US2886918A - Case angle shoe - Google Patents

Case angle shoe Download PDF

Info

Publication number
US2886918A
US2886918A US704689A US70468957A US2886918A US 2886918 A US2886918 A US 2886918A US 704689 A US704689 A US 704689A US 70468957 A US70468957 A US 70468957A US 2886918 A US2886918 A US 2886918A
Authority
US
United States
Prior art keywords
case
shoe
shoes
corner
lugs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US704689A
Inventor
Emery P Bayley
Weldon V Davis
Diederichs Herbert
Jr Leonard Vaupell
Wade H Perrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VAUPELL IND PLASTICS Inc
VAUPELL INDUSTRIAL PLASTICS Inc
Original Assignee
VAUPELL IND PLASTICS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VAUPELL IND PLASTICS Inc filed Critical VAUPELL IND PLASTICS Inc
Priority to US704689A priority Critical patent/US2886918A/en
Application granted granted Critical
Publication of US2886918A publication Critical patent/US2886918A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B91/00Feet for furniture in general
    • A47B91/04Elastic supports

Definitions

  • This invention relates to a supporting shoe of angle shape for use on the bottom of a case, such as a filing cabinet, a mobile kitchen cabinet, or a desk. All of such articles are embraced within the term case but the invention may be of greatest utility for ling cabinets.
  • the principal object of the invention is to provide shoes for case bottoms which will raise such bottoms oit the iloor slightly to allow ventilation and avoid collection beneath the case bottom of moisture from mopping the door, or from condensation.
  • moisture promotes rusting of metal case bottoms, which produces stains on various types of iloor coverings, such as linoleum and asphalt tile, or floors such as concrete and wood.
  • Moisture also induces rotting of the wood case bottoms and wood oors beneath them.
  • Such a shoe is hard and smooth so that the case, even though heavy, can be slid easily over the tloor, whether of wood, concrete, linoleum, plastic tile, or even carpeting.
  • a further object is to provide such a shoe which will be strong, durable, wear-resistant, light, inexpensive, and easy to apply to the bottom of a case so as to provide quickly a substantially permanent installation. ln particular, it is an object to provide a convenient way for attaching such shoes securely to the bottom of a case.
  • Another object is to provide such a case shoe which will support the load of the case weight and its contents effectively by contacting a portion of the case bottom.
  • the shoe is designed to engage the corner of a case bottom which is structurally usually the most rugged portion of the bottom.
  • the shoe is iitted to the corner so that no part of it projects appreciably beyond the sides of the case bottom.
  • terminal portions of the shoe are rounded to deter catching of the shoe on projections from a door as the case is slid over it.
  • An additional object is to make such a shoe of material which is smooth and slippery, preferably being slightly greasy to the touch so as to reduce to a minimum the friction between such a shoe and the door.
  • Such material while hard, should be slightly resilient to avoid damage to a floor of any material from scraping, and sliding over the floor is facilitated and the possibility or" scraping further reduced by making all the corners of the bottom surface chamfered.
  • t is a further object to provide such a case shoe which will contact both the case botom and the Hoor in a stable fashion over an adequate area to provide proper support for the case and which will be of a shape to avoid rocking or tilting ⁇ of the shoe.
  • shoes should be economicalV to make, light in weight, capable of being nested compactly for shipping, attractive in appearance, and non-corrodible.
  • a shoe in the form of a at strip of angle shape, having rounded projecting and reentrant corners formed by legs having rounded ends.
  • the corners of the lower surface are chamfered and lugs are provided, one projecting upward from the upper surface of each leg, for connection to the bottom of a case by insertion into sockets in the case bottom.
  • the shoe may be made of hard, slightly resilient, molded plastic material, preferably slightly greasy to the touch, such as nylon.
  • Figure l is an edge view of a preferred form of case angle shoe.
  • Figure 2 is a plan View of the shoe.
  • Figure 3 is a vertical sectional view through one leg of the shoe on line 3 3 of Figure 2 shown attached to a metal ling cabinet bottom.
  • Figure 4 is a bottom perspective view of a tiling cabinet showing shoes on three corners and a shoe in position to be placed on the fourth corner.
  • a flange may be provided around the edge of the bottom and the central portion of the bottom covered only by a piece of light sheet metal not backed by supporting structure.
  • Drawing cabinets and stationery cabinets frequently have a generally similar type of construction.
  • Desks may be supported by legs provided only at its corners. In applying shoes to a case, therefore, the shoes should not project beyond the sides of the case but support the edges and, more particularly, the corners of the case.
  • Cases in general are heavy, particularly when filled, and any shoe provided for such a case must therefore have a iirm bearing of considerable area both on structural portions of the case bottom and on the iloor.
  • Such shoes should be of a shape and applied to the case bottom in a manner so that the case cannot rock easily ⁇ on the shoes. Provision must be made for securing the shoes adequately and firmly to the case bottom', yet
  • the shoes of the present invention can be attached to the bottom of a case simply by drilling a couple of holes of the right size and location in the case bottom. No holes are required in the shoe and no metal parts are used.
  • the strip includes two legs l. integral with and projecting from a corner portion 2, preferably at right angles.
  • Each strip leg is of a width several times its thickness, the width being approximately three times the thickness or slightly more.
  • the strip can be three-sixteenths of an inch thick or slightly greater, and the width of each leg can be ve-eighths of an inch to three-quarters of an inch or so, for example.
  • each leg be several times the Width of a leg, such as the leg being vapproximately three times as long as its width, for ex- 'Ihese lugs preferably are of circular cross section and are somewhat tapered.
  • One of these lugs should be located on each leg so that each leg will be secured to the base bottom. If holes or sockets of the proper size and location are provided in the case bottom, the lugs may be inserted in them with a snug tit and preferably a press or light drive t.
  • These socket holes such as the holes 4 shown in Figure 4, should be located one at each side of a corner of the case and suiciently far in from the case wall so that the outer edges of the shoe will not project beyond the case wall.
  • the lugs 3 may be placed somewhat nearer the outer edges of the shoe than its inner edges. Ideally, the holes 4 and lugs 3 will be located so that the outer edges of the shoe will be flush with adjacent side walls of the case.
  • the lugs 3 should be located sufficiently far from the corner portion 2 of the shoe so as to provide stability vof attachment. On the other hand, such lugs should be suiciently close to the corner portion 2 so that it will not tend to fall away from the bottom of the case if one corner should be raised. Desirably, therefore, the lugs 3 will be located generally centrally of their respective shoe legs.
  • the holes 4 can then be drilled in corresponding locations in the bottom of the case by use of a template having in it apertures located in positions corresponding to the positions of the lugs 3 on the shoe.
  • the bottom of the case When the case is supported on a oor by such shoes secured to its corners, as shown in Figure 3, the bottom of the case will be raised above the floor by an amount equal to the thickness of the shoe strips which will afford adequate ventilation space.
  • the projecting corner 6 is curved convexly.
  • the extremities 7 of the legs are curved convexly. If either of these parts should engage a oor obstruction, therefore, the shoe would tend to slide sidewise in one direction or the other to move around the obstruction.
  • the reentrant corner 8 be rounded, as shown in Figure 2, and its radius of curvature may be equal to the radius of curvature of the projecting corner 6 so a that the projecting corner of one shoe can be placed in the reentrant corner of another shoe. In this manner, any desired number of shoes can be nested in chevron or herringbone fashion for shipping purposes.
  • obstructions on a floor are not sufficiently high to warrant lateral shifting of a case to avoid the obstruction.
  • Such obstructions may be roughness on a concrete floor.
  • all the corners 9 on the lower surface of the shoe are chamfered and preferably such chamfers are rounded as shown in Figures 1 and 3.
  • nylon is hard, smooth, strong, tough and-wear-resistant, in which respects it is similar to metal.
  • nylon or equivalent plastic material has the further desirable attributes, however, of being noncorrodible, slightly resilient, usually more resilient than metal, and being somewhat greasy to the touch; that is, it is slippery so that it will slide well.
  • plastic material is light and can be molded readily so that the entire article including the lugs 3 can be of unitary construction. While such plastic material is hard, it can be cut more easily than most metals.
  • the root rotions of the lugs may be shaved slightly by the peripheries of the holes so as to provide a very tight and accurate fit. Even if the holes 4 should not be located exactly in the right places, therefore, the sides of the tapered lugs would be shaved sufficiently to provide the desired lit without producing excessive shearing force on the lugs. Moreover, such plastic material is not brittle and is sufficiently resilient so that the corner of the socket aperture tends to bite into the root portion of the lug somewhat to increase the holding action.
  • the marginal flanges 5 are reinforced at the corners by gussets 10.
  • location of the shoes at the corners distributes the load of the entire case to the shoes effectively. The angle shape of the shoes tends to deter rocking or tilting ⁇ of such shoes relative to the case bottom.
  • a case angle shoe comprising a strip of hard, slightly resilient plastic material of right angle shape including a corner portion and mutually perpendicular legs projecting from said corner portion, said corner portion and legs having broad, substantially at, coplanar bottom bearing faces, and an attaching lug integral with each of said legs and projecting from its side opposite said coplanar bottom bearing -faces for engagement in sockets in the bottom of aA case with said coplanar bottom bearing Vfaces facing downward.
  • a case angle shoe comprising a strip of hard, slightly resilient plastic material of right ⁇ angle shape including a corner portion and mutually perpendicular legs projecting from said corner portion, said corner portion and legs 11a-ving broad, substantially flat, coplanar bottom bearing faces, and a tapered attaching lug ⁇ ot' circular cross section integral with each of said legs and projecting from its side opposite said coplanar bottom bearing faces vfor engagement in sockets in the bottom of a case with said coplanar bottom bearing faces facing downward, the corners of said legs adjacent to said coplanar bottom bearing faces being chamfered along the lengths of said legs.

Description

May 19, 1959 E. P. AYLEY ETAL CASE ANGLE SHOE Filed Dec. 23, 1957 INVENTORS. ENE/EY P BA YLEY .BY W,
M'clm ATTURNEYS States 2,886,918 Patented Maly 19, 1959 ice CASE ANGLE SHOE Emery P. Bayley, Weldon V. Davis, Herbert Diederichs, and Leonard Vaupell, Jr., Seattle, and Wade H. Perrow, Fil-crest, Wash., assignors to Vaupell Industrial Plastics, Inc., Seattle, Wash., a corporation of Washington Application December 23, 19.57, Serial No. 704,689
2 Claims. (Cl. 45-137) This invention relates to a supporting shoe of angle shape for use on the bottom of a case, such as a filing cabinet, a mobile kitchen cabinet, or a desk. All of such articles are embraced within the term case but the invention may be of greatest utility for ling cabinets.
The principal object of the invention is to provide shoes for case bottoms which will raise such bottoms oit the iloor slightly to allow ventilation and avoid collection beneath the case bottom of moisture from mopping the door, or from condensation. Such moisture promotes rusting of metal case bottoms, which produces stains on various types of iloor coverings, such as linoleum and asphalt tile, or floors such as concrete and wood. Moisture also induces rotting of the wood case bottoms and wood oors beneath them. Such a shoe is hard and smooth so that the case, even though heavy, can be slid easily over the tloor, whether of wood, concrete, linoleum, plastic tile, or even carpeting.
A further object is to provide such a shoe which will be strong, durable, wear-resistant, light, inexpensive, and easy to apply to the bottom of a case so as to provide quickly a substantially permanent installation. ln particular, it is an object to provide a convenient way for attaching such shoes securely to the bottom of a case.
Another object is to provide such a case shoe which will support the load of the case weight and its contents effectively by contacting a portion of the case bottom. Specifically, the shoe is designed to engage the corner of a case bottom which is structurally usually the most rugged portion of the bottom. The shoe is iitted to the corner so that no part of it projects appreciably beyond the sides of the case bottom. At the same time, terminal portions of the shoe are rounded to deter catching of the shoe on projections from a door as the case is slid over it.
An additional object is to make such a shoe of material which is smooth and slippery, preferably being slightly greasy to the touch so as to reduce to a minimum the friction between such a shoe and the door. Such material, while hard, should be slightly resilient to avoid damage to a floor of any material from scraping, and sliding over the floor is facilitated and the possibility or" scraping further reduced by making all the corners of the bottom surface chamfered.
t is a further object to provide such a case shoe which will contact both the case botom and the Hoor in a stable fashion over an adequate area to provide proper support for the case and which will be of a shape to avoid rocking or tilting` of the shoe.
Further, such shoes should be economicalV to make, light in weight, capable of being nested compactly for shipping, attractive in appearance, and non-corrodible.
The foregoing objects can be realized by providing a shoe in the form of a at strip of angle shape, having rounded projecting and reentrant corners formed by legs having rounded ends. The corners of the lower surface are chamfered and lugs are provided, one projecting upward from the upper surface of each leg, for connection to the bottom of a case by insertion into sockets in the case bottom. The shoe may be made of hard, slightly resilient, molded plastic material, preferably slightly greasy to the touch, such as nylon.
Figure l is an edge view of a preferred form of case angle shoe.
Figure 2 is a plan View of the shoe.
Figure 3 is a vertical sectional view through one leg of the shoe on line 3 3 of Figure 2 shown attached to a metal ling cabinet bottom.
Figure 4 is a bottom perspective view of a tiling cabinet showing shoes on three corners and a shoe in position to be placed on the fourth corner.
It is undesirable for large, at bases of oice cabinets, such as tiling cabinets, map or drawing cabinets and stationary cabinets, to rest directly on the floor because, if the door is mopped, such as a linoleum floor, moisture seeps beneath such a cabinet bottom. lf the bottom is of steel, it is rusted. If the cabinet bottom is of wood, it tends to rot because of lack of ventilation. To move such cabinets, particularly if they are lled, is very difficult and sharp edges, frequently found on such cabinets, gouge or scrape the linoleum floor thus causing damage and increasing the effort required to move such cabinets. Heavy desks, also, are difficult to slide across a floor of linoleum or concrete. It is therefore desirable to elevate the bottoms of such cabinets and desks somewhat above the floor. All such articles may be termed generally as cases The problem of providing shoes for cases which would raise their bottoms slightly above the floor and enable them to be moved easily is complicated by the fact that cases frequently are arranged side by side in a room. Filing cabinets, for example, may be placed in a row. A desk may be placed close to a lin-g cabinet or to a drawing cabinet. A stationary cabinet may be included in a row of filing cabinets. In such instances, it is usually desirable for the cases to abut, so that such shoes as may be attached to the bottoms of the cases should not project beyond the sides of the cases. Frequently, however, such cases are supported by their edges. Thus, in a filing cabinet, a flange may be provided around the edge of the bottom and the central portion of the bottom covered only by a piece of light sheet metal not backed by supporting structure. Drawing cabinets and stationery cabinets frequently have a generally similar type of construction. Desks may be supported by legs provided only at its corners. In applying shoes to a case, therefore, the shoes should not project beyond the sides of the case but support the edges and, more particularly, the corners of the case.
Cases in general are heavy, particularly when filled, and any shoe provided for such a case must therefore have a iirm bearing of considerable area both on structural portions of the case bottom and on the iloor. Such shoes should be of a shape and applied to the case bottom in a manner so that the case cannot rock easily `on the shoes. Provision must be made for securing the shoes adequately and firmly to the case bottom', yet
it is very desirable that the application of the shoe to the case bottom be accomplished with minimum time and elort expended. The shoes of the present invention can be attached to the bottom of a case simply by drilling a couple of holes of the right size and location in the case bottom. No holes are required in the shoe and no metal parts are used.
It has been found that a shoe formed of a strip of angle shape to fit a corner of a case bottom has provided a very satisfactory solution to this troublesome problem. The strip includes two legs l. integral with and projecting from a corner portion 2, preferably at right angles. Each strip leg is of a width several times its thickness, the width being approximately three times the thickness or slightly more. Conveniently, the strip can be three-sixteenths of an inch thick or slightly greater, and the width of each leg can be ve-eighths of an inch to three-quarters of an inch or so, for example. Also, it is preferred that the length of each leg be several times the Width of a leg, such as the leg being vapproximately three times as long as its width, for ex- 'Ihese lugs preferably are of circular cross section and are somewhat tapered. One of these lugs should be located on each leg so that each leg will be secured to the base bottom. If holes or sockets of the proper size and location are provided in the case bottom, the lugs may be inserted in them with a snug tit and preferably a press or light drive t. These socket holes, such as the holes 4 shown in Figure 4, should be located one at each side of a corner of the case and suiciently far in from the case wall so that the outer edges of the shoe will not project beyond the case wall. Because the structure of a tiling cabinet, for example, capable of supporting its weight, such as the flanges 5, is quite narrow, it may be desirable for the lugs 3 to be placed somewhat nearer the outer edges of the shoe than its inner edges. Ideally, the holes 4 and lugs 3 will be located so that the outer edges of the shoe will be flush with adjacent side walls of the case.
The lugs 3 should be located sufficiently far from the corner portion 2 of the shoe so as to provide stability vof attachment. On the other hand, such lugs should be suiciently close to the corner portion 2 so that it will not tend to fall away from the bottom of the case if one corner should be raised. Desirably, therefore, the lugs 3 will be located generally centrally of their respective shoe legs. The holes 4 can then be drilled in corresponding locations in the bottom of the case by use of a template having in it apertures located in positions corresponding to the positions of the lugs 3 on the shoe.
When the case is supported on a oor by such shoes secured to its corners, as shown in Figure 3, the bottom of the case will be raised above the floor by an amount equal to the thickness of the shoe strips which will afford adequate ventilation space. To facilitate slidying of the case over the floor on the shoes in case any obstruction should be encountered, the projecting corner 6 is curved convexly. Similarly, the extremities 7 of the legs are curved convexly. If either of these parts should engage a oor obstruction, therefore, the shoe would tend to slide sidewise in one direction or the other to move around the obstruction. It is also preferred that the reentrant corner 8 be rounded, as shown in Figure 2, and its radius of curvature may be equal to the radius of curvature of the projecting corner 6 so a that the projecting corner of one shoe can be placed in the reentrant corner of another shoe. In this manner, any desired number of shoes can be nested in chevron or herringbone fashion for shipping purposes.
Some obstructions on a floor are not sufficiently high to warrant lateral shifting of a case to avoid the obstruction. Such obstructions, for example, may be roughness on a concrete floor. To facilitate sliding of a case over such a rough surface and further to avoid any possibility of a corner of a shoe gouging or scraping a floor covering of linoleum, of asphalt tile or of rubber tile for example, all the corners 9 on the lower surface of the shoe are chamfered and preferably such chamfers are rounded as shown in Figures 1 and 3.
Sliding of the shoes is implemented and any tendency of the shoes to injure the floor or floor finish is further reduced by the material of which the shoes are made. While various types of hard plastic material would be reasonably suitable, the preferred material is nylon. Nylon, or such other plastic as might be used, is hard, smooth, strong, tough and-wear-resistant, in which respects it is similar to metal. Such nylon or equivalent plastic material has the further desirable attributes, however, of being noncorrodible, slightly resilient, usually more resilient than metal, and being somewhat greasy to the touch; that is, it is slippery so that it will slide well. In addition, such plastic material is light and can be molded readily so that the entire article including the lugs 3 can be of unitary construction. While such plastic material is hard, it can be cut more easily than most metals. When the lugs 3 are driven lightly into the holes 4, the root rotions of the lugs may be shaved slightly by the peripheries of the holes so as to provide a very tight and accurate fit. Even if the holes 4 should not be located exactly in the right places, therefore, the sides of the tapered lugs would be shaved sufficiently to provide the desired lit without producing excessive shearing force on the lugs. Moreover, such plastic material is not brittle and is sufficiently resilient so that the corner of the socket aperture tends to bite into the root portion of the lug somewhat to increase the holding action.
The structures of cases ditfer considerably. In the illustrative example shown in Figure 4, the marginal flanges 5 are reinforced at the corners by gussets 10. Sometimes a continuous sheet covers the entire bottom of a cabinet instead of only the corners. In either case, the corner portions of the case bottom would be strongest so as to support most eiectively the weight of the case. Also, location of the shoes at the corners distributes the load of the entire case to the shoes effectively. The angle shape of the shoes tends to deter rocking or tilting `of such shoes relative to the case bottom. Even though the gussets 10 were not provided, the shoes would not tend to rock and bend a ange 5 engaged by one leg 1 of a shoe because the other leg of the shoe extends along and is braced by the flange 5 on the adjacent wall of the case. The possibility of a shoe rocking is further reduced by providing generally three-point contact with the case bottom and the lloor by the two legs 1 and the corner portion 2 of the shoe. 'I'he angle shape of the shoe also provides the greatest load-carrying ability and stability Ifor most case structures for the amount of material required to make the shoe.
We claim as our invention:
l. A case angle shoe comprising a strip of hard, slightly resilient plastic material of right angle shape including a corner portion and mutually perpendicular legs projecting from said corner portion, said corner portion and legs having broad, substantially at, coplanar bottom bearing faces, and an attaching lug integral with each of said legs and projecting from its side opposite said coplanar bottom bearing -faces for engagement in sockets in the bottom of aA case with said coplanar bottom bearing Vfaces facing downward.
2. A case angle shoe comprising a strip of hard, slightly resilient plastic material of right `angle shape including a corner portion and mutually perpendicular legs projecting from said corner portion, said corner portion and legs 11a-ving broad, substantially flat, coplanar bottom bearing faces, and a tapered attaching lug `ot' circular cross section integral with each of said legs and projecting from its side opposite said coplanar bottom bearing faces vfor engagement in sockets in the bottom of a case with said coplanar bottom bearing faces facing downward, the corners of said legs adjacent to said coplanar bottom bearing faces being chamfered along the lengths of said legs.
References Cited in the le of this patent UNITED STATES PATENTS 1,230,836 Ballenberg June 26, 1917 1,915,249 Jorgensen June 20, 1933 2,011,785 Vallone Aug. 20, 1935 2,603,909 Pettibone July 22, 1952 2,690,212 Jakeway Sept. 28, 1954
US704689A 1957-12-23 1957-12-23 Case angle shoe Expired - Lifetime US2886918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US704689A US2886918A (en) 1957-12-23 1957-12-23 Case angle shoe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US704689A US2886918A (en) 1957-12-23 1957-12-23 Case angle shoe

Publications (1)

Publication Number Publication Date
US2886918A true US2886918A (en) 1959-05-19

Family

ID=24830497

Family Applications (1)

Application Number Title Priority Date Filing Date
US704689A Expired - Lifetime US2886918A (en) 1957-12-23 1957-12-23 Case angle shoe

Country Status (1)

Country Link
US (1) US2886918A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099891A (en) * 1960-09-30 1963-08-06 Hirsh Mfg Company Sa Floor protector
US3108393A (en) * 1960-10-28 1963-10-29 Ralph E Baker Floor guards
US4320932A (en) * 1980-04-25 1982-03-23 Lloyd Giffin Vertical breadbox or the like
US4522288A (en) * 1983-11-07 1985-06-11 American Tourister, Inc. Luggage
US5169115A (en) * 1991-09-06 1992-12-08 Lin Chung Hsiang Adhesive- and fastener-free footing pad
US5358125A (en) * 1993-01-18 1994-10-25 Blessing Gary E System for supporting binders in a hanging file
US5557824A (en) * 1995-06-26 1996-09-24 Bushey; Richard D. Furniture floor glide
US5868372A (en) * 1997-10-28 1999-02-09 Novak; Berkley G. Furniture foot
US6059251A (en) * 1998-07-21 2000-05-09 International Business Machines Corporation Computer equipment having an earthquake damage protection mechanism
US20040061039A1 (en) * 2001-08-29 2004-04-01 Stansbury Mark A. Furnace mount and method of installation
US20060043725A1 (en) * 2004-08-31 2006-03-02 Bushey Richard D Slider for heavy loads
US20110316398A1 (en) * 2010-06-25 2011-12-29 Hon Hai Precision Industry Co., Ltd. Support device for electronic device
US20130125342A1 (en) * 2011-11-22 2013-05-23 Donald Lupa Furniture skid plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1230836A (en) * 1915-10-14 1917-06-26 Adolph Ballenberg Glider for furniture-legs.
US1915249A (en) * 1931-08-31 1933-06-20 Jorgensen Specialty Company Resilient buffer
US2011785A (en) * 1934-01-03 1935-08-20 Barcalo Mfg Co Foot and shoe or cap
US2603909A (en) * 1949-04-11 1952-07-22 B S Marble Chair Company Scuff plate for furniture
US2690212A (en) * 1953-05-25 1954-09-28 Keeler Brass Co Plastic padded or ornamented furniture or the like and the method of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1230836A (en) * 1915-10-14 1917-06-26 Adolph Ballenberg Glider for furniture-legs.
US1915249A (en) * 1931-08-31 1933-06-20 Jorgensen Specialty Company Resilient buffer
US2011785A (en) * 1934-01-03 1935-08-20 Barcalo Mfg Co Foot and shoe or cap
US2603909A (en) * 1949-04-11 1952-07-22 B S Marble Chair Company Scuff plate for furniture
US2690212A (en) * 1953-05-25 1954-09-28 Keeler Brass Co Plastic padded or ornamented furniture or the like and the method of making

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099891A (en) * 1960-09-30 1963-08-06 Hirsh Mfg Company Sa Floor protector
US3108393A (en) * 1960-10-28 1963-10-29 Ralph E Baker Floor guards
US4320932A (en) * 1980-04-25 1982-03-23 Lloyd Giffin Vertical breadbox or the like
US4522288A (en) * 1983-11-07 1985-06-11 American Tourister, Inc. Luggage
US5169115A (en) * 1991-09-06 1992-12-08 Lin Chung Hsiang Adhesive- and fastener-free footing pad
US5358125A (en) * 1993-01-18 1994-10-25 Blessing Gary E System for supporting binders in a hanging file
US5557824A (en) * 1995-06-26 1996-09-24 Bushey; Richard D. Furniture floor glide
US5868372A (en) * 1997-10-28 1999-02-09 Novak; Berkley G. Furniture foot
US6059251A (en) * 1998-07-21 2000-05-09 International Business Machines Corporation Computer equipment having an earthquake damage protection mechanism
US6134858A (en) * 1998-07-21 2000-10-24 International Business Machines Corporation Computer equipment having an earthquake damage protection mechanism
US20040061039A1 (en) * 2001-08-29 2004-04-01 Stansbury Mark A. Furnace mount and method of installation
US20050035267A1 (en) * 2001-08-29 2005-02-17 Stansbury Mark A. Furnace mount and method of installation
US20050035266A2 (en) * 2001-08-29 2005-02-17 Nsa Corporation Furnace Mount and Method of Installation
US8262054B2 (en) 2001-08-29 2012-09-11 Nsa Corporation Furnace mount
US20060043725A1 (en) * 2004-08-31 2006-03-02 Bushey Richard D Slider for heavy loads
US7406746B2 (en) 2004-08-31 2008-08-05 Bushey Richard D Slider for heavy loads
US20110316398A1 (en) * 2010-06-25 2011-12-29 Hon Hai Precision Industry Co., Ltd. Support device for electronic device
US8491067B2 (en) * 2010-06-25 2013-07-23 Hon Hai Precision Industry Co., Ltd. Support device for electronic device
US20130125342A1 (en) * 2011-11-22 2013-05-23 Donald Lupa Furniture skid plate
US9185977B2 (en) * 2011-11-22 2015-11-17 Sd Machinery, Llc Furniture skid plate

Similar Documents

Publication Publication Date Title
US2886918A (en) Case angle shoe
US2704974A (en) Trays
US1915320A (en) Leveling device
US20050081330A1 (en) Round furniture slide
US3669490A (en) Floor preserving shoe for platform rockers and the like
US4313587A (en) Shelf bracket
US3092869A (en) Carpet fastener with contouring surface
US9359820B2 (en) Non-slip ladder base device
US9038200B2 (en) Footwear remover and drying rack
US20050044626A1 (en) Sink cover and work surface
US3688915A (en) Combined shelf edge and hanger support
US133766A (en) Improvement in foot-platforms for stoves and furniture
US2566954A (en) Combination table and cabinet
CA2720602C (en) Sink cabinet with sloped impervious floor
US1936224A (en) Edging
US3317261A (en) Portable cabinet and service strip
US11819122B2 (en) Load distributing deck insert
US3108393A (en) Floor guards
US7726080B2 (en) Under-floor storage
US5105953A (en) Drawer storage rack
US2461936A (en) Mounting for hooks and the like
US2241991A (en) Furring mounting for metal lath
US2842270A (en) Wall shelf
US1998234A (en) Conduit baseboard
US3654979A (en) Carving board attachment for platter