US2819958A - Titanium base alloys - Google Patents

Titanium base alloys Download PDF

Info

Publication number
US2819958A
US2819958A US528819A US52881955A US2819958A US 2819958 A US2819958 A US 2819958A US 528819 A US528819 A US 528819A US 52881955 A US52881955 A US 52881955A US 2819958 A US2819958 A US 2819958A
Authority
US
United States
Prior art keywords
titanium
alloys
alloy
strength
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US528819A
Inventor
Abkowitz Stanley
Lee S Busch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RMI Co
Original Assignee
RMI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RMI Co filed Critical RMI Co
Priority to US528819A priority Critical patent/US2819958A/en
Application granted granted Critical
Publication of US2819958A publication Critical patent/US2819958A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the inventioni relates to titanium-base'alloys and'more particularly to titanium-base alloys containing;aluminum,-i. vanadium, chromium and'molybdenum.
  • the present invention comprises the discovery 'that" the additiom "to" titanium aluminume alloys of relatively sm allamounts of: vanadium, chromium and molybdenum 2O efiectsamarlced improvemen-Mn the propertiesiof such alloys of an aluminum content of3% to 5%.
  • the alloys show a. rare combination: of extraordinary strength with-adequate ductility.
  • titanium-as a-stru'ctural material is'lir niteda by its relatively low strength and: high-cost; for Whichn.
  • num is a metal wellsuitedto these objectives, beinIg-lcnviiniweight, relatively low in cost; and havin'g:a5 materials. strengthening effect 1 on titanium.
  • a further object is toprovide a titanium,"aluminum,' vanadium, chromium, molybdenum alloy. which isxsuita m ble.for use in plate or sheetforrna
  • a still furtherzobject is to provide-such an alloy which ice 2! allyj which'isi soft inthefas-quenched condition withfigoejd bend propertiesin the sheet form.
  • a further object is to provide'such' a" titanium alloy? which is age hardenable by following the heattreattnent with a eing at 9o0'te not)???
  • a still further -object istd'proyide a titanium" alloy of f' this 'ch'aracter in whili the' ductility *of thehardned ma teria'l is very satisfactory and- 'in -Which the tensile f strength approaches 200,000 lbs. per square inch?
  • Other objects and advantages -of the invention will be apparentin view of the following deteailed descriptions thereof?
  • fl0fil'la traceato 1% molybdenum preferablyfrom-v5- to 1%
  • the-bala-nce being all titaniumr' Titanium; aluminum, vanadium, chromium,- imo'lybde m num .alloys-comingiwithin ,theabove range are hea'ttreate? able to high trengthand maintain satisfactory andgood notch toughness desirable in plate form.
  • the alloy is soft-tin the 'a-squenched' condition with good b'end prop V ertie'sdesirable in the' s'hee'tform;
  • This alloy inay be 'hea't treated by l'ieatfng f-a t IZQQ w- 1700 1 fCfl a halffiblfi 'fihdWhiP-Wiif q-ilil'ehii'l 7*; After this treatment the alloy is age hardenable bye-gang for two hours between 900 and r1 F. and air cooling.
  • the ductility of thisuhardenedmaterial is ve1y.satisfac..
  • haVingyapprogtirnately 10% elongation wit hflensi'le strength approaching 2o0,000'-115s: per "square inch:
  • An ingot of the alloy of Example 2 was cast, hot forged to sheet bars, hot rolled to 0.040" sheets, and specimens thereof were heat treated and evaluated for mechanical properties of the sheet form as shown on the following Table III.
  • the alloys of the present invention are characterized by their good ductility and impact resistance at tensile strength of from about 150,000 p. s. i. to nearly 200,000 p. s. i., when heat treated and aged.
  • the Cr and Mo substitution in our complex alloys substantially improve the hardenability and response to heat treatment of the alloys.
  • the 6Al4V alloy was investigated for heat-treat response in sheet form, and it was found that while the as-quenched strengths are somewhat higher for the 6Al4V alloy than for our Al--V complex alloys, the bend ductility of our complex alloys is superior in the as-quenched condition. Aging the 6Al4V alloy at 900 F. raises the strength level some 25,000 p. s. i., whereas aging our complex alloys improves the strength some 50,000 p. s. i. The highest aged strength consistent with good ductility is about 160,000 p. s. i. for the 6Al4V alloy and about 180,000 p. s. i. for our complex alloys.
  • the 4Al-2V--1Cr-1Mo alloy in plate form should produce improved properties for plate applications, especially armor plate when high impact strength at 130,000 p. s. i. yield is desired.
  • the low beta complex such as 4Al--1.5V.5Cr--.5Mo alloy offers good ductility and low strength in the solution treated condition.
  • titanium, aluminium, vanadium, chromium, molybdenum alloys produced in accordance with the invention are heat treatable to high strength, and while in the as-quenched condition have good bend properties for sheet form, and are age hardenable so as to produce the best mechanical properties for plate form.
  • the excellent strength and ductility of any of the 5 foregoing alloys render them highly desirable materials for many uses requiring high ratio of strength to weight.
  • An alloy consisting of from 3% to 5% Al, from 1% to 2% V, from 0.5% to 1% Cr, from 0.5% to 1% Mo, from 0.02% to 0.06% C, from 0.01% to 0.03% N from 0.10% to 0.15% 0 from 0.005% to 0.017% H 10 balance Ti.

Description

United States PatentC TITANIUM BASE ALLOYS Stanley -Abkowitzv and Lee S; Busch,.:Warren, .Ohio, as--- signors to Mallory-SharonTitaniumCorporation, Niles, one; a corporation of Delaware No Drawing. Application August 16,1955.
SeriaI No. 528,819
6Claimsn (CL' 75- -1755)" The inventionirelates to titanium-base'alloys and'more particularly to titanium-base alloys containing;aluminum,-i. vanadium, chromium and'molybdenum.
The present invention comprises the discovery 'that" the additiom "to" titanium aluminume alloys of relatively sm allamounts of: vanadium, chromium and molybdenum 2O efiectsamarlced improvemen-Mn the propertiesiof such alloys of an aluminum content of3% to 5%. 'The alloys show a. rare combination: of extraordinary strength with-adequate ductility.
The: useof titanium-as a-stru'ctural material is'lir niteda by its relatively low strength and: high-cost; for Whichn.
reason it has been found-desirable-to all-0y, titanium'wit'h such other metals as will increase the=strehgth=ancbpref+a crabl-y effect-some reduction-in the itotal COSi-rAlUI'lli-T.
num=is a metal wellsuitedto these objectives, beinIg-lcnviiniweight, relatively low in cost; and havin'g:a5 materials. strengthening effect 1 on titanium.
However, the-amount of aluminum alone thatrcanzh'e added to: titanium is "limited 'by its adverse; eifectcon' u ductility. Binary alloys of titanium with more than 5%?- found" that suchan alloy without tin is superior to thetx: same=.-alloy.with .tin, for both plate and sheet:applications,. o
as it producesimproved toughness "in the plate and im-" proved bend properties in the sheet; Also, it is desira-e. 1 bleto-elirninate tin from .theialloy not only .for the-reason that'itis a strategic element, but because itincreases, the density. of the material, and, because of itsrelatively low melting point it is difficult to handle in the melt.
It is an object of the invention toprovide 'strong,w-duc;-x tile-alloys of titanium.
Another object .isto provide I titanium alloys which are? heat treatable to high strength.
A further object is toprovide a titanium,"aluminum,' vanadium, chromium, molybdenum alloy. which isxsuita m ble.for use in plate or sheetforrna A still furtherzobject is to provide-such an alloy which ice 2! allyj which'isi soft inthefas-quenched condition withfigoejd bend propertiesin the sheet form.
A further object is to provide'such' a" titanium alloy? which is age hardenable by following the heattreattnent with a eing at 9o0'te not)??? A still further -object istd'proyide a titanium" alloy of f' this 'ch'aracter in whili the' ductility *of thehardned ma teria'l is very satisfactory and- 'in -Which the tensile f strength approaches 200,000 lbs. per square inch? Other objects and advantages -of the invention will be apparentin view of the following deteailed descriptions thereof? In general} thefirivention reIa t to" quinary" all-o'y'sof titanium, aluminum, vanadium, chromium and molybde num, comprising..fr.orn .3 to .5..%..aluminum,from .1 to. 2%...-
vanadium,..from .a.,trace to 1% Chromium (preferably fIOl'lF-S*i0.'1%=), fl0fil'la traceato 1% molybdenum (preferablyfrom-v5- to 1%") the-bala-nce being all titaniumr' Titanium; aluminum, vanadium, chromium,- imo'lybde m num .alloys-comingiwithin ,theabove range are hea'ttreate? able to high trengthand maintain satisfactory andgood notch toughness desirable in plate form. The alloy is soft-tin the 'a-squenched' condition with good b'end prop V ertie'sdesirable in the' s'hee'tform;
This alloy inay be 'hea't treated by l'ieatfng f-a t IZQQ w- 1700 1 fCfl a halffiblfi 'fihdWhiP-Wiif q-ilil'ehii'l 7*; After this treatment the alloy is age hardenable bye-gang for two hours between 900 and r1 F. and air cooling. The ductility of thisuhardenedmaterial is ve1y.satisfac..
tory; haVingyapprogtirnately 10% elongation wit hflensi'le strength approaching =2o0,000'-115s: per "square inch:
The following are examples of titanium, alum'itiutn', vanadium; chromium molybdenunr-alloys;coming'within'" the above range; which: haveibeen producedgnheat treated and"evaluated'*for mechanical "properties.
Example"I;+3%""aluniinuin, 1 6%" vanadium, ,5'%"
' chromium; .5% molybdenum and the-tbalan'ce.essentiallyiii all titanium;
chromium, .5 .molybdenum -3I1dkth6'. balance ,-essen.tiall-y all .titanium.
Examplew3I -5%, .aluminum, il /2 vanadium, 1. 5%
chroniurn, 5%. molybdenum andatheabalanceessentially--- all titanium.
Example 4.4% aluminum,.2%-.-vanadium, 1% chrominum, 1% molybdenum andthe balance essentially all titanium:
These all'oys'may be preparetl fro'rtn either ieomi'n'etciai'l titanium or high purity titanium. Where prepared-front commercial -titanium,--a-typiea1analysis-of me-material in addition-to.titaniumgaaluminum, :vanadiumachromium andmolybdenum,-is 0.02l%" C,"0'."01%% N 0.10% 0 and 0.005%"H However, the invention is not restrictedto the use of 'materla'l having the ty icatainterstitiaLJeveI-iin dicated a s the level *tnaybe of the-orderof0.-06%' 0.03%-N 0.15% 0 and 0.017 H An ingot-of tite /alloys of Example-Aswasscastpandihof forged intoi /3 rounds,-. andspecim'ens were'scutytherei from and heat ;:treated, and. evaluated for i-mechanicah properties of th'ezplate sform,'e:as -shown intheifollowingi. Table I.
TABLE I plate Ultimate 2% yield percent Percent Impact, Heat treatment Strength strength elong. area 40 F.
reduc. (Ft. Lb.)
1,600 E, 34 hr. AC 145.800 112, 000 17. 2 52. 4 19. 5 1,600 K, 14 hr. WQ, 142 300 101,200 18.0 50.9 19. 5 1,600 F., 56 hr. WQ and aged at 143 800 126.100 13.3 42.4 23. 5 l.100 F.. 2 hiv AC. 146. 100 130. 000 14. l 50. l 20. 5 1,600 F.. 14 hr. WQ and aged at 167, 500 136. 800 9.4 23.7 5 900 F., 2 hr. AC. 157.800 127. 200 10. 2 33. 7 12 1,300 F., 1 111'. AC (annealed). 132.800 124, 600 11.7 47. 4 20. 5
1 Two specimens.
TABLE II Heat treating data for 3% Al, I 6% V, .5 Cr, .5 Mo,
balance Ti, and evaluation for mechanical properties of sheet Heat Treatment Ultimate .2% yield percent Bend Strength strength elong. Test 1.500 F., hr. WQ, 110, 200 75,600 21. 1 3.2 T quenched and aged at 900 F., 2 hrs 133, 100 99, 400 12. 5 4.7 '1
An ingot of the alloy of Example 2 was cast, hot forged to sheet bars, hot rolled to 0.040" sheets, and specimens thereof were heat treated and evaluated for mechanical properties of the sheet form as shown on the following Table III.
TABLE IH Heat treating data for 4% A1, 1 .6% V, .5 Cr, .5 Mo, balance Ti, and evaluation for mechanical properties An ingot of the alloy of Example 3 was cast, hot forged to sheet bars, hot rolled to 0.040" sheets, and specimens thereof were heat treated and evaluated for mechanical properties of the sheet form as shown on the following Table IV.
TABLE IV Heat treating data for 5% Al, /2% V, .5 Cr, .5 Mo, balance Ti, and evaluation of mechanical properties of sheet Heat Treatment Ultimate .20; yield percent Bend Strength strength clong. Test 1,600 F., A 111'. W 134, 100 94. 600 10.4 5.9 T quenched and age at 900 F.', 2 hrs 157, 700 128, 200 10. 2 9.0 '1
In the same manner an ingot of the alloy of Example 4 was cast, hot forged to sheet bars, hot rolled to 0.040" sheets, and specimens were heat treated and evaluated for mechanical properties of sheet formas shown in the following Table V.
TABLE V Heat treating data for 4% Al, 2% V, 1% Cr, 1% Mo, balance Ti, and evaluation of mechanical properties of sheet Ultimate 2% yield per- Bend Heat Treatment Strength strength cent Test along.
l,600 F., 4 hr. WQ. 135, 000 95, 000 1 7.8 2.8 T quenched and aged at 900 F., 2 h 182, 150,000 10. 2 8.8 '1 1,650 R, Li hr. WQ an ged at 900 F., 2 his 195, 700 171, 000 10. 2 Brittle.
1 The low elongation in the as-quenched conditlnn is due to fracture occurring at the gauge mark. On the basis of the as-quenched properties of the low beta complex the true value should be better than 16% elongation. The good T bend adds to the validity of this analogy.
The alloys of the present invention are characterized by their good ductility and impact resistance at tensile strength of from about 150,000 p. s. i. to nearly 200,000 p. s. i., when heat treated and aged.
These alloys compare very favorably with the ternary alloy 6A1, 4V, balance Ti, which has become generally accepted throughout the titanium industry as a heat-treatable alloy. The successful use of this Al-4V alloy is somewhat limited in use because of its low hardenability, high strengths being limited to sections up to about two inches thick, and because of its poor formability and low heat-treat response in sheet thicknesses, T bends averaging 5-6T at best.
It appears that the Cr and Mo substitution in our complex alloys substantially improve the hardenability and response to heat treatment of the alloys. For comparative purposes, the 6Al4V alloy was investigated for heat-treat response in sheet form, and it was found that while the as-quenched strengths are somewhat higher for the 6Al4V alloy than for our Al--V complex alloys, the bend ductility of our complex alloys is superior in the as-quenched condition. Aging the 6Al4V alloy at 900 F. raises the strength level some 25,000 p. s. i., whereas aging our complex alloys improves the strength some 50,000 p. s. i. The highest aged strength consistent with good ductility is about 160,000 p. s. i. for the 6Al4V alloy and about 180,000 p. s. i. for our complex alloys.
The 4Al-2V--1Cr-1Mo alloy in plate form should produce improved properties for plate applications, especially armor plate when high impact strength at 130,000 p. s. i. yield is desired. The low beta complex such as 4Al--1.5V.5Cr--.5Mo alloy offers good ductility and low strength in the solution treated condition.
From the above it is evident that titanium, aluminium, vanadium, chromium, molybdenum alloys produced in accordance with the invention are heat treatable to high strength, and while in the as-quenched condition have good bend properties for sheet form, and are age hardenable so as to produce the best mechanical properties for plate form. The excellent strength and ductility of any of the 5 foregoing alloys render them highly desirable materials for many uses requiring high ratio of strength to weight.
In the foregoing description, certain terms have been used for brevity, clearness and understanding, but no unnecessary limitation are to be implied therefrom beyond the requirements of the prior art, because such words are used for descriptive purposes herein and are intended to be broadly construed.
Having now described the invention or discovery, the use of preferred embodiments thereof, and the advantageous new and useful results obtained thereby, it should be understood that the embodiments described are by way of typical examples only, and that the proportions of the several metals may be varied within the above range without departing from the invention as set forth in the 15 dium, 0.5 chromium, 0.5 molybdenum, balance tita- 25 mum.
5 1% chromium, 1% molybdenum, balance titanium.
6. An alloy consisting of from 3% to 5% Al, from 1% to 2% V, from 0.5% to 1% Cr, from 0.5% to 1% Mo, from 0.02% to 0.06% C, from 0.01% to 0.03% N from 0.10% to 0.15% 0 from 0.005% to 0.017% H 10 balance Ti.
References Cited in the file of this patent UNITED STATES PATENTS 2,700,607 Methe Jan. 25, 1955 2,711,960 Methe June 28, 1955 FOREIGN PATENTS 1,085,628 France -1 July 28, 1954 OTHER REFERENCES The Manufacture of Titanium Alloys, Larsen et 21., pages 52, 54, 70 and 82. Report #9, Titanium Project Navy Contract No. Noa(s) 51-006-c, P. R. Mallory & Co. Inc., Indianapolis, Ind., I anuary 26, 1952.

Claims (1)

1. AN ALLOY CONSISTING OF FROM 3% TO 5% ALUMINUM, FROM 1% TO 2% VANADIUM, FROM 0.5% TO 1% CHROMIUM, FROM 0.5% TO 1% MOLYBDENUM, BALANCE TITANIUM.
US528819A 1955-08-16 1955-08-16 Titanium base alloys Expired - Lifetime US2819958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US528819A US2819958A (en) 1955-08-16 1955-08-16 Titanium base alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US528819A US2819958A (en) 1955-08-16 1955-08-16 Titanium base alloys

Publications (1)

Publication Number Publication Date
US2819958A true US2819958A (en) 1958-01-14

Family

ID=24107319

Family Applications (1)

Application Number Title Priority Date Filing Date
US528819A Expired - Lifetime US2819958A (en) 1955-08-16 1955-08-16 Titanium base alloys

Country Status (1)

Country Link
US (1) US2819958A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471342A (en) * 1966-07-29 1969-10-07 Ibm Wear-resistant titanium and titanium alloys and method for producing same
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
US4810465A (en) * 1985-04-12 1989-03-07 Daido Tokushuko Kabushiki Kaisha Free-cutting Ti alloy
US4830823A (en) * 1987-01-28 1989-05-16 Ohara Co., Ltd. Dental titanium alloy castings
EP0408313A1 (en) * 1989-07-10 1991-01-16 Nkk Corporation Titanium base alloy and method of superplastic forming thereof
US5409518A (en) * 1990-11-09 1995-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same
US5658403A (en) * 1993-12-01 1997-08-19 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US20050211475A1 (en) * 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US20060131081A1 (en) * 2004-12-16 2006-06-22 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US20060288820A1 (en) * 2005-06-27 2006-12-28 Mirchandani Prakash K Composite article with coolant channels and tool fabrication method
US20070056777A1 (en) * 2005-09-09 2007-03-15 Overstreet James L Composite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials
US20070056776A1 (en) * 2005-09-09 2007-03-15 Overstreet James L Abrasive wear-resistant materials, drill bits and drilling tools including abrasive wear-resistant materials, methods for applying abrasive wear-resistant materials to drill bits and drilling tools, and methods for securing cutting elements to a drill bit
US20070102200A1 (en) * 2005-11-10 2007-05-10 Heeman Choe Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20070102198A1 (en) * 2005-11-10 2007-05-10 Oxford James A Earth-boring rotary drill bits and methods of forming earth-boring rotary drill bits
US20070102202A1 (en) * 2005-11-10 2007-05-10 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US20070251732A1 (en) * 2006-04-27 2007-11-01 Tdy Industries, Inc. Modular Fixed Cutter Earth-Boring Bits, Modular Fixed Cutter Earth-Boring Bit Bodies, and Related Methods
US20080029310A1 (en) * 2005-09-09 2008-02-07 Stevens John H Particle-matrix composite drill bits with hardfacing and methods of manufacturing and repairing such drill bits using hardfacing materials
US20080073125A1 (en) * 2005-09-09 2008-03-27 Eason Jimmy W Abrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools
US20080083568A1 (en) * 2006-08-30 2008-04-10 Overstreet James L Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US20080135304A1 (en) * 2006-12-12 2008-06-12 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20080145686A1 (en) * 2006-10-25 2008-06-19 Mirchandani Prakash K Articles Having Improved Resistance to Thermal Cracking
US20080156148A1 (en) * 2006-12-27 2008-07-03 Baker Hughes Incorporated Methods and systems for compaction of powders in forming earth-boring tools
US20080181809A1 (en) * 2004-07-30 2008-07-31 Public Stock Company "Vsmpo-Avisma Corporation Titanium-Based Alloy
US20080202814A1 (en) * 2007-02-23 2008-08-28 Lyons Nicholas J Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US20090041612A1 (en) * 2005-08-18 2009-02-12 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US20090293672A1 (en) * 2008-06-02 2009-12-03 Tdy Industries, Inc. Cemented carbide - metallic alloy composites
US20090308662A1 (en) * 2008-06-11 2009-12-17 Lyons Nicholas J Method of selectively adapting material properties across a rock bit cone
US20100000798A1 (en) * 2008-07-02 2010-01-07 Patel Suresh G Method to reduce carbide erosion of pdc cutter
US7703556B2 (en) 2008-06-04 2010-04-27 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US20100290849A1 (en) * 2009-05-12 2010-11-18 Tdy Industries, Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US7846551B2 (en) 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
US20100307838A1 (en) * 2009-06-05 2010-12-09 Baker Hughes Incorporated Methods systems and compositions for manufacturing downhole tools and downhole tool parts
US20100326739A1 (en) * 2005-11-10 2010-12-30 Baker Hughes Incorporated Earth-boring tools comprising silicon carbide composite materials, and methods of forming same
US20110107811A1 (en) * 2009-11-11 2011-05-12 Tdy Industries, Inc. Thread Rolling Die and Method of Making Same
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
US8770324B2 (en) 2008-06-10 2014-07-08 Baker Hughes Incorporated Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US8905117B2 (en) 2010-05-20 2014-12-09 Baker Hughes Incoporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8978734B2 (en) 2010-05-20 2015-03-17 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700607A (en) * 1953-08-13 1955-01-25 Allegheny Ludlum Steel Titanium base alloys containing aluminum, manganese, and molybdenum
FR1085628A (en) * 1952-11-01 1955-02-04 Rem Cru Titanium Improvements to stable titanium alloys containing the beta structure of the latter
US2711960A (en) * 1953-11-17 1955-06-28 Allegheny Ludlum Steel Titanium base alloys with aluminum, manganese, and chromium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1085628A (en) * 1952-11-01 1955-02-04 Rem Cru Titanium Improvements to stable titanium alloys containing the beta structure of the latter
US2700607A (en) * 1953-08-13 1955-01-25 Allegheny Ludlum Steel Titanium base alloys containing aluminum, manganese, and molybdenum
US2711960A (en) * 1953-11-17 1955-06-28 Allegheny Ludlum Steel Titanium base alloys with aluminum, manganese, and chromium

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471342A (en) * 1966-07-29 1969-10-07 Ibm Wear-resistant titanium and titanium alloys and method for producing same
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
US4810465A (en) * 1985-04-12 1989-03-07 Daido Tokushuko Kabushiki Kaisha Free-cutting Ti alloy
US4830823A (en) * 1987-01-28 1989-05-16 Ohara Co., Ltd. Dental titanium alloy castings
EP0408313A1 (en) * 1989-07-10 1991-01-16 Nkk Corporation Titanium base alloy and method of superplastic forming thereof
US5409518A (en) * 1990-11-09 1995-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same
US5658403A (en) * 1993-12-01 1997-08-19 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US8007714B2 (en) 2004-04-28 2011-08-30 Tdy Industries, Inc. Earth-boring bits
US7954569B2 (en) 2004-04-28 2011-06-07 Tdy Industries, Inc. Earth-boring bits
US20080302576A1 (en) * 2004-04-28 2008-12-11 Baker Hughes Incorporated Earth-boring bits
US20080163723A1 (en) * 2004-04-28 2008-07-10 Tdy Industries Inc. Earth-boring bits
US20100193252A1 (en) * 2004-04-28 2010-08-05 Tdy Industries, Inc. Cast cones and other components for earth-boring tools and related methods
US10167673B2 (en) 2004-04-28 2019-01-01 Baker Hughes Incorporated Earth-boring tools and methods of forming tools including hard particles in a binder
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US20050247491A1 (en) * 2004-04-28 2005-11-10 Mirchandani Prakash K Earth-boring bits
US20050211475A1 (en) * 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US8087324B2 (en) 2004-04-28 2012-01-03 Tdy Industries, Inc. Cast cones and other components for earth-boring tools and related methods
US8403080B2 (en) 2004-04-28 2013-03-26 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US8172914B2 (en) 2004-04-28 2012-05-08 Baker Hughes Incorporated Infiltration of hard particles with molten liquid binders including melting point reducing constituents, and methods of casting bodies of earth-boring tools
US20080181809A1 (en) * 2004-07-30 2008-07-31 Public Stock Company "Vsmpo-Avisma Corporation Titanium-Based Alloy
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US20090180915A1 (en) * 2004-12-16 2009-07-16 Tdy Industries, Inc. Methods of making cemented carbide inserts for earth-boring bits
US20060131081A1 (en) * 2004-12-16 2006-06-22 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US7513320B2 (en) 2004-12-16 2009-04-07 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US20060288820A1 (en) * 2005-06-27 2006-12-28 Mirchandani Prakash K Composite article with coolant channels and tool fabrication method
US8647561B2 (en) 2005-08-18 2014-02-11 Kennametal Inc. Composite cutting inserts and methods of making the same
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US20090041612A1 (en) * 2005-08-18 2009-02-12 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US20110138695A1 (en) * 2005-09-09 2011-06-16 Baker Hughes Incorporated Methods for applying abrasive wear resistant materials to a surface of a drill bit
US9200485B2 (en) 2005-09-09 2015-12-01 Baker Hughes Incorporated Methods for applying abrasive wear-resistant materials to a surface of a drill bit
US7597159B2 (en) 2005-09-09 2009-10-06 Baker Hughes Incorporated Drill bits and drilling tools including abrasive wear-resistant materials
US20070056777A1 (en) * 2005-09-09 2007-03-15 Overstreet James L Composite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials
US8388723B2 (en) 2005-09-09 2013-03-05 Baker Hughes Incorporated Abrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials
US9506297B2 (en) 2005-09-09 2016-11-29 Baker Hughes Incorporated Abrasive wear-resistant materials and earth-boring tools comprising such materials
US20080029310A1 (en) * 2005-09-09 2008-02-07 Stevens John H Particle-matrix composite drill bits with hardfacing and methods of manufacturing and repairing such drill bits using hardfacing materials
US20070056776A1 (en) * 2005-09-09 2007-03-15 Overstreet James L Abrasive wear-resistant materials, drill bits and drilling tools including abrasive wear-resistant materials, methods for applying abrasive wear-resistant materials to drill bits and drilling tools, and methods for securing cutting elements to a drill bit
US7703555B2 (en) 2005-09-09 2010-04-27 Baker Hughes Incorporated Drilling tools having hardfacing with nickel-based matrix materials and hard particles
US20100132265A1 (en) * 2005-09-09 2010-06-03 Baker Hughes Incorporated Abrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials
US8002052B2 (en) 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
US7997359B2 (en) 2005-09-09 2011-08-16 Baker Hughes Incorporated Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US8758462B2 (en) 2005-09-09 2014-06-24 Baker Hughes Incorporated Methods for applying abrasive wear-resistant materials to earth-boring tools and methods for securing cutting elements to earth-boring tools
US20090113811A1 (en) * 2005-09-09 2009-05-07 Baker Hughes Incorporated Abrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods for securing cutting elements to earth-boring tools
US20080073125A1 (en) * 2005-09-09 2008-03-27 Eason Jimmy W Abrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools
US8230762B2 (en) 2005-11-10 2012-07-31 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials
US20070102198A1 (en) * 2005-11-10 2007-05-10 Oxford James A Earth-boring rotary drill bits and methods of forming earth-boring rotary drill bits
US20100263935A1 (en) * 2005-11-10 2010-10-21 Baker Hughes Incorporated Earth boring rotary drill bits and methods of manufacturing earth boring rotary drill bits having particle matrix composite bit bodies
US20070102202A1 (en) * 2005-11-10 2007-05-10 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US7784567B2 (en) 2005-11-10 2010-08-31 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US9192989B2 (en) 2005-11-10 2015-11-24 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20100326739A1 (en) * 2005-11-10 2010-12-30 Baker Hughes Incorporated Earth-boring tools comprising silicon carbide composite materials, and methods of forming same
US7913779B2 (en) 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US20110094341A1 (en) * 2005-11-10 2011-04-28 Baker Hughes Incorporated Methods of forming earth boring rotary drill bits including bit bodies comprising reinforced titanium or titanium based alloy matrix materials
US7802495B2 (en) 2005-11-10 2010-09-28 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US20100276205A1 (en) * 2005-11-10 2010-11-04 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US8309018B2 (en) 2005-11-10 2012-11-13 Baker Hughes Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20110142707A1 (en) * 2005-11-10 2011-06-16 Baker Hughes Incorporated Methods of forming earth boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum based alloy matrix materials
US20070102200A1 (en) * 2005-11-10 2007-05-10 Heeman Choe Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US7776256B2 (en) 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US8074750B2 (en) 2005-11-10 2011-12-13 Baker Hughes Incorporated Earth-boring tools comprising silicon carbide composite materials, and methods of forming same
US9700991B2 (en) 2005-11-10 2017-07-11 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US20070251732A1 (en) * 2006-04-27 2007-11-01 Tdy Industries, Inc. Modular Fixed Cutter Earth-Boring Bits, Modular Fixed Cutter Earth-Boring Bit Bodies, and Related Methods
US8789625B2 (en) 2006-04-27 2014-07-29 Kennametal Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8104550B2 (en) 2006-08-30 2012-01-31 Baker Hughes Incorporated Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US20080083568A1 (en) * 2006-08-30 2008-04-10 Overstreet James L Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US20080145686A1 (en) * 2006-10-25 2008-06-19 Mirchandani Prakash K Articles Having Improved Resistance to Thermal Cracking
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US7775287B2 (en) 2006-12-12 2010-08-17 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20080135304A1 (en) * 2006-12-12 2008-06-12 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US8176812B2 (en) 2006-12-27 2012-05-15 Baker Hughes Incorporated Methods of forming bodies of earth-boring tools
US20100319492A1 (en) * 2006-12-27 2010-12-23 Baker Hughes Incorporated Methods of forming bodies of earth-boring tools
US7841259B2 (en) 2006-12-27 2010-11-30 Baker Hughes Incorporated Methods of forming bit bodies
US20080156148A1 (en) * 2006-12-27 2008-07-03 Baker Hughes Incorporated Methods and systems for compaction of powders in forming earth-boring tools
US20080202814A1 (en) * 2007-02-23 2008-08-28 Lyons Nicholas J Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US7846551B2 (en) 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
US8137816B2 (en) 2007-03-16 2012-03-20 Tdy Industries, Inc. Composite articles
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US20090293672A1 (en) * 2008-06-02 2009-12-03 Tdy Industries, Inc. Cemented carbide - metallic alloy composites
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US20110186354A1 (en) * 2008-06-04 2011-08-04 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load bearing joint and tools formed by such methods
US9163461B2 (en) 2008-06-04 2015-10-20 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US8746373B2 (en) 2008-06-04 2014-06-10 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US7703556B2 (en) 2008-06-04 2010-04-27 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US8770324B2 (en) 2008-06-10 2014-07-08 Baker Hughes Incorporated Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
US10144113B2 (en) 2008-06-10 2018-12-04 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US20090308662A1 (en) * 2008-06-11 2009-12-17 Lyons Nicholas J Method of selectively adapting material properties across a rock bit cone
US20100000798A1 (en) * 2008-07-02 2010-01-07 Patel Suresh G Method to reduce carbide erosion of pdc cutter
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
US8225886B2 (en) 2008-08-22 2012-07-24 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8459380B2 (en) 2008-08-22 2013-06-11 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US9435010B2 (en) 2009-05-12 2016-09-06 Kennametal Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US20100290849A1 (en) * 2009-05-12 2010-11-18 Tdy Industries, Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8869920B2 (en) 2009-06-05 2014-10-28 Baker Hughes Incorporated Downhole tools and parts and methods of formation
US8317893B2 (en) 2009-06-05 2012-11-27 Baker Hughes Incorporated Downhole tool parts and compositions thereof
US8464814B2 (en) 2009-06-05 2013-06-18 Baker Hughes Incorporated Systems for manufacturing downhole tools and downhole tool parts
US20100307838A1 (en) * 2009-06-05 2010-12-09 Baker Hughes Incorporated Methods systems and compositions for manufacturing downhole tools and downhole tool parts
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US9266171B2 (en) 2009-07-14 2016-02-23 Kennametal Inc. Grinding roll including wear resistant working surface
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US20110107811A1 (en) * 2009-11-11 2011-05-12 Tdy Industries, Inc. Thread Rolling Die and Method of Making Same
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
US9687963B2 (en) 2010-05-20 2017-06-27 Baker Hughes Incorporated Articles comprising metal, hard material, and an inoculant
US9790745B2 (en) 2010-05-20 2017-10-17 Baker Hughes Incorporated Earth-boring tools comprising eutectic or near-eutectic compositions
US8978734B2 (en) 2010-05-20 2015-03-17 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8905117B2 (en) 2010-05-20 2014-12-09 Baker Hughes Incoporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits

Similar Documents

Publication Publication Date Title
US2819958A (en) Titanium base alloys
US2819959A (en) Titanium base vanadium-iron-aluminum alloys
US2906654A (en) Heat treated titanium-aluminumvanadium alloy
US2554031A (en) Titanium base alloy
US3953201A (en) Ferritic stainless steel
US3044872A (en) Steel alloy composition
US2999039A (en) Martensitic steel
US2892706A (en) Titanium base alloys
EP0147616B1 (en) Heat treatment of nickel-iron and nickel-cobalt-iron alloys
US2747989A (en) Ferritic alloys
US4133681A (en) Nickel-refractory metal-boron glassy alloys
US3668023A (en) Tantalum-containing precipitation-strengthened nickel-base alloy
US3753693A (en) Chromium-nickel-manganese-nitrogen austenitic stainless steel
US3061427A (en) Alloy of titanium
US3047382A (en) Age hardening cobalt base alloy
US5215711A (en) Age-hardening type special Cu alloy
US2749239A (en) Aluminum base alloy
US2919188A (en) High strength alloy steels
US2985529A (en) Creep resistant non-austenitic steels
US2395687A (en) Alloy steel
US5173254A (en) Steel having excellent vibration-dampening properties and weldability
US2884323A (en) High-strength titanium base aluminumvanadium-iron alloys
KR920006827B1 (en) Stainless maraging steel and the making process
US2193222A (en) Vanadium steel alloy
US3262779A (en) Iridium-tungsten alloy products