc. Stackable ceramic FBGA for high thermal applications
JP2000022044A (en) 1998-07-02 2000-01-21 Mitsubishi Electric Corp Semiconductor device and its manufacture
SE512710C2 (en) 1998-07-08 2000-05-02 Ericsson Telefon Ab L M High frequency transistor chip caps for high frequencies including an electrically and thermally conductive flange
WO2000004746A1 (en) 1998-07-16 2000-01-27 The Board Of Regents, The University Of Texas System Method and apparatus for rapid drying of coated materials with close capture of vapors
US6084297A (en) 1998-09-03 2000-07-04 Micron Technology, Inc. Cavity ball grid array apparatus
KR100290784B1 (en) 1998-09-15 2001-07-12 박종섭 Stack Package and Manufacturing Method
SG88741A1 (en) 1998-09-16 2002-05-21 Texas Instr Singapore Pte Ltd Multichip assembly semiconductor
US6281568B1 (en) 1998-10-21 2001-08-28 Amkor Technology, Inc. Plastic integrated circuit device package and leadframe having partially undercut leads and die pad
US6373127B1 (en) 1998-09-29 2002-04-16 Texas Instruments Incorporated Integrated capacitor on the back of a chip
KR100302593B1 (en) 1998-10-24 2001-09-22 김영환 Semiconductor package and fabricating method thereof
US6285075B1 (en) 1998-11-02 2001-09-04 Asat, Limited Integrated circuit package with bonding planes on a ceramic ring using an adhesive assembly
US6211462B1 (en) 1998-11-05 2001-04-03 Texas Instruments Incorporated Low inductance power package for integrated circuits
DE19851070A1 (en) 1998-11-05 2000-05-18 Wacker Siltronic Halbleitermat Method for simultaneous separation of several discs of brittle, hard workpiece; involves rotating workpiece and using wire saw
US6184465B1 (en) 1998-11-12 2001-02-06 Micron Technology, Inc. Semiconductor package
JP2000164788A (en) 1998-11-20 2000-06-16 Anam Semiconductor Inc Lead frame for semiconductor package and semiconductor package using the lead frame and its manufacture
US6310386B1 (en) 1998-12-17 2001-10-30 Philips Electronics North America Corp. High performance chip/package inductor integration
JP3169919B2 (en) 1998-12-21 2001-05-28 九州日本電気株式会社 Ball grid array type semiconductor device and method of manufacturing the same
JP3512657B2 (en) 1998-12-22 2004-03-31 シャープ株式会社 Semiconductor device
KR100379835B1 (en) 1998-12-31 2003-06-19 앰코 테크놀로지 코리아 주식회사 Semiconductor Package and Manufacturing Method
JP3560488B2 (en) 1999-01-29 2004-09-02 ユナイテッド マイクロエレクトロニクス コープ Chip scale package for multichip
US6377464B1 (en) 1999-01-29 2002-04-23 Conexant Systems, Inc. Multiple chip module with integrated RF capabilities
US6130823A (en) 1999-02-01 2000-10-10 Raytheon E-Systems, Inc. Stackable ball grid array module and method
US6075700A (en) 1999-02-02 2000-06-13 Compaq Computer Corporation Method and system for controlling radio frequency radiation in microelectronic packages using heat dissipation structures
US6208020B1 (en) 1999-02-24 2001-03-27 Matsushita Electronics Corporation Leadframe for use in manufacturing a resin-molded semiconductor device
JP2000260809A (en) 1999-03-12 2000-09-22 Toshiba Corp Package for semiconductor devices
TW413874B (en) 1999-04-12 2000-12-01 Siliconware Precision Industries Co Ltd BGA semiconductor package having exposed heat dissipation layer and its manufacturing method
US6429509B1 (en) 1999-05-03 2002-08-06 United Microelectronics Corporation Integrated circuit with improved interconnect structure and process for making same
US6184573B1 (en) 1999-05-13 2001-02-06 Siliconware Precision Industries Co., Ltd. Chip packaging
JP3398721B2 (en) 1999-05-20 2003-04-21 アムコー テクノロジー コリア インコーポレーティド Semiconductor package and manufacturing method thereof
TW409377B (en) 1999-05-21 2000-10-21 Siliconware Precision Industries Co Ltd Small scale ball grid array package
US6256200B1 (en) 1999-05-27 2001-07-03 Allen K. Lam Symmetrical package for semiconductor die
US6258629B1 (en) 1999-08-09 2001-07-10 Amkor Technology, Inc. Electronic device package and leadframe and method for making the package
JP4400802B2 (en) 1999-08-23 2010-01-20 大日本印刷株式会社 Lead frame, manufacturing method thereof, and semiconductor device
US6350664B1 (en) 1999-09-02 2002-02-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
US6420779B1 (en) 1999-09-14 2002-07-16 St Assembly Test Services Ltd. Leadframe based chip scale package and method of producing the same
TW423133B (en) 1999-09-14 2001-02-21 Advanced Semiconductor Eng Manufacturing method of semiconductor chip package
US6388336B1 (en) 1999-09-15 2002-05-14 Texas Instruments Incorporated Multichip semiconductor assembly
JP3691993B2 (en) 1999-10-01 2005-09-07 新光電気工業株式会社 Semiconductor device and manufacturing method thereof, carrier substrate and manufacturing method thereof
US6421013B1 (en) 1999-10-04 2002-07-16 Amerasia International Technology, Inc. Tamper-resistant wireless article including an antenna
KR100526844B1 (en) 1999-10-15 2005-11-08 앰코 테크놀로지 코리아 주식회사 semiconductor package and its manufacturing method
JP2001127246A (en) 1999-10-29 2001-05-11 Fujitsu Ltd Semiconductor device
US6580159B1 (en) 1999-11-05 2003-06-17 Amkor Technology, Inc. Integrated circuit device packages and substrates for making the packages
TW429494B (en) 1999-11-08 2001-04-11 Siliconware Precision Industries Co Ltd Quad flat non-leaded package
US6362525B1 (en) 1999-11-09 2002-03-26 Cypress Semiconductor Corp. Circuit structure including a passive element formed within a grid array substrate and method for making the same
KR100421774B1 (en) 1999-12-16 2004-03-10 앰코 테크놀로지 코리아 주식회사 semiconductor package and its manufacturing method
JP2001177051A (en) 1999-12-20 2001-06-29 Toshiba Corp Semiconductor device and system apparatus
KR20010058583A (en) 1999-12-30 2001-07-06 마이클 디. 오브라이언 Lead End Grid Array Semiconductor package
US6198171B1 (en) 1999-12-30 2001-03-06 Siliconware Precision Industries Co., Ltd. Thermally enhanced quad flat non-lead package of semiconductor
US6333252B1 (en) 2000-01-05 2001-12-25 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
US6559525B2 (en) 2000-01-13 2003-05-06 Siliconware Precision Industries Co., Ltd. Semiconductor package having heat sink at the outer surface
JP3420153B2 (en) 2000-01-24 2003-06-23 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US6261864B1 (en) 2000-01-28 2001-07-17 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
US6342730B1 (en) 2000-01-28 2002-01-29 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
US6306685B1 (en) 2000-02-01 2001-10-23 Advanced Semiconductor Engineering, Inc. Method of molding a bump chip carrier and structure made thereby
JP3289192B2 (en) 2000-02-25 2002-06-04 敏治 大坂 Containers for storing sealing materials, containers for kneading and transporting sealing materials, and combinations of these containers
US6238952B1 (en) 2000-02-29 2001-05-29 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
US6399415B1 (en) 2000-03-20 2002-06-04 National Semiconductor Corporation Electrical isolation in panels of leadless IC packages
US6384472B1 (en) 2000-03-24 2002-05-07 Siliconware Precision Industries Co., Ltd Leadless image sensor package structure and method for making the same
KR100583494B1 (en) 2000-03-25 2006-05-24 앰코 테크놀로지 코리아 주식회사 Semiconductor package
US6444499B1 (en) 2000-03-30 2002-09-03 Amkor Technology, Inc. Method for fabricating a snapable multi-package array substrate, snapable multi-package array and snapable packaged electronic components
FR2807435B1 (en) 2000-04-06 2004-02-06 Seppic Sa NOVEL POLYXYLOSIDE DERIVATIVES, PROCESS FOR THEIR PREPARATION, COMPOSITION COMPRISING SAME AND USE AS SURFACTANTS
US6355502B1 (en) 2000-04-25 2002-03-12 National Science Council Semiconductor package and method for making the same
TW466720B (en) 2000-05-22 2001-12-01 Siliconware Precision Industries Co Ltd Semiconductor package with flash-prevention structure and manufacture method
JP2001351929A (en) 2000-06-09 2001-12-21 Hitachi Ltd Semiconductor device and its manufacturing method
US6404043B1 (en) 2000-06-21 2002-06-11 Dense-Pac Microsystems, Inc. Panel stacking of BGA devices to form three-dimensional modules
US6483178B1 (en) 2000-07-14 2002-11-19 Siliconware Precision Industries Co., Ltd. Semiconductor device package structure
JP2002033441A (en) 2000-07-14 2002-01-31 Mitsubishi Electric Corp Semiconductor device
JP3951091B2 (en) * 2000-08-04 2007-08-01 セイコーエプソン株式会社 Manufacturing method of semiconductor device
KR100347706B1 (en) 2000-08-09 2002-08-09 주식회사 코스타트반도체 New molded package having a implantable circuits and manufacturing method thereof
KR100414479B1 (en) 2000-08-09 2004-01-07 주식회사 코스타트반도체 Implantable circuit tapes for implanted semiconductor package and method for manufacturing thereof
US6379982B1 (en) 2000-08-17 2002-04-30 Micron Technology, Inc. Wafer on wafer packaging and method of fabrication for full-wafer burn-in and testing
SG87194A1 (en) 2000-08-17 2002-03-19 Samsung Techwin Co Ltd Lead frame and method of manufacturing the lead frame
US6400004B1 (en) 2000-08-17 2002-06-04 Advanced Semiconductor Engineering, Inc. Leadless semiconductor package
KR100359304B1 (en) 2000-08-25 2002-10-31 삼성전자 주식회사 Lead frame having a side ring pad and semiconductor chip package including the same
JP2002076228A (en) 2000-09-04 2002-03-15 Dainippon Printing Co Ltd Resin-sealed semiconductor device
US6577013B1 (en) 2000-09-05 2003-06-10 Amkor Technology, Inc. Chip size semiconductor packages with stacked dies
US6624005B1 (en) 2000-09-06 2003-09-23 Amkor Technology, Inc. Semiconductor memory cards and method of making same
SG102638A1 (en) 2000-09-15 2004-03-26 Samsung Techwin Co Ltd Lead frame, semiconductor package having the same, and semiconductor package manufacturing method
TW462121B (en) 2000-09-19 2001-11-01 Siliconware Precision Industries Co Ltd Heat sink type ball grid array package
KR100402822B1 (en) 2000-09-21 2003-10-22 이희영 Mandibular angle retractor
JP3923716B2 (en) 2000-09-29 2007-06-06 株式会社東芝 Semiconductor device
JP2002118222A (en) 2000-10-10 2002-04-19 Rohm Co Ltd Semiconductor device
US6476474B1 (en) 2000-10-10 2002-11-05 Siliconware Precision Industries Co., Ltd. Dual-die package structure and method for fabricating the same
JP3649111B2 (en) 2000-10-24 2005-05-18 株式会社村田製作所 High frequency circuit board, high frequency module using the same, and electronic device using the same
US6459148B1 (en) 2000-11-13 2002-10-01 Walsin Advanced Electronics Ltd QFN semiconductor package
US6337510B1 (en) 2000-11-17 2002-01-08 Walsin Advanced Electronics Ltd Stackable QFN semiconductor package
TW458377U (en) 2000-11-23 2001-10-01 Siliconware Precision Industries Co Ltd Sensor structure of quad flat package without external leads
US20020140081A1 (en) 2000-12-07 2002-10-03 Young-Huang Chou Highly integrated multi-layer circuit module having ceramic substrates with embedded passive devices
US6780770B2 (en) 2000-12-13 2004-08-24 Medtronic, Inc. Method for stacking semiconductor die within an implanted medical device
KR20020049944A (en) 2000-12-20 2002-06-26 박종섭 semiconductor package and method for fabricating the same
US6464121B2 (en) 2000-12-21 2002-10-15 Xerox Corporation Specialized tool adapted for a process for manufacture and interconnection between adjoining printed wiring boards
US6507120B2 (en) 2000-12-22 2003-01-14 Siliconware Precision Industries Co., Ltd. Flip chip type quad flat non-leaded package
KR100731007B1 (en) 2001-01-15 2007-06-22 앰코 테크놀로지 코리아 주식회사 stack-type semiconductor package
TW473951B (en) 2001-01-17 2002-01-21 Siliconware Precision Industries Co Ltd Non-leaded quad flat image sensor package
US6348726B1 (en) 2001-01-18 2002-02-19 National Semiconductor Corporation Multi row leadless leadframe package
JP4731021B2 (en) 2001-01-25 2011-07-20 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
US6518089B2 (en) 2001-02-02 2003-02-11 Texas Instruments Incorporated Flip chip semiconductor device in a molded chip scale package (CSP) and method of assembly
KR100364635B1 (en) 2001-02-09 2002-12-16 삼성전자 주식회사 Chip-Level Three-Dimensional Multi-Chip Package Having Chip Selection Pad Formed On Chip-Level And Making Method Therefor
US6815324B2 (en) 2001-02-15 2004-11-09 Megic Corporation Reliable metal bumps on top of I/O pads after removal of test probe marks
JP2002252297A (en) 2001-02-23 2002-09-06 Hitachi Ltd Electronic circuit device using multilayer circuit board
US6661083B2 (en) 2001-02-27 2003-12-09 Chippac, Inc Plastic semiconductor package
DE60239262D1 (en) 2001-03-02 2011-04-07 Nxp Bv MODULE AND ELECTRONIC DEVICE
JP3718131B2 (en) 2001-03-16 2005-11-16 松下電器産業株式会社 High frequency module and manufacturing method thereof
US6545345B1 (en) 2001-03-20 2003-04-08 Amkor Technology, Inc. Mounting for a package containing a chip
KR100369393B1 (en) 2001-03-27 2003-02-05 앰코 테크놀로지 코리아 주식회사 Lead frame and semiconductor package using it and its manufacturing method
US6603196B2 (en) 2001-03-28 2003-08-05 Siliconware Precision Industries Co., Ltd. Leadframe-based semiconductor package for multi-media card
US20020158318A1 (en) 2001-04-25 2002-10-31 Chen Hung Nan Multi-chip module
JP3666411B2 (en) 2001-05-07 2005-06-29 ソニー株式会社 High frequency module device
US6437429B1 (en) 2001-05-11 2002-08-20 Walsin Advanced Electronics Ltd Semiconductor package with metal pads
US6686649B1 (en) 2001-05-14 2004-02-03 Amkor Technology, Inc. Multi-chip semiconductor package with integral shield and antenna
US20030006055A1 (en) 2001-07-05 2003-01-09 Walsin Advanced Electronics Ltd Semiconductor package for fixed surface mounting
US6482680B1 (en) 2001-07-20 2002-11-19 Carsem Semiconductor Sdn, Bhd. Flip-chip on lead frame
US6380048B1 (en) 2001-08-02 2002-04-30 St Assembly Test Services Pte Ltd Die paddle enhancement for exposed pad in semiconductor packaging
SG120858A1 (en) 2001-08-06 2006-04-26 Micron Technology Inc Quad flat no-lead (qfn) grid array package, methodof making and memory module and computer system including same
US6573461B2 (en) 2001-09-20 2003-06-03 Dpac Technologies Corp Retaining ring interconnect used for 3-D stacking
US6740427B2 (en) 2001-09-21 2004-05-25 Intel Corporation Thermo-mechanically robust C4 ball-limiting metallurgy to prevent failure due to die-package interaction and method of making same
US6611047B2 (en) 2001-10-12 2003-08-26 Amkor Technology, Inc. Semiconductor package with singulation crease
US6946323B1 (en) 2001-11-02 2005-09-20 Amkor Technology, Inc. Semiconductor package having one or more die stacked on a prepackaged device and method therefor
TW510034B (en) 2001-11-15 2002-11-11 Siliconware Precision Industries Co Ltd Ball grid array semiconductor package
JP2003179099A (en) 2001-12-12 2003-06-27 Toshiba Corp Semiconductor device and method of manufacturing the same
DE10201781B4 (en) 2002-01-17 2007-06-06 Infineon Technologies Ag High frequency power device and high frequency power module and method of making the same
WO2003065452A1 (en) 2002-02-01 2003-08-07 Infineon Technologies Ag A lead frame
JP2003243595A (en) 2002-02-19 2003-08-29 New Japan Radio Co Ltd Semiconductor device with incorporated passive component
US6838751B2 (en) 2002-03-06 2005-01-04 Freescale Semiconductor Inc. Multi-row leadframe
US20030198032A1 (en) 2002-04-23 2003-10-23 Paul Collander Integrated circuit assembly and method for making same
JP2003318178A (en) 2002-04-24 2003-11-07 Seiko Epson Corp Semiconductor device, its manufacturing method, circuit board, and electronic apparatus
US6812552B2 (en) 2002-04-29 2004-11-02 Advanced Interconnect Technologies Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US6627977B1 (en) 2002-05-09 2003-09-30 Amkor Technology, Inc. Semiconductor package including isolated ring structure
US6696644B1 (en) 2002-08-08 2004-02-24 Texas Instruments Incorporated Polymer-embedded solder bumps for reliable plastic package attachment
US6818973B1 (en) 2002-09-09 2004-11-16 Amkor Technology, Inc. Exposed lead QFP package fabricated through the use of a partial saw process
TW563233B (en) 2002-09-11 2003-11-21 Advanced Semiconductor Eng Process and structure for semiconductor package
US6838761B2 (en) 2002-09-17 2005-01-04 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
US6972481B2 (en) 2002-09-17 2005-12-06 Chippac, Inc. Semiconductor multi-package module including stacked-die package and having wire bond interconnect between stacked packages
US7053476B2 (en) 2002-09-17 2006-05-30 Chippac, Inc. Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
US20040080025A1 (en) 2002-09-17 2004-04-29 Shinko Electric Industries Co., Ltd. Lead frame, method of manufacturing the same, and semiconductor device manufactured with the same
US20040061213A1 (en) 2002-09-17 2004-04-01 Chippac, Inc. Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
US7064426B2 (en) 2002-09-17 2006-06-20 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages
US7205647B2 (en) 2002-09-17 2007-04-17 Chippac, Inc. Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
TWI322448B (en) 2002-10-08 2010-03-21 Chippac Inc Semiconductor stacked multi-package module having inverted second package
US7034387B2 (en) 2003-04-04 2006-04-25 Chippac, Inc. Semiconductor multipackage module including processor and memory package assemblies
JP2004158753A (en) 2002-11-08 2004-06-03 Sony Corp Lead frame material, manufacturing method, and semiconductor device and manufacturing method
US20040089926A1 (en) 2002-11-12 2004-05-13 Taiwan Ic Packaging Corporation Ultra thin semiconductor device
TWI290757B (en) 2002-12-30 2007-12-01 Advanced Semiconductor Eng Thermal enhance MCM package and the manufacturing method thereof
US6861288B2 (en) 2003-01-23 2005-03-01 St Assembly Test Services, Ltd. Stacked semiconductor packages and method for the fabrication thereof
JP4245370B2 (en) 2003-02-21 2009-03-25 大日本印刷株式会社 Manufacturing method of semiconductor device
US6853572B1 (en) 2003-02-28 2005-02-08 Virage Logic Corporation Methods and apparatuses for a ROM memory array having twisted source or bit lines
JP3680839B2 (en) 2003-03-18 2005-08-10 セイコーエプソン株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2005011838A (en) 2003-06-16 2005-01-13 Toshiba Corp Semiconductor device and its assembling method
US7102209B1 (en) 2003-08-27 2006-09-05 National Semiconductor Corporation Substrate for use in semiconductor manufacturing and method of making same
US7245007B1 (en) 2003-09-18 2007-07-17 Amkor Technology, Inc. Exposed lead interposer leadframe package
US7015571B2 (en) 2003-11-12 2006-03-21 Advanced Semiconductor Engineering, Inc. Multi-chips module assembly package
US7053469B2 (en) 2004-03-30 2006-05-30 Advanced Semiconductor Engineering, Inc. Leadless semiconductor package and manufacturing method thereof
US7253511B2 (en) 2004-07-13 2007-08-07 Chippac, Inc. Semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
US7202554B1 (en) 2004-08-19 2007-04-10 Amkor Technology, Inc. Semiconductor package and its manufacturing method
JP2006120935A (en) 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
KR100652397B1 (en) 2005-01-17 2006-12-01 삼성전자주식회사 Stack type semiconductor package using an interposer print circuit board
US7271496B2 (en) 2005-02-04 2007-09-18 Stats Chippac Ltd. Integrated circuit package-in-package system
JP4520355B2 (en) 2005-04-19 2010-08-04 パナソニック株式会社 Semiconductor module
JP4983049B2 (en) 2005-06-24 2012-07-25 セイコーエプソン株式会社 Semiconductor device and electronic equipment
US7683266B2 (en) 2005-07-29 2010-03-23 Sanyo Electric Co., Ltd. Circuit board and circuit apparatus using the same
JP5129473B2 (en) 2005-11-15 2013-01-30 富士フイルム株式会社 Radiation detector
US7312519B2 (en) 2006-01-12 2007-12-25 Stats Chippac Ltd. Stacked integrated circuit package-in-package system
US7298037B2 (en) 2006-02-17 2007-11-20 Stats Chippac Ltd. Stacked integrated circuit package-in-package system with recessed spacer
US7298038B2 (en) 2006-02-25 2007-11-20 Stats Chippac Ltd. Integrated circuit package system including die stacking
US20070210433A1 (en) 2006-03-08 2007-09-13 Rajesh Subraya Integrated device having a plurality of chip arrangements and method for producing the same
US7288835B2 (en) 2006-03-17 2007-10-30 Stats Chippac Ltd. Integrated circuit package-in-package system
KR100832845B1 (en) 2006-10-03 2008-05-28 삼성전자주식회사 Semiconductor Package Structure And Method Of Fabricating The Same
KR100830581B1 (en) 2006-11-06 2008-05-22 삼성전자주식회사 Semiconductor device having through via and method for manufacturing the same
US7608921B2 (en) 2006-12-07 2009-10-27 Stats Chippac, Inc. Multi-layer semiconductor package
US7960210B2 (en) 2007-04-23 2011-06-14 Cufer Asset Ltd. L.L.C. Ultra-thin chip packaging
US7851893B2 (en) 2008-06-10 2010-12-14 Stats Chippac, Ltd. Semiconductor device and method of connecting a shielding layer to ground through conductive vias
JP5166992B2 (en) 2008-06-25 2013-03-21 積水化学工業株式会社 Fireproof coating structure
JP5283460B2 (en) 2008-09-11 2013-09-04 喜義 工藤 pillow
US8082537B1 (en) 2009-01-28 2011-12-20 Xilinx, Inc. Method and apparatus for implementing spatially programmable through die vias in an integrated circuit
KR100941979B1 (en) 2009-02-17 2010-02-11 대민산업개발(주) Auto measuring system of the watermark pondage
US8471577B2 (en) 2010-06-11 2013-06-25 Texas Instruments Incorporated Lateral coupling enabled topside only dual-side testing of TSV die attached to package substrate
JP5745959B2 (en) 2011-07-08 2015-07-08 日本放送協会 OFDM transmitter and receiver for wireless microphone
US9362010B2 (en) 2011-12-06 2016-06-07 Terrapower, Llc Passive reactivity control apparatus
JP3177060U (en) 2012-05-07 2012-07-19 泰子 西 Women's underwear
WO2013179819A1 (en) 2012-06-01 2013-12-05 Jnc株式会社 (METH)ACRYLIC ACID ESTER COMPOUND HAVING β-PROPIOLACTONE SKELETON, AND METHOD FOR PRODUCING SAME
JP6140563B2 (en) 2013-07-25 2017-05-31 京セラ株式会社 Solar cell, solar cell module and installation method thereof
JP6061401B2 (en) 2014-03-20 2017-01-18 フリュー株式会社 Data generation apparatus and image generation method
JP6252333B2 (en) 2014-04-18 2017-12-27 富士通株式会社 apparatus
JP6323854B2 (en) 2014-06-24 2018-05-16 フジイコーポレーション株式会社 Mower
JP7312405B2 (en) 2020-04-01 2023-07-21 株式会社大一商会 game machine
JP7297344B1 (en) 2022-11-21 2023-06-26 島工業Hd株式会社 CONCRETE FORM EQUIPMENT COMPONENT UNIT, CONCRETE FORM EQUIPMENT CONVEYING METHOD, CONCRETE FORM EQUIPMENT CONSTRUCTION METHOD, AND CONCRETE FORM EQUIPMENT DISASSEMBLY METHOD

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740964B2 (en) * 2000-11-17 2004-05-25 Oki Electric Industry Co., Ltd. Semiconductor package for three-dimensional mounting, fabrication method thereof, and semiconductor device
US6489676B2 (en) * 2000-12-04 2002-12-03 Fujitsu Limited Semiconductor device having an interconnecting post formed on an interposer within a sealing resin
US7671457B1 (en) * 2002-05-01 2010-03-02 Amkor Technology, Inc. Semiconductor package including top-surface terminals for mounting another semiconductor package
US6847109B2 (en) * 2002-09-25 2005-01-25 Samsung Electronics Co., Ltd. Area array semiconductor package and 3-dimensional stack thereof
US6828665B2 (en) * 2002-10-18 2004-12-07 Siliconware Precision Industries Co., Ltd. Module device of stacked semiconductor packages and method for fabricating the same
US7276799B2 (en) * 2003-08-26 2007-10-02 Samsung Electronics Co., Ltd. Chip stack package and manufacturing method thereof
US7372151B1 (en) * 2003-09-12 2008-05-13 Asat Ltd. Ball grid array package and process for manufacturing same
US7345361B2 (en) * 2003-12-04 2008-03-18 Intel Corporation Stackable integrated circuit packaging
US7737539B2 (en) * 2006-01-12 2010-06-15 Stats Chippac Ltd. Integrated circuit package system including honeycomb molding
US7242081B1 (en) * 2006-04-24 2007-07-10 Advanced Semiconductor Engineering Inc. Stacked package structure
US20080017968A1 (en) * 2006-07-18 2008-01-24 Samsung Electronics Co., Ltd. Stack type semiconductor package and method of fabricating the same
US7642133B2 (en) * 2006-09-27 2010-01-05 Advanced Semiconductor Engineering, Inc. Method of making a semiconductor package and method of making a semiconductor device
US20080230887A1 (en) * 2007-03-23 2008-09-25 Advanced Semiconductor Engineering, Inc. Semiconductor package and the method of making the same
US20080258289A1 (en) * 2007-04-23 2008-10-23 Pendse Rajendra D Integrated circuit package system for package stacking
US7777351B1 (en) * 2007-10-01 2010-08-17 Amkor Technology, Inc. Thin stacked interposer package
US20100019360A1 (en) * 2007-10-22 2010-01-28 Broadcom Corporation Integrated circuit package with etched leadframe for package-on-package interconnects
US20120306078A1 (en) * 2008-08-08 2012-12-06 Reza Argenty Pagaila Exposed interconnect for a package on package system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190123424A1 (en) * 2017-10-20 2019-04-25 Siliconware Precision Industries Co., Ltd. Electronic package and method for fabricating the same
US11380978B2 (en) * 2017-10-20 2022-07-05 Siliconware Precision Industries Co., Ltd. Electronic package and method for fabricating the same
CN111755344A (en) * 2019-03-28 2020-10-09 台湾积体电路制造股份有限公司 Package structure and method for forming the same
US11948892B2 (en) 2019-03-28 2024-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Formation method of chip package with fan-out feature
WO2023157747A1 (en) * 2022-02-16 2023-08-24 株式会社村田製作所 Circuit module

Also Published As

Publication number Publication date
US20180308788A1 (en) 2018-10-25
US11869829B2 (en) 2024-01-09
US20200343163A1 (en) 2020-10-29
US10811341B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
US11424220B2 (en) Semiconductor structure and manufacturing method thereof
TWI685932B (en) Wire bond wires for interference shielding
US11869829B2 (en) Semiconductor device with through-mold via
US9502335B2 (en) Package structure and method for fabricating the same
TWI581400B (en) Package-on-packages and method of forming the same
US8703599B2 (en) Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts
US7242081B1 (en) Stacked package structure
US7579690B2 (en) Semiconductor package structure
TWI429050B (en) Stack die packages
US9129870B2 (en) Package structure having embedded electronic component
US20100164088A1 (en) Semiconductor package, manufacturing method thereof and ic chip
CN111952274B (en) Electronic package and manufacturing method thereof
US9548283B2 (en) Package redistribution layer structure and method of forming same
KR20020061812A (en) Ball grid array type multi chip package and stack package
US7154171B1 (en) Stacking structure for semiconductor devices using a folded over flexible substrate and method therefor
KR101013548B1 (en) Staack package
US9190370B2 (en) Semiconductor device utilizing redistribution layers to couple stacked die
KR100876864B1 (en) Semiconductor package having bidirectional input / output terminals and manufacturing method thereof
KR102029804B1 (en) Package on package type semiconductor package and manufacturing method thereof
CN117637657A (en) Semiconductor package
KR101472901B1 (en) Wafer level chip scale package including redistribution substrate and method of fabricating the same
KR100813621B1 (en) Stacked semiconductor device package
WO2003050851A2 (en) A semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:AMKOR TECHNOLOGY, INC.;REEL/FRAME:046683/0139

Effective date: 20180713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AMKOR TECHNOLOGY, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, DONG JOO;KIM, JIN SEONG;LEE, KI WOOK;AND OTHERS;SIGNING DATES FROM 20081220 TO 20090102;REEL/FRAME:053171/0650