US2675707A - brown - Google Patents

brown Download PDF

Info

Publication number
US2675707A
US2675707A US2675707DA US2675707A US 2675707 A US2675707 A US 2675707A US 2675707D A US2675707D A US 2675707DA US 2675707 A US2675707 A US 2675707A
Authority
US
United States
Prior art keywords
shaft
tube
safety device
solder
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US2675707A publication Critical patent/US2675707A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Definitions

  • This invention relates to a safety device for furnaces, boilers, space heaters and the like.
  • a primary object of the present invention is to provide a simple and novel form of safety device which responds to attainment of excessive temperature in furnaces, boilers and space heaters to effect immediate reduction in the rate of combustion therein.
  • Another object is to provide a safety device of the aforementioned character which may be readily adapted to all kinds of furnaces, boilers or space heaters, and irrespective of the type of fuel or mode of fuel feed utilized in conjunction therewith.
  • a further object is to provide a device of the aforementioned character that cannot be reset until a condition of safe operating temperatures has been resumed
  • a still further object is to provide a safety device of the aforementioned character which may be readily reset an unlimited number of times without the need for use of tools or replacement of parts.
  • Figure 1 illustrates a warm air furnace together with a damper control system embodying the preferred safety device
  • Fig. 2 is an enlarged fragmentary view of a portion of the furnace of Fig. 1 illustrating the safety device in front elevation;
  • Fig. 3 is a sectional view taken along the line 3-3 of Fig. 2;
  • Fig. 4 schematically illustrates the use of the safety device in connection with a furnace having motor driven fuel feeding means
  • Fig. 5 schematically illustrates the use of the safety device with a liquid or gas fired space heater.
  • Fig. 1 shows a warm air furnace Hi of the hand fired type wherein combustion is controlled by coordinated operation of a check damper H, located in a smoke pipe 52 connecting the furnace combustion chamber and a chimney l3, and a draft damper i i, located in the ash pit door I5.
  • Dampers II and M are interconnected by a chain or cable It running over guide pulley I! and I8, fixed to the ceiling or overhead support. At one end chain I 5 is connected to damper II and at its other end it is connected to one end of a weight I? which at its other end has connection to damper M.
  • a chain or cable It is connected to the end of Weight ll with which chain It is connected, passes over a pulley 20 and i connected at its other end to the crank arm 2
  • Pulley 2! is suspended on one end of a chain or cable 23 which passes over guide pulleys 24 and 25, fixed to the ceiling or overhead support, and which is attached at its other end to the lever arm 26 of safety device 27.
  • safety device 21 will function to effect lowering of pulley 20 to such an extent that damper M will automatically close and damper M will be opened to its maximum extent, thereby providing for minimum rate of combustion in furnace lil.
  • Safety device 27 when subjected to temperatures above a predetermined safe value responds to release its arm 26 for movement in the clockwise direction under the bias of pulley 20, weight I? and damper I l. The construction and mounting of safety device 21 in furnace it will now be described in detail.
  • FIGs. 2 and 3 show in greater detail safety device 21 and a portion 28 of bonnet 293 immediately adjacent the safety device.
  • Safety device 21 comprises the aforementioned lever arm 26, a shaft 29, a tube 353, a sprin clutch 3!, a mounting plate 32, and an alloy solder 33.
  • Mounting plate 32 which is preferably formed of cadmium plated steel or iron, is provided with a central opening to accommodate therewithin with a snug fit the tube 38.
  • Tube 3d which is preferably formed of brass and annular in cross section, is soldered or brazed to plate 32 for rigid connection thereto.
  • composition of solder 33 will vary according to the permissible maximum furnace air temperature which will differ according to the size and maize of furnace and the design of the heating system. Generally speaking, the desired melting point of solder 33 will be in the range of 250 to 450 Fahrenheit.
  • Lever arm 25 which is preferably a one-piece punched and stamped member formed of cadmium plated steel or iron, comprises a flat rectangular portion 25*, triangular side portions ZG -and Et -which merge at a right angle with portion 2% on opposite sides of the latter, and an open-eye hooked portion 25 which merges with one end of portion 26 Portions 28 and 26 of arm 26 are provided with alined openings to accommodate shaft 29.
  • Spring clutch 3! which is preferably formed of galvanized music wire, comprises a helical coil portion 3!; an end coil portion Bi and an arm portion 31.
  • the coil turns of the portion 3 I are preferably formed so that when free of shaft 29 the inner diameter of the coil turns will be less than the outer diameter of shaft 29.
  • Shaft 29 is provided with a portion 25 of reduced diameter and the end coil portion 31 of clutch BI is adapted to engage said shaft thereon to restrain the clutch from movement axially of shaft 29.
  • the arm portion 3I of clutch 3! bears against the upper surface of portion 28 of lever 25, extends down through an opening 25 formed in portion 25 and bears against the lower surface of the latter portion.
  • An opening 34 formed in portion 28 of bonnet 28 is provided to accommodate the tube 30, which tube projects into the chamber inside said bonnet where it is subjected to the air temperature there prevailing.
  • Safety device Z'l is preferably secured in mounted relation on portion 28 of bonnet 28 by stove bolts 35 penetratin receiving openings formed in mounting plate 32 and taking into alined threaded openings formed in portion 2%.
  • a gasket formed of a thermal insulating material such as asbestos may be interposed between mounting plate 32 and portion 28* of bonnet 28 if desired.
  • Lever arm 26 due to the gravity bias of damper It, weight H and pulley 2b imparted thereto through the chain 23, tends to rotate in the clockwise direction on shaft 25 -iowever, as
  • spring clutch 3! restrains arm 2% against such movement, the restraint increasing with the force applied on-arm If the air temperature within bonnet 28 rises above the melting point of solder 33', the latter softens and when softened sufficiently permits shaft 23 to rotate freely within tube 35. Thus when solder 33 softens sufficiently the assembly comprising shaft 28, spring clutch 3
  • safety device 2 can be used repeatedly to afford the aforedescribed safety functioning without need for use of tools to reset or replacement of parts following safety action thereof.
  • safety device 27 has been shown and described in conjunction with a warm air furnace, it will be apparent to those skilled in the art that the same can be readily adapted to afford the same type of safety action in conjunction with hot water, vapor or steam boilers having the same or similar types of damper and damper control systems.
  • the manner of mounting safety device 2? will be different.
  • the most expeditious manner of mounting the same when used with boilers is to provide T fitting in the hot water, vapor or steam line leaving the boiler, providing safety device 2! with a screw thread mounting plug in place of mounting plate 32, and screwing such plug with safety device 21 mounted thereon into an opening of the T fitting.
  • the composition of the solder 33 of safety device 27 will vary according to the heating medium handled by the boiler. For use with hot water boilers the suggested range of melting points for solder 33 is to 208 Fahrenheit. With vapor and steam boilers the desired melting point for solder 33 will depend upon the upper limit of the working pressures of such boilers and should be selected accordingly.
  • Safety device 21 is also adapted for use with furnaces or boilers where fuel is fed by mechanical devices such as stokers or oil burners.
  • Fig. 4 it schematically depicts a furnace 40, which may be assumed to be of the warm air type, and a motor driven fuel feeding device 4
  • is provided with an electric motor M having electrical supply lines L and L which may be assumed to be connected into any desired type of manual or automatic control system therefor.
  • a switch 42 which here is depicted for the sake of simplicity as a single pole knife switch, is connected in circuit with supply line L
  • Safety device 21 is mounted in the manner aforeindicated in the bonnet of furnace and its lever arm 26 is connected to the handle of the switch 42 by a chain or cable 43 passing over guide pulleys.
  • a weight 44 is attached to the handle of switch 42 and when the arm 26 of safety device 2! is released under safety action of the latter, it effects opening of switch 42 to stop the motor M if the latter is then operating.
  • Fig. 5 it shows the use of safety device 21 in conjunction with a space heater 50 which may be assumed to be fed with a gaseous or liquid fuel through pipe 5
  • the arrangement of safety device 21 is similar to that shown in Fig. 4, and upon safety action of device 21 a weight 53 attached to the handle of valve 52 effects closure of said valve to shut off the supply of fuel to the space heater.
  • a thermally sensitive safety device comprising a tube for subjection to a heat conducting medium, a shaft fitting within said tube and at one end extending outwardly therebeyond, a lever mounted on the outwardly extending portion of said shaft, solder bonding said shaft to the inner wall of said tube for restraining said shaft against rotary movement in said tube whenever the temperature of the latter is below the melting point of said solder, and a spring clutch disposed about said shaft and engaging with said lever to prevent rotation of the latter on said shaft in one direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit rotary movement of the same and said lever in either direction relative to said tube whenever the temperature of said tube exceeds the melting point of said solder.
  • a thermally sensitive safety device comprising a. tube for subjection to a heat conducting medium, a shaft fitting within said tube and at one end extending outwardly therebeyond, solder bonding said shaft to the inner wall of said tube for restraining said shaft against movement relative to said tube whenever the temperature of said tube is below the melting point of said solder, a lever mounted on the outwardly extending portion of said shaft, and a spring clutch disposed about said shaft and engaging said lever for preventing rotation ofthe latter on said shaft in one direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit unlimited rotary movement of the same and said lever in either direction relative to said tube whenever the temperature of said tube exceeds the melting point of said solder.
  • a thermally sensitive safety device comprising a tube formed of a good heat conducting metal for subjection to a heat conducting medium, a shaft formed of metal fitting within said tube and extending at one end therebeyond, said tube and said shaft being complementally formed to insure against withdrawal of said shaft axially of said tube, a lever mounted on the outwardly extending portion of said shaft, solder bonding said shaft to the inner wall of said tube for restraining said shaft against rotary movement in said tube whenever the temperature of the; latter is below the melting point of said solder, and a helical coil spring clutch disposed about and gripping said shaft and engaging said lever for preventing rotation of the latter on said shaft in one 'direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit unlimited rotary movement of the same and said lever relative to said tube in either direction whenever the temperature of said tube exceeds the melting point of said solder.

Description

April 20, 1954 w. E. BROWN 2,675,707
FUSIBLE RELEASE SAFETY DEVICE FOR FURNACES AND THE LIKE Filed Oct. 2, 1950 2 Sheets-Sheet l p 20, 1954 w. E. BROWN 2,675,707
FUSIBLE RELEASE SAFETY DEVICE FOR FURNACES AND THE LIKE Filed Oct. 2, 1950 2 Sheets-Sheet 2 Patented Apr. 20, 1954 UNITED ENT OFFICE FUSIBLE RELEASE SAFETY DEVICE FOR FURNACES AND THE LIKE William E. Brown, Pewauliee, Wis., assignor to Cutler-Hammer, 1120., Milwaukee, Wis., a corporation of Delaware 3 Claims.
This invention relates to a safety device for furnaces, boilers, space heaters and the like.
It is not infrequent in the operation of furnaces, boilers and space heaters, through malfunctioning of damper systems and fuel supply control, or through neglect of the operator, that such furnaces, boiler and heaters become overheated. Such overheating greatly increases the attendant fire hazard and frequently results in serious damage to the heating system.
A primary object of the present invention is to provide a simple and novel form of safety device which responds to attainment of excessive temperature in furnaces, boilers and space heaters to effect immediate reduction in the rate of combustion therein.
Another object is to provide a safety device of the aforementioned character which may be readily adapted to all kinds of furnaces, boilers or space heaters, and irrespective of the type of fuel or mode of fuel feed utilized in conjunction therewith.
A further object is to provide a device of the aforementioned character that cannot be reset until a condition of safe operating temperatures has been resumed, and
A still further object is to provide a safety device of the aforementioned character which may be readily reset an unlimited number of times without the need for use of tools or replacement of parts.
Other objects and advantage of the invention will hereinafter be apparent.
The accompanying drawings illustrate a pre ferred embodiment of the invention which will now be described, it being understood that the embodiment illustrated is susceptible of various modifications in respect of details without departing from the scope of the appended claims.
In the drawings:
Figure 1 illustrates a warm air furnace together with a damper control system embodying the preferred safety device;
Fig. 2 is an enlarged fragmentary view of a portion of the furnace of Fig. 1 illustrating the safety device in front elevation;
Fig. 3 is a sectional view taken along the line 3-3 of Fig. 2;
Fig. 4 schematically illustrates the use of the safety device in connection with a furnace having motor driven fuel feeding means, and
Fig. 5 schematically illustrates the use of the safety device with a liquid or gas fired space heater.
Referring to Fig. 1, it shows a warm air furnace Hi of the hand fired type wherein combustion is controlled by coordinated operation of a check damper H, located in a smoke pipe 52 connecting the furnace combustion chamber and a chimney l3, and a draft damper i i, located in the ash pit door I5. Dampers II and M are interconnected by a chain or cable It running over guide pulley I! and I8, fixed to the ceiling or overhead support. At one end chain I 5 is connected to damper II and at its other end it is connected to one end of a weight I? which at its other end has connection to damper M. A chain or cable It is connected to the end of Weight ll with which chain It is connected, passes over a pulley 20 and i connected at its other end to the crank arm 2| of a damper regulator motor 22. Pulley 2!! is suspended on one end of a chain or cable 23 which passes over guide pulleys 24 and 25, fixed to the ceiling or overhead support, and which is attached at its other end to the lever arm 26 of safety device 27.
In the position of damper regulator motor 22 and damper control system depicted in Fig. 1, draft damper M will be open to its maximum extent, and it may be assumed that check damper II is closed to its maximum extent. With such positioning of dampers i I and It the combustion rate in furnace Ill will be at, or near, the maximum rate. If the position of crank arm 2| of regulator motor 22 is changed to a position opposite that shown in Fig. 1, then the positions of dampers H and It will be reversed from that aforementioned and the minimum rate of combustion in furnace it will then be afforded.
If the air temperature inside the bonnet 28 of furnace it i maintained below a predetermined safe value, then the position of pulley 20 will be maintained fixed. However, as will be hereinafter more fully explained, if the air temperature inside the bonnet 28 should rise above such predetermined safe value, safety device 21 will function to effect lowering of pulley 20 to such an extent that damper M will automatically close and damper M will be opened to its maximum extent, thereby providing for minimum rate of combustion in furnace lil. Safety device 27 when subjected to temperatures above a predetermined safe value responds to release its arm 26 for movement in the clockwise direction under the bias of pulley 20, weight I? and damper I l. The construction and mounting of safety device 21 in furnace it will now be described in detail.
Referring to Figs. 2 and 3, they show in greater detail safety device 21 and a portion 28 of bonnet 293 immediately adjacent the safety device.
Safety device 21 comprises the aforementioned lever arm 26, a shaft 29, a tube 353, a sprin clutch 3!, a mounting plate 32, and an alloy solder 33.
Mounting plate 32, which is preferably formed of cadmium plated steel or iron, is provided with a central opening to accommodate therewithin with a snug fit the tube 38. Tube 3d, which is preferably formed of brass and annular in cross section, is soldered or brazed to plate 32 for rigid connection thereto. Shaft 29, which is preferably cylindrical in form and made of steel, is adapted to fit within the interior bore of tube 36 with free clearance. Adjacent the end of shaft 29 extending within tube 39, the former is provided with a portion of reduced diameter, and tube 30 is circumferentially crimped, as depicted at 39 so that the inner wall thereof extends almost into engagement with such portion 2%, thereby preventing withdrawal. of shaft 29 axially of tube 36. The end of tube 39 adjacent the aforementioned end of shaft 29 is closed as by bendin the wall of the tube to a meeting relation as depicted at 36 Shaft 29 is normally restrained against rotary movement relative to tube 39 by the solder 33 which in hardened condition efiects a rigid bond between the outer surface of shaft 29 and the inner surface of tube 353. Prior to assembly, the inner surface of tube 3% and the outer surface of shaft 29 are suitably tinned such solder, and after assembly of shaft within tube 36 and the aforementioned crimping and closure of the end of the latter additional solder is introduced between shaft 29 and tube 3d to insure a rigid connection therebetween. The composition of solder 33 will vary according to the permissible maximum furnace air temperature which will differ according to the size and maize of furnace and the design of the heating system. Generally speaking, the desired melting point of solder 33 will be in the range of 250 to 450 Fahrenheit.
Shaft 29 extends outwardly beyond the open end of tube 38am appreciable distance and carries thereon the lever arm 25 and spring clutch 3i. Lever arm 25, which is preferably a one-piece punched and stamped member formed of cadmium plated steel or iron, comprises a flat rectangular portion 25*, triangular side portions ZG -and Et -which merge at a right angle with portion 2% on opposite sides of the latter, and an open-eye hooked portion 25 which merges with one end of portion 26 Portions 28 and 26 of arm 26 are provided with alined openings to accommodate shaft 29.
Spring clutch 3!, which is preferably formed of galvanized music wire, comprises a helical coil portion 3!; an end coil portion Bi and an arm portion 31. The coil turns of the portion 3 I are preferably formed so that when free of shaft 29 the inner diameter of the coil turns will be less than the outer diameter of shaft 29. Shaft 29 is provided with a portion 25 of reduced diameter and the end coil portion 31 of clutch BI is adapted to engage said shaft thereon to restrain the clutch from movement axially of shaft 29. The arm portion 3I of clutch 3! bears against the upper surface of portion 28 of lever 25, extends down through an opening 25 formed in portion 25 and bears against the lower surface of the latter portion. In the assembled relation shown in Figs. 2 and 3, the coil turns of portion 3 i of the clutch tightly grip shaft 29 and the portion 31 bearing against lever 26 restrains the latter against clockwise movement, as viewed in Figs. 1 and 2, on shaft 29.
An opening 34 formed in portion 28 of bonnet 28 is provided to accommodate the tube 30, which tube projects into the chamber inside said bonnet where it is subjected to the air temperature there prevailing. Safety device Z'l is preferably secured in mounted relation on portion 28 of bonnet 28 by stove bolts 35 penetratin receiving openings formed in mounting plate 32 and taking into alined threaded openings formed in portion 2%. Although not shown, a gasket formed of a thermal insulating material such as asbestos may be interposed between mounting plate 32 and portion 28* of bonnet 28 if desired.
The operation of safety device 2? will now be described. Lever arm 26, due to the gravity bias of damper It, weight H and pulley 2b imparted thereto through the chain 23, tends to rotate in the clockwise direction on shaft 25 -iowever, as
' aforeindicated, spring clutch 3! restrains arm 2% against such movement, the restraint increasing with the force applied on-arm If the air temperature within bonnet 28 rises above the melting point of solder 33', the latter softens and when softened sufficiently permits shaft 23 to rotate freely within tube 35. Thus when solder 33 softens sufficiently the assembly comprising shaft 28, spring clutch 3| and lever arm 25 rotates clockwise under the aforementioned bias, assuming a position such as that depicted in broken lines in Fig. 2, thereby affording lowering of pulley 2i; and attendant closing of damper Hi and opening of damper II to reduce the combustion rate in furnace IE] to the minimumrate.
When the air temperature within bonnet 2S thereafter is reduced below the solidifyng point of solder 33, shaft 29 and tube 36 again become rigidly bonded together. Safety device 27 is then in condition for resetting for further safety functioning. Resetting of the device is effected by merely rotating lever arm 25 anticlockwise on shaft 29 to the initial positions therefor shown in Figs. 1 and 2. As will be appreciated, when anticlockwise force is imparted on lever arm 25, the gripping force of the coil turns of portion 3 I of spring clutch 3! will be reduced, thereby permitting anticlockwise movement of arm 2t on shaft 29.
It will be apparent from the foregoing that safety device 2? can be used repeatedly to afford the aforedescribed safety functioning without need for use of tools to reset or replacement of parts following safety action thereof.
While safety device 27 has been shown and described in conjunction with a warm air furnace, it will be apparent to those skilled in the art that the same can be readily adapted to afford the same type of safety action in conjunction with hot water, vapor or steam boilers having the same or similar types of damper and damper control systems. When used with such boilers. the manner of mounting safety device 2? will be different. The most expeditious manner of mounting the same when used with boilers is to provide T fitting in the hot water, vapor or steam line leaving the boiler, providing safety device 2! with a screw thread mounting plug in place of mounting plate 32, and screwing such plug with safety device 21 mounted thereon into an opening of the T fitting. The composition of the solder 33 of safety device 27 will vary according to the heating medium handled by the boiler. For use with hot water boilers the suggested range of melting points for solder 33 is to 208 Fahrenheit. With vapor and steam boilers the desired melting point for solder 33 will depend upon the upper limit of the working pressures of such boilers and should be selected accordingly.
Safety device 21 is also adapted for use with furnaces or boilers where fuel is fed by mechanical devices such as stokers or oil burners. Referring to Fig. 4, it schematically depicts a furnace 40, which may be assumed to be of the warm air type, and a motor driven fuel feeding device 4|, which may be assumed to be a motor driven stoker or oil burner. Device 4| is provided with an electric motor M having electrical supply lines L and L which may be assumed to be connected into any desired type of manual or automatic control system therefor. A switch 42, which here is depicted for the sake of simplicity as a single pole knife switch, is connected in circuit with supply line L Safety device 21 is mounted in the manner aforeindicated in the bonnet of furnace and its lever arm 26 is connected to the handle of the switch 42 by a chain or cable 43 passing over guide pulleys. A weight 44 is attached to the handle of switch 42 and when the arm 26 of safety device 2! is released under safety action of the latter, it effects opening of switch 42 to stop the motor M if the latter is then operating.
Referring to Fig. 5, it shows the use of safety device 21 in conjunction with a space heater 50 which may be assumed to be fed with a gaseous or liquid fuel through pipe 5| having a control valve 52. In this instance the arrangement of safety device 21 is similar to that shown in Fig. 4, and upon safety action of device 21 a weight 53 attached to the handle of valve 52 effects closure of said valve to shut off the supply of fuel to the space heater.
I claim:
1. A thermally sensitive safety device comprising a tube for subjection to a heat conducting medium, a shaft fitting within said tube and at one end extending outwardly therebeyond, a lever mounted on the outwardly extending portion of said shaft, solder bonding said shaft to the inner wall of said tube for restraining said shaft against rotary movement in said tube whenever the temperature of the latter is below the melting point of said solder, and a spring clutch disposed about said shaft and engaging with said lever to prevent rotation of the latter on said shaft in one direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit rotary movement of the same and said lever in either direction relative to said tube whenever the temperature of said tube exceeds the melting point of said solder.
2. A thermally sensitive safety device comprising a. tube for subjection to a heat conducting medium, a shaft fitting within said tube and at one end extending outwardly therebeyond, solder bonding said shaft to the inner wall of said tube for restraining said shaft against movement relative to said tube whenever the temperature of said tube is below the melting point of said solder, a lever mounted on the outwardly extending portion of said shaft, and a spring clutch disposed about said shaft and engaging said lever for preventing rotation ofthe latter on said shaft in one direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit unlimited rotary movement of the same and said lever in either direction relative to said tube whenever the temperature of said tube exceeds the melting point of said solder.
3. A thermally sensitive safety device comprising a tube formed of a good heat conducting metal for subjection to a heat conducting medium, a shaft formed of metal fitting within said tube and extending at one end therebeyond, said tube and said shaft being complementally formed to insure against withdrawal of said shaft axially of said tube, a lever mounted on the outwardly extending portion of said shaft, solder bonding said shaft to the inner wall of said tube for restraining said shaft against rotary movement in said tube whenever the temperature of the; latter is below the melting point of said solder, and a helical coil spring clutch disposed about and gripping said shaft and engaging said lever for preventing rotation of the latter on said shaft in one 'direction while allowing unlimited rotation of said lever on said shaft in the opposite direction, said shaft being released to permit unlimited rotary movement of the same and said lever relative to said tube in either direction whenever the temperature of said tube exceeds the melting point of said solder.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,477,027 Blanchard Dec. 11, 1923 1,688,121 Larson Oct. 16, 1928 1,974,844 Cartwright Sept. 25, 1934 2,150,858 Eggleston Mar. 14, 1939 2,168,749 Olds Aug. 8, 1939 2,190,892 Swepston Feb. 20, 1940 2,302,745 Crise Nov. 24, 1942
US2675707D brown Expired - Lifetime US2675707A (en)

Publications (1)

Publication Number Publication Date
US2675707A true US2675707A (en) 1954-04-20

Family

ID=3440242

Family Applications (1)

Application Number Title Priority Date Filing Date
US2675707D Expired - Lifetime US2675707A (en) brown

Country Status (1)

Country Link
US (1) US2675707A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841014A (en) * 1954-09-07 1958-07-01 Standard Thomson Corp Thermal responsive device
US2869627A (en) * 1955-03-14 1959-01-20 William A Morton Recuperative furnaces
DE1081595B (en) * 1956-12-27 1960-05-12 Ahlmann Carlshuette K G Device for the automatic control of a heating boiler
US3195648A (en) * 1964-07-28 1965-07-20 Atack Fire Robots Ltd Fire extinguishing systems
US3248055A (en) * 1964-01-10 1966-04-26 United Aircraft Prod Thermostatic mixing valve
US3469569A (en) * 1967-11-20 1969-09-30 Lucas T Brockbank Automatic safety system and thermal sensor for heating systems
US3613795A (en) * 1969-08-13 1971-10-19 Air Balance Electrically and/or thermally actuated release link
DE3030130A1 (en) * 1980-08-08 1982-03-11 Luitpold Dipl.-Ing. 8000 München Kutzner Control system for furnace - has combustion chamber and flue duct with flap in air supply duct, for opening on demand for combustion chamber operation (NL 1.3.82)
US4362146A (en) * 1980-05-12 1982-12-07 Schuller Marius C Solid fuel stove
US20020017183A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Cutting tool safety system
US20020017182A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake positioning system
US20020017175A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Translation stop for use in power equipment
US20020017179A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Miter saw with improved safety system
US20020020261A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Replaceable brake mechanism for power equipment
US20020020271A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Spring-biased brake mechanism for power equipment
US20030015253A1 (en) * 2001-07-18 2003-01-23 Gass Stephen F. Router with improved safety system
US20030037651A1 (en) * 2001-08-13 2003-02-27 Gass Stephen F. Safety systems for power equipment
US6813983B2 (en) 2000-09-29 2004-11-09 Sd3, Llc Power saw with improved safety system
US6826988B2 (en) 2000-09-29 2004-12-07 Sd3, Llc Miter saw with improved safety system
US6880440B2 (en) 2000-09-29 2005-04-19 Sd3, Llc Miter saw with improved safety system
US6945148B2 (en) 2000-09-29 2005-09-20 Sd3, Llc Miter saw with improved safety system
US6957601B2 (en) 2000-08-14 2005-10-25 Sd3, Llc Translation stop for use in power equipment
US6994004B2 (en) 2000-09-29 2006-02-07 Sd3, Llc Table saw with improved safety system
US7000514B2 (en) 2001-07-27 2006-02-21 Sd3, Llc Safety systems for band saws
US7055417B1 (en) 1999-10-01 2006-06-06 Sd3, Llc Safety system for power equipment
US7077039B2 (en) 2001-11-13 2006-07-18 Sd3, Llc Detection system for power equipment
US7197969B2 (en) 2001-09-24 2007-04-03 Sd3, Llc Logic control with test mode for fast-acting safety system
US7231856B2 (en) 2001-06-13 2007-06-19 Sd3, Llc Apparatus and method for detecting dangerous conditions in power equipment
US20070240786A1 (en) * 2000-08-14 2007-10-18 Gass Stephen F Motion detecting system for use in a safety system for power equipment
US7377199B2 (en) 2000-09-29 2008-05-27 Sd3, Llc Contact detection system for power equipment
US7481140B2 (en) 2005-04-15 2009-01-27 Sd3, Llc Detection systems for power equipment
US7509899B2 (en) 2000-08-14 2009-03-31 Sd3, Llc Retraction system for use in power equipment
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US7712403B2 (en) 2001-07-03 2010-05-11 Sd3, Llc Actuators for use in fast-acting safety systems
US7784507B2 (en) 2000-09-29 2010-08-31 Sd3, Llc Router with improved safety system
US7788999B2 (en) 1999-10-01 2010-09-07 Sd3, Llc Brake mechanism for power equipment
US7827890B2 (en) 2004-01-29 2010-11-09 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US7836804B2 (en) 2003-08-20 2010-11-23 Sd3, Llc Woodworking machines with overmolded arbors
US7895927B2 (en) 1999-10-01 2011-03-01 Sd3, Llc Power equipment with detection and reaction systems
US7921754B2 (en) 2000-08-14 2011-04-12 Sd3, Llc Logic control for fast-acting safety system
US7991503B2 (en) 2003-12-31 2011-08-02 Sd3, Llc Detection systems for power equipment
US8061245B2 (en) 2000-09-29 2011-11-22 Sd3, Llc Safety methods for use in power equipment
US8065943B2 (en) 2000-09-18 2011-11-29 Sd3, Llc Translation stop for use in power equipment
US8459157B2 (en) 2003-12-31 2013-06-11 Sd3, Llc Brake cartridges and mounting systems for brake cartridges
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841014A (en) * 1954-09-07 1958-07-01 Standard Thomson Corp Thermal responsive device
US2869627A (en) * 1955-03-14 1959-01-20 William A Morton Recuperative furnaces
DE1081595B (en) * 1956-12-27 1960-05-12 Ahlmann Carlshuette K G Device for the automatic control of a heating boiler
US3248055A (en) * 1964-01-10 1966-04-26 United Aircraft Prod Thermostatic mixing valve
US3195648A (en) * 1964-07-28 1965-07-20 Atack Fire Robots Ltd Fire extinguishing systems
US3469569A (en) * 1967-11-20 1969-09-30 Lucas T Brockbank Automatic safety system and thermal sensor for heating systems
US3613795A (en) * 1969-08-13 1971-10-19 Air Balance Electrically and/or thermally actuated release link
US4362146A (en) * 1980-05-12 1982-12-07 Schuller Marius C Solid fuel stove
DE3030130A1 (en) * 1980-08-08 1982-03-11 Luitpold Dipl.-Ing. 8000 München Kutzner Control system for furnace - has combustion chamber and flue duct with flap in air supply duct, for opening on demand for combustion chamber operation (NL 1.3.82)
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US7788999B2 (en) 1999-10-01 2010-09-07 Sd3, Llc Brake mechanism for power equipment
US7895927B2 (en) 1999-10-01 2011-03-01 Sd3, Llc Power equipment with detection and reaction systems
US8196499B2 (en) 1999-10-01 2012-06-12 Sd3, Llc Power equipment with detection and reaction systems
US8408106B2 (en) 1999-10-01 2013-04-02 Sd3, Llc Method of operating power equipment with detection and reaction systems
US7055417B1 (en) 1999-10-01 2006-06-06 Sd3, Llc Safety system for power equipment
US9522476B2 (en) 1999-10-01 2016-12-20 Sd3, Llc Power equipment with detection and reaction systems
US10335972B2 (en) 1999-10-01 2019-07-02 Sawstop Holding Llc Table Saws
US9969014B2 (en) 1999-10-01 2018-05-15 Sawstop Holding Llc Power equipment with detection and reaction systems
US9925683B2 (en) 1999-10-01 2018-03-27 Sawstop Holding Llc Table saws
US20020017182A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake positioning system
US7308843B2 (en) * 2000-08-14 2007-12-18 Sd3, Llc Spring-biased brake mechanism for power equipment
US6957601B2 (en) 2000-08-14 2005-10-25 Sd3, Llc Translation stop for use in power equipment
US9038515B2 (en) 2000-08-14 2015-05-26 Sd3, Llc Logic control for fast-acting safety system
US8522655B2 (en) 2000-08-14 2013-09-03 Sd3, Llc Logic control for fast-acting safety system
US20020020261A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Replaceable brake mechanism for power equipment
US20020017179A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Miter saw with improved safety system
US7137326B2 (en) * 2000-08-14 2006-11-21 Sd3, Llc Translation stop for use in power equipment
US20020017175A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Translation stop for use in power equipment
US8191450B2 (en) 2000-08-14 2012-06-05 Sd3, Llc Power equipment with detection and reaction systems
US20070240786A1 (en) * 2000-08-14 2007-10-18 Gass Stephen F Motion detecting system for use in a safety system for power equipment
US20020020271A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Spring-biased brake mechanism for power equipment
US8151675B2 (en) 2000-08-14 2012-04-10 Sd3, Llc Logic control for fast-acting safety system
US8100039B2 (en) 2000-08-14 2012-01-24 Sd3, Llc Miter saw with safety system
US7509899B2 (en) 2000-08-14 2009-03-31 Sd3, Llc Retraction system for use in power equipment
US7610836B2 (en) * 2000-08-14 2009-11-03 Sd3, Llc Replaceable brake mechanism for power equipment
US7681479B2 (en) 2000-08-14 2010-03-23 Sd3, Llc Motion detecting system for use in a safety system for power equipment
US20020017183A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Cutting tool safety system
US7921754B2 (en) 2000-08-14 2011-04-12 Sd3, Llc Logic control for fast-acting safety system
US7832314B2 (en) 2000-08-14 2010-11-16 Sd3, Llc Brake positioning system
US8065943B2 (en) 2000-09-18 2011-11-29 Sd3, Llc Translation stop for use in power equipment
US6826988B2 (en) 2000-09-29 2004-12-07 Sd3, Llc Miter saw with improved safety system
US7377199B2 (en) 2000-09-29 2008-05-27 Sd3, Llc Contact detection system for power equipment
US8186255B2 (en) 2000-09-29 2012-05-29 Sd3, Llc Contact detection system for power equipment
US6994004B2 (en) 2000-09-29 2006-02-07 Sd3, Llc Table saw with improved safety system
US6945148B2 (en) 2000-09-29 2005-09-20 Sd3, Llc Miter saw with improved safety system
US7784507B2 (en) 2000-09-29 2010-08-31 Sd3, Llc Router with improved safety system
US6880440B2 (en) 2000-09-29 2005-04-19 Sd3, Llc Miter saw with improved safety system
US6813983B2 (en) 2000-09-29 2004-11-09 Sd3, Llc Power saw with improved safety system
US8061245B2 (en) 2000-09-29 2011-11-22 Sd3, Llc Safety methods for use in power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US7231856B2 (en) 2001-06-13 2007-06-19 Sd3, Llc Apparatus and method for detecting dangerous conditions in power equipment
US7712403B2 (en) 2001-07-03 2010-05-11 Sd3, Llc Actuators for use in fast-acting safety systems
US20030015253A1 (en) * 2001-07-18 2003-01-23 Gass Stephen F. Router with improved safety system
US7000514B2 (en) 2001-07-27 2006-02-21 Sd3, Llc Safety systems for band saws
US20030037651A1 (en) * 2001-08-13 2003-02-27 Gass Stephen F. Safety systems for power equipment
US7197969B2 (en) 2001-09-24 2007-04-03 Sd3, Llc Logic control with test mode for fast-acting safety system
US7077039B2 (en) 2001-11-13 2006-07-18 Sd3, Llc Detection system for power equipment
US7836804B2 (en) 2003-08-20 2010-11-23 Sd3, Llc Woodworking machines with overmolded arbors
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US9623498B2 (en) 2003-12-31 2017-04-18 Sd3, Llc Table saws
US8498732B2 (en) 2003-12-31 2013-07-30 Sd3, Llc Detection systems for power equipment
US7827893B2 (en) 2003-12-31 2010-11-09 Sd3, Llc Elevation mechanism for table saws
US8459157B2 (en) 2003-12-31 2013-06-11 Sd3, Llc Brake cartridges and mounting systems for brake cartridges
US8122807B2 (en) 2003-12-31 2012-02-28 Sd3, Llc Table saws with safety systems
US7866239B2 (en) 2003-12-31 2011-01-11 Sd3, Llc Elevation mechanism for table saws
US8489223B2 (en) 2003-12-31 2013-07-16 Sd3, Llc Detection systems for power equipment
US8087438B2 (en) 2003-12-31 2012-01-03 Sd3, Llc Detection systems for power equipment
US7991503B2 (en) 2003-12-31 2011-08-02 Sd3, Llc Detection systems for power equipment
US7827890B2 (en) 2004-01-29 2010-11-09 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US10052786B2 (en) 2004-01-29 2018-08-21 Sawstop Holding Llc Table saws with safety systems and systems to mount and index attachments
US8505424B2 (en) 2004-01-29 2013-08-13 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US10882207B2 (en) 2004-01-29 2021-01-05 Sawstop Holding Llc Table saws with safety systems and systems to mount and index attachments
US7481140B2 (en) 2005-04-15 2009-01-27 Sd3, Llc Detection systems for power equipment

Similar Documents

Publication Publication Date Title
US2675707A (en) brown
US4284235A (en) Vent control arrangement for combustion apparatus
US5632614A (en) Gas fired appliance igntion and combustion monitoring system
US3580238A (en) Automatic damper means
US1858265A (en) Burner control system
US4289271A (en) Damper construction for a gas fired combustion apparatus
US2185436A (en) Thermostatic device
US2184983A (en) Gas burner control system
US2856992A (en) Heat saving device for furnaces
US4225080A (en) Damper construction for a gas fired combustion apparatus
US4164936A (en) Damper
US4089632A (en) Fuel control safety apparatus
US2229717A (en) Igniter for oil burners
US2764025A (en) Thermal fuse
US2781977A (en) Safety gas control system for hot water heaters
US1681421A (en) Thermal safety device
US2726715A (en) Oil burner with electrical vaporizer
US2640649A (en) Thermostatic control apparatus for heating systems
US3204685A (en) Burner ignition and control system
US4053106A (en) System for utilizing heat contained in flue gas
US2488330A (en) Safety shutoff device for carbonaceous fuel burners
US2717381A (en) matthews
US1048659A (en) Safety device for heaters.
US2240763A (en) Control system
US2999536A (en) Flow control device