US2841375A - Method for in-situ utilization of fuels by combustion - Google Patents

Method for in-situ utilization of fuels by combustion Download PDF

Info

Publication number
US2841375A
US2841375A US413904A US41390454A US2841375A US 2841375 A US2841375 A US 2841375A US 413904 A US413904 A US 413904A US 41390454 A US41390454 A US 41390454A US 2841375 A US2841375 A US 2841375A
Authority
US
United States
Prior art keywords
combustion
borehole
products
outlet
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US413904A
Inventor
Salomonsson Gosta Joha Wilhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svenska Skifferolje AB
Original Assignee
Svenska Skifferolje AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Skifferolje AB filed Critical Svenska Skifferolje AB
Priority to US413904A priority Critical patent/US2841375A/en
Application granted granted Critical
Publication of US2841375A publication Critical patent/US2841375A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ

Definitions

  • ThecombustionYproducts not being forced to flow in a certain direction, they will spread irregularly in the rock'in the air inlet tube, especially along cracks 1, 2, etc. and fissures in the layers.
  • This irregular flow is shown in Fig. 4, which is a horizontal'section through part of the fuel deposit, on the line 4 -4 in 'Fig. 3.
  • the line'H illustrates the location in this sectionof the combustion zone at a given moment.
  • the irregularity of advance. of the heating'zone is thuslapparent.
  • the combustion zone will be more regularly 'shaped as shown in Fig. .5; "whichIis a horizontal section, corresponding to Fig.4. .;Even if there. may remain siom e irregularities in the combustion zone, it is evident that, the regular heat'flow in thiscase is much improved compared to that in the case, illustrated in Fig. 4.
  • the essential improve ment in the regular heat flow is, however, created through the regular shape of a hot, cylindrical surface around each outlet'hole B.
  • the hot combustion gases collected in each hole giveofi part or their heat to the walls of those holes B. If the same subpressure is maintained in the holes B, as in the'product gas outlets 'A,'there is no flow of fluids in direction from A to B or' vice versa.
  • the equipment for carrying out the'above-mentionedi combustion, method includes the :boreholesywhichi-may' V 4 inlet hole group.
  • The-faster flow inthis directioifmust. be arrangedfin any regular hole-pattern, coveringthe a crack or other irregularityin the rock pressure was rather equally distributed in the whble'sliale' coke body.

Description

y 1953 G. J. w. SALOMONSSON 2,841,375
METHOD FOR IN-SITU UTILIZATION OF FUELS BY COMBUSTION Filed March 5, 1954 2 Sheets-Sheet 1 FIG.1 H
?'?9 i l!!!. I 1 I I I I I c a|lc o 0095A ill! 4 OVERBURDEN \,E g f j FUEL CONTAINING LAyERS F ENZENTOR F102 AT TORNEY July 1, 1958 G. J. w. sssssssss ON 2,841,375
- METHOD FOR IN-SITU UTILIZATION OF Fi l e d M a r c h 5 l 9 54 I A L- ATTORNEY United States Patent METHOD FOR lN-SITU UTILIZATION OF FUELS BY COMBUSTIDN Application March 3, 1954, Serial No. 413,904
' Claims. c1. 262-3) This invention relates to methods for in situ utilization of carbonaceous deposits capable of combustion with combustion supporting gases to produce heat utilizable economically for heat treatments both above and below ground particularly from fuels or other deposits which cannot be mined andv utilized above earth in an economical way.
There are many such deposits that can not be economically mined. Some cannot be so exploited because the deposits have too low a content of combustible matter to be used in that way economically. Others which may contain a satisfactory content of combustible matter, are so situated in the earth, as in depth or thickness of layer, as to make the mining operation unattractive.
Methods of underground combustion have been heretofore proposed but have not been successful because of the difiiculty of distributing the combustion supporting gas such as air, in the rock in such manner as to obtain a substantially uniform combustion zone. The introduction of the combustion supporting gas through a borehole into the rock, does not result in uniform flow of the gas because such flow is usually disturbed by the presence of cracks, laminations, cavities, etc. in the rock. As a result of such non-uniform flow, the combustion zone may advance along a crack in one direction very rapidly to a relatively distant location from the inlet hole, While in the meantime, the advance in another direction may be very slow due to a greater tightness or impermeability or density of the structure. Under such circumstances, it has been impossible by prior art procedures to control the heat distribution to the parts of the rock where the heat treatment is to be applied.
Among the objects of the present invention are included methods for combustion in situ of combustible organic material in subterranean deposits with substantially uniformheat distribution therein despite irregularities in the formation that might otherwise interfere with uniformity of heat distribution.
Other objects include the production of a controlled combustion zone and a controlled heat transfer" to other portions of the rock or formation or deposit.
Further objects and advantages of this invention will appear fromthe more detailed description set forth be low, it being understood that such more detailed description is given by way of illustration and explanation only, and not by way of limitation since various changes therein may be made by those skilled in the art without departing from the scope and spirit of the present invention.
. In connection with that more detailed description, the drawings show the following:
Figure l is a plan view of a field showing a number of boreholes for utilization in connection with the present invention;
Figure 2 is a transverse vertical section through the field of Figure 1;
Figure 3 is an enlarged fragmentary view of a portion.
of the section of Figure 2;
Figure 4 is a section on the line 44 of Figure 3; and Figure 5 is a section on line 4--4 of Figure 3 illustrating the heat front developed by the present invention. The present invention produces combustion in situ of combustible organic material contained in subterranean deposits under controlled conditions to produce a controlled combustion zone and a controlled heat transfer from the combustion zone to other parts of the rock, formation, or deposit. The controlled conditions are obtained by withdrawal of combustion gases from boreholes in the vicinity of the air-inlet boreholes. This withdrawal may be attained for example by suction in the pipelines, connected to the outlet holes. Thereby the hot combustion gases are forced to flow in certain directions and their flow can thus be regulated and controlled. When passing through the outlet holes towards the exit thereof, they give off at least part of their heat'content to the Walls of the borehole, thus raising the temperature of said walls. In said walls the heat is fairly well distribu ted along the length of the hole and thus a' substantially uniform or even heat transfer takes place from saidwalls to the surrounding parts of the rock. 'The invention is applicable to any subterranean deposits of combustible organic material including oil shale and oil shale coke (the latter being formed by in-situ pyrolysis of oil shale), tar sand and tar sand coke (the latter being formed by in-situ pyrolysis of tar sand), oil sand and depleted oil sand, (still retaining a small amount of oil), lignite, coil, or other carbonaceous and combustible or fuel type materials.
For these purposes, any combustion supporting gas such as air or other oxygen containing gas, is introduced to the deposit to produce a combustion zone and to form hot combustion products, the latter are passed through 'the deposit or portion thereof wherethey .are withdrawn, usually in the vicinity of the inlet boreholes for the combustion supporting gases, the heat from said combustion products serving to heat the walls of the outlets and thereby adjacent organic material to form valuable products containing gases or vapors or both. The latter are recovered separately from and substantially free of the combustion products, at a point or points spaced from the point or points where the combustion products are withdrawn; 7
Accordinglymethods of combustion in situ may be utilized wherein deposits pierced by borcholes'in successive alinement serve for introduction respectively of combustion supporting gas, removal of combustion products, and separate removal of valuable products including gases or vapors or both free from combustion products. When the flow of valuable products has ceased or has been reduced to a low value, the borehole which initially served for introduction of the combustion supporting gas is sealed off, the latter gas is then introduced into aborehole used theretofore for collection of combustion products, the combustion products are collected in the borehole theretofore used for reception of the valuable products, and an additional successive alined borehole is then utilized for recovery of the valuable products, the rela tion of heating and heat transfer described above being maintained in the new arrangement. in this Way, the combustion zone may be advanced as desired in the deposit or formation. And by repeating the advance in this way, it is possible to carry out the combustion of the entire or any part of the deposit under controlled conditions advancing through the deposit as desired,
Further features of the invention will appear from the following description thereof in connection with the figures of the drawings,without however any limitation thereto.
Figure 1 is a horizontal drawing of a field, showing a numberofboreholes for the successive use as outlets A for volatilized products, obtained by heat treatment.
of the fuel containing rock layers, outlets B for com- 7 bustion gases; and injection holes C'for air or "other also shows the location of :the abovegmentioned rows of' holes. 7 V I Fig. 3 isan enlargedpart of Fig. 2, showing one'air inlet hole C supplied with air and one combustion-gas outlet hole B which is exhausted. The figure shows how the combustion zone advances'mainly in the fissures and Cavities of the rock. The dotted line G shows the loca-' tion of the combustion zone at a given moment. It is evident that the heat transferv to the surroundings will be very irregular from a hot surface of such an irregular shape. ThecombustionYproducts not being forced to flow in a certain direction, they will spread irregularly in the rock'in the air inlet tube, especially along cracks 1, 2, etc. and fissures in the layers. This irregular flow is shown in Fig. 4, which is a horizontal'section through part of the fuel deposit, on the line 4 -4 in 'Fig. 3. The line'H illustrates the location in this sectionof the combustion zone at a given moment. The irregularity of advance. of the heating'zone is thuslapparent.
If, however, the flow'of combustion gases is directed by applying a lower pressure in the'row of outlet holes B than the pressure in the surrounding rock, the combustion zone will be more regularly 'shaped as shown in Fig. .5; "whichIis a horizontal section, corresponding to Fig.4. .;Even if there. may remain siom e irregularities in the combustion zone, it is evident that, the regular heat'flow in thiscase is much improved compared to that in the case, illustrated in Fig. 4. The essential improve ment in the regular heat flow is, however, created through the regular shape of a hot, cylindrical surface around each outlet'hole B. The hot combustion gases collected in each hole, giveofi part or their heat to the walls of those holes B. If the same subpressure is maintained in the holes B, as in the'product gas outlets 'A,'there is no flow of fluids in direction from A to B or' vice versa.
' Thus thoseparts of the walls of the B -holes, which face the row of A holes, are undisturbed by flows in any cracks etc. .The heat, which is supplied bythe hot combustion gases, arriving from the'opposite side of the holes, and ascending vertically throughtheB-holes, is thus fairly equally distributed along the hole. wall. Thus a hot body is created around the hole, and the part of this hot body, which'faces the row of A-holes, is almost ;cylindrical. The heat transfer by conduction in the rock towards the zone, where the heat is to be utilized (the pyrolysiszone, cracking zone, etc.), will thus be r'egular and'the' shape of'the heat wave, moving forwards through lthe f uel' deposi t, will be that of a surfaceconsisting of a number "of vertical semicylindrical surfaces The heat methods, where heat is supplied through} electrically heated or gas-fired heating. tubes, inserted in drillholes.
product vapors. through the A-holes and the combustion vapors through the B-holes.
actualifie'ld, for instance a triangular,=square. or hexagonal pattern, and tubes whichmaybelinsertediinithe bore holes. The tubes may be perforated in conventional manner along'the part "of the tube which'passesthroug'h shale coke.
the. fuel-containing layers, the purpose of the perforations being to provide a distribution of inlet or outlet fluid through the whole fuel-containingrlayer, or the'y' may be' open in their lower ends and ending at a. certain level, for instance at the top of the fuel deposit. The opentubesmay' be used in deposits that'are consolidated and the whole layer being of approximatelythe same permeability to fluids, I for instance oil shale oil The tubes in the bore-holes pass t ough the overburden and around each tube a packer may be arranged in the overburden in order'to prevent fluids fromescaping from or leaking in tothe fuel deposits between the tube and the borehole. V r
Above ground the tubes are valved and connected to either aircompressors (when the holes are. used for air injection) or fans or blowers (when the holes areTused as gas or vapor outlets). The valves may bemaiiually or automatically operated, to maintain pressures; wanted in the tubes. The vapor outlets in tubes A should further be connected with means fo'r condensation and collection of the obtained air vapors and other products;
Example 7 the Swedish Shale Oil Company, at Kvantorp, "Sweden',
' the hole pattern was a hexagonal one, theedge-lerigth' of annular spacebetween the borehole and th'e tube bein'g the hexagon unit being 2.20 meter. 'I 'he thickness of the V overburden was about S'meter' an'd the thickness of the: V shale coke was'about 15 meters. fThe dianleterfofithe' boreholes was'about 0.060 meter,"and their-depth"was-23 meters thus passing to the bottom of theshale'cokefi' The inserted tubes had a diameter ot about 0.055 fr'neter, the
packed with fine-grained sand. The length-'of=the tube"s was about 9 meters and the lower ends of the tubesfwas located about 0.5 meter below the 'top of the shale'coke layer. through the shalecoke.
When the stated run was performed air 'was blown 7 into three adjacent holes in an amount-ofbetweenf1'00 and 300 m. /hour, totally.- The pressure required'to force the air into the rock was about 150 Hg (gauge). During the air injectiong'temperature measurements were made and gas products weretakenofiat' several points, distributed at difierent distances nqm the injection hole 'group. The shale coke "had fromfi the beginning a temperature offabout300'C; which"was"sufficientffor igniting the coke, when air vvas introduced. 7
(The heat of the coke originated fror n'the earlier electrothermal heating'of this field.) 'The rnovement-of the combustionngasesfin the layers could' be followed 'by means ofgasproductatakezifrom difierent-pointssinthe field. Before the run was. started, 'the' whole shal'e'c'oke layer was filled with gaseous or vaporizedhydrocarbons at a pressure of about lOO mm. Hg'.(. Iemainiflgfronrthe electrothermal pyr'olysis of the shale; This;
' transfer 'conditions may be substantially the same as in v a e -70. The equipment for carrying out the'above-mentionedi combustion, method includes the :boreholesywhichi-may' V 4 inlet hole group. The-faster flow inthis directioifmust. be arrangedfin any regular hole-pattern, coveringthe a crack or other irregularityin the rock pressure was rather equally distributed in the whble'sliale' coke body. .It' was found -that thecombusti'ofi productsspreadin all directions fro rnth e'inlet hole'group; {The velocity of advancement'was about the same in alli direcf tions except in one, in which the combustion gases flow'ed' muchmore rapidly. At a certain moment of 'the'runfthe radius, within which combustionp'roducts were obtained" was about 10-12 meters, in "most directions. *Ifi'fone narrow direction, however, it was found thatthe'comb'us tion gases had moved not less than 27 meters have been due to Below the tube ends the boreholes -were open ucts could be controlled from the surface, the run was repeated with some of the outlet hole valves open to the atmosphere. At these points the pressure in the rock was thus lowered below the pressure of the surroundings (about 100 mm. Hg (gauge)), the run conditions thus being of the same effect as if a suction fan had been connected to outlet points in rock layers, where the original pressure was atmospheric pressure.
In the repeated run it was found that the combustion gases only advanced in the directions towards the open holes. No essential flow in other directions was found to take place, not even in the direction of the crack in the rock.
It was thus found possible to direct the flow of combustion products in desired directions in the rock by means of pressure control on the holes.
In the description of the invention, given above, its usefulness for in-situ-pyrolysis or other heat treatment of shale has been illustrated. The same process of directing the advancement of the combustion zone and of withdrawal of hot combustion gases may also be used as a means of recovery from underground sources of heat for other purposes, for instance for heating of buildings or other structures above ground. The heat of the combustion gases may also be utilized for heat treatment of other underground deposits in the vicinity whereby the hot combustion gases are piped in for example insulated pipes to the actual deposits. Thus the heat value of a shale-coke-containing field may be used for preheating an oil-shale field in another location, or for other purposes.
Having thus set forth my invention, I claim:
1. A method for combustion in situ of combustible organic material in subterranean deposits pierced by inlet and outlet boreholes which comprises introducing a combustion supporting gas through an inlet borehole to said combustible material to produce a combustion zone and to form hot combustion products, passing the products of combustion through the deposit to heat adjacent organic material to form valuable products including gases and vapors, collecting and removing said valuable products including gases and vapors separately from said products of combustion at a first outlet borehole which is located a distance from said combustion zone, collecting and removing the products of combustion separately from the valuable products at a second outlet borehole, said second outlet borehole being located between said first inlet borehole and said first outlet borehole, the pressures at both of said first and second outlet boreholes being below atmospheric and substantially equal; and being lower than pressures at said inlet borehole.
2. A method as set forth in claim 1, which comprises removing said products of combustion from said second outlet borehole while retaining sensible heat to a point above the ground and passing them while retaining substantial sensible heat to a zone adjacent the combustion zone as a source of heat for said combustion zone.
3. A method as set forth in claim 1, wherein a plurality of inlet and outlet boreholes are provided to form a pattern of boreholes, maintaining a pressure differential along a direction between inlet boreholes at which combustion supporting gas is introduced and second outlet boreholes at which combustion gas is Withdrawn thereby causing predirected advancement of the combustion zone along said direction.
4. A method as set forth in claim 3, including the step of flowing combustion gases substantially in one direction towards second outlet boreholes thereby maintaining a substantially uniform heat distribution in said deposit between the inlet borehole for introduction of combustion supporting gas and the first outlet borehole for removal of said valuable products of combustion, said uniform heat distribution being undisturbed by combustion taking place in cracks, fissures and cavities.
5. The method as set forth in claim 3, comprising successively adding an aligned outlet borehole which is in advance of and in aligrunent with said advancing combustion zone for the removal of valuable products free of combustion products While sealing ofi said inlet borehole theretofore used for introduction of combustion supporting gas, introducing the combustion supporting gas to said second outlet borehole theretofo-re used for removal of combustion products and removing combustion products from the first outlet borehole theretofore used for the removal of valuable products, thus advancing the combustion zone for treatment of the deposit.
References (lited in the file of this patent UNITED STATES PATENTS 947,608 Betts Jan. 25, 1910 1,457,479 Wolcott June 5, 1923 2,497,868 Dalin Feb. 21, 1950 FOREEGN PATENTS 123,138 Sweden Nov. 9, 1948 OTHER REFERENCES American Gas Journal, Jan. 1944, pages 28 and 29.

Claims (1)

1. A METHOD FOR COMBUSTION IN SITU OF COMBUSTIBLE ORGANIC MATERIAL IN SUBTERRANEAN DEPOSITS PIERCED BY INLET AND OUTLET BOREHOLES WHICH COMPRISES INTRODUCING A COMBUSTION SUPPORTING GAS THROUGH AN INLET BOREHOLE TO SAID COMBUSTIBLE MATERIAL TO PRODUCE A COMBUSTION ZONE AND TO FORM HOT COMBUSTION PRODUCTS, PASSING THE PRODUCTS OF COMBUSTION THROUGH THE DEPOSIT TO HEAT ADJACENT ORGANIC MATERIAL TO FORM VALUABLE PRODUCTS INCLUDING GASES AND VAPORS, COLLECTING AND REMOVING SAID VALUABLE PRODUCTS INCLUDING GASES AND VAPORS SEPARATELY FROM SAID PRODUCTS OF COMBUSTION AT A FIRST OUTLET BOREHOLE WHICH IS LOCATED A DISTANCE FROM SAID COMBUSTION ZONE, COLLECTING AND REMOVING THE PRODUCTS OF COMBUSTION SEPARATELY FROM THE VALUABLE PRODUCTS AT A SECOND OUTLET BOREHOLE SAID SECOND OUTLET BOREHOLE BEING LOCATED BETWEEN SAID FIRST INLET BOREHOLE AND SAID FIRST OUTLET BOREHOLE, THE PRESSURES AT BOTH OF SAID FIRST AND SECOND OUTLET BOREHOLES BEING BELOW ATMOSPHERIC AND SUBSTANTIALLY EQUAL, AND BEING LOWER THAN PRESSURES AT SAID INLET BOREHOLE.
US413904A 1954-03-03 1954-03-03 Method for in-situ utilization of fuels by combustion Expired - Lifetime US2841375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US413904A US2841375A (en) 1954-03-03 1954-03-03 Method for in-situ utilization of fuels by combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US413904A US2841375A (en) 1954-03-03 1954-03-03 Method for in-situ utilization of fuels by combustion

Publications (1)

Publication Number Publication Date
US2841375A true US2841375A (en) 1958-07-01

Family

ID=23639145

Family Applications (1)

Application Number Title Priority Date Filing Date
US413904A Expired - Lifetime US2841375A (en) 1954-03-03 1954-03-03 Method for in-situ utilization of fuels by combustion

Country Status (1)

Country Link
US (1) US2841375A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953205A (en) * 1958-07-28 1960-09-20 Phillips Petroleum Co Process for initiating in situ combustion
US2958519A (en) * 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3017168A (en) * 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3109487A (en) * 1959-12-29 1963-11-05 Texaco Inc Petroleum production by secondary recovery
US3172467A (en) * 1962-10-08 1965-03-09 Phillips Petroleum Co Method of reversing in situ combustion frontal movement
US3208516A (en) * 1963-05-13 1965-09-28 Shell Oil Co Control method in underground combustion drives
US3223158A (en) * 1962-12-10 1965-12-14 Socony Mobil Oil Co Inc In situ retorting of oil shale
US3253652A (en) * 1963-06-24 1966-05-31 Socony Mobil Oil Co Inc Recovery method for petroleum oil
US3272261A (en) * 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3276518A (en) * 1961-08-08 1966-10-04 Deutsche Erdoel Ag Process for extracting liquid bitumens from an underground deposit
US3285335A (en) * 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3298434A (en) * 1964-05-27 1967-01-17 Thomas T Graham Gasification of coal
US3316962A (en) * 1965-04-13 1967-05-02 Deutsche Erdoel Ag In situ combustion method for residualoil recovery from petroleum deposits
US3330353A (en) * 1964-09-22 1967-07-11 Shell Oil Co Thermal soak zones by fluidized fractures in unconsolidated, petroleum producing reservoirs
US3472318A (en) * 1967-06-29 1969-10-14 Texaco Inc Hydrocarbon production by secondary recovery
US3563606A (en) * 1969-03-24 1971-02-16 St Joe Minerals Corp Method for in-situ utilization of fuels by combustion
US3599714A (en) * 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3997005A (en) * 1975-10-23 1976-12-14 The United States Of America As Represented By The United States Energy Research And Development Administration Method for control of subsurface coal gasification
US4036298A (en) * 1974-08-21 1977-07-19 Efim Vulfovich Kreinin Method of connection of wells by in-situ combustion
US4059151A (en) * 1975-07-14 1977-11-22 In Situ Technology, Inc. Methods of fluidized production of coal in situ
US4076312A (en) * 1974-07-29 1978-02-28 Occidental Oil Shale, Inc. Method and apparatus for retorting oil shale at subatmospheric pressure
US4120357A (en) * 1977-10-11 1978-10-17 Chevron Research Company Method and apparatus for recovering viscous petroleum from thick tar sand
US4303126A (en) * 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4480689A (en) * 1982-12-06 1984-11-06 Atlantic Richfield Company Block pattern method for in situ gasification of subterranean carbonaceous deposits
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20050016729A1 (en) * 2002-01-15 2005-01-27 Savage Marshall T. Linearly scalable geothermic fuel cells
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US947608A (en) * 1906-12-27 1910-01-25 Anson G Betts Method of utilizing buried coal.
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US947608A (en) * 1906-12-27 1910-01-25 Anson G Betts Method of utilizing buried coal.
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits

Cited By (444)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958519A (en) * 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US2953205A (en) * 1958-07-28 1960-09-20 Phillips Petroleum Co Process for initiating in situ combustion
US3017168A (en) * 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3109487A (en) * 1959-12-29 1963-11-05 Texaco Inc Petroleum production by secondary recovery
US3276518A (en) * 1961-08-08 1966-10-04 Deutsche Erdoel Ag Process for extracting liquid bitumens from an underground deposit
US3172467A (en) * 1962-10-08 1965-03-09 Phillips Petroleum Co Method of reversing in situ combustion frontal movement
US3223158A (en) * 1962-12-10 1965-12-14 Socony Mobil Oil Co Inc In situ retorting of oil shale
US3208516A (en) * 1963-05-13 1965-09-28 Shell Oil Co Control method in underground combustion drives
US3253652A (en) * 1963-06-24 1966-05-31 Socony Mobil Oil Co Inc Recovery method for petroleum oil
US3285335A (en) * 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3272261A (en) * 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3298434A (en) * 1964-05-27 1967-01-17 Thomas T Graham Gasification of coal
US3330353A (en) * 1964-09-22 1967-07-11 Shell Oil Co Thermal soak zones by fluidized fractures in unconsolidated, petroleum producing reservoirs
US3316962A (en) * 1965-04-13 1967-05-02 Deutsche Erdoel Ag In situ combustion method for residualoil recovery from petroleum deposits
US3472318A (en) * 1967-06-29 1969-10-14 Texaco Inc Hydrocarbon production by secondary recovery
US3563606A (en) * 1969-03-24 1971-02-16 St Joe Minerals Corp Method for in-situ utilization of fuels by combustion
US3599714A (en) * 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US4076312A (en) * 1974-07-29 1978-02-28 Occidental Oil Shale, Inc. Method and apparatus for retorting oil shale at subatmospheric pressure
US4036298A (en) * 1974-08-21 1977-07-19 Efim Vulfovich Kreinin Method of connection of wells by in-situ combustion
US4059151A (en) * 1975-07-14 1977-11-22 In Situ Technology, Inc. Methods of fluidized production of coal in situ
US3997005A (en) * 1975-10-23 1976-12-14 The United States Of America As Represented By The United States Energy Research And Development Administration Method for control of subsurface coal gasification
US4120357A (en) * 1977-10-11 1978-10-17 Chevron Research Company Method and apparatus for recovering viscous petroleum from thick tar sand
US4303126A (en) * 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4480689A (en) * 1982-12-06 1984-11-06 Atlantic Richfield Company Block pattern method for in situ gasification of subterranean carbonaceous deposits
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US7032660B2 (en) * 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20070209799A1 (en) * 2001-10-24 2007-09-13 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US7182132B2 (en) 2002-01-15 2007-02-27 Independant Energy Partners, Inc. Linearly scalable geothermic fuel cells
US20050016729A1 (en) * 2002-01-15 2005-01-27 Savage Marshall T. Linearly scalable geothermic fuel cells
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US20090301724A1 (en) * 2005-10-24 2009-12-10 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US20090095478A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US2841375A (en) Method for in-situ utilization of fuels by combustion
US2481051A (en) Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US3116792A (en) In situ combustion process
US3024013A (en) Recovery of hydrocarbons by in situ combustion
US4384613A (en) Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US3048221A (en) Hydrocarbon recovery by thermal drive
US3513913A (en) Oil recovery from oil shales by transverse combustion
US2780449A (en) Thermal process for in-situ decomposition of oil shale
US2793696A (en) Oil recovery by underground combustion
US3017168A (en) In situ retorting of oil shale
US2801089A (en) Underground shale retorting process
US3924680A (en) Method of pyrolysis of coal in situ
US4019577A (en) Thermal energy production by in situ combustion of coal
US2584605A (en) Thermal drive method for recovery of oil
US2914309A (en) Oil and gas recovery from tar sands
US3004596A (en) Process for recovery of hydrocarbons by in situ combustion
US3441083A (en) Method of recovering hydrocarbon fluids from a subterranean formation
US3228468A (en) In-situ recovery of hydrocarbons from underground formations of oil shale
US2973811A (en) Process for detecting underground water
US3601193A (en) In situ retorting of oil shale
SU919598A3 (en) Method for underground distillation of oil-bearing shale
US3031762A (en) Flame front location method
CN209569001U (en) A kind of oil shale in-situ recovery well down-firing heating device
US3004595A (en) In situ combustion of carbonaceous strata
US3565174A (en) Method of in situ combustion with intermittent injection of volatile liquid