US2703621A - Oil well bottom hole flow increasing unit - Google Patents

Oil well bottom hole flow increasing unit Download PDF

Info

Publication number
US2703621A
US2703621A US352827A US35282753A US2703621A US 2703621 A US2703621 A US 2703621A US 352827 A US352827 A US 352827A US 35282753 A US35282753 A US 35282753A US 2703621 A US2703621 A US 2703621A
Authority
US
United States
Prior art keywords
well
oil
casing
bottom hole
oil well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US352827A
Inventor
George W Ford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US352827A priority Critical patent/US2703621A/en
Application granted granted Critical
Publication of US2703621A publication Critical patent/US2703621A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters

Definitions

  • This invention relates generally to apparatus for increasing the ow of underground oil into the bottom of an oil well by the application of heat to the oil bearing underground structure at desired levels, thus increasing the volume of oil which can be removed from the well by pumping or other means.
  • the invention is especially advantageous when used in wells in which pitch, paraflin, tar and sludge have practically sealed the normally porous oil producing sand or other structure, thus preventing oil from flowing into the well.
  • An object of the invention is to provide an electrically heated unit which can be secured directly to the lower end of a string of tubing or to the lower end of the working barrel of a pump and let down into the well to a desired depth.
  • An additional object is to provide a unit of this type which may be used as a permanent but intermittent heater in a pumping well without interfering in any way with the pumping operation.
  • Another object is to provide a unit the operation and temperature of which can be controlled at the top of the well at ground level.
  • Still another object is to provide a heater unit which is so constructed that oil and other liquid in the well cannot directly contact and short circuit the electrical heating elements.
  • Fig. l is a condensed schematic longitudinal vertical sectional view through an oil well showing a unit embodying my invention installed therein, the heater unit proper being secured to the lower end of the working barrel of a pump;
  • Fig. 2 is a detailed view, partially in vertical section illustrating one type of relief valve used as a part of the unit.
  • Fig. 1 shows a casing 10 extending from ground level 11 to the bottom hole or shot hole 12.
  • Casing 10 houses a string of production tubing 13, which carries a conventional plunger type pump 14 on its lower end.
  • My invention includes a conventional packer 15 which seals o the shot hole 12, thus limiting the rise of oil in the casing.
  • a pressure relief valve 16 such as shown in Fig. 2, extends through the packer and prevents pressure in the bottom hole from exceeding a predetermined desired amount by permitting the escape of gas or air from the space above the oil in the hole.
  • a sealed electrical immersion heating unit 19 is sealed in the lower end of casing 18, as by welding 20.
  • This heating unit preferably is of the type having its electrical heating element sealed inside a nickel steel sheath 21.
  • a pipe T22 is threaded on the lower end of casing 18, and the lower end of the T is sealed by a threaded plug 23.
  • the third opening of the T receives an elbow 24, which is connected to a copper pipe 25 which extends upward in the casing 10 through packer 15, as shown.
  • the packer seals fluid tight around this pipe 25.
  • a two wire electrical conduit 26 extends downward through well head 27 into copper pipe 25, and on down into the interior of T22, where it is connected electrically to the two heater terminals 28 and 29.
  • the packer ice 15, copper pipe 25, elbow 24, T22, plug 23, and welding seal 20- thus" combine t'o prevent any' possible contact of fluid in the' well with the ,electrical conduit 26.
  • the conduit is supported by suitable clamps 36V around tubing' 13.
  • The4 perforations in heater easing 18 permit oil and other liquid in the well to directly contact the internally heated sheath 21, so that over a period of time all liquid in the shot hole is heated to a desired temperature.
  • a conventional thermostatic circuit breaker 30 is mounted on production tubing 13 just above the well head. It includes a heat sensing element 31 which projects into the interior of the tubing, and senses the temperature of the liquid being pumped through the tubing from the shot hole 12.
  • One wire of conduit 26 is connected to one terminal 32 of circuit breaker 30.
  • the other Wire is connected to one lead of a source of electrical energy 33.
  • the other lead from the source 33 is connected to the other circuit Y breaker terminal 34, through a suitable control switch 35.
  • the circuit breaker is set to close the electrical circuit when it senses a liquid temperature of approximately 69 F., and to open the gircuit when it senses a temperature of approximately From the above description, it will be seen that the invention provides a simple yet eicient means of increasing the flow of oil from the oil bearing formation into the shot hole at the bottom of an oil well, a means of settling out tar and other heavy fractions in the oil flowing into the well hole, a means for reducing parain accumulation in pumping wells, and thus a means for increasing oil production from a pumping oil well.
  • an oil heating system for such wells comprising: a pressure sealing packer sealing oif the space between the tubing and casing at a point just above the upper end of the shot hole, the lower end of the pump working barrel extending downward through said packer; an elongated heater casing having its upper end secured to the intake end of said pump working barrel and its remaining portion extending downward into said shot hole, said heater casing having perforations in its wall; a one piece electrical immersion heating unit including means sealing the lower end of the heater casing and a liquid protected heating element extending upward into the perforated heater casing, the terminal ends of said heating element projecting through and below the heater casing sealing means; a liquid tight housing secured to the lower end of the heater casing and enclosing the terminal ends of said heater element against liquid contact; a pipe

Description

March 8, 1955 G. w. FORD OIL WELL BOTTOM HOLE FLow` INCREASING UNIT Filed May 4, 1955 IN V EN TOR.
GeoRef; w FORD United States Patent O OIL WELL BOTTOM HOLE FLOW INCREASING George W. Ford, Wichita, Kans.
Application May 4, 1953, Serial No. 352,827
2 Claims. (Cl. 166-60) This invention relates generally to apparatus for increasing the ow of underground oil into the bottom of an oil well by the application of heat to the oil bearing underground structure at desired levels, thus increasing the volume of oil which can be removed from the well by pumping or other means. The invention is especially advantageous when used in wells in which pitch, paraflin, tar and sludge have practically sealed the normally porous oil producing sand or other structure, thus preventing oil from flowing into the well.
An object of the invention is to provide an electrically heated unit which can be secured directly to the lower end of a string of tubing or to the lower end of the working barrel of a pump and let down into the well to a desired depth.
An additional object is to provide a unit of this type which may be used as a permanent but intermittent heater in a pumping well without interfering in any way with the pumping operation.
Another object is to provide a unit the operation and temperature of which can be controlled at the top of the well at ground level.
Still another object is to provide a heater unit which is so constructed that oil and other liquid in the well cannot directly contact and short circuit the electrical heating elements.
The invention, together with other objects attending its production, will be more clearly understood when the following description is read in connection with the accompanying drawings, in which:
Fig. l is a condensed schematic longitudinal vertical sectional view through an oil well showing a unit embodying my invention installed therein, the heater unit proper being secured to the lower end of the working barrel of a pump; and
Fig. 2 is a detailed view, partially in vertical section illustrating one type of relief valve used as a part of the unit.
Fig. 1 shows a casing 10 extending from ground level 11 to the bottom hole or shot hole 12. Casing 10 houses a string of production tubing 13, which carries a conventional plunger type pump 14 on its lower end.
My invention includes a conventional packer 15 which seals o the shot hole 12, thus limiting the rise of oil in the casing. A pressure relief valve 16, such as shown in Fig. 2, extends through the packer and prevents pressure in the bottom hole from exceeding a predetermined desired amount by permitting the escape of gas or air from the space above the oil in the hole.
Secured on the lower end of the working barrel of pump 14 by means of a coupling 17, is an elongated perforated heater casing 18. A sealed electrical immersion heating unit 19 is sealed in the lower end of casing 18, as by welding 20. This heating unit preferably is of the type having its electrical heating element sealed inside a nickel steel sheath 21. A pipe T22 is threaded on the lower end of casing 18, and the lower end of the T is sealed by a threaded plug 23.
The third opening of the T receives an elbow 24, which is connected to a copper pipe 25 which extends upward in the casing 10 through packer 15, as shown. The packer seals fluid tight around this pipe 25.
A two wire electrical conduit 26 extends downward through well head 27 into copper pipe 25, and on down into the interior of T22, where it is connected electrically to the two heater terminals 28 and 29. The packer ice 15, copper pipe 25, elbow 24, T22, plug 23, and welding seal 20- thus" combine t'o prevent any' possible contact of fluid in the' well with the ,electrical conduit 26. The conduit is supported by suitable clamps 36V around tubing' 13. The4 perforations in heater easing 18 permit oil and other liquid in the well to directly contact the internally heated sheath 21, so that over a period of time all liquid in the shot hole is heated to a desired temperature.
As a means of temperature control a conventional thermostatic circuit breaker 30 is mounted on production tubing 13 just above the well head. It includes a heat sensing element 31 which projects into the interior of the tubing, and senses the temperature of the liquid being pumped through the tubing from the shot hole 12. One wire of conduit 26 is connected to one terminal 32 of circuit breaker 30. The other Wire is connected to one lead of a source of electrical energy 33. The other lead from the source 33 is connected to the other circuit Y breaker terminal 34, through a suitable control switch 35.
Depending on the depth of the well and the underground structure through which well casing 10 extends, there will be a fairly constant temperature differential between the liquid in the shot hole and the liquid in Contact with sensing element 31. This can easily be determined by test on each individual well. If the oil temperature drop from the bottom to the top of the well is 10 F. during continuous pumping, and it is desired to maintain the temperature of the oil in the shot hole between 80 F, and 90 F., then the circuit breaker is set to close the electrical circuit when it senses a liquid temperature of approximately 69 F., and to open the gircuit when it senses a temperature of approximately From the above description, it will be seen that the invention provides a simple yet eicient means of increasing the flow of oil from the oil bearing formation into the shot hole at the bottom of an oil well, a means of settling out tar and other heavy fractions in the oil flowing into the well hole, a means for reducing parain accumulation in pumping wells, and thus a means for increasing oil production from a pumping oil well.
Having described the invention with suiiicient clarity to enable those familiar with this art to construct and use it, I claim:
l. In a cased pumping oil well which includes a string of production tubing extending through a well head downward through the well casing to a shot hole, and which tubing carries a plunger type pump on its lower end, an oil heating system for such wells comprising: a pressure sealing packer sealing oif the space between the tubing and casing at a point just above the upper end of the shot hole, the lower end of the pump working barrel extending downward through said packer; an elongated heater casing having its upper end secured to the intake end of said pump working barrel and its remaining portion extending downward into said shot hole, said heater casing having perforations in its wall; a one piece electrical immersion heating unit including means sealing the lower end of the heater casing and a liquid protected heating element extending upward into the perforated heater casing, the terminal ends of said heating element projecting through and below the heater casing sealing means; a liquid tight housing secured to the lower end of the heater casing and enclosing the terminal ends of said heater element against liquid contact; a pipe having its lower end in sealed communication with said housing and extending upward Athrough said packer and through the well head; a pair of electrical conductors extending through the well head downward through said pipe and connected to the respective terminal ends of said heater element within said housing, said conductors being connected to a source of electrical power at the upper end of the well; a heat sensing unit extending into said production tubing for sensing the temperature of oil pumped therethrough; and a thermostatically controlled circuit breaker in circuit with the heater element and heat sensing unit and responsive to the heat sensed by the latter to control the ilow of electrical power to the heating element.
2. The oil heating system described in claim l, and a pressure relief valve mounted in said packer in communication with the sealed off space in the well below the packer, and arranged to exhaust into the space in the well above the packer.
References Cited in the le of this patent 4 Powell Aug. 27, 1929 Strandell Aug. 25, 1931 Lewis June 27, 1933 Niles Jan. 9, 1940 Germain Apr. 10, 1951
US352827A 1953-05-04 1953-05-04 Oil well bottom hole flow increasing unit Expired - Lifetime US2703621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US352827A US2703621A (en) 1953-05-04 1953-05-04 Oil well bottom hole flow increasing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US352827A US2703621A (en) 1953-05-04 1953-05-04 Oil well bottom hole flow increasing unit

Publications (1)

Publication Number Publication Date
US2703621A true US2703621A (en) 1955-03-08

Family

ID=23386669

Family Applications (1)

Application Number Title Priority Date Filing Date
US352827A Expired - Lifetime US2703621A (en) 1953-05-04 1953-05-04 Oil well bottom hole flow increasing unit

Country Status (1)

Country Link
US (1) US2703621A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3101116A (en) * 1961-04-04 1963-08-20 Electronic Oil Well Heater Inc Bottom hole jet heater
US3104705A (en) * 1960-02-08 1963-09-24 Jersey Prod Res Co Stabilizing a formation
US3113622A (en) * 1959-10-14 1963-12-10 Union Oil Co Method and apparatus for heating oil sands
US3123141A (en) * 1964-03-03 Well equipment for recovery of hydrocarbons
US3220479A (en) * 1960-02-08 1965-11-30 Exxon Production Research Co Formation stabilization system
US3457540A (en) * 1966-10-07 1969-07-22 Trans Continental Electronics Cable connector for induction heating systems
US6206093B1 (en) 1999-02-24 2001-03-27 Camco International Inc. System for pumping viscous fluid from a well
WO2001081713A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US6318467B1 (en) 1999-12-01 2001-11-20 Camco International, Inc. System and method for pumping and heating viscous fluids in a wellbore
US20020027001A1 (en) * 2000-04-24 2002-03-07 Wellington Scott L. In situ thermal processing of a coal formation to produce a selected gas mixture
US20030066642A1 (en) * 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20040145969A1 (en) * 2002-10-24 2004-07-29 Taixu Bai Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
EP1381753B1 (en) * 2001-04-24 2005-12-28 Shell Internationale Researchmaatschappij B.V. Electrical well heating system and method
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11313210B2 (en) 2020-03-23 2022-04-26 King Fahd University Of Petroleum And Minerals Method of enhanced oil recovery using an oil heating device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1439560A (en) * 1921-06-18 1922-12-19 Robert E Lee Method for cleaning and treating oil and gas wells
US1726041A (en) * 1929-08-27 Oil-pield-bejttvenating means
US1820291A (en) * 1930-03-17 1931-08-25 Strandell Arthur Oil extracting device
US1915895A (en) * 1932-05-25 1933-06-27 Franklin M Lewis Oil well heater
US2186035A (en) * 1938-06-30 1940-01-09 William E Niles Method of and apparatus for flowing wells
US2548360A (en) * 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1726041A (en) * 1929-08-27 Oil-pield-bejttvenating means
US1439560A (en) * 1921-06-18 1922-12-19 Robert E Lee Method for cleaning and treating oil and gas wells
US1820291A (en) * 1930-03-17 1931-08-25 Strandell Arthur Oil extracting device
US1915895A (en) * 1932-05-25 1933-06-27 Franklin M Lewis Oil well heater
US2186035A (en) * 1938-06-30 1940-01-09 William E Niles Method of and apparatus for flowing wells
US2548360A (en) * 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater

Cited By (452)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123141A (en) * 1964-03-03 Well equipment for recovery of hydrocarbons
US3113622A (en) * 1959-10-14 1963-12-10 Union Oil Co Method and apparatus for heating oil sands
US3104705A (en) * 1960-02-08 1963-09-24 Jersey Prod Res Co Stabilizing a formation
US3220479A (en) * 1960-02-08 1965-11-30 Exxon Production Research Co Formation stabilization system
US3101116A (en) * 1961-04-04 1963-08-20 Electronic Oil Well Heater Inc Bottom hole jet heater
US3457540A (en) * 1966-10-07 1969-07-22 Trans Continental Electronics Cable connector for induction heating systems
US6206093B1 (en) 1999-02-24 2001-03-27 Camco International Inc. System for pumping viscous fluid from a well
US6318467B1 (en) 1999-12-01 2001-11-20 Camco International, Inc. System and method for pumping and heating viscous fluids in a wellbore
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020027001A1 (en) * 2000-04-24 2002-03-07 Wellington Scott L. In situ thermal processing of a coal formation to produce a selected gas mixture
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020049360A1 (en) * 2000-04-24 2002-04-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020053431A1 (en) * 2000-04-24 2002-05-09 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020076212A1 (en) * 2000-04-24 2002-06-20 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020132862A1 (en) * 2000-04-24 2002-09-19 Vinegar Harold J. Production of synthesis gas from a coal formation
US20030066642A1 (en) * 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
WO2001083940A1 (en) * 2000-04-24 2001-11-08 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
WO2001081713A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6588503B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In Situ thermal processing of a coal formation to control product composition
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020040778A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US20030209348A1 (en) * 2001-04-24 2003-11-13 Ward John Michael In situ thermal processing and remediation of an oil shale formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173080A1 (en) * 2001-04-24 2003-09-18 Berchenko Ilya Emil In situ thermal processing of an oil shale formation using a pattern of heat sources
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20030137181A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US20080314593A1 (en) * 2001-04-24 2008-12-25 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7032660B2 (en) 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
EP1381753B1 (en) * 2001-04-24 2005-12-28 Shell Internationale Researchmaatschappij B.V. Electrical well heating system and method
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US20070209799A1 (en) * 2001-10-24 2007-09-13 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20030196788A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040145969A1 (en) * 2002-10-24 2004-07-29 Taixu Bai Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US20040144541A1 (en) * 2002-10-24 2004-07-29 Picha Mark Gregory Forming wellbores using acoustic methods
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US20070133959A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J Grouped exposed metal heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20090301724A1 (en) * 2005-10-24 2009-12-10 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US20080283246A1 (en) * 2006-10-20 2008-11-20 John Michael Karanikas Heating tar sands formations to visbreaking temperatures
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US20090095478A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100155070A1 (en) * 2008-10-13 2010-06-24 Augustinus Wilhelmus Maria Roes Organonitrogen compounds used in treating hydrocarbon containing formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11313210B2 (en) 2020-03-23 2022-04-26 King Fahd University Of Petroleum And Minerals Method of enhanced oil recovery using an oil heating device

Similar Documents

Publication Publication Date Title
US2703621A (en) Oil well bottom hole flow increasing unit
US3026940A (en) Oil well temperature indicator and control
US2548360A (en) Electric oil well heater
US1646599A (en) Apparatus for removing fluid from wells
US2762437A (en) Apparatus for separating fluids having different specific gravities
US8097810B2 (en) High pressure, high voltage penetrator assembly
US3559731A (en) Pump-off controller
US2707440A (en) Oil well pump control system
US2500305A (en) Electric oil well heater
US3485300A (en) Method and apparatus for defoaming crude oil down hole
US1942241A (en) Liquid level controlling means
RU2559975C1 (en) Heating method of well bottom hole area and device for its implementation
US3908763A (en) Method for pumpin paraffine base crude oil
US2980184A (en) Method and apparatus for producing wells
US3753257A (en) Well monitoring for production of solids
US5404061A (en) Oil-filled motor protector
RU2002126210A (en) Managed Production Well Packer
US2136881A (en) Well washer
GB2218132A (en) Method and means for introducing treatment fluid into a well bore
US2459268A (en) Borehole pressure gauge
US2808110A (en) Oil well heater
US4480960A (en) Ultrasensitive apparatus and method for detecting change in fluid flow conditions in a flowline of a producing oil well, or the like
CN108487882A (en) A kind of production tree device and method for exploitation of gas hydrate
CN103132949A (en) Heater cable for tubing in shale type hydrocarbon production wells
US2771770A (en) Viscometer system