US2914309A - Oil and gas recovery from tar sands - Google Patents

Oil and gas recovery from tar sands Download PDF

Info

Publication number
US2914309A
US2914309A US357042A US35704253A US2914309A US 2914309 A US2914309 A US 2914309A US 357042 A US357042 A US 357042A US 35704253 A US35704253 A US 35704253A US 2914309 A US2914309 A US 2914309A
Authority
US
United States
Prior art keywords
tar
sand
pyrolysis
zone
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US357042A
Inventor
Salomonsson Gosta Joha Wilhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svenska Skifferolje AB
Husky Oil Co
Original Assignee
Svenska Skifferolje AB
Husky Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Skifferolje AB, Husky Oil Co filed Critical Svenska Skifferolje AB
Priority to US357042A priority Critical patent/US2914309A/en
Application granted granted Critical
Publication of US2914309A publication Critical patent/US2914309A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/06Underground gasification of coal

Definitions

  • This invention relates to methods of recovering hydrocarbon containing products from tar sands in situ in the earth, to apparatus for enabling such methods to be carried out, and to the products resulting from such operations.
  • Still further objects include the hydrocarbons products produced by pyrolysis of the tar in the tar sand in situ.
  • Figure 1 a plan view of one arrangement of heating elements for carrying out the present invention
  • Figure 2 a plan view of another arrangement
  • Figure 3 a plan view of a further arrangement
  • FIG 4 a vertical section through a field subjected to treatment in accordance with the present invention.
  • Figures 5-9 vertical sections through fields illustrating additional methods of treatment in accordance with the present invention.
  • hydrocarbon containing products are produced from tar sands in situ in the earth by subjecting the tar sands in situ in the earth to heat to pyrolyze the tar in the sands and to form pyrolyzed hydrocarbons which are recovered.
  • tar sands deposits found in several parts of the world may be utilized.
  • the most important 2,914,309 Patented Nov. 24, 1959 ice deposit is that of the Athabasca tar sands in northern Alberta, Canada.
  • Such Athabasca tar sand is fairly typical of materials that can be utilized in accordance with the present invention and due to their availability will be employed to illustrate the present invention.
  • the Y tar sand COIlSlStS of an intimate mixture of fine quartz sand constituting about by weight, a heavy and viscous black tar constituting generally from about 12- 17% by weight, with smaller quantities of water of about 2 to 5% by weight.
  • the tar differs in many respects from petroleum and is an essentially different material. At room temperature it is semi-solid.
  • the Athabasca deposits are approximately to 200 feet thick and are overlain by 0-200 feet overburden consisting of gravel, shale, limestone, etc.
  • the separation of hydrocarbon containing products from tne tar is performed directly in the earth.
  • the method desirably employed includes pyrolysis, e.g. cracking of the tar to lighter hydrocarbons by heating the sand layers to such temperatures that the tar in tne tar sand is pyrolyzer or cracked.
  • the volatile cracked products are distilled off immediately and collected as in drill holes through the layers, the drill holes being connected with a tube network.
  • the temperature for pyrolysis is from about 250 C. to about 380 C., but other ranges of temperatures can be employed depending on the effects sought.
  • the tar between the sand grains is heated above about 100 C., its water content (normally from about 2 to 5% by weight of the sand) is given off. At higher temperatures the tar becomes less viscous and begins to move downwardly between the grains by gravity.
  • thermal decomposition begins and as a result of the pyrolysis vapors of hydrocarbons (from methane up to heavy oil hydrocarbons) and related compounds are produced as well as oxygen, nitrogen and sulfur compounds.
  • Phenols, ammonia and hydrogen sulfide are among products usually obtained.
  • the vapors are recovered from the production bore-hole or gas-hole. In the movement of vapors toward the collection zone, where they come in contact with colder and more dense parts of the tar sand, the heavier components are condensed to the liquid state in which the tar is partly dissolved and diluted and flows more easily. After the pyrolysis, there is left be hind in the sand a coke like or carbon containing product which may be burned later.
  • the heat utilized for pyrolysis may be supplied to the heating zone in any desired way.
  • electrical elements inserted in tubes in drill holes may be employed as well as gas fired elements, superheated steam, etc., or heat may be obtained by combustion of the virgin tar sand or any cracked residues thereof left behind in the formation, the carbon in such cracked residues being readily available for this purpose.
  • combustion of such residual carbon containing products is utilized to produce heat employed in other stages of the process, the combustion of such coke-carbon will generally not produce all of the heat necessary for pyrolysis of tar in the tar sand and in such cases may be sup.- plemented by utilization of combustible gases produced in the pyrolysis of the tar or from other sources.
  • the combustible gases may be separated from the volatile hydrocarbons present and the combustible gases utilized to supplement the source of heat as explained above.
  • the heating elements may be arranged in any desired Way in spaced heating zones desirably arranged in geometrical pattern which heating zones connect through passages in the earth with a gas or vapor recovery zone so that such gas recovery zone is surrounded by spaced heating zones.
  • Such pattern may for example be that of a triangle, a square, or a hexagon, the triangular, square, or hexagonal pattern desirably covering the whole field, which is to be subjected to treatment.
  • heating elements 1, 1 are arranged hexagonally while gas outlets 2, 2 are positioned centrally of each geometrical figure of the pattern.
  • a square pattern is illustrated with heating elements 3, 3 and gas outlets 4, 4.
  • a heating element may be placed in each triangle, square or hexagon and a gas recovery zone or gas hole positioned at the center of each of the triangles, squares or hexagons.
  • a triangular pattern is shown in Figure 3 where a'combined heating ele ment 5 and gaseollecting tube 6 may be arranged in each corner of each triangle.
  • the heating period length and distance between heating elements depends on the specific load on the element, that is the electrical power or fuel calories supplied per hour per unit length of the element.
  • specific loads of from 0.5 to 2.5 kw./meter may be utilized but these it should be understood are exemplary and may vary with particular conditions and operations being carried out.
  • the most desirable load value to be employed may be determined by field tests under the particular conditions of operation in a particular field.
  • the condition which determines the heating period is that every part of the sand layer should be brought to the desired temperature necessary for complete pyrolysis of the tar. Desirably this temperature may be about 380- 400 C. (720750 F.).
  • the heating period lengths of time will vary with the particular fields and operations being carried out but will generally lie within fairly reasonable limits as from 1 to 40 weeks.
  • the features referred to immediately above are particularly concerned with indirect heating methods as when heating elements are inserted in heating zones or drill holes. If the heat is produced in situ in the tar sand itself as by combustion of combustible gases or of coke-carbon in the formation produced from pyrolysis of the tar itself, or by combinations of such methods, the heat transfer may be improved in a number of ways. In such cases the maximum temperatures in the combustion zone may be higher and no tube strength restrictions are imposed. The combustion zone moves slowly and concentrically outward from the inlet points so that the heat transfer distance is thus diminished. The combustion gases flow toward the gas outlets thereby carrying heat from the hottest to the coldest portions of the tar sand. Consequently such methods of heat treatment improve the heating rates and cut the length of heating periods considerably.
  • a specific load corresponding for example to 1.0 kw./meter may be obtained for example by blowing an air quantity of about 15 cubic meters and a fuel quantity of about 1 cubic meter per minute per meter of element length.
  • the air and fuel gas may be mixed at the burner head and ignited. In this way the combustion of the coke-carbon is initiated. As the coke is burned, the combustion zone spreads in all directions.
  • the combustion gases must overcome the flow resistance of the unburned coke and, at distances farther from the element, of the virgin tar-impregnated sand. As soon as the gases have penetrated through the barrier, the passage rapidly becomes wider due to the action of the hot gases. The tar is liquified and pressed away.
  • the sand as the coke after pyrolysis are permeable for oil vapours, combustion gases etc.
  • the coke is, however, more permeable than the sand. This fact may be utilized for creating such passages in the oil-bearing strata that the oil vapors and gases preferably move towards the gas outlet point.
  • the sand is transformed to coke by means of heating the former.
  • a coke wall around the element hole This coke formation starts during the hole drilling in the case where the drilling is performed by the drill burning method. If the element heating starts after the hole drilling, the thickness of the coke layer is larger, the longer is the heating time.
  • Around the element tube there is thus created a passage for gas flow in vertical direction, upwards or downwards.
  • the pyrolysis takes place and oil .vapors and gases are liberated. In the zone where pyrolysis takes place a super-pressure is created, which forces the volatile products to flow in all directions, which are permeable.
  • the conducting of the heated tar and/or tar products may even be brought about by introduction of gas under pressure.
  • the vertical gas passage should be open from the pyrolysis zone to the outlet point. This occurs if the pyrolysis zone, that is the heated part of the element moves downwards. If the outlet point is at the bottom of the sand layers, the pyrolysis zone should move from bottom upwards through the sand in order to create the necessary passage for the gases. This movement of the pyrolysis zone may be arranged by lowering or raising the burner equipment inside the element tube. If the heat is created by combustion of coke or gas directly in the layers, the burner which supplies air (and gas) for the combustion, may be moved upwards or downwards in the same manner and for the same purpose as described above. These matters are subsequently exemplified.
  • the hydrocarbon vapors and combustible gases etc., produced by pyrolysis of the tar in situ may be collected in any desired way. It is possible to collect vapors and gases in such a way that at least partial separation of the vapors from the gases takes place in the heating zone as can be accomplished by relative positioning of the points of entry of air or oxygen and fuel gases when used, and points of removal of the vapors and gases.
  • the oil vapors are collected and subjected to further treatment such as condensation, distillation, refining, transport and byproduct recovery according to any desired methods at any point where such vapors may be conveniently treated.
  • the oil vapors and gases leave the zone, where they have been formed or liberated with a rather high temperature for example 350400 C.
  • Part of their sensible heat content may be utilized for preheating combustion air or fuel or both by means of heat exchangers of any shape, either built together with the element tube and sunk in the element hole, or forming a separate equipment, connected to the top of the element tube, above the ground surface.
  • the sensible heat content of the oil vapors and gases, formed through the pyrolysis may also be utilized for distilling the oil produced into such fractions of different boiling temperatures that may be found suitable for marketing or further refining purposes. This may be made in such manner that the hot gases, leaving the ground, are directly fed to a fractioning tower of conventional design. Thereby no, or only a part of the heat quantity which would otherwise have been used, must be supplied to the tower.
  • the virgin tar contains about 4% by weight of sulphur in the form of sulphur-compounds. Through the lengthy heating of the rock by using the in situ method these sulphur compounds are cracked, whereby at least part of the sulphur is obtained in the incondensable gases in the form of hydrogen sulphide.
  • the hydrogen sulphide can be separated from the gas and transformed to elemental sulphur by means of known processes (for instance the AlkaZid-Claus method).
  • tar content is not high enough to maintain the combustion, an additional amount of fuel for instance gas may be supplied to the burner.
  • the tar in the surrounding portions of the sand is partially cracked by the heat liberated at the drilling operation. Such cracking results in a coke residue which hardens the hole walls. This hardening may be so strong that no casing of the wall is necessary.
  • the drilling burner and the heating element for producing pyrolysis of the tar in situ in the tar sand may have analogous functions such as sunnlving air and gas under pressure to the sand layers, the drilling and pyrolysis heating may be carried out in a single operation.
  • the oil recovery process may for example be performed by drilling holes with a diameter of 3 inches in a triangular pattern, covering the whole field with a shortest hole distance of 2.5 meters.
  • the drilling through the overburden may be performed in the conventional way.
  • some part of the upper tar sand layer may also be drilled in this way.
  • drilling burners according to the patent No. 2,833,516 may be used for drilling through the tar sand.
  • Some part of the layers under the tar sand is also drilled through.
  • Figures 4 and 5 exemplify a gas fired element in position in the whole tar sand layer.
  • the drilling burner is removed and a combined heating element and gas outlet tube is sunk into the hole.
  • the gas outlet tube 7 is sunk just to the upper part 8 of the tar sand when the overburden 9 is thick.
  • the gas outlet tube 7 is desirably sunk down through some part of the tar sand as shown in Figure 5, where this upper part of the tar sand will compensate for the thin overburden as a covering cap. Elsewhere the pyrolysis vapours will come up everywhere between the holes.
  • the heating element 10 is situated between the bottom of the gas outlet tube 7 and the bottom layers with no tar content. This latter is especially important because it is thus possible to heat some part of the bottom layer and in such a way avoid the tar flowing to the bottom layer and remaining there.
  • Gaseous fuel and oxygen containing gas mixtures are supplied through fuel inlet 11 and air inlet 12 respectively to the element 10 of such character and in such quantities that a quantity of heat of about 700 kcal. is liberated per hour and per meter of the element length.
  • the column shaped heat zone proceeds concentrically out from the element tube so there will be a zone 13 with sand coke nearest the hole followed by the zone 14 where the pyrolysis takes place.
  • the progress of the heating process is followed by temperature measurement in the coldest part of the field, that is in the center of the triangle between three heating elements. When the temperature at this point has increased to 400 C. which normally happens about about 5 months heating, the heating is stopped since every part of the sand has been brought to pyrolysis temperature.
  • the pyrolysis vapours and gases are collected through the gas outlet 7, which is situated at the top of the tar sand layer.
  • the super pressure, created in the sand during the pyrolysis, is suflicient to maintain the gas flow in the rock and through the gas-collecting tubes.
  • the super pressure in the rock may be regulated to a desired value by means of valves (not shown), inserted in every gas tube.
  • the triangular pattern as set forth in Figure 3 also shows a hexagonal pattern by combining 6 triangles with a common corner.
  • This arrangement may also be used in combustion of the sand coke.
  • a part of the tar sand is pyrolyzed around each combined heating element and gas-collecting tube to such an extent that the temperature between two such holes is high enough, say about l00l50 C'., that the viscosity of the tar here is low enough to permit gases passing from one hole to another adjacent hole.
  • By throttling the gas outlet holes it is possible to develop a higher super pressure in the tar sand layer and thus hasten the production of passages between the centre hole and one of the surrounding holes.
  • a perforated tube is sunk.
  • an oxygen containing gas mixture is distributed to the whole sand layer 15 through the perforations 16 of the tube 17.
  • the ignition can be started either by preheating the oxygen containing gas mixture to a sufiicient temperature or by dropping a self igniting substance or mixture of substances into the element hole 18.
  • the combustion proceeds more or less rapidly and thus gives shape to a more or less regular combustion 7 zone 19, the temperature of which will be 800-1000 C. From this zone 19, the heat is conducted to cooler parts of the layers.
  • the pyrolysis takes place.
  • the pyrolysis vapours and combustion gases pass together to the six adjacent holes situated at the angles of the hexagon, these holes now serving only as gas outlet holes 21.
  • the combustion gases and pyrolysis vapours passing to a gas outlet hole 21 pass firstly virgin tar sand 22 and then the tar sand 23 which partly has been pyrolyzed and ultimately the zone 24 round the gas outlet hole which consists of a tar sand coke column.
  • the methods of collecting the gases and main taining the super pressure in the tar sand are the same as in the above mentioned gas fired element process.
  • the supply of oxygen containing gas mixtures is interrupted when the sand temperature is 400 C. in the zone 23 where the tar sand first has partly pyrolyzed round the gas outlet holes 21.
  • the inlet tubes 18 can also be arranged in a triangular pattern with each tube at the angles of the triangle.
  • the combustion gases and pyrolysis vapours are then collected in a special hole which may be situated in the center of each triangle between the elements.
  • the supply of oxygen containing gas mixtures is even in this case interrupted when the sand temperature in the triangle center is about 400 C. If the supply of oxygen in the gas mixtures is regulated to about 0.15-0.20 cubic meter per hour and per meter of element length, and if the distance between the element holes is about 2.5
  • the heat has been substantially equally distributed along the whole length of the hole in the tar sand layer. It has also been mentioned that the tar will flow downwards to the bottom layers. At least partly opposing such action, some part of the bottom layer also has been warmed up by the heating elements. To further prevent such action it may be desirable to start the heating of the sand from the bottom and then raise the heating elements upwardly through the hole. In this way the tar, when it flows downwards, meets the heat from the bottom, pyrolyzes and the pyrolysis vapours go upwards through the gas outlet tube.
  • An example of the arrangement is shown in Figure 7.
  • the movable gas fired element 25 is here situated at the bottom of the hole 26.
  • the gaseous fuel and oxygen containing gas mixture enter through two concentric tubes 27 and 28 respectively down to the gas fired element 25.
  • the combustion gases from the element 25 pass through another concentric tube 29 to a chimney, e.g. via a heater exchange, not shown in the figure.
  • the three concentric tubes may consist of connectable parts, e.g. meter long tubes.
  • the element with these tubes are hung up on a wire 30 which runs over a pulley arrangement 31.
  • the pulley 32 is set up in a tower 33 whose height is somewhat more than the concentric tube parts, in this example thus about ll meters.
  • the element equipment hangs freely in the gas outlet pipe 33 for pyrolysis vapours and the coke hole, 26.
  • Figure 8 shows how the oxygen containing gas mixture and possibly also a gaseous fuel pass through two concentric tubes 34 and 35 respectively to the bottom part of the hole 36 in which a perforated tube 37 is inserted.
  • the outer movable concentric tube 35 is of such diameter that it can just be moved up and down through the tube 37 through the overburden 38 and the tar sand 39.
  • the part of tube 37 which passes through the tar sand should be perforated.
  • the lifting gear arrangement and other features may be the same as that described in Figure 7.
  • the combustion gases 8 pass through the sand to the outlet gas tube 40 in the same way as described in Figure 6.
  • Figure 9 illustrates how the pyrolysis of the sand may be carried out by a number of elements to obtain unequal distribution of the heat.
  • the distance between the bottom 42 and the top 43 of the tar sand layers 44 is here divided in seven parts and the height of the heating elements is about the same as the height of the said seventh.
  • an element has been connected for a suitable period it is moved upwards a seventh of that distance between the top and the top of the sand layer.
  • the raising of the burners (elements) to the next higher level may take place contemporarily in all connected rows of wells at the same time as a new well row is connected, adjacent to the most lately connected of the previously connected rows.
  • the first connected element has at the time A been moved six times and connected for seven periods and the whole zone around this tube is pyrolyzed at this time.
  • the next element has at the same time (A) only been connected for six periods and thus first a period later (at time B)'the whole sand layer around this tube has been pyrolyzed.
  • the following elements are connected more later and for the eighth element there is no connection until at time B.
  • a zig-Zag formed pyrolysis front which is moving along the field.
  • the movable inlet tubes for oxygen containing gas mixtures may be arranged.
  • a method of recovering hydrocarbons containing products from tar sands in situ in the earth the step consising essentially of subjecting said tar sand in situ in a vertical drill hole to heat progressively vertically and columnarly along the walls of the borehole at a temperature of from about 250 C. to about 400 C. to pyrolyze the tar by cracking to produce volatile lighter hydrocarbons and coke thereby to form a tube wall of hard sand coke surrounding the columnar heating zone, said coke being of greater permeability than the tar sand.
  • a three-stage method of recovering hydrocarbon containing products from tar sands in situ in the earth by subjecting said tar sand in situ in the earth to heat and thereby pyrolyzing the tar in said sand to form pyrolyzed hydrocarbons and recovering volatile hydrocarbon products from the pyrolyzed tar products characterized by the steps of initially heating the virgin tar sand deposit'progressively from its upper level to its base to a temperature of between 250 C. and 400 C.
  • substantially vertical cylindrical heating zones which extend from the upper level of the deposit to its base and within which the tar is pyrolyzed to form a substantially cylindrical vertical wall of hard sand coke around each cylindrical heating zone, subsequently continuing the heating at pyrolysis temperature so as to cause the wall of each individual heating zone to expand columnarly until it reaches a sand coke wall of a cylindrical heating zone and finally causing the vapors and gases produced by hydrolysis to flow through the sand coke, due to its higher permeability for gas than virgin tar sand, to some of said cylindrical heating zones, in which heating has been terminated to convert such zones into outlet holes.

Description

Nov. 24, 1959 G. J. w. SALOMONSSON 45 OIL AND GAS RECOVERY FROM TAR SANDS Filed May 25, 1953 5 Sheets -Sheet 1 FIG.\
1 g o o o o 3 o o o 3 l3 3 3 3 4 4 YAYAYAA AYAYAYAYA VAAYAYAY INVENTOR GOSTA J, w. SALO'MONSS'ON AT TORNEY Nov. 24, 1959 G. J.YW. SALOMONSSON 2,914,309
OIL, AND CAs RECOVERY FROM TAR SANDS Filed May 25, 1953 v 5 Sheets-Sheet 2 GASEOUS FUEL AIR AND/OR OXYGEN- PYROLYSIS VAPOURS a 9 OVERBURDEN NO TAR CONTENT VIRGIN TAR SAND ZONE WHERE PYROLYSIS TAKES PLACE ZONE WITH SAND COKE AIR AND/O OX I R 'YGEN PYROLYSIS, VAPOURS OVERBURDEN NO TAR CONTENT VIRGIN TAR SAND lo ZONE WHERE PYROLYSIS TAKES PLACE ZONE WITH SAND TAR i INVENTOR GOSTA J. w. SALOMONSSON ATTORNEY G. J. w. SALOMONSSON 2,914,309
OIL AND GAS RECOVERY FROM TAR SANDS Nov. 24, 1959 Fiied May 25, 1953 5 Sheets-Sheet 3A BURNING GASES AND F 6 PYROLYSIS VAPOURS GAS INLET TUBE I l GAS OUTLET TUBE OXYGEN-CONTAINING GAS MIXTURES OVERBURDEN NO TAR CONTENT ZONE WHERE PYROLYSIS HAS PARTLY OCCURRED ZONE WITH COKE PERFORATED TUBE VIRGIN TAR SAND ZONE WHERE PIROLYSIS occuRs F'RST CONNECTED v ZONE WITH COKE WHERE COMBUSTION occuRs E ZONE WITH OUTBURNED COKE T CONNECTED ELEMENT CONTENT OUTBUR- DEN PYROLYZED SAN D TIMEA 1 PERIODS TIME B7+0 I O INVEN'IB'R GOSTA J.W. SALOMONSSON THE ELEMENTS CONNECTED AT TIMES A AND 8 FIG. 9.
ATTORNEY Nov. 24, 1959' G. J. w. SALOMONSSON 9 OIL AND GAS RECOVERY FROM TAR SANDS 5 Sheets-Sheet 4 Filed May 25, 1953 GASEOUS FUEL AIR AND/QR OXYGEN GAS OUTLET F I G. 7
PYROLYSIS VAPOURS TAR SAND PYROLYSIS ZONE OVERBURDEN SAND COKE MOVABLE GAS FIRED ELEMENT INVENTOR GOSTA J. W. SALOMONSSON ATTORNEY Nov. 24, 1959 G. J. w. SALOMONSSON 5 3 011. AND GAS RECOVERY FROM TAR SANDS Filed May 25, 1953 5 Sheets-Sheet 5 FIG. 8
GAS
AIR AND/OR OXYGEN I GAS OUTLET TUBE MOVABLE GAS INLET TUBE OVERBURDEN ZONE WHERE PYROLYSIS HAS PARTLY OCCURRED PERFORATED TUBE 37 ZONE WITH COKE VIRGIN TAR SAND ZONE WHERE PYROLYSIS OCCURS ZONE WITH COKE WHERE COMBUST ION OCCURS ZONE WITH OUTBURNED COKE 4 INVENTOR GOSTA J. W. SALOMON'SSON ATTORNEY United States Patent OIL AND GAS RECOVERY FROM TAR SANDS Gosta Johan Wilhelm Salomonsson, Hallabrottet, Sweden, assignor, by direct and mesne assignments, of one-half to Svenska Skifferolje Aktiebolaget, Orebro, Sweden, :1 joint-stack company of Sweden, and one-half to Husky Oil Company, Cody, Wyo., a corporation of Delaware Application May 25, 1953, Serial No. 357,042
6 Claims. (Cl. 262-3) This invention relates to methods of recovering hydrocarbon containing products from tar sands in situ in the earth, to apparatus for enabling such methods to be carried out, and to the products resulting from such operations.
Various types of different mining and separating methods have been proposed in the prior art for the recovery of tar from tar sands. The yields obtained have been too small compared to the costs for mining, transporting, treating and disposal of tne sand. Among the methods which may be mentioned are separation by means of hot water, cold water, or solvents and further pyrolysis in retorts. The mining and handling of this cloggy material has offered a number of difiicult technical problems. In all of those methods the initial features involve mining and transportation of the mined material. After the separation, the heavy tar must be cracked to lighter compounds before it can be refined by the methods to produce products of use on the market.
Among the objects of the present invention are included methods of recovering hydrocarbon containing products from tar sands in situ, the separation being performed directly in the ground.
Other objects include the pyrolysis of the tar to produce lighter hydrocarbons, the volatile products of pyrolysis such as cracking being distilled off immediately and collected.
Further objects include apparatus enabling such operations to be readily carried out.
Still further objects include the hydrocarbons products produced by pyrolysis of the tar in the tar sand in situ.
Still further objects and advantages of the present invention will appear from the more detailed description set forth below, it being understood that such more detailed description is given by way of illustration and explanation only, and not by way of limitation, since vairous changes therein may be made by those skilled in the art without departing from the scope and spirit of the present invention.
In connection with that more detailed description, there is shown in the accompanying drawing, in
Figure 1, a plan view of one arrangement of heating elements for carrying out the present invention; in
Figure 2, a plan view of another arrangement; in
Figure 3, a plan view of a further arrangement; in
Figure 4, a vertical section through a field subjected to treatment in accordance with the present invention; and in Figures 5-9, vertical sections through fields illustrating additional methods of treatment in accordance with the present invention.
In accordance with the present invention, hydrocarbon containing products are produced from tar sands in situ in the earth by subjecting the tar sands in situ in the earth to heat to pyrolyze the tar in the sands and to form pyrolyzed hydrocarbons which are recovered.
Various types of tar sands deposits found in several parts of the world may be utilized. The most important 2,914,309 Patented Nov. 24, 1959 ice deposit is that of the Athabasca tar sands in northern Alberta, Canada. Such Athabasca tar sand is fairly typical of materials that can be utilized in accordance with the present invention and due to their availability will be employed to illustrate the present invention. The Y tar sand COIlSlStS of an intimate mixture of fine quartz sand constituting about by weight, a heavy and viscous black tar constituting generally from about 12- 17% by weight, with smaller quantities of water of about 2 to 5% by weight. The tar differs in many respects from petroleum and is an essentially different material. At room temperature it is semi-solid. The Athabasca deposits are approximately to 200 feet thick and are overlain by 0-200 feet overburden consisting of gravel, shale, limestone, etc.
It has been found that the physical and chemical properties of such tar sands require essential differentiations in the methods of treating such tar sands to recover hydrocarbon containing products therefrom in situ, that is without removal of the tar sand from the earth for treatment at some other locality.
In accordance with tne present invention instead of mining and handling the sand, the separation of hydrocarbon containing products from tne tar is performed directly in the earth. The method desirably employed includes pyrolysis, e.g. cracking of the tar to lighter hydrocarbons by heating the sand layers to such temperatures that the tar in tne tar sand is pyrolyzer or cracked. The volatile cracked products are distilled off immediately and collected as in drill holes through the layers, the drill holes being connected with a tube network.
In the pyrolysis of tar in the sand in situ, heat is supplied to pyrolyze the tar. Desirably the temperature for pyrolysis is from about 250 C. to about 380 C., but other ranges of temperatures can be employed depending on the effects sought. As the tar between the sand grains is heated above about 100 C., its water content (normally from about 2 to 5% by weight of the sand) is given off. At higher temperatures the tar becomes less viscous and begins to move downwardly between the grains by gravity. At about 250 C. thermal decomposition begins and as a result of the pyrolysis vapors of hydrocarbons (from methane up to heavy oil hydrocarbons) and related compounds are produced as well as oxygen, nitrogen and sulfur compounds. Phenols, ammonia and hydrogen sulfide are among products usually obtained. The vapors are recovered from the production bore-hole or gas-hole. In the movement of vapors toward the collection zone, where they come in contact with colder and more dense parts of the tar sand, the heavier components are condensed to the liquid state in which the tar is partly dissolved and diluted and flows more easily. After the pyrolysis, there is left be hind in the sand a coke like or carbon containing product which may be burned later.
The heat utilized for pyrolysis may be supplied to the heating zone in any desired way. Thus electrical elements inserted in tubes in drill holes may be employed as well as gas fired elements, superheated steam, etc., or heat may be obtained by combustion of the virgin tar sand or any cracked residues thereof left behind in the formation, the carbon in such cracked residues being readily available for this purpose. Where combustion of such residual carbon containing products is utilized to produce heat employed in other stages of the process, the combustion of such coke-carbon will generally not produce all of the heat necessary for pyrolysis of tar in the tar sand and in such cases may be sup.- plemented by utilization of combustible gases produced in the pyrolysis of the tar or from other sources. Since pyrolysis of the tar produces hydrocarbon vapors and combustible gases which latter have little utility other than for combustion purposes, the combustible gases may be separated from the volatile hydrocarbons present and the combustible gases utilized to supplement the source of heat as explained above.
The heating elements may be arranged in any desired Way in spaced heating zones desirably arranged in geometrical pattern which heating zones connect through passages in the earth with a gas or vapor recovery zone so that such gas recovery zone is surrounded by spaced heating zones. Such pattern may for example be that of a triangle, a square, or a hexagon, the triangular, square, or hexagonal pattern desirably covering the whole field, which is to be subjected to treatment. In the arrangement shown in Figure 1, heating elements 1, 1 are arranged hexagonally while gas outlets 2, 2 are positioned centrally of each geometrical figure of the pattern. In Figure 2, a square pattern is illustrated with heating elements 3, 3 and gas outlets 4, 4. A heating element may be placed in each triangle, square or hexagon and a gas recovery zone or gas hole positioned at the center of each of the triangles, squares or hexagons. A triangular pattern is shown in Figure 3 where a'combined heating ele ment 5 and gaseollecting tube 6 may be arranged in each corner of each triangle. The heating period length and distance between heating elements depends on the specific load on the element, that is the electrical power or fuel calories supplied per hour per unit length of the element. For example with electrical heating, specific loads of from 0.5 to 2.5 kw./meter may be utilized but these it should be understood are exemplary and may vary with particular conditions and operations being carried out. The most desirable load value to be employed may be determined by field tests under the particular conditions of operation in a particular field.
The condition which determines the heating period is that every part of the sand layer should be brought to the desired temperature necessary for complete pyrolysis of the tar. Desirably this temperature may be about 380- 400 C. (720750 F.). The heating period lengths of time will vary with the particular fields and operations being carried out but will generally lie within fairly reasonable limits as from 1 to 40 weeks.
The features referred to immediately above are particularly concerned with indirect heating methods as when heating elements are inserted in heating zones or drill holes. If the heat is produced in situ in the tar sand itself as by combustion of combustible gases or of coke-carbon in the formation produced from pyrolysis of the tar itself, or by combinations of such methods, the heat transfer may be improved in a number of ways. In such cases the maximum temperatures in the combustion zone may be higher and no tube strength restrictions are imposed. The combustion zone moves slowly and concentrically outward from the inlet points so that the heat transfer distance is thus diminished. The combustion gases flow toward the gas outlets thereby carrying heat from the hottest to the coldest portions of the tar sand. Consequently such methods of heat treatment improve the heating rates and cut the length of heating periods considerably. In utilization of a combustion element for heat treatment, a specific load corresponding for example to 1.0 kw./meter may be obtained for example by blowing an air quantity of about 15 cubic meters and a fuel quantity of about 1 cubic meter per minute per meter of element length. The air and fuel gas may be mixed at the burner head and ignited. In this way the combustion of the coke-carbon is initiated. As the coke is burned, the combustion zone spreads in all directions.
The combustion gases must overcome the flow resistance of the unburned coke and, at distances farther from the element, of the virgin tar-impregnated sand. As soon as the gases have penetrated through the barrier, the passage rapidly becomes wider due to the action of the hot gases. The tar is liquified and pressed away.
As well the sand as the coke after pyrolysis are permeable for oil vapours, combustion gases etc. The coke is, however, more permeable than the sand. This fact may be utilized for creating such passages in the oil-bearing strata that the oil vapors and gases preferably move towards the gas outlet point.
The sand is transformed to coke by means of heating the former. Thus there is formed a coke wall around the element hole. This coke formation starts during the hole drilling in the case where the drilling is performed by the drill burning method. If the element heating starts after the hole drilling, the thickness of the coke layer is larger, the longer is the heating time. Around the element tube there is thus created a passage for gas flow in vertical direction, upwards or downwards. At the same time as the coke is formed the pyrolysis takes place and oil .vapors and gases are liberated. In the zone where pyrolysis takes place a super-pressure is created, which forces the volatile products to flow in all directions, which are permeable.
The conducting of the heated tar and/or tar products may even be brought about by introduction of gas under pressure.
It the gas outlet is situated at the top of the sand layer the vertical gas passage should be open from the pyrolysis zone to the outlet point. This occurs if the pyrolysis zone, that is the heated part of the element moves downwards. If the outlet point is at the bottom of the sand layers, the pyrolysis zone should move from bottom upwards through the sand in order to create the necessary passage for the gases. This movement of the pyrolysis zone may be arranged by lowering or raising the burner equipment inside the element tube. If the heat is created by combustion of coke or gas directly in the layers, the burner which supplies air (and gas) for the combustion, may be moved upwards or downwards in the same manner and for the same purpose as described above. These matters are subsequently exemplified.
The hydrocarbon vapors and combustible gases etc., produced by pyrolysis of the tar in situ may be collected in any desired way. It is possible to collect vapors and gases in such a way that at least partial separation of the vapors from the gases takes place in the heating zone as can be accomplished by relative positioning of the points of entry of air or oxygen and fuel gases when used, and points of removal of the vapors and gases. The oil vapors are collected and subjected to further treatment such as condensation, distillation, refining, transport and byproduct recovery according to any desired methods at any point where such vapors may be conveniently treated.
The oil vapors and gases leave the zone, where they have been formed or liberated with a rather high temperature for example 350400 C. Part of their sensible heat content may be utilized for preheating combustion air or fuel or both by means of heat exchangers of any shape, either built together with the element tube and sunk in the element hole, or forming a separate equipment, connected to the top of the element tube, above the ground surface.
If heat is generated in the element or directly in the ground by combustion of any kind of fuel, also the sensible heat of the combustion gases may be utilized for the above-mentioned purpose.
The sensible heat content of the oil vapors and gases, formed through the pyrolysis may also be utilized for distilling the oil produced into such fractions of different boiling temperatures that may be found suitable for marketing or further refining purposes. This may be made in such manner that the hot gases, leaving the ground, are directly fed to a fractioning tower of conventional design. Thereby no, or only a part of the heat quantity which would otherwise have been used, must be supplied to the tower.
The products from the in situ pyrolysis of tar sand are of better quality and are more easily refined than products from other methods of oil recovery. If tar is extracted f om sand, after mining, with hot or cold water gasoline, are due to such characteristics of the in situ.
method as the long duration of the heat treatment and the relatively low temperature during the pyrolysis. As an example of the properties of an oil, which can be obtained by the in situ method, may be mentioned the following analysis of an oil, obtained in a direct test:
Spec. gravity, 20 C 0.87 Refractive index 1.490 Viscosity, 20 C centistokes 7.0 Viscosity, 50 C do 2.2 Sulphur content percent by weight..- 2.8 Bromine number 35 The virgin tar contains about 4% by weight of sulphur in the form of sulphur-compounds. Through the lengthy heating of the rock by using the in situ method these sulphur compounds are cracked, whereby at least part of the sulphur is obtained in the incondensable gases in the form of hydrogen sulphide. The hydrogen sulphide can be separated from the gas and transformed to elemental sulphur by means of known processes (for instance the AlkaZid-Claus method).
In methods for pyrolysis of tar sands in situ it is necessary to have drill holes or bore holes in which heating elements may be placed. The production of drill holes or bore holes in tar sand frequently offers difficulties. It has therefore been found desirable to utilize methods for hole drilling in tar sand as disclosed in the application of G. Salomonsson Serial No. 298,189 filed July 10, 1952, now patent No. 2,833,516, in which the hole drilling is performed by means of a stream of air or oxygen, desirably heated, directed toward the sand. The hot air or oxygen initiates a combustion of the tar between the sand grains which are thus liberated. The sand grains may be transported pneumatically to the surface for example by means of the ascending current of combustion gases. If the tar content is not high enough to maintain the combustion, an additional amount of fuel for instance gas may be supplied to the burner. The tar in the surrounding portions of the sand is partially cracked by the heat liberated at the drilling operation. Such cracking results in a coke residue which hardens the hole walls. This hardening may be so strong that no casing of the wall is necessary.
Since the drilling burner and the heating element for producing pyrolysis of the tar in situ in the tar sand may have analogous functions such as sunnlving air and gas under pressure to the sand layers, the drilling and pyrolysis heating may be carried out in a single operation.
As an example of the processes mentioned above, the following data is given.
The oil recovery process may for example be performed by drilling holes with a diameter of 3 inches in a triangular pattern, covering the whole field with a shortest hole distance of 2.5 meters. The drilling through the overburden may be performed in the conventional way. When the overburden is thin, some part of the upper tar sand layer may also be drilled in this way. For drilling through the tar sand, drilling burners according to the patent No. 2,833,516 may be used. Some part of the layers under the tar sand is also drilled through. When drilling with the drilling burner through the tar sand there is formed 6 a columnar coke layer around the hole so that no casing of the hole is necessary as pointed out above.
Figures 4 and 5 exemplify a gas fired element in position in the whole tar sand layer. After the hole is drilled, the drilling burner is removed and a combined heating element and gas outlet tube is sunk into the hole. As shown in Figure 4, the gas outlet tube 7 is sunk just to the upper part 8 of the tar sand when the overburden 9 is thick. When the overburden is thin, or if there is no overburden at all, the gas outlet tube 7 is desirably sunk down through some part of the tar sand as shown in Figure 5, where this upper part of the tar sand will compensate for the thin overburden as a covering cap. Elsewhere the pyrolysis vapours will come up everywhere between the holes. The heating element 10 is situated between the bottom of the gas outlet tube 7 and the bottom layers with no tar content. This latter is especially important because it is thus possible to heat some part of the bottom layer and in such a way avoid the tar flowing to the bottom layer and remaining there. Gaseous fuel and oxygen containing gas mixtures are supplied through fuel inlet 11 and air inlet 12 respectively to the element 10 of such character and in such quantities that a quantity of heat of about 700 kcal. is liberated per hour and per meter of the element length.
The column shaped heat zone proceeds concentrically out from the element tube so there will be a zone 13 with sand coke nearest the hole followed by the zone 14 where the pyrolysis takes place. The progress of the heating process is followed by temperature measurement in the coldest part of the field, that is in the center of the triangle between three heating elements. When the temperature at this point has increased to 400 C. which normally happens about about 5 months heating, the heating is stopped since every part of the sand has been brought to pyrolysis temperature.
The pyrolysis vapours and gases are collected through the gas outlet 7, which is situated at the top of the tar sand layer. The super pressure, created in the sand during the pyrolysis, is suflicient to maintain the gas flow in the rock and through the gas-collecting tubes. The super pressure in the rock may be regulated to a desired value by means of valves (not shown), inserted in every gas tube.
Depending on local conditions, such as availability and price of gaseous fuel, quality of uncondensable gases obtainable from the specific kind of tar sand being heated, etc., it may be perferable to use the calories of the sand coke for heating, e.g. in the following way:
The triangular pattern as set forth in Figure 3 also shows a hexagonal pattern by combining 6 triangles with a common corner. This arrangement may also be used in combustion of the sand coke. Firstly, a part of the tar sand is pyrolyzed around each combined heating element and gas-collecting tube to such an extent that the temperature between two such holes is high enough, say about l00l50 C'., that the viscosity of the tar here is low enough to permit gases passing from one hole to another adjacent hole. By throttling the gas outlet holes, it is possible to develop a higher super pressure in the tar sand layer and thus hasten the production of passages between the centre hole and one of the surrounding holes. Thereafter the heating elements are removed and in the centre hole of a hexagon, a perforated tube is sunk. As shown in Figure 6, an oxygen containing gas mixture is distributed to the whole sand layer 15 through the perforations 16 of the tube 17. The ignition can be started either by preheating the oxygen containing gas mixture to a sufiicient temperature or by dropping a self igniting substance or mixture of substances into the element hole 18. Depending on the greater or lesser permeability and the greater or lower carbon content of the sand coke, the combustion proceeds more or less rapidly and thus gives shape to a more or less regular combustion 7 zone 19, the temperature of which will be 800-1000 C. From this zone 19, the heat is conducted to cooler parts of the layers. In the zone 20 where the temperature is about 250-400" C., the pyrolysis takes place. The pyrolysis vapours and combustion gases pass together to the six adjacent holes situated at the angles of the hexagon, these holes now serving only as gas outlet holes 21. As shown in Figure 6, the combustion gases and pyrolysis vapours passing to a gas outlet hole 21, pass firstly virgin tar sand 22 and then the tar sand 23 which partly has been pyrolyzed and ultimately the zone 24 round the gas outlet hole which consists of a tar sand coke column. The methods of collecting the gases and main taining the super pressure in the tar sand are the same as in the above mentioned gas fired element process.
The supply of oxygen containing gas mixtures is interrupted when the sand temperature is 400 C. in the zone 23 where the tar sand first has partly pyrolyzed round the gas outlet holes 21.
The inlet tubes 18 can also be arranged in a triangular pattern with each tube at the angles of the triangle. The combustion gases and pyrolysis vapours are then collected in a special hole which may be situated in the center of each triangle between the elements.
The supply of oxygen containing gas mixtures is even in this case interrupted when the sand temperature in the triangle center is about 400 C. If the supply of oxygen in the gas mixtures is regulated to about 0.15-0.20 cubic meter per hour and per meter of element length, and if the distance between the element holes is about 2.5
meters, the process will take about months before the mentioned temperature is reached.
In the above mentioned examples the heat has been substantially equally distributed along the whole length of the hole in the tar sand layer. It has also been mentioned that the tar will flow downwards to the bottom layers. At least partly opposing such action, some part of the bottom layer also has been warmed up by the heating elements. To further prevent such action it may be desirable to start the heating of the sand from the bottom and then raise the heating elements upwardly through the hole. In this way the tar, when it flows downwards, meets the heat from the bottom, pyrolyzes and the pyrolysis vapours go upwards through the gas outlet tube. An example of the arrangement is shown in Figure 7. The movable gas fired element 25 is here situated at the bottom of the hole 26. The gaseous fuel and oxygen containing gas mixture enter through two concentric tubes 27 and 28 respectively down to the gas fired element 25. The combustion gases from the element 25 pass through another concentric tube 29 to a chimney, e.g. via a heater exchange, not shown in the figure. The three concentric tubes may consist of connectable parts, e.g. meter long tubes. The element with these tubes are hung up on a wire 30 which runs over a pulley arrangement 31. The pulley 32 is set up in a tower 33 whose height is somewhat more than the concentric tube parts, in this example thus about ll meters. The element equipment hangs freely in the gas outlet pipe 33 for pyrolysis vapours and the coke hole, 26.
At the burning of the sand coke as before mentioned, it is also possible to distribute the combustion gases and thus the heat unequally. Figure 8 shows how the oxygen containing gas mixture and possibly also a gaseous fuel pass through two concentric tubes 34 and 35 respectively to the bottom part of the hole 36 in which a perforated tube 37 is inserted. The outer movable concentric tube 35 is of such diameter that it can just be moved up and down through the tube 37 through the overburden 38 and the tar sand 39. The part of tube 37 which passes through the tar sand should be perforated. The lifting gear arrangement and other features may be the same as that described in Figure 7. The combustion gases 8 pass through the sand to the outlet gas tube 40 in the same way as described in Figure 6.
Figure 9 illustrates how the pyrolysis of the sand may be carried out by a number of elements to obtain unequal distribution of the heat. Here is shown, eight rows 41 of holes and how the heating front from them appears. The distance between the bottom 42 and the top 43 of the tar sand layers 44 is here divided in seven parts and the height of the heating elements is about the same as the height of the said seventh. When an element has been connected for a suitable period it is moved upwards a seventh of that distance between the top and the top of the sand layer. The raising of the burners (elements) to the next higher level may take place contemporarily in all connected rows of wells at the same time as a new well row is connected, adjacent to the most lately connected of the previously connected rows. When the new row is connected the burners in this row of wells are at their lowest level. Thus the different rows of burners will form a stepwise arrangement. The first connected element has at the time A been moved six times and connected for seven periods and the whole zone around this tube is pyrolyzed at this time. The next element has at the same time (A) only been connected for six periods and thus first a period later (at time B)'the whole sand layer around this tube has been pyrolyzed. In the same manner the following elements are connected more later and for the eighth element there is no connection until at time B. Thus there is attained a zig-Zag formed pyrolysis front which is moving along the field.
In a similar manner also the movable inlet tubes for oxygen containing gas mixtures may be arranged.
Having thus set forth my invention, I claim:
1. In a method of recovering hydrocarbons containing products from tar sands in situ in the earth, the step consising essentially of subjecting said tar sand in situ in a vertical drill hole to heat progressively vertically and columnarly along the walls of the borehole at a temperature of from about 250 C. to about 400 C. to pyrolyze the tar by cracking to produce volatile lighter hydrocarbons and coke thereby to form a tube wall of hard sand coke surrounding the columnar heating zone, said coke being of greater permeability than the tar sand.
2. The method as set forth in claim 1 in which the heat is supplied to the tar sand from a heating zone progressively moving from a lower to an upper zone.
3. The method as set forth in claim 1 in which the heat is supplied to the tar sand from a heating zone pro gressively moving from an upper to a lower zone.
4. A three-stage method of recovering hydrocarbon containing products from tar sands in situ in the earth by subjecting said tar sand in situ in the earth to heat and thereby pyrolyzing the tar in said sand to form pyrolyzed hydrocarbons and recovering volatile hydrocarbon products from the pyrolyzed tar products, characterized by the steps of initially heating the virgin tar sand deposit'progressively from its upper level to its base to a temperature of between 250 C. and 400 C. progressively to form substantially vertical cylindrical heating zones which extend from the upper level of the deposit to its base and within which the tar is pyrolyzed to form a substantially cylindrical vertical wall of hard sand coke around each cylindrical heating zone, subsequently continuing the heating at pyrolysis temperature so as to cause the wall of each individual heating zone to expand columnarly until it reaches a sand coke wall of a cylindrical heating zone and finally causing the vapors and gases produced by hydrolysis to flow through the sand coke, due to its higher permeability for gas than virgin tar sand, to some of said cylindrical heating zones, in which heating has been terminated to convert such zones into outlet holes.
5. The method as set forth in claim 4 in which the sand coke wall is produced by means of movable heating elements which in accordance with the heating conditions desired can be inserted within and removed out of the tar sand deposit.
6. The method as claimed in claim 4 in which the cylindrical heating zones are distributed over the surface of the ground covering the tar sand deposit so as to constitute the angles of at least a three sided regular polygonal pattern, the holes of Which zones upon formation of the coke wall by removal of the heating elements are transformed into discharge holes while a new cylindrical heating zone is formed by supplying oxygen containing gas mixtures through a tubular heating element inserted into the tar sand deposit in the center of the polygon.
References Cited in the file of this patent UNITED STATES PATENTS 10 2,188,737 Hixon Jan. 30, 1940 2,280,851 Ranney Apr. 28, 1942 2,365,591 Ranney Dec. 19, 1944 2,584,605 Merriam et al. Feb. 5, 1952 5 2,630,307 Martin Mar. 3, 1953 2,634,961 Ljungstrom -d Apr. 14, 1953 2,688,464 Payne Sept. 7, 1954 2,694,550 Aitchison et al Nov. 16, 1954 2,734,579 Elkins Feb. 14, 1956 10 2,780,449 Fisher et al. Feb. 5, 1957 2,833,516 Salomonsson May 6, 1958 FOREIGN PATENTS 464,909 Canada May 9, 1950 15 (Corresponding U.S. 2,497,868Feb. 21, 1950) 121,737 Sweden May 25, 1948 123,138 Sweden Nov. 9, 1948

Claims (1)

1. IN A METHOD OF RECOVERING HYDROCARBON CONTAINING PRODUCTS FROM TAR SANDS IN SITU IN THE EARTH, THE STEP CONSISING ESSENTIALLY OF SUBJECTING SAID TAR SAND IN SITU IN A VERTICAL DRILL HOLE TO HEAT PROGRESSIVELY VERTICALLY AND COLUMNARLY ALONG THE WALLS OF THE BOREHOLE AT A TEMPERATURE OF FROM ABOUT 250*C. TO ABOUT 400*C. TO PYROLYZE THE TAR BY CRACKING TO PRODUCE VOLATILE LIGHTER HYDROCARBONS AND COKE THEREBY TO FORM A TUBE WALL OF HARD SAND
US357042A 1953-05-25 1953-05-25 Oil and gas recovery from tar sands Expired - Lifetime US2914309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US357042A US2914309A (en) 1953-05-25 1953-05-25 Oil and gas recovery from tar sands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US357042A US2914309A (en) 1953-05-25 1953-05-25 Oil and gas recovery from tar sands

Publications (1)

Publication Number Publication Date
US2914309A true US2914309A (en) 1959-11-24

Family

ID=23404058

Family Applications (1)

Application Number Title Priority Date Filing Date
US357042A Expired - Lifetime US2914309A (en) 1953-05-25 1953-05-25 Oil and gas recovery from tar sands

Country Status (1)

Country Link
US (1) US2914309A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024013A (en) * 1958-04-24 1962-03-06 Phillips Petroleum Co Recovery of hydrocarbons by in situ combustion
US3044546A (en) * 1959-05-25 1962-07-17 Phillips Petroleum Co Production of unconsolidated sands by in situ combustion
US3061009A (en) * 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3163218A (en) * 1960-03-14 1964-12-29 Jersey Prod Res Co Method of consolidating a formation using a heater within a liner which is thereafter destroyed
US3172468A (en) * 1961-09-15 1965-03-09 Sun Oil Co Consolidation of hydrocarbon gas-bearing sands by inverse in situ combustion
US3258073A (en) * 1963-12-26 1966-06-28 Pan American Petroleum Corp Procedure for igniting thick, carbonaceous formations
US3379246A (en) * 1967-08-24 1968-04-23 Mobil Oil Corp Thermal method for producing heavy oil
US3874452A (en) * 1973-03-23 1975-04-01 Texaco Inc Recovery of viscous petroleum from asphaltic petroleum containing formations such as tar sand deposits
US3946808A (en) * 1974-02-01 1976-03-30 Texaco Inc. Process for recovering hydrocarbons from a subterranean reservoir by in situ combustion
US4042027A (en) * 1973-03-23 1977-08-16 Texaco Inc. Recovery of petroleum from viscous asphaltic petroleum containing formations including tar sand deposits
US4334579A (en) * 1980-08-29 1982-06-15 The United States Of America As Represented By The United States Department Of Energy Method for gasification of deep, thin coal seams
US4390066A (en) * 1981-02-05 1983-06-28 Conoco Inc. Well location pattern for secondary and tertiary recovery
US4415034A (en) * 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4422505A (en) * 1982-01-07 1983-12-27 Atlantic Richfield Company Method for gasifying subterranean coal deposits
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4685515A (en) * 1986-03-03 1987-08-11 Texaco Inc. Modified 7 spot patterns of horizontal and vertical wells for improving oil recovery efficiency
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5411089A (en) * 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
WO2001081721A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon containing formation
WO2001081717A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. Method for treating a hydrocarbon-containing formation
WO2002085821A2 (en) * 2001-04-24 2002-10-31 Shell International Research Maatschappij B.V. In situ recovery from a relatively permeable formation containing heavy hydrocarbons
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
WO2003040513A2 (en) * 2001-10-24 2003-05-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20050016729A1 (en) * 2002-01-15 2005-01-27 Savage Marshall T. Linearly scalable geothermic fuel cells
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
WO2008051495A2 (en) * 2006-10-20 2008-05-02 Shell Oil Company Systems and processes for use in treating subsurface formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090261021A1 (en) * 2008-04-16 2009-10-22 Bower David J Oil sands processing
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1992323A (en) * 1932-09-02 1935-02-26 James H Hayes Process of degasifying coal and other carbonaceous material in situ
US2188737A (en) * 1939-04-26 1940-01-30 Hiram W Hixon Apparatus for recovering oil from subterranean oil pockets
US2280851A (en) * 1939-01-12 1942-04-28 Ranney Leo Method of well drilling
US2365591A (en) * 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
CA464909A (en) * 1950-05-09 Dalin David Method of degassing and burning subterranean fuel
US2584605A (en) * 1948-04-14 1952-02-05 Edmund S Merriam Thermal drive method for recovery of oil
US2630307A (en) * 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2688464A (en) * 1949-12-09 1954-09-07 Socony Vacuum Oil Co Inc Process for thermally working oil shale
US2694550A (en) * 1948-09-01 1954-11-16 Union Carbide & Carbon Corp Churn drill for thermal rock piercing
US2734579A (en) * 1956-02-14 Production from bituminous sands
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2833516A (en) * 1952-02-21 1958-05-06 Svenska Skifferolje Ab Method of driving holes in bituminous strata

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA464909A (en) * 1950-05-09 Dalin David Method of degassing and burning subterranean fuel
US2734579A (en) * 1956-02-14 Production from bituminous sands
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1992323A (en) * 1932-09-02 1935-02-26 James H Hayes Process of degasifying coal and other carbonaceous material in situ
US2280851A (en) * 1939-01-12 1942-04-28 Ranney Leo Method of well drilling
US2188737A (en) * 1939-04-26 1940-01-30 Hiram W Hixon Apparatus for recovering oil from subterranean oil pockets
US2365591A (en) * 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2584605A (en) * 1948-04-14 1952-02-05 Edmund S Merriam Thermal drive method for recovery of oil
US2694550A (en) * 1948-09-01 1954-11-16 Union Carbide & Carbon Corp Churn drill for thermal rock piercing
US2630307A (en) * 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2688464A (en) * 1949-12-09 1954-09-07 Socony Vacuum Oil Co Inc Process for thermally working oil shale
US2833516A (en) * 1952-02-21 1958-05-06 Svenska Skifferolje Ab Method of driving holes in bituminous strata
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale

Cited By (474)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061009A (en) * 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3024013A (en) * 1958-04-24 1962-03-06 Phillips Petroleum Co Recovery of hydrocarbons by in situ combustion
US3044546A (en) * 1959-05-25 1962-07-17 Phillips Petroleum Co Production of unconsolidated sands by in situ combustion
US3163218A (en) * 1960-03-14 1964-12-29 Jersey Prod Res Co Method of consolidating a formation using a heater within a liner which is thereafter destroyed
US3172468A (en) * 1961-09-15 1965-03-09 Sun Oil Co Consolidation of hydrocarbon gas-bearing sands by inverse in situ combustion
US3258073A (en) * 1963-12-26 1966-06-28 Pan American Petroleum Corp Procedure for igniting thick, carbonaceous formations
US3379246A (en) * 1967-08-24 1968-04-23 Mobil Oil Corp Thermal method for producing heavy oil
US3874452A (en) * 1973-03-23 1975-04-01 Texaco Inc Recovery of viscous petroleum from asphaltic petroleum containing formations such as tar sand deposits
US4042027A (en) * 1973-03-23 1977-08-16 Texaco Inc. Recovery of petroleum from viscous asphaltic petroleum containing formations including tar sand deposits
US3946808A (en) * 1974-02-01 1976-03-30 Texaco Inc. Process for recovering hydrocarbons from a subterranean reservoir by in situ combustion
US4334579A (en) * 1980-08-29 1982-06-15 The United States Of America As Represented By The United States Department Of Energy Method for gasification of deep, thin coal seams
US4390066A (en) * 1981-02-05 1983-06-28 Conoco Inc. Well location pattern for secondary and tertiary recovery
US4422505A (en) * 1982-01-07 1983-12-27 Atlantic Richfield Company Method for gasifying subterranean coal deposits
US4415034A (en) * 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4685515A (en) * 1986-03-03 1987-08-11 Texaco Inc. Modified 7 spot patterns of horizontal and vertical wells for improving oil recovery efficiency
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
USRE35696E (en) * 1992-06-12 1997-12-23 Shell Oil Company Heat injection process
US5411089A (en) * 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
WO2001081240A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In-situ heating of coal formation to produce fluid
WO2001081722A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon-containing formation
WO2001081239A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
WO2001083940A1 (en) * 2000-04-24 2001-11-08 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
WO2001083945A1 (en) * 2000-04-24 2001-11-08 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon containing formation
WO2001086115A2 (en) * 2000-04-24 2001-11-15 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon containing formation
WO2001081717A3 (en) * 2000-04-24 2002-03-21 Shell Int Research Method for treating a hydrocarbon-containing formation
WO2001086115A3 (en) * 2000-04-24 2002-04-04 Shell Int Research A method for treating a hydrocarbon containing formation
WO2001081715A3 (en) * 2000-04-24 2002-04-25 Shell Int Research Method and system for treating a hydrocarbon containing formation
WO2001081239A3 (en) * 2000-04-24 2002-05-23 Shell Oil Co In situ recovery from a hydrocarbon containing formation
WO2001081240A3 (en) * 2000-04-24 2002-07-04 Shell Oil Co In-situ heating of coal formation to produce fluid
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
GB2379469A (en) * 2000-04-24 2003-03-12 Shell Int Research In situ recovery from a hydrocarbon containing formation
WO2001081721A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6994168B2 (en) * 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
WO2001081717A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. Method for treating a hydrocarbon-containing formation
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6702016B2 (en) * 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
AU773413B2 (en) * 2000-04-24 2004-05-27 Shell Internationale Research Maatschappij B.V. A method for sequestering a fluid within a hydrocarbon containing formation
US6742587B2 (en) * 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
EP1276960B1 (en) * 2000-04-24 2004-09-15 Shell Internationale Researchmaatschappij B.V. A method for sequestering a fluid within a hydrocarbon containing formation
GB2379469B (en) * 2000-04-24 2004-09-29 Shell Int Research In situ recovery from a hydrocarbon containing formation
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
WO2002085821A2 (en) * 2001-04-24 2002-10-31 Shell International Research Maatschappij B.V. In situ recovery from a relatively permeable formation containing heavy hydrocarbons
US6782947B2 (en) * 2001-04-24 2004-08-31 Shell Oil Company In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
WO2002085821A3 (en) * 2001-04-24 2013-11-07 Shell International Research Maatschappij B.V. In situ recovery from a relatively permeable formation containing heavy hydrocarbons
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US7032660B2 (en) * 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
WO2003040513A3 (en) * 2001-10-24 2009-06-11 Shell Oil Co In situ thermal processing of a hydrocarbon containing formation
US20070209799A1 (en) * 2001-10-24 2007-09-13 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
WO2003040513A2 (en) * 2001-10-24 2003-05-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7182132B2 (en) 2002-01-15 2007-02-27 Independant Energy Partners, Inc. Linearly scalable geothermic fuel cells
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US20050016729A1 (en) * 2002-01-15 2005-01-27 Savage Marshall T. Linearly scalable geothermic fuel cells
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US20070131411A1 (en) * 2003-04-24 2007-06-14 Vinegar Harold J Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) * 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20090301724A1 (en) * 2005-10-24 2009-12-10 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
GB2461362A (en) * 2006-10-20 2010-01-06 Shell Int Research Systems and processes for use in treating subsurface formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
RU2454534C2 (en) * 2006-10-20 2012-06-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Treatment method of bituminous sands formation and transport fuel made using this method
RU2453692C2 (en) * 2006-10-20 2012-06-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Treatment method of formation of bituminous sands, and transport fuel produced using above mentioned method
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US8191630B2 (en) * 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
RU2447275C2 (en) * 2006-10-20 2012-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Heating of bituminous sand beds with pressure control
WO2008051495A3 (en) * 2006-10-20 2008-10-30 Shell Oil Co Systems and processes for use in treating subsurface formations
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
WO2008051495A2 (en) * 2006-10-20 2008-05-02 Shell Oil Company Systems and processes for use in treating subsurface formations
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US20090261021A1 (en) * 2008-04-16 2009-10-22 Bower David J Oil sands processing
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US2914309A (en) Oil and gas recovery from tar sands
US4384613A (en) Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US2801089A (en) Underground shale retorting process
US7048051B2 (en) Recovery of products from oil shale
US2825408A (en) Oil recovery by subsurface thermal processing
US3468376A (en) Thermal conversion of oil shale into recoverable hydrocarbons
US2970826A (en) Recovery of oil from oil shale
RU2487236C2 (en) Method of subsurface formation treatment (versions) and motor fuel produced by this method
US4457374A (en) Transient response process for detecting in situ retorting conditions
US2630306A (en) Subterranean retorting of shales
CN100545415C (en) The method of in-situ processing hydrocarbon containing formation
JP5441413B2 (en) System and method for the production of hydrocarbons from tar sands by a heat-generated drain
CA2462794C (en) Method and system for in situ heating a hydrocarbon containing formation by a u-shaped opening
US2481051A (en) Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2795279A (en) Method of underground electrolinking and electrocarbonization of mineral fuels
US3110345A (en) Low temperature reverse combustion process
US4067390A (en) Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4454915A (en) In situ retorting of oil shale with air, steam, and recycle gas
US8312928B2 (en) Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil shale and oil sands
US3490529A (en) Production of oil from a nuclear chimney in an oil shale by in situ combustion
CN102656337A (en) Enhanced convection for in situ pyrolysis of organic-rich rock formations
CN102428252A (en) In situ method and system for extraction of oil from shale
CN103069104A (en) Wellbore mechanical integrity for in situ pyrolysis
CN103069105A (en) Olefin reduction for in situ pyrolysis oil generation
US20160084060A1 (en) Apparatus for the recovery of hydrocarbonaceous and additional products from oil shale and sands via multi-stage condensation