US2803305A - Oil recovery by underground combustion - Google Patents

Oil recovery by underground combustion Download PDF

Info

Publication number
US2803305A
US2803305A US355124A US35512453A US2803305A US 2803305 A US2803305 A US 2803305A US 355124 A US355124 A US 355124A US 35512453 A US35512453 A US 35512453A US 2803305 A US2803305 A US 2803305A
Authority
US
United States
Prior art keywords
combustion
oil
stratum
zone
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US355124A
Inventor
Paul D Behning
Eugene D Glass
Michael J Rzasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan American Petroleum Corp
Original Assignee
Pan American Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan American Petroleum Corp filed Critical Pan American Petroleum Corp
Priority to US355124A priority Critical patent/US2803305A/en
Application granted granted Critical
Publication of US2803305A publication Critical patent/US2803305A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ

Definitions

  • FIG.- 4 A A FIG. 3
  • This invention relates to the recovery of oil from the underground strata in which it occurs, and is directed particularly to improvements in those recovery processes in which a portion of the oil in place is burned in order to drive out the remainder of the oil by the combined effects of the heat of combustion and the pressure of the combustion products. Specifically, the invention pertains to improvements in the measurement and control of the progress of a combustion recovery process in the underbe recovered with reasonable additional expenditures.
  • a primary object of our invention to provide a method of conducting an underground combustion operation with increased efiiciency, principally as a result of being able at any desired time to locate the position of the zone of combustion so that the oxidantinjection rate and/ or concentration can be accordingly adjusted or varied from time to time as needed.
  • Another object is to maintain the oxidant-injection rate at all times at an optimum value within certain essential limits.
  • Still another object is to maintain the oxidant-injection rate at an optimum value dependent upon the heat-transfer characteristics of the reservoir and the adjacent rocks.
  • the foregoing objects are accomplished by a series of steps which may preferably-but will not necessarilyinclude as a preliminary step, prior to the beginning of the operation, the installation of most or all of the surface and well equipment to be used in the injection and producing wells. Thereafter, a detailed geophysical survey of the surface area overlying the reservoir to be subjected to combustion recovery is performed by a geophysical method which is particularly adapted to investigate the depth of the stratum to be subjected to combustion. Following this, combustion is initiated at the base of the injection well or wells, and by introduction of oxidizing gas at the proper rate and concentration a combustion zone or front is caused to propagate through the reservoir'away from each injection atent ice tion of the underground combustion front is needed, the
  • geophysical survey or a portion of it is repeated, preferably occupying the same measurement points as in the first survey, and the differential effects on the geophysical response due to the passage of the combustion front through the underground strata are noted.
  • a calculation is made of the area of the burning face, and appropriate adjustments are made in the-rate of supply of oxidant and the rates of withdrawal from various output wells in such a way as to cause the front to move in the desired direction with the proper velocity.
  • the geophysical survey is repeated, and the rate of oxidant supply is accordingly'readjusted until the recovery is substantially completed.
  • Figure 1 is a graph of a typical temperature profile and correlative graphs of fluid saturations found in a stratum, or core simulating a stratum, being subjected to combustion drive;
  • Figure 2 is a graph of saturation and porosity conditions which must be satisfied to establish and move a combustion front through a reservoir
  • Figures 3 and 4 are diagrammatic cross-sectional views of part of an oil-producing reservoir respectively illustrating the application of seismic and electrical geophysical surveying methods-to the problem of locating the underground combustion front;
  • Figure 4a is a graph correlated in position with Figure 4 and showing changes in apparent resistivity due to movement of the underground front of Figure 4.
  • Figure 1 illustrates the various different and distinct zones existing in a typical underground combustion operation.
  • Figure 1 illustrates the various different and distinct zones existing in a typical underground combustion operation.
  • Input and output well positions are not shown on this figure, for the reason that, to the horizontal scale shown, they would ordinarily lie considerably beyond the edges of the diagram.
  • Figure 1 The upper portion of Figure 1 is a temperature profile through the combustion andassociated zones, while the lower part shows graphically the fluid saturations existing in the various zones involved, both the temperature and fluid-saturation diagrams being to the same horizontal scale.
  • the first zone is the dry zone 10 through which the combustion has already passed.
  • the temperature of this zone decreases toward the left in the direction of the input well, since its initially high temperature due to the, combustion declines due to heat conduction through the rocks and due to heat transfer to the oxidizing gas passing through on the way to the combustion zone.
  • Ature is found, which is typically of the order of 1,000 F. This temperature isgenerally high enough to insure that all readily vaporizable liquids are in the vapor state. Accordingly, the liquid saturations at the highest temperature portion of this zone are zero, and the gas saturation 18 one hundred percent.
  • zone 13 Downstream from or ahead of combustion zone 11 is a transition zone 13 in which the liquid saturations are 'cha'nging rapidly due mostly to the condensation of vapors. Accordingly, zone 13 is most appropriately called a. condensation zone, which is the term that will be used hereafter.
  • That part of the oil which is not trapped is driven ahead and forms an oil zone or bank 15, which moves ahead due to the combination effect of the gas and Water drive.
  • this zone normally only the oil and gas phases will be flowing, the water saturation shown here in Figure 1 being simply the connate water existing in the reservoir.
  • oil zone 15 also increases in length as the combustion project progresses.
  • the oil and water saturations of the zone 16 which extends to the output well are generally. the liquid saturations existing in the reservoir before the initiation of the combustion project.
  • gas phase includes both reservoir gas and gase: ous products of combustion.
  • This dry rock is generally also considerably altered in its mineral character due to the fact that the sedimentary formations which are normally oil-bearing, having never been subjected to the action of such temperatures as 1000 F., are accordingly considerably affected by such temperatures. It is in part because we have noted these modifications and have been able to take advantage of them that We are able to control and carry out a combustion recovery operation with increased efliciency.
  • the temperature of 1000 F. mentioned as typical of a combustion zone does not always occur in practice, however, as it depends on a number of factors such as adequacy of the supply of trapped oil for fuel and upon the heat losses to the adjacent strata, which vary considerably with combustion zone thickness and propagation velocity. It can be shown that for any given set of reservoir conditions and oil characteristics, of the total available heat, the fraction F which is lost to the confining strata above and below the reservoir stratum is directly proportional to the square root of the combustion zone length or thickness L and inversely proportional to the square root of the velocity V of propagation of the combustion zone. In brief, the fractional heat loss where K is a constant.
  • V at or above a certain minimum value may be absolutely essential to the successful operation of the project.
  • reaction may eventually die out either in certain areas or entirely over the front, thus leaving behind much by-passed'or unrecovered oil.
  • Figure 2 accordingly presents graphically certainlimiting conditions we have observed about the underground combustion process where air is-used as the oxidant gas. If heat losses by conduction to the adjacent strata are neglected-which can bedone as long as reasonable velocities of propagation of the front, for example, one footper day and upwards are maintained this graph shows, as a function of the reservoir porosity, the volume of oilwhich must be trapped and left hehind to be burned as fuel merely for the purpose of raising the temperature of the rock to the 700 F. level of stable operation. This volume of oil is expressed as a percentagesaturation, interms of the percent of available pore space which'it occupies.
  • this graph shows that the percentage of total oil available which must be trapped and burned may sometimes be so large that (1) it is difiicult to trap and hold in place a sufiicient fraction to provide the necessary fuel, (2) the amount of oil left for recovery may be too small to make a project economically feasible, or (3) the supplying of sufficient oxygen to maintain V at or abovejthe necessary value may be difiicult due to low permeability.
  • Figure 2 thus represents an approximate boundary between operableand non-operable conditions, using air as the oxidant.
  • Conditions of reservoir porosity and saturation of oil which can be trapped for fuel which lies well above and to the right of the 700 F. line in this figure represent conditions where equilibrium temperatures in the combustion front higher than 700 F. can be attained, and thus represent stable operations.
  • Conditions close to this700 F. line become marginal for the use of air as'the oxidant medium, and it is then necessary to minimize heat losses to adjacent strata by keeping the propagation-velocity V of the front fairly high.
  • Conditions to theleft and below this line are eitherunstable or inoperative, even though heat losses may be neg1ected,.and recovery can therefore be efiected ordinarily only by using an oxidant mixture with higher oxygenconcentration than normal air.
  • Figure 2 makes it possible to estimate in advance the possible operability of a combustion project where the reservoir porosity-and the oil characteristics important to the trapping of an adequate fuel supply are known. If, for example, the oil-in-place contains less than the necessary percentage of heavy components which will not be distilled off and moved ahead and which will remain b ehind the condensation zone 13 as fuel, then the combustion recovery process may be feasible. On the other hand, if the heavy oil components are present in only a very small percentagait is unlikely that a combustion recovery process can be used.
  • the producing well in the direction ,of most rapid propagation can be shut in or produced more slowly, or a greater back pressure held on these wells so that a pressure difierential is setup in the reservoir, tending to force the oxygen supply in the direc- 'tion of the more slowly moving portion of the front'
  • the total oxygen-injection rate into the input well can be increased to insure that the slow-moving portiorr of the front receives an adequate supply even though other portions are supplied at greater rates than necessary.
  • the rate of oxygen supply and in any given case the velocity of movement of the combustion front which is proportional to it, is important also for the reason that it is related to the distance the front can be propagated away from any one injection well; That is, whenever the total amount of oxygen which must be injected through a given input well to maintain the supply above the required minimum at all locations on the front being propagated away from that well becomes greater than can economically be supplied through the Well, then new injection wells nearer to the front position must be provided. In any event, the supply pressure to maintain injection through an input well cannot ordinarily exceed the overburdent pressure at that depth.
  • FIG. 3 is a diagrammatic cross-section of the earth, from the ground surface 20 at leastone oxygen- -input well 21 and one producing well 22 extend to and through an oil-bearing stratum 23 having an upper boundary 24 and a lower boundary 25, which stratum23 is to be subjected to a combustion oil-recovery process. Underlying the lower boundary 25 at some depth which may be known or unknown is a, distinct interface 26 which normally produces a recognizable seismic reflection.
  • a, distinct interface 26 which normally produces a recognizable seismic reflection.
  • This figure illustrates the application 'of the seismic method of geophysical surveying to the problem of locat- 1 ing the front 11.
  • a series of continuous seismic surveys along fairly closely-spaced lines, either parallel or radiating from each well is first run over the area around input .wells 21 and output wells 22.
  • The'locations of each shot point 30 and spread position 31 at the ground surface should be carefully marked so that both can sub:
  • FIG. 4 An alternativemethod. of determining the location of front 11 is shown in Figure 4, which illustrates an applica: tion of electrical resistivity prospecting to the problem.
  • This method is applicable particularly to operations where the depth of stratum 23 is not excessively large.
  • a source 41 such as a battery or generator
  • each survey is carried out by introducing electrical current from a source 41, such as a battery or generator, into the earths surface 20 through electrodes 42 and 43 spaced apart a distance which is preferably approximately three times the depth of the stratum 23.
  • the potential resulting from current flow in the earth between electrodes 42 and 43 is detected by potential electrodes 44 and 45, preferably spaced apart by a distance about equal to the depth-of stratum 23 and centered between the current inputelectrode's 42 and.43.
  • the detected voltage is indicated or recorded by a potentiometer or meter 46.
  • a resultant apparent resistivity profile is shown in Figure 411 above Figure 4, correlated in position with the diagram of Figure 4,
  • the solid line 51 is typical of the profile obtained on the first or initial survey, the variations on this curve being due in part to the effects of casing and tubing in the wells 21 and 22, or to surface pipelines or resistivity variations in the near-surface strata.
  • the specific variations on curve 51 are in themselves without particular significance here.

Description

P. D. BEHNING ETAL 2,803,305 011. RECOVERY BY UNDERGROUND COMBUSTlON Filed May 14,-1953,
Aug. 20, 1957 3 Sheeizs-Sheet l E H 61 1:525 mo mozfima OON OOM
OOQ
' INVENTORS PAUL D. BEHN'ING EUGENE D." MICHAEL J.
GLASS RZASA BY W ATTORNE VOLME OF OIL BURNED IN PER CENT 0F PORE SPACE 1957 P. D. BEHNING ETAL 2,803,305
' 01L RECOVERY BY UNDERGROUND COMBUSTION Filed May 14,1953 s Sheets-Sheet 2 u I3 l5 l7 I9 2| 23 2s POROSITY IN PER CENT FIG. 2
' INVENTORS PAUL D. BEHNING EUGENE D. GLASS MICHAEL J. RZASA 7 ATTORNEY 1957 P. D. ABEHNING E TAL 2,803,305
' on. RECOVERY BY UNDERGROUND COMBUSTION v Fil ed May 14, 1953' 5 shets-sneet' s,
FIG.- 4 A FIG. 3
Y FIG. 4
EUGENE D. GLASS MICHAEL J. RZASA ATTORNE INVENTORS q PAUL- D. BEHNING OIL RECOVERY BY UNDERGROUND COMBUSTIGN Paul D. Behning, Eugene D. Glass, and Michael J. Rzasa, Tulsa, Okla, assignors to Pan American i etroieum Corporation, a corporation of Delaware Application May 14, 1953, Serial N 0. 355,124
2 Claims. (Cl. 166-4) This invention relates to the recovery of oil from the underground strata in which it occurs, and is directed particularly to improvements in those recovery processes in which a portion of the oil in place is burned in order to drive out the remainder of the oil by the combined effects of the heat of combustion and the pressure of the combustion products. Specifically, the invention pertains to improvements in the measurement and control of the progress of a combustion recovery process in the underbe recovered with reasonable additional expenditures.
The recovery of some of this oil by the combustion of a portion of it ha been proposed, but this process has so far been tried only on an extremely limited scale. Among the ditficulties encountered are the determination of the proper rates of introduction and proper concentration of combustion-supporting gas, and the measurement of the resulting progress of the underground combustion zone, which is necessary for making a proper adjustment or variation of these rates and concentrations.
It is, accordingly, a primary object of our invention .to provide a method of conducting an underground combustion operation with increased efiiciency, principally as a result of being able at any desired time to locate the position of the zone of combustion so that the oxidantinjection rate and/ or concentration can be accordingly adjusted or varied from time to time as needed. Another object is to maintain the oxidant-injection rate at all times at an optimum value within certain essential limits. Still another object is to maintain the oxidant-injection rate at an optimum value dependent upon the heat-transfer characteristics of the reservoir and the adjacent rocks. Other and further objects, uses, and advantages of the invention will become apparent as the description proceeds.
In accordance with our invention, the foregoing objects are accomplished by a series of steps which may preferably-but will not necessarilyinclude as a preliminary step, prior to the beginning of the operation, the installation of most or all of the surface and well equipment to be used in the injection and producing wells. Thereafter, a detailed geophysical survey of the surface area overlying the reservoir to be subjected to combustion recovery is performed by a geophysical method which is particularly adapted to investigate the depth of the stratum to be subjected to combustion. Following this, combustion is initiated at the base of the injection well or wells, and by introduction of oxidizing gas at the proper rate and concentration a combustion zone or front is caused to propagate through the reservoir'away from each injection atent ice tion of the underground combustion front is needed, the
geophysical survey or a portion of it is repeated, preferably occupying the same measurement points as in the first survey, and the differential effects on the geophysical response due to the passage of the combustion front through the underground strata are noted. Following the determination of the location of the front in this manner, a calculation is made of the area of the burning face, and appropriate adjustments are made in the-rate of supply of oxidant and the rates of withdrawal from various output wells in such a way as to cause the front to move in the desired direction with the proper velocity. Subsequently throughout the combustion operation the geophysical survey is repeated, and the rate of oxidant supply is accordingly'readjusted until the recovery is substantially completed.
This will be better understood by reference to the accompanying drawings forming a part of this application and illustrating certain steps in our process. In these drawings,
Figure 1 is a graph of a typical temperature profile and correlative graphs of fluid saturations found in a stratum, or core simulating a stratum, being subjected to combustion drive;
Figure 2 is a graph of saturation and porosity conditions which must be satisfied to establish and move a combustion front through a reservoir;
Figures 3 and 4 are diagrammatic cross-sectional views of part of an oil-producing reservoir respectively illustrating the application of seismic and electrical geophysical surveying methods-to the problem of locating the underground combustion front; and
Figure 4a is a graph correlated in position with Figure 4 and showing changes in apparent resistivity due to movement of the underground front of Figure 4.
Referring now, to these drawings in detail, it is believed that the significance of the invention and its various steps will be more easily understood when the conditions existing in the various portions of a reservoir stratum being subjected to recovery by underground combustion are set forth. Accordingly, Figure 1 illustrates the various different and distinct zones existing in a typical underground combustion operation. In this figure,.it is assumed that the direction of motion of fluids is away from an oxidant input well at the left of the figure and toward an output well at the right of the figure. Input and output well positions are not shown on this figure, for the reason that, to the horizontal scale shown, they would ordinarily lie considerably beyond the edges of the diagram.
The upper portion of Figure 1 is a temperature profile through the combustion andassociated zones, while the lower part shows graphically the fluid saturations existing in the various zones involved, both the temperature and fluid-saturation diagrams being to the same horizontal scale. r
Starting at the left of Figure 1, the first zone is the dry zone 10 through which the combustion has already passed. The temperature of this zone decreases toward the left in the direction of the input well, since its initially high temperature due to the, combustion declines due to heat conduction through the rocks and due to heat transfer to the oxidizing gas passing through on the way to the combustion zone.
Next is the combustion zone 11 where the peak temper-.
ature is found, which is typically of the order of 1,000 F. This temperature isgenerally high enough to insure that all readily vaporizable liquids are in the vapor state. Accordingly, the liquid saturations at the highest temperature portion of this zone are zero, and the gas saturation 18 one hundred percent.
a the introduced oxidant occurs.
i stream from this front. At the front :or downstream edge .of this combustion zonell, the water which tr apped ofi this oil is being vaporized and flows ahead in the form of steam, along with the combustion products and the A portion of vaporized oil which is not reacted with oxygen.
Althoughthe temperature falls off rapidly from the maxi- .mum' of about 1,000? .F.'in the downstream direction from the eombustionzone 11, oxidation appearsto occur over most of this zone. It-is at the forward edge of I this zone, where the temperature is lowest, that liquid saturations of oil and water begin to be found. .The oil saturation here is chiefly that w hich has been trapped :or bypassed by the driving water and left'behind for fuel, while the water is partly connate and partly that condensed from steam generated by the combustion. An 1 joutstanding characteristicof this zone is-the fact that it is 'very narrow, being from a fraction of an inch to ,onlya fewvinches in thickness in a typical case.
i 3 Downstream from or ahead of combustion zone 11 is a transition zone 13 in which the liquid saturations are 'cha'nging rapidly due mostly to the condensation of vapors. Accordingly, zone 13 is most appropriately called a. condensation zone, which is the term that will be used hereafter.
V The temperature 'across zone 13 falls off rapidly tothe normal bottom-hole temperature within the reservoir.
occurring while the last traces of oxygen are being consumed. Condensation of most of the unburned vaporized oil to add to theoil. saturation dueto trapped oil in place is to be expected here because of the declining temperature across this zone. This is opposed, however, by the vaporization of a large portion of the lighter oil components occurring upon the condensation of the steam,
which is evidenced by the very large increase in water saturation. The result is a steam distillation of the trapped and the condensed oil which moves the lighter oil components downstream where they condense; and leaves the heavier components behind for fuel. Consequently, the composition of the oil varies markedly across zone 13, the flowing oil saturation which moves ahead, containing a major proportion of the light components of the oil in place, being what may be termed a reduced crude.
Ahead of this declining-temperature condensation zone 13, the water from the steam accumulates in a cool-water zone or bank 14. Gas and water and some of the oil are flowing in this bank, and the relative saturations throughout the bank are nearly constant. As more and more steam condenses throughout the duration of a combustion recovery project, this bank continues to grow in length. The cool water here traps off some of the oil in place, a considerable portion of Whichparticularly the heavier componentsis what is left behind as fuel for the combustion zone 11.
That part of the oil which is not trapped is driven ahead and forms an oil zone or bank 15, which moves ahead due to the combination effect of the gas and Water drive. In this zone, normally only the oil and gas phases will be flowing, the water saturation shown here in Figure 1 being simply the connate water existing in the reservoir.
Like the cool-water zone 14, oil zone 15 also increases in length as the combustion project progresses.
To the right of oil zone 15, the oil and water saturations of the zone 16 which extends to the output well are generally. the liquid saturations existing in the reservoir before the initiation of the combustion project. The
gas phase, however, includes both reservoir gas and gase: ous products of combustion. n
In the course of a recovery operation of this type it is generally noted that the lengths of the water zone 14 and of the oil zone 15 both increase as the combustion zone moves, while condensation zone 13 remains approximately constant in thickness. The combustion zone 11 also tends to remain very small in thickness, and the reservoir rock behind it is observed to be almost completely dry of any liquid.
This dry rock is generally also considerably altered in its mineral character due to the fact that the sedimentary formations which are normally oil-bearing, having never been subjected to the action of such temperatures as 1000 F., are accordingly considerably affected by such temperatures. It is in part because we have noted these modifications and have been able to take advantage of them that We are able to control and carry out a combustion recovery operation with increased efliciency.
The temperature of 1000 F. mentioned as typical of a combustion zone does not always occur in practice, however, as it depends on a number of factors such as adequacy of the supply of trapped oil for fuel and upon the heat losses to the adjacent strata, which vary considerably with combustion zone thickness and propagation velocity. It can be shown that for any given set of reservoir conditions and oil characteristics, of the total available heat, the fraction F which is lost to the confining strata above and below the reservoir stratum is directly proportional to the square root of the combustion zone length or thickness L and inversely proportional to the square root of the velocity V of propagation of the combustion zone. In brief, the fractional heat loss where K is a constant.
It is believed immediately apparent from this relation that, inoperations where heat loss is important as determining whether or not the combustion zone can be made to propagate, the velocity V is the most important I factor in determining the magnitude of this loss. In
other words, where a combustion front is operating close to the lower limit of operability, the maintenance of V at or above a certain minimum value may be absolutely essential to the successful operation of the project.
We have observed that the exothermic reactions within the combustion front cannot ordinarily be made to begin vuntil an ignition-temperature of at least about 400 F.
is reached, by preheating the input gases or otherwise supplying heat from an external source of supply. After ignition, theheat released in the, reaction raises the temperature of the rock at the zone of combustion to the equilibrium value of around 1000 F. in the typical case; but sometimes, due to lack of suflicient trapped fuel or excessive losses of heat from the combustion zone, the temperature stabilizes at a'value considerably under We have noticed that, when air is used as the oxidant supply, a temperature of 700 F. is about as low a stabilized combustion-zone temperature as will permit the desired propagation of the combustion front. If the temperature in the front drops much below this value of 700" F., the propagation of the front becomes erratic,
and the reaction may eventually die out either in certain areas or entirely over the front, thus leaving behind much by-passed'or unrecovered oil.
Figure 2 accordingly presents graphically certainlimiting conditions we have observed about the underground combustion process where air is-used as the oxidant gas. If heat losses by conduction to the adjacent strata are neglected-which can bedone as long as reasonable velocities of propagation of the front, for example, one footper day and upwards are maintained this graph shows, as a function of the reservoir porosity, the volume of oilwhich must be trapped and left hehind to be burned as fuel merely for the purpose of raising the temperature of the rock to the 700 F. level of stable operation. This volume of oil is expressed as a percentagesaturation, interms of the percent of available pore space which'it occupies. For low porosities in particular, this graph shows that the percentage of total oil available which must be trapped and burned may sometimes be so large that (1) it is difiicult to trap and hold in place a sufiicient fraction to provide the necessary fuel, (2) the amount of oil left for recovery may be too small to make a project economically feasible, or (3) the supplying of sufficient oxygen to maintain V at or abovejthe necessary value may be difiicult due to low permeability.
Figure 2 thus represents an approximate boundary between operableand non-operable conditions, using air as the oxidant. Conditions of reservoir porosity and saturation of oil which can be trapped for fuel which lies well above and to the right of the 700 F. line in this figure represent conditions where equilibrium temperatures in the combustion front higher than 700 F. can be attained, and thus represent stable operations. Conditions close to this700 F. line become marginal for the use of air as'the oxidant medium, and it is then necessary to minimize heat losses to adjacent strata by keeping the propagation-velocity V of the front fairly high. Conditions to theleft and below this line are eitherunstable or inoperative, even though heat losses may be neg1ected,.and recovery can therefore be efiected ordinarily only by using an oxidant mixture with higher oxygenconcentration than normal air.
Figure 2 makes it possible to estimate in advance the possible operability of a combustion project where the reservoir porosity-and the oil characteristics important to the trapping of an adequate fuel supply are known. If, for example, the oil-in-place contains less than the necessary percentage of heavy components which will not be distilled off and moved ahead and which will remain b ehind the condensation zone 13 as fuel, then the combustion recovery process may be feasible. On the other hand, if the heavy oil components are present in only a very small percentagait is unlikely that a combustion recovery process can be used.
These considerations'lead to an estimate of a minimum rate of oxygen supply. If, for example, a porosity range of 12 to 25 percent be considered, then at least about 1.7 standard cubic feet of oxygen, or aboutS s. c. f. of air per hour should be supplied to each square foot of area of the combustion zone in order to bring about a propagation velocity V of about 1 foot per dayl For much smaller velocities than this the loss of heat may become important, unless the supply of fuel is so large that' excessive heat losses do not matter.
In order to maintain the oxygen-supply rate to all portions of the front above this stated minimum volume per unit time per unit area of the front, it is necessary to know or follow the location of the front in two ways. The general position of the front must be known, so that its total area can be calculated, to arrive at the bulk rate of oxygen injection into the injection well. The particular position of each portion of the front with reference to the injection and the producing wells must be known, so that all portions of the front can be caused 'to propagate at above the minimum velocity. If, for example, it is observed as a result of tests that the front is progressing in one direction much more slowly than in others, there is danger of thecombustion dying out in the slow direction. The reason is that the continuous loss of heat from the slowest-moving portion of the front may reduce its temperature in spots to below the 700 F. stable level.
Accordingly, when uneven propagation of the underground front is noted, certain measures of correction can be undertaken. The producing well in the direction ,of most rapid propagation can be shut in or produced more slowly, or a greater back pressure held on these wells so that a pressure difierential is setup in the reservoir, tending to force the oxygen supply in the direc- 'tion of the more slowly moving portion of the front' Alternatively, or in addition to varying the production rate or back pressure on some of the producing wells, the total oxygen-injection rate into the input well can be increased to insure that the slow-moving portiorr of the front receives an adequate supply even though other portions are supplied at greater rates than necessary.
The rate of oxygen supply, and in any given case the velocity of movement of the combustion front which is proportional to it, is important also for the reason that it is related to the distance the front can be propagated away from any one injection well; That is, whenever the total amount of oxygen which must be injected through a given input well to maintain the supply above the required minimum at all locations on the front being propagated away from that well becomes greater than can economically be supplied through the Well, then new injection wells nearer to the front position must be provided. In any event, the supply pressure to maintain injection through an input well cannot ordinarily exceed the overburdent pressure at that depth. Consequently, knowledge of the specific positions of the underground front in each direction from each input well and with reference to each output well is necessary, both for determiningthe proper total oxygen-supply rate through the well and for determining when to change the injection location. This information is also needed to establish the proper input rate into each new injection well as it is placed in service.
With regard to the optimum concentration of oxygen in the gas supplied to the combustion zone, we have found that this depends upon the fraction of the oil in place which must be burned in order to carry out the process. In the engineering of any givenproject a calculation is ordinarily made of the residual oil in place, utilizing all sources of available data. For example, an estimate or measurements may be made of the porosity and fluid saturations from cores, cuttings, and well logs. From these and similar sources of information and data, such as the producing history of the reservoir an estimate can be made of the approximate amount of oil remaining in place.
For the purposes of combustion recovery it is then assumed that at least 1 and preferably about 1 /2 pounds of this oil per 100 pounds of reservoir rock must be burned in order to furnish, with a desirable factor of safety, the amount of heat required to raise the rock temperature, make up unavoidable losses, and drive out the remaining oil in the reservoir. T hen, utilizing the reservoir porosity data, the gravity of the oil, and saturation data or estimates thereof, it can be determined what percentage of the oil in place is required to make up the l to 1 /2 pounds of oil to be burned in each 100 pounds of reservoir rock. Thus, if each 100 pounds of rock contains about 5 pounds of oil in its pore structure, then 20 to 30 percent of this oil must be consumed to provide the l to 1% pounds for combustion in recovering the other 3 /2 or 4 pounds, or 70 to percent.
Generally speaking, it may be stated qualitatively that the higher percentage of oil in place to be burned is, the more concentrated should be the oxygen in the oxidant gas-mixture. It will be found that normal'air is satisfactory for a large majority of cases, but where the porosity or oil saturation is low, an oxygen-enriched oxidant. mixture may be needed. 'A reason for this requirement appears to be that, wherethere is low saturation or a small amount of oil in place which requires a larger portion thereof to be burned, the gases with higher oxygen content produce less sweeping of the reservoir ahead of the combustion front and correspondingly leave more of the oil in place-for fuel. Conversely, when a largertpercentage of theoil is' to be recovered, and therefore less of it is required for fuel, a greater sweeping effect is produced by the larger proportion of inert gases in the oxidizing mixture. This tends to reduce the amount of oil trapped and left behind for fuel.
Before considering the manner of carrying out preliminary and subsequent geophysical surveys according to our invention, it should be pointed out that no essentially new or different geophysical method or technique is involved. In this instance, however, there are present at least two factors which are different from the usual geophysical problem. In this case both the depth and'the thickness of the zone of interest are known. Also, since the combustion produces chemical and physical changes or modifications of the underground stratum which 'are sufficiently great to be detectable at the surface, assuming that the depth is not too great, what is thereforeof major importance is not the magnitude of the geophysical data but the changes in the data between the initial and the I subsequent surveys. Consequently, the geophysical surveys are particularly designed to provide data emphasizing the change in values between thetimes of measurement.
Referring again to the drawings, and particularly now 7 to Figure 3 which is a diagrammatic cross-section of the earth, from the ground surface 20 at leastone oxygen- -input well 21 and one producing well 22 extend to and through an oil-bearing stratum 23 having an upper boundary 24 and a lower boundary 25, which stratum23 is to be subjected to a combustion oil-recovery process. Underlying the lower boundary 25 at some depth which may be known or unknown is a, distinct interface 26 which normally produces a recognizable seismic reflection. Although only the two wells 21 and 22 are shown in this figure, it will be understood that these are representative only, and that any number and arrangement of input wells 21 and producing wells 22 may be used simultaneously. Further, any producing well 22 may subsequently b'e converted to an oxygen-input well after the underground front 11, the Water zone 14, and the oil zone 15 reach appropriate locations. V
This figure illustrates the application 'of the seismic method of geophysical surveying to the problem of locat- 1 ing the front 11. Thus, a series of continuous seismic surveys along fairly closely-spaced lines, either parallel or radiating from each well, is first run over the area around input .wells 21 and output wells 22. The'locations of each shot point 30 and spread position 31 at the ground surface should be carefully marked so that both can sub:
sequently be reoccupied. It is further preferred, in conducting both the initial and subsequent surveys, to utilize equipment and techniques having known amplitude-response characteristics, so that changes in the amplitude of the seismic waves traveling through the dry zone 10, through which the combustion front 11 has passed, can be detected by comparison with the waves transmitted through the same zone before the passage of the front 11. Although Figure 3 shows only one shot point 30 and one spreadtposition 31, it is to be understood that the preliminary survey will have utilized all possible spread positions which may subsequently be reoccupied. In subsequent surveys, it is obviously necessary only to occupy those positions which will show the exact position of the underground front 10 when its approximate'loc-ation is already known. I r r V it happens chance, that a reflection of detachable if reflection occurs from interface 25, comparison of the waves'received over path 33'before and after passage of front 11 relative to those received over the path 37 should reveal the locationof front 11 as being between the two reflection'points of these paths. g 7
It has'b'een observed that theseismic-wave attenuation characteristics of earth strata are stronglyaffected by their fluidcontent. Accordingly, the change in physical character of the "stratum 23 from being fluid-filled ahead of combustion'frontll to being substantially dry .and dehydrated behind the front makes it possible to utilize the amplitude of reflections received from various points of the interface 26. Depending on whether the reflections received from this interface have traveled'through the burned :zone 10 or-the unburned portion of stratum 23 ahead ofthe front 11, small changes in the observed amplitude should be detected. Thus, it is to be expected that the seismic energy traveling along paths lying between p aths34and'35, which has been reflected from the 7 interface 26 below layer 23'wil1 have beendiiferently at-' tenuated from that received over paths lying between 34 have been subjected to its" corresponding attenuation; Waves traveling paths 34 and 38 will have. traversed the stratum 23 once through the dry zone 10 and once through the unburned zone to .the right of interface 11 where the attenuation is markedly difierent." Waves traveling paths between 38 and 39 will have traversed only the portions of stratum 23'which are fluid-filled and have not been subjected to the action of combustion front 11; There fore, by utilizing seismic receiving and recording' equipment withknown response characteristics, comparisons made of the relative responses along the lengthof spread 31 before and after the passage of combustion front 11 will reveal the position of the combustion zone-I11.
It is believed obvious that the spacing of the individual seismic detectors in the spread 31 is chosen with a view to the required precision with -which the positon of front 11 is to be ascertained, The closerrthe spacing of the in.-
dividual seismometers, the more exact can bejthe'determination of the underground front location.
An alternativemethod. of determining the location of front 11 is shown in Figure 4, which illustrates an applica: tion of electrical resistivity prospecting to the problem. This method is applicable particularly to operations where the depth of stratum 23 is not excessively large. a For both the primary and'subsequent surveys, it is preferred to use identical electrode configurations and to occupy the same electrode locations on the. earths' surface. Thus, each survey is carried out by introducing electrical current from a source 41, such as a battery or generator, into the earths surface 20 through electrodes 42 and 43 spaced apart a distance which is preferably approximately three times the depth of the stratum 23. The potential resulting from current flow in the earth between electrodes 42 and 43 is detected by potential electrodes 44 and 45, preferably spaced apart by a distance about equal to the depth-of stratum 23 and centered between the current inputelectrode's 42 and.43. The detected voltage is indicated or recorded by a potentiometer or meter 46. a In carrying out a survey, the spacings of all of the electrodes are preferably maintained constant, and'the entire configuration is moved across the prospect in the direction of arrow 48, taking readings at points fairly closely-spaced from each other. A resultant apparent resistivity profile is shown in Figure 411 above Figure 4, correlated in position with the diagram of Figure 4, The solid line 51 is typical of the profile obtained on the first or initial survey, the variations on this curve being due in part to the effects of casing and tubing in the wells 21 and 22, or to surface pipelines or resistivity variations in the near-surface strata. The specific variations on curve 51, however, are in themselves without particular significance here.
A subsequent survey to locate the position of underground front 11, however, while it is subject to the same lateral surface variations as the survey producing profile 51, is additionally subject to the high resistance of the dry zone left behind by the advance of combustion zone 11. Since it is well known that the resistivity of rocks and earth is largely affected by their fluid content, the dry zone 10 thus possesses an extremely high apparent resistivity and results in distortion of the lines of current flow 47 in a manner suggested by Figure 4. Since these current lines tend to avoid or to take the shortest path through the burned zone 10, the resultant apparent resistivity recorded at the surface is increased, and the profile 51 is modified as indicated by the dotted line 52 over an interval which corresponds approximately with the extent of the dry zone 10 between the positions of the front 11. Consequently, the progress of the front 11 in any direction from the well 21 can be determined by rerunning a portion of the particular resistivity profile line along which the information is desired.
In spite of the large percentage of oil content in the oil bank 15, the presence of connate water in the reservoir prevents the resistivity at that portion of the stratum 23 from being anywhere near the same order of magnitude as the very high resistivity of dry zone 10 surrounding well 21.
In order to carry out electrical resistivity surveys with the accuracy desirable, it is generally necessary that surface pipelines connecting the equipment used in the combustion project be both coated and wrapped with insulating coverings. Also, a generous number of insulating flanges between various sections of the system are desirable to provide electrical separation of the various units. When this is done, the adverse effects of surface pipelines on the resistivity surveying method are minimized, and it is possible to carry out measurments with sufficient precision to detect the change produced by the large increase in resistivity of zone 10.
With such a large number of variables-injection rates, oxygen concentration of the input gas, heat loss, composition of the reservoir oil, saturation, porosity and porosity distribution, back pressure on producing wells, and the like-to mention some of them, it is not possible to specify any single set of conditions which is optimum for carrying on a combustion operation in a given reservoir. In the foregoing, however, an attempt has been made to indicate the interrelation of some of these variables so that some idea can be gained as to how variation of each of the variables may be expected to affect the progress of an underground combustion operation, assuming that other factors remain relatively constant or vary in some known manner. Accordingly, modifications of our process will be apparent to those skilled in the art, and the scope of the invention, therefore, should not be considered as limited to the specific details set forth, but is properly to be ascertained by reference to the appended claims.
We claim:
1. In the recovery of oil from an underground reservoir stratum of known depth and thickness and having a porosity of from about 12 to about 25 percent, by a process involving combustion of a portion of the oil in place, the steps of making at the earths surface overlying said stratum an initial set of measurements of a seismic-wave-transmitting property of said stratum susceptible to being altered by the heat of the combustion process, by generating seismic waves near the ground surface and receiving said waves after reflection at a subsurface interface at least as deep as said stratum; initiating a combustion front within said stratum and maintaining said combustion front therein by supplying through an oxygen input well penetrating said stratum at least about 1.7 standard cubic feet of oxygen per hour to each square foot of area of said front, whereby said front is caused to propagate through said stratum; remeasuring at intervals said seismic-wave-transmitting property by repeating at least part of said set of measurements, and determining and plotting the differences between the initial and the remeasured values of said property so as to show in several directions around said input well the positions of said front forming the boundary of the burned-out zone wherein said property has been altered; noting said front positions and varying the oxygen-injection rate through said input well in accordance with said remeasuring step to maintain the supply rate to all portions of said front at at least about 1.7 standard cubic feet of oxygen per hour per square foot of area of said front as shown by the front positions located by said remeasuring step; and recovering oil from a producing well laterally spaced from said input well.
2. In the recovery of oil from an underground reservoir stratum of known depth and thickness and having a porosity of from about 12 to about 25 percent, by a process involving combustion of a portion of the oil in place, the steps of making at the earths surface overlying said stratum an initial set of measurements of an electrical property of said stratum susceptible to being altered by the heat of the combustion process, by passing electric current through the ground between electrodes spaced about three times the depth to said reservoir stratum and detecting the resultant electric potential between points spaced by a distance approximately equal to the depth of said stratum; initiating a combustion front within said stratum and maintaining said combustion front therein by supplying through an oxygen input well penetrating said stratum at least about 1.7 standard cubic feet of oxygen per hour to each square foot of area of said front, whereby said front is caused to propagate through said stratum; remeasuring at intervals said electrical property by repeating at least part of said set of measurements, and determining and plotting the differences between the initial and remeasured values of said properties so as to show in several directions around said input well the positions of said front forming the boundary of the burned-out zone wherein said property has been altered; noting said from positions and varying the oxygen-injection rate through said input well in accordance with said remeasuring step to maintain the supply rate to all portions of said front at at least about 1.7 standard cubic feet of oxygen per hour per square foot of area of said front as shown by the front positions located by said remeasuring step; and recovering oil from a producing well laterally spaced from said input well.
References Cited in the file of this patent UNITED STATES PATENTS 2,036,193 Boyd et a1. Apr. 7, 1936 2,158,198 Prescott May 16, 1939 2,390,770 Barton et al. Dec. 11, 1945 2,642,943 Smith et a1. June 23, 1953 2,734,579 Elkins Feb. 14, 1956

Claims (1)

1. IN THE RECOVERY OF OIL FROM AN UNDERGROUND RESERVOIR STRATUM OF KNOW DEPTH AND THICKNESS AND HAVING A POROSITY OF FROM ABOIUT 12 TO ABOUT 25 PERCENT, BY A PROCESS INVOLVING COMBUSTION OF A PORTION OF THE OIL IN PLACE, THE STEPS OF MAKING AT THE EARTH''S SURFACE OVERLYING SAID STRATUM AN INTITIAL SET OF MEASUREMENTS OF A SEISMIC-WAVE-TRANSMITTING PROPERTY OF SAID STRATUM SUSCEPTIBLE TO BEING ALTERED BY THE HEAT OF THE COMBUSTION PROCESS, BY GENERATING SEISMIC WAVES NEAR THE GROUND SURFACE AND RECEIVING SAID WAVES AFTER REFLECTION AT A SUBSURFACE INTERFCE AT LEAST AS DEEP AS SAID STRATUM; INTITATING A COMBUSTION FRONT WITH SAID STRATUM AND MAINTAINING SAID COMBUSTION FRONT THEREIN BY SUPPLYING THROUGH AN OXYGEN INPUT WELL PENETRATING SAID STRATUM AT LEAST ABOUT 1.7 STANDARD CUBIC FEET OF OXYGEN PER HOUR TO EACH SQUARE FOOT OF AREA OF SAID FRONT, WHEREBY SAID FRONT IS CAUSED TO PROPAGATE THROUGH SAID STRATUM; REMEASURING AT INTERVALS SAID SEISMIC-WAVES-TRANSMITTING PROPERTY BY REPEATING AT LEAST PART OF SAID SET OF MEASUREMENTS, AND DETERMINING AND PLOTTING THE DIFFERENCES BETWEEN THE INITIAL AND THE REMEASURED VALUES OF SAID PROPERTY SO AS TO SHOW IN SEVERAL DIRECTIONS AROUND SAID INPUT WELL THE POSITIONS OF SAID FRONT FORMING THE BOUNDARY OF THE BURNED-OUT ZONE WHEREIN SAID PORPERTY HAS BEEN ALTERED; NOTING SAID FRONT POSITIONS AND VARYING THE OXYGEN-INJECTION RATE THROUGH SAID INPUT WELL IN ACCORDANCE WITH SAID REMEASURING STEP TO MAINTAIN THE SUPPLY RATE TO ALL PORTIONS OF SAID FRONT AT AT LEAST ABOUT 1.7 STANDARD CUBIC FEET OF OXYGEN PER HOUR PER SQUARE FOOT OF AREA OF SAID FRONT AS SHOWN BY THE FRONT POSITIONS LOCATED BY SAID REMEASURING STEP; AND RECOVERIMNG OIL FROM A PRODUCING WEL LATERALLY SPACED FROM SAID INPUT WELL.
US355124A 1953-05-14 1953-05-14 Oil recovery by underground combustion Expired - Lifetime US2803305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US355124A US2803305A (en) 1953-05-14 1953-05-14 Oil recovery by underground combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US355124A US2803305A (en) 1953-05-14 1953-05-14 Oil recovery by underground combustion

Publications (1)

Publication Number Publication Date
US2803305A true US2803305A (en) 1957-08-20

Family

ID=23396312

Family Applications (1)

Application Number Title Priority Date Filing Date
US355124A Expired - Lifetime US2803305A (en) 1953-05-14 1953-05-14 Oil recovery by underground combustion

Country Status (1)

Country Link
US (1) US2803305A (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973811A (en) * 1957-11-25 1961-03-07 Phillips Petroleum Co Process for detecting underground water
US3031762A (en) * 1959-07-27 1962-05-01 Phillips Petroleum Co Flame front location method
US3150715A (en) * 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3174543A (en) * 1961-02-23 1965-03-23 Socony Mobil Oil Co Inc Method of recovering oil by in-situ produced carbon dioxide
US3193004A (en) * 1961-07-03 1965-07-06 Continental Oil Co Method for determining the position and rate of advance of a displacement front in asecondary recovery system for producing petroleum
US3467189A (en) * 1968-03-04 1969-09-16 Mobil Oil Corp Method for determining the approach of a combustion front adjacent a production well
US4082145A (en) * 1977-05-18 1978-04-04 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring
US4143714A (en) * 1977-08-19 1979-03-13 Texaco Exploration Canada Ltd. Method for monitoring underground fluid movement for improving recovery of oil or bitumen
US4184548A (en) * 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4271904A (en) * 1978-07-17 1981-06-09 Standard Oil Company (Indiana) Method for controlling underground combustion
US4280200A (en) * 1979-05-21 1981-07-21 Daniel Silverman Seismic method of mapping horizontal fractures in the earth
US4281713A (en) * 1979-07-09 1981-08-04 M. D. Wood, Inc. Method and apparatus for monitoring the position and movement progress of the flame front in an underground combustion
US4282587A (en) * 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4330871A (en) * 1980-10-20 1982-05-18 Dyer Robert K Detecting subterranean hydrocarbon accumulations
US4343360A (en) * 1978-07-17 1982-08-10 Standard Oil Company (Indiana) Method for controlling underground combustion
US4365322A (en) * 1980-04-18 1982-12-21 Bernard Widrow Apparatus and method for determining the position of a gas-saturated porous rock in the vicinity of a deep borehole in the earth
US4390973A (en) * 1978-03-22 1983-06-28 Deutsche Texaco Aktiengesellschaft Method for determining the extent of subsurface reaction involving acoustic signals
US4524435A (en) * 1978-02-21 1985-06-18 Deutsche Texaco Aktiengesellschaft Method for determining the degree of change of material properties of underground strata
US4577690A (en) * 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US5027896A (en) * 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
US6289326B1 (en) * 1997-06-04 2001-09-11 Lafleur Bernard B. Portable interactive kiosk
WO2003036031A2 (en) * 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor
US9291041B2 (en) 2013-02-06 2016-03-22 Orbital Atk, Inc. Downhole injector insert apparatus
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036193A (en) * 1934-01-23 1936-04-07 Goyd James Measuring earth resistances
US2158198A (en) * 1935-07-25 1939-05-16 Continental Oil Co Method and apparatus for making geological explorations
US2390770A (en) * 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2642943A (en) * 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2734579A (en) * 1956-02-14 Production from bituminous sands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734579A (en) * 1956-02-14 Production from bituminous sands
US2036193A (en) * 1934-01-23 1936-04-07 Goyd James Measuring earth resistances
US2158198A (en) * 1935-07-25 1939-05-16 Continental Oil Co Method and apparatus for making geological explorations
US2390770A (en) * 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2642943A (en) * 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process

Cited By (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973811A (en) * 1957-11-25 1961-03-07 Phillips Petroleum Co Process for detecting underground water
US3031762A (en) * 1959-07-27 1962-05-01 Phillips Petroleum Co Flame front location method
US3150715A (en) * 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3174543A (en) * 1961-02-23 1965-03-23 Socony Mobil Oil Co Inc Method of recovering oil by in-situ produced carbon dioxide
US3193004A (en) * 1961-07-03 1965-07-06 Continental Oil Co Method for determining the position and rate of advance of a displacement front in asecondary recovery system for producing petroleum
US3467189A (en) * 1968-03-04 1969-09-16 Mobil Oil Corp Method for determining the approach of a combustion front adjacent a production well
US4082145A (en) * 1977-05-18 1978-04-04 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring
US4143714A (en) * 1977-08-19 1979-03-13 Texaco Exploration Canada Ltd. Method for monitoring underground fluid movement for improving recovery of oil or bitumen
US4524435A (en) * 1978-02-21 1985-06-18 Deutsche Texaco Aktiengesellschaft Method for determining the degree of change of material properties of underground strata
US4390973A (en) * 1978-03-22 1983-06-28 Deutsche Texaco Aktiengesellschaft Method for determining the extent of subsurface reaction involving acoustic signals
US4343360A (en) * 1978-07-17 1982-08-10 Standard Oil Company (Indiana) Method for controlling underground combustion
US4184548A (en) * 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4271904A (en) * 1978-07-17 1981-06-09 Standard Oil Company (Indiana) Method for controlling underground combustion
US4282587A (en) * 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4280200A (en) * 1979-05-21 1981-07-21 Daniel Silverman Seismic method of mapping horizontal fractures in the earth
US4281713A (en) * 1979-07-09 1981-08-04 M. D. Wood, Inc. Method and apparatus for monitoring the position and movement progress of the flame front in an underground combustion
US4365322A (en) * 1980-04-18 1982-12-21 Bernard Widrow Apparatus and method for determining the position of a gas-saturated porous rock in the vicinity of a deep borehole in the earth
US4330871A (en) * 1980-10-20 1982-05-18 Dyer Robert K Detecting subterranean hydrocarbon accumulations
US4577690A (en) * 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US5027896A (en) * 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
US6289326B1 (en) * 1997-06-04 2001-09-11 Lafleur Bernard B. Portable interactive kiosk
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
WO2003036031A3 (en) * 2001-10-24 2003-07-03 Shell Oil Co Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
WO2003036031A2 (en) * 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030183390A1 (en) * 2001-10-24 2003-10-02 Peter Veenstra Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US20070133959A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J Grouped exposed metal heaters
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9383093B2 (en) 2012-06-25 2016-07-05 Orbital Atk, Inc. High efficiency direct contact heat exchanger
US9383094B2 (en) 2012-06-25 2016-07-05 Orbital Atk, Inc. Fracturing apparatus
US9388976B2 (en) 2012-06-25 2016-07-12 Orbital Atk, Inc. High pressure combustor with hot surface ignition
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor
US9291041B2 (en) 2013-02-06 2016-03-22 Orbital Atk, Inc. Downhole injector insert apparatus

Similar Documents

Publication Publication Date Title
US2803305A (en) Oil recovery by underground combustion
Vishnyakov et al. Primer on enhanced oil recovery
US2793696A (en) Oil recovery by underground combustion
US3205942A (en) Method for recovery of hydrocarbons by in situ heating of oil shale
Barker et al. Geothermics of petroleum systems: Implications of the stabilization of kerogen thermal maturation after a geologically brief heating duration at peak temperature
US3349847A (en) Process for recovering oil by in situ combustion
Parrish et al. Laboratory study of a combination of forward combustion and waterflooding the cofcaw process
Turta et al. Reservoir engineering aspects of light-oil recovery by air injection
McPeek Eastern Green River basin: a developing giant gas supply from deep, overpressured upper cretaceous sandstones
US2973811A (en) Process for detecting underground water
US3107728A (en) Down-hole heater
CN109064351B (en) Quantitative evaluation method for filling capacity of oil gas in buried hill
US4167213A (en) Method for determining the position and inclination of a flame front during in situ combustion of a rubbled oil shale retort
US2242161A (en) Method of logging drill holes
US2853136A (en) Process for the recovery of oil from subterranean reservoirs
US3349846A (en) Production of heavy crude oil by heating
Po et al. Philosophy and technology of in-situ combustion in light oil reservoirs
US2800183A (en) Determination of the location of the flame front in a subterranean formation
US3329891A (en) Method for determining the extent of the burnt zone in an underground combustion process by passing current around the boundary of the zone
Espach et al. Variable characteristics of the oil in the Tensleep sandstone reservoir, Elk Basin Field, Wyoming and Montana
US4638864A (en) Recovery of heavy crude oil from shallow formations by in situ combustion
US3302706A (en) Soil gas prospecting for petroleum
Baldwin Tupungato Oil Field, Mendoza, Argentina
Clark et al. The fry in situ combustion test-performance
Schramm et al. Saskatchewan's place in the Canadian oil sands