US2998457A - Production of phenols - Google Patents

Production of phenols Download PDF

Info

Publication number
US2998457A
US2998457A US775050A US77505058A US2998457A US 2998457 A US2998457 A US 2998457A US 775050 A US775050 A US 775050A US 77505058 A US77505058 A US 77505058A US 2998457 A US2998457 A US 2998457A
Authority
US
United States
Prior art keywords
approximately
xylenols
temperature
mixed
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US775050A
Inventor
Thorwell H Paulsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashland LLC
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Priority to US775050A priority Critical patent/US2998457A/en
Application granted granted Critical
Publication of US2998457A publication Critical patent/US2998457A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/929Special chemical considerations
    • Y10S585/942Production of carbonium ion or hydrocarbon free-radical

Definitions

  • This invention relates to the treatment of coal tar byproducts for the recovery of phenols therefrom. it is directed particularly to the catalytic removal of methyl and hydroxyl radicals from xylenols which are produced asl residual by-products in the distillation of coal tar light o1 s.
  • An important objective of the present invention is to provide an equally convenient means for converting into useful products mixed xylenols which are produced as residual by-products in the recovery of crude benzol or coal tar light oil from coal tar.
  • the xylenols at present are of limited market value. Because of the contaminating constituents of these crude products, relatively pure chemicals cannot be obtained from them at reasonable cost.
  • the xylenols at present are of limited market value. Because of the contaminating constituents of these crude products, relatively pure chemicals cannot be obtained from them at reasonable cost.
  • the xylenols which are produced as residual by-products in the recovery of crude benzol or coal tar light oil from coal tar.
  • present invention provides a xylenols into relatively pure demand has long continued.
  • the present invention is based upon the discovery that the methyl and hydroxyl groups attached to the benzene rings in the isomers constituting a typical mixed xylenol derived from coal tar can selectively be cracked therefrom, and the sulfur impurities such as thiophenes as well as paraiiinic compounds which are present can be removed by subjecting the mixed xylenols to hydrocracking conditions in the presence of a specific catalyst and that the formation of gas and coke from destructive decomposition in such operation may be held to an inconsequentially low figure even at temperatures above l200l250 F.
  • the present invention is based upon the discovery that the xylenols in a mixed xylenol product derived from coal tar may be converted and thereby up-graded into a product containing phenols in admixture with benzene, toluene, xylene, and cresols, by catalytic hydrodealkylation in a rapid and convenient manner and at relatively low equipment cost.
  • mixed xylenols are subjected to catalytic cracking in the presence of hydrogen at temperatures of from approximately 10501250 F. or higher in a single pass, with high yield.
  • X-ray defraction patterns show the chromia oxide to be present in the form of hexagonal crystals as distinguished from chromia aluminum co-gel catalysts which have also been available but which are incapable of providing similar results.
  • the total chromia content of the commercial product is calculated as 11.8% Cr203 by weight, the remainder of the product being the Specified high purity, low sodium content, gamma type alumina.
  • the catalyst is employed in the form of tablets, for example, 3/16 x da" in size, forming a fixed bed through which the feed stock and hydrogen are passed continuously.
  • the process of this invention is effected by contacting a charge of mixed xylenols with the catalyst and hydrogen at a temperature of the order indicated at a suitable operating pressure, for example, 500 p.s.i.g., and for a short contact time, for example 5 to 100 seconds depending upon the operating condition of temperature and pressure and preferably about l5 to 25 seconds.
  • a suitable operating pressure for example, 500 p.s.i.g.
  • a short contact time for example 5 to 100 seconds depending upon the operating condition of temperature and pressure and preferably about l5 to 25 seconds.
  • mixed xylenol content of the coal tar is relatively low in comparison with the crude benzol and cresol content.
  • mixed xylenols constitute a large part of the coal tar.
  • mixed xylenols for which there is no substantial demand even in the limited quantities -produced in conventional coke oven operation become such a drug on the market as to affect the economic utilization of the more modern, low temperature coal carbonization process.
  • mixed xylenols may be converted into phenols and benzene of high purity, for both of which a great demand exists and is likely to increase.
  • the feed is preferably held at a temperature somewhat lower than the preferred l2351250 F.; for example, the feed temperature may be approximately 1150 F. Control of the feed temperature thereby provides a convenient means of limiting peak temperature at the contact zone.
  • the mixed products of conversion from the hydrocracker are condensed to liquid, and the gaseous products are separated from the liquid products by means of a ilash drum and absorber. Dry gas products may be used for plant fuel, while the liquid products are stabilized by removal of entrained or absorbed gas. The liquid products are then subjected to fractionation for the separation of benzene, toluene, and xylene from the phenol and cresol as desired.
  • the hot feed stream passes through line 7 to reactor 8 wherein a suitable pressure, for example approximately 500 p.s.i.g., is maintained, as provided by the compressor 2 and feed pump 4.
  • a suitable pressure for example approximately 500 p.s.i.g., is maintained, as provided by the compressor 2 and feed pump 4.
  • the reactor contains a fixed bed of catalyst as described, through which the feed material is passed. Flow rate preferably is adjusted to provide a contact time or time of residence within the reactor of approximately 15 to 25 seconds.
  • the reactor pressure may be varied yfrom approximately 100 to 1000 p.s.i.g., the 500 p.s.i.g. pressure disclosed herein being an operating pressure which is practical to employ.
  • a weight/hourly/space velocity of approximately 0.5 to 2.0 pounds of xylenol feed per pound of catalyst per hour is suitable.
  • the molar ratio of hydrogen to hydrocarbon may he from approximately 2:1 to 10:1; a ratio of approximately :1 has been found to provide very satisfactory results.
  • These ratios may be varied to accommodate variations in the composition of the feed stock; for example, mixed xylenols produced in the low temperature carbonization of coal may consist of approximately 97% xylenols ⁇ and ⁇ 3% C9 phenols with little or no cresol, while mixed xylenols from coal tar fractions produced by other processes may contain significant quantities of cresol and varying percentages of parainic and substituted phenolic constituents.
  • the reactor output passes through line 9 and a cooler 10 into a condenser 11 wherein the liquid product s condensed.
  • the output stream then passes through line 12 into a Hash drum 13 which may be maintained for example at a pressure of approximately 490 p.s.i.g. and a temperature of 100 F. Gases non-condensible from the ash drum conditions of temperature and pressure are liberated from the stream at this point.
  • Gases from the ilasli drum 13 pass through line 14 into an absorber 15 which may be held at a pressure of approximately 450 p.s.i.g. and a temperature of 100 F.
  • the absorber operates in conjunction with a stabilizer 16 and a recirculating cresol product stream may be passed into the absorber as lean oil through line 17.
  • Liquid product collected in the flash drum, as withdrawn through line 18 therefrom, is commingled with fat oil from the absorber in line ⁇ 19. In this manner valuable liquid product contained in the ash drum vapor is recovered in the absorber while the dry gas from the ⁇ absorber is withdrawn through line 21 for use as plant fuel.
  • the stabilizer may be operated for example at a temperature of approximately 155 F.
  • the necessary heat of vaporization for the stabilizer is supplied by reboiler 22 with the vapors returning -to the stabilizer through line 23.
  • the stabilizer overhead, withdrawn through line 24, operates in conjunction with a reux system comprising condenser 25 and receiver 26, the liquid reflux collecting in the receiver at a temperature of approximately F. and being recirculated to the stabilizer by pump 27.
  • the stabilizer bottoms are withdrawn through line 28 and may be passed into a Ifractionation system comprising three or more fractionating columns which may be of conventional design.
  • the fractionating system shown comprises fractionating columns 30, 311: and 32.
  • the first fractionator 30 fractionates out a mixture of benzene, toluene, and xylenols while the bottoms product of this tower is then pumped to the second fractionator, 31, where the phenol product is separated as overhead.
  • the bottoms product of tower 31 is then pumped to the third fractionator, 32, which produces cresol overhead while the bottoms product is a heavy oil which may be used for fuel if desired.
  • a portion of the cresol overhead is withdrawn from the output stream by means of pump 33 'which feeds to absorber lean oil line 17.
  • a coolant 34 is installed ⁇ ahead of the pump 33, which cools the product to a temperature of approximately 100F. n
  • the -following table illustrates the results obtained in the catalytic conversion of a typical mixed xylenol product under diterent sets of operating conditions A, B, and C.
  • a method of treating mixed xylenols derived from coal tar which method comprises, subjecting the mixed xylenols to catalytic hydrocracking conditions in the presence of hydrogen and a catalyst consistin-g of approximately 10 to 15% by weight of chromia on a high purity low sodium content gamma type alumina support at a temperature in the range from approximately 1040 F. to approximately 1250 F., at a pressure in the range from about 100 to 1000 p.s.i.-g., and for a period of time Ifrom about to about 100 seconds, to demethylate and dehydroxylate at least some of the xylenols and to destructively crack sulfur and paratinic impurities therein to gas.
  • a process for obtaining phenol from xylenols which process comprises, subjecting the xylenols to catalytic cracking conditions in the presence of hydrogen and a catalyst consisting of approximately l0 to 15% by weight of chromium oxide on a high purity low sodium content gamma type alumina support, at a temperature in the range from approximately 1200 F. to approximately 1250 F., at a pressure in the range from about to 1000 p.s.i.g., for a period of time from about 5 to about 100 seconds, and separating phenol from the liquid product resulting from the treatment.

Description

Aug. 29, 1961 T. H. PAuLsEN PRODUCTION oF PHENoLs Filed Nov. 19, 1958 B n?. num m,
United States atent Otiee 2,998,457 Patented Aug. 29, 1961 2,998,457 PRODUCTION F PHENOLS Thorwell H. Paulsen, Ashland, Ky., assignm` to Ashland Orl & Refining Company, Ashland, Ky., a corporation of Kentucky Filed Nov. `19, 1958, Ser. No. 775,050 8 Claims. (Cl. 260-621) This invention relates to the treatment of coal tar byproducts for the recovery of phenols therefrom. it is directed particularly to the catalytic removal of methyl and hydroxyl radicals from xylenols which are produced asl residual by-products in the distillation of coal tar light o1 s.
In a copending patent application Serial No. 728,620, tiled April l5, 1958, now U.S. Patent No. 2,951,886, issued September 6, 1960, of which this application is a continuation-in-part, a process is disclosed and claimed for recovering benzene of high purity from coal tar light oil by subjecting it to catalytic cracking conditions in the presence of hydrogen at a temperature above approximately 1200 F. By this process toluene and xylene which are present with benzene in coal tar light oil are demethylated into benzene, while parafiins, and thiophenes, and other sulfur compounds which also contaminate the coal tar light oil are destructvely removed. By the use of a catalyst comprising 10-15% chromia on a high purity, lo-w sodium content, gamma type lalumina support, formation of coke and gas, which would otherwise be expected from the high cracking temperature, is very low. By this means coal tar light oil or crude benzene, which in itself is of limited utility, is readily converted into benzene of high purity for which there is great chemical demand.
An important objective of the present invention is to provide an equally convenient means for converting into useful products mixed xylenols which are produced as residual by-products in the recovery of crude benzol or coal tar light oil from coal tar. As was the case with crude benzol, the xylenols at present are of limited market value. Because of the contaminating constituents of these crude products, relatively pure chemicals cannot be obtained from them at reasonable cost. However, the
present invention provides a xylenols into relatively pure demand has long continued.
Briefly, the present invention is based upon the discovery that the methyl and hydroxyl groups attached to the benzene rings in the isomers constituting a typical mixed xylenol derived from coal tar can selectively be cracked therefrom, and the sulfur impurities such as thiophenes as well as paraiiinic compounds which are present can be removed by subjecting the mixed xylenols to hydrocracking conditions in the presence of a specific catalyst and that the formation of gas and coke from destructive decomposition in such operation may be held to an inconsequentially low figure even at temperatures above l200l250 F.
More specificaly, the present invention is based upon the discovery that the xylenols in a mixed xylenol product derived from coal tar may be converted and thereby up-graded into a product containing phenols in admixture with benzene, toluene, xylene, and cresols, by catalytic hydrodealkylation in a rapid and convenient manner and at relatively low equipment cost. According to the process of the present invention, mixed xylenols are subjected to catalytic cracking in the presence of hydrogen at temperatures of from approximately 10501250 F. or higher in a single pass, with high yield.
While temperatures of the order heretofore have been known to produce destructive effects upon benzenoid hydrocarbons, this adverse effect appears chiefly to have process for converting crude chemicals for which a high been caused by the nature of the catalysts previously used. However, I have found that a catalyst consisting of approximately 10-15% by weight of chromia oxide on a high purity, low sodium content, gamma type alumina support is capable, in the presence of hydrogen, of causing selective demethylation and dehydroxylation of mixed xylenols and of promoting concurrent conversion of sulfur-bearing and paraliinic impurities with little or no coking effect. A particular catalyst which enables such results to be obtained is commercially available from the Girdler Corporation, Louisville, Kentucky, under their trade designation G-4l. X-ray defraction patterns show the chromia oxide to be present in the form of hexagonal crystals as distinguished from chromia aluminum co-gel catalysts which have also been available but which are incapable of providing similar results. The total chromia content of the commercial product is calculated as 11.8% Cr203 by weight, the remainder of the product being the Specified high purity, low sodium content, gamma type alumina. In use the catalyst is employed in the form of tablets, for example, 3/16 x da" in size, forming a fixed bed through which the feed stock and hydrogen are passed continuously.
The process of this invention is effected by contacting a charge of mixed xylenols with the catalyst and hydrogen at a temperature of the order indicated at a suitable operating pressure, for example, 500 p.s.i.g., and for a short contact time, for example 5 to 100 seconds depending upon the operating condition of temperature and pressure and preferably about l5 to 25 seconds. At temperatures of the order of 1040" F., a substantial proportion of benzene, toluene, and xylene are produced from the mixed xylenols but, in a single pass treatment, a substantial proportion of the mixed xylenols remains unconverted. However, at temperatures of 1235 F. or higher substantially all of the mixed xylenols are usefully demethylated, and phenol constitutes a substantial percentage of the products of conversion in conjunction with benzene, toluene, xylene, and cresols. Thus, for single pass operation, a temperature of approximately 1235 1250 F. is preferred. Phenol readily may be recovered from the mixed products of conversion by fractional distillation. Therefore, mixed xylenols, for which there heretofore has been a limited market, constitutes a source of a very valuable product.
In the conventional high temperature coking of coal, as has ben practiced in the past, the mixed xylenol content of the coal tar is relatively low in comparison with the crude benzol and cresol content. However, in the more recently developed low temperature process of coal carbonization, mixed xylenols constitute a large part of the coal tar. Thus, mixed xylenols for which there is no substantial demand even in the limited quantities -produced in conventional coke oven operation, become such a drug on the market as to affect the economic utilization of the more modern, low temperature coal carbonization process. However, by the process of the present invention mixed xylenols may be converted into phenols and benzene of high purity, for both of which a great demand exists and is likely to increase.
In the practice of the process since demethylation occuring in the charge stock is accompanied by heat liberation, the feed is preferably held at a temperature somewhat lower than the preferred l2351250 F.; for example, the feed temperature may be approximately 1150 F. Control of the feed temperature thereby provides a convenient means of limiting peak temperature at the contact zone.
Within the contact zone demethylation and dehydroxylation occur rapidly but selectively. Even at the high temperature at which cracking is conducted, there is little destructive cracking of the hydrocarbons into coke or normally gaseous products `and little undesirable polymerization. It is to be noted that neither demethylation nor dehydroxylation of the xylenol is complete, as shown by the substantial percentage of phenol and some cresol in the end product, as well as the substantial percentages of toluol and xylene. Sulfur impurities are converted into hydrogen sulfide and paraflinic impurities are cracked to gas.
Following the catalytic treatment, the mixed products of conversion from the hydrocracker are condensed to liquid, and the gaseous products are separated from the liquid products by means of a ilash drum and absorber. Dry gas products may be used for plant fuel, while the liquid products are stabilized by removal of entrained or absorbed gas. The liquid products are then subjected to fractionation for the separation of benzene, toluene, and xylene from the phenol and cresol as desired.
One method of practicing the invention continuously oii a 'commercial scale as an adjunct to petroleum retining operations is illustrated in the accompanying diagram, according to which the hydrogen employed for the hydrocracking operation is furnished as hydrogen off-gas from a catalytic reformer. This is supplied through line l to a gas compressor 2. Xylenol-containing feed stock is supplied through line 3 to a feed pump 4. Hydrogen gas and the charge stock, commingled in line 5, pass through a heater 6 wherein the temperature is elevated sufliciently to inaugurate or support selective cracking or to provide the desired autocatalytic effect; for example` the feed stock may be preheated to a temperature of ll50 F. or more depending upon the weight/hourly/space velocity in the reactor. It will also be understood that the reactor may be provided with a coolant system for temperature control.
The hot feed stream passes through line 7 to reactor 8 wherein a suitable pressure, for example approximately 500 p.s.i.g., is maintained, as provided by the compressor 2 and feed pump 4. The reactor contains a fixed bed of catalyst as described, through which the feed material is passed. Flow rate preferably is adjusted to provide a contact time or time of residence within the reactor of approximately 15 to 25 seconds. As will be understood by those skilled in the art, the reactor pressure may be varied yfrom approximately 100 to 1000 p.s.i.g., the 500 p.s.i.g. pressure disclosed herein being an operating pressure which is practical to employ.
A weight/hourly/space velocity of approximately 0.5 to 2.0 pounds of xylenol feed per pound of catalyst per hour is suitable. The molar ratio of hydrogen to hydrocarbon may he from approximately 2:1 to 10:1; a ratio of approximately :1 has been found to provide very satisfactory results. These ratios, of course, may be varied to accommodate variations in the composition of the feed stock; for example, mixed xylenols produced in the low temperature carbonization of coal may consist of approximately 97% xylenols `and `3% C9 phenols with little or no cresol, while mixed xylenols from coal tar fractions produced by other processes may contain significant quantities of cresol and varying percentages of parainic and substituted phenolic constituents.
The reactor output passes through line 9 and a cooler 10 into a condenser 11 wherein the liquid product s condensed. The output stream then passes through line 12 into a Hash drum 13 which may be maintained for example at a pressure of approximately 490 p.s.i.g. and a temperature of 100 F. Gases non-condensible from the ash drum conditions of temperature and pressure are liberated from the stream at this point.
Gases from the ilasli drum 13 pass through line 14 into an absorber 15 which may be held at a pressure of approximately 450 p.s.i.g. and a temperature of 100 F. The absorber operates in conjunction with a stabilizer 16 and a recirculating cresol product stream may be passed into the absorber as lean oil through line 17. Liquid product collected in the flash drum, as withdrawn through line 18 therefrom, is commingled with fat oil from the absorber in line `19. In this manner valuable liquid product contained in the ash drum vapor is recovered in the absorber while the dry gas from the `absorber is withdrawn through line 21 for use as plant fuel. The stabilizer may be operated for example at a temperature of approximately 155 F. and .a pressure of 75 p.s.i.g. The necessary heat of vaporization for the stabilizer is supplied by reboiler 22 with the vapors returning -to the stabilizer through line 23. Also, the stabilizer overhead, withdrawn through line 24, operates in conjunction with a reux system comprising condenser 25 and receiver 26, the liquid reflux collecting in the receiver at a temperature of approximately F. and being recirculated to the stabilizer by pump 27.
The stabilizer bottoms are withdrawn through line 28 and may be passed into a Ifractionation system comprising three or more fractionating columns which may be of conventional design. For example, the fractionating system shown comprises fractionating columns 30, 311: and 32. The first fractionator 30 fractionates out a mixture of benzene, toluene, and xylenols while the bottoms product of this tower is then pumped to the second fractionator, 31, where the phenol product is separated as overhead. The bottoms product of tower 31 is then pumped to the third fractionator, 32, which produces cresol overhead while the bottoms product is a heavy oil which may be used for fuel if desired. In the system shown, a portion of the cresol overhead is withdrawn from the output stream by means of pump 33 'which feeds to absorber lean oil line 17. A coolant 34 is installed `ahead of the pump 33, which cools the product to a temperature of approximately 100F. n
The -following table illustrates the results obtained in the catalytic conversion of a typical mixed xylenol product under diterent sets of operating conditions A, B, and C.
Isomer distribution of feed and products-typical runs Feed Run A Run B Run C Wel lit ourl /space velocity 1.0 0.8 0.8 Hyrogiieln-hysclroearbon, mol ratto... 4:1 5.1 Tempirature, F. ;t .f 1040 1150 Li ul recovery perce i100 wt. perce';i1t) i...E .t.. 100 89. 0 86.0 79.0 Isonier anal also qu w .perceu Benning, toiuene, xy'fiene 24.1 1c. i 42. a Phenol 0.3 2. 5 (i. 9 20. 7 Crcsols 0.8 10. 1 1S). 4 18. 3 Xylen S .5 50. 9 48.8 6. 3 Ga Pheno .4 3. 6 1. 0.3 Water. 4. 5 3. 7 5. tl Residual. 4. 1 2. 7 5.6 Loss 0.2 0.8 0. 9
l Dlstlllatlon at 50 mm.
'Ilie xylenol feed material treated according to the above examples was a commercial stock having 8" API gravity. The operating pressure in each of runs A, B, and C above was 500 p.s.i.g.
It will be noted from this data that the yield of liquid product is high, as is the yield in terms of phenol in run C where the operating temperature was 1235 F. The unusual and unexpected result provided by the present invention is that a catalyst possessing such a high degree of catalyst activity is nevertheless selective in its action and does not destructively degrade the useful components of the feed.
While the invention has been disclosed principally in relation to the recovery of useful products from mixed xylenols, the invention is also useful for other types of charge stocks such as mixed cresols and the like. Moreover, it will be noted that the process of this invention, utilized in conjunction with the process disclosed in the aforesaid copending application Serial No. 728,620, enables large quantities of benzene and phenol to be produced of a quality and purity not otherwise obtainable from coal tar lfractions. Thus, by conventional distillation of coal tar, whether obtained from the high temperature or low temperature carbonization of coal, to recover light oil and residual mixed xylenols, and by catalytic hydrodealkylation of the respective separated fractions as disclosed in this and the copending application, high quality benzene is obtained from the former and from the latter a mixture which readily may be separated into its phenol, benzene, toluene, and cresol components.
Having described my invention, I claim:
1. A method of treating mixed xylenols derived from coal tar which method comprises, subjecting the mixed xylenols to catalytic hydrocracking conditions in the presence of hydrogen and a catalyst consistin-g of approximately 10 to 15% by weight of chromia on a high purity low sodium content gamma type alumina support at a temperature in the range from approximately 1040 F. to approximately 1250 F., at a pressure in the range from about 100 to 1000 p.s.i.-g., and for a period of time Ifrom about to about 100 seconds, to demethylate and dehydroxylate at least some of the xylenols and to destructively crack sulfur and paratinic impurities therein to gas.
2. The process of claim 1 wherein the hydrocracking temperature is approximately 1235 F.
3. The process of claim 1 wherein the catalytic hydrocracking operation is conducted n the presence of hydrogen off-gas obtained from a catalytic reformer.
4. The process of claim 1 wherein the catalyst consists of approximately 11.8% chromia on said support.
5. The process of claim 1 wherein the chromia is in the form of hexagonal crystals.
6. The process of claim 1 wherein the hydrocracking operation is conducted by passing a stream of said xylenols through a fixed bed of the said catalyst.
7. A process for obtaining phenol from xylenols which process comprises, subjecting the xylenols to catalytic cracking conditions in the presence of hydrogen and a catalyst consisting of approximately l0 to 15% by weight of chromium oxide on a high purity low sodium content gamma type alumina support, at a temperature in the range from approximately 1200 F. to approximately 1250 F., at a pressure in the range from about to 1000 p.s.i.g., for a period of time from about 5 to about 100 seconds, and separating phenol from the liquid product resulting from the treatment.
8. A process for selectively splitting methyl and hydroxyl groups from xylenols in a xylenol-containing feed stock to form simpler products therefrom, said process comprising, contacting said xylenol-containing feed stock in the presence of hydrogen with a catalyst consisting ot approximately 10 to 15% by weight of chromia, the balance of the catalyst composition being high purity low sodium content gamma type alumina, at a temperature of from approximately 1040 F. to approximately 1235 F., at a weight hourly space velocity of from about 0.5 to about 2.0, and at a pressure in the range from about 100 to about 1000 p.s.i.=g.
References Cited in the lle of this patent UNITED STATES PATENTS 1,208,833 Ramage Dec. 19, 1916 2,398,687 Winans Apr. 16, 1946 2,636,843 Arnold et al. Apr. 28, 1953 2,705,733 Nonnemacher et al. Apr. 5, 1955 2,773,917 Coonradt et a1. Dec. 11, 1956 2,780,661 Hemminger et al. Feb. 7, 1957 OTHER REFERENCES Russel: Alumina Properties, Tech. Paper No. 10, page 5 (1 page), published by Aluminum Company of America, Pittsburgh, Pa. (1953).
Grossinsky et al.: German application 1,001,998, published February 7, 1957.

Claims (1)

  1. 7. A PROCESS FOR OBTAINING PHENOL FROM XYLENOLS WHICH PROCESS COMPRISES, SUBJECTING THE XYLENOLS TO CATALYTIC CRACKING CONDITIONS IN THE PRESENCE OF HYDROGEN AND A CATALYST CONSISTING OF APPROXIMATELY 10 TO 15% BY WEIGHT OF CHROMIUM OXIDE ON A HIGH PURITY LOW SODIUM CONTENT GAMMA TYPE ALUMINA SUPPORT, AT A TEMPERATURE IN THE RANGE FROM APPROXIMATELY 1200*F. TO APPROXIMATELY 1250*F., AT A PRESSURE IN THE RANGE FROM ABOUT 100 TO 1000 P.S.I.G., FOR A PERIOD OF TIME FROM ABOUT 5 TO ABOUT 100 SECONDS, AND SEPARATING PHENOL FROM THE LIQUID PRODUCT RESULTING FROM THE TREATMENT.
US775050A 1958-11-19 1958-11-19 Production of phenols Expired - Lifetime US2998457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US775050A US2998457A (en) 1958-11-19 1958-11-19 Production of phenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US775050A US2998457A (en) 1958-11-19 1958-11-19 Production of phenols

Publications (1)

Publication Number Publication Date
US2998457A true US2998457A (en) 1961-08-29

Family

ID=25103178

Family Applications (1)

Application Number Title Priority Date Filing Date
US775050A Expired - Lifetime US2998457A (en) 1958-11-19 1958-11-19 Production of phenols

Country Status (1)

Country Link
US (1) US2998457A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285986A (en) * 1962-03-12 1966-11-15 Phillips Petroleum Co Separation process
US4034048A (en) * 1971-11-15 1977-07-05 United States Steel Corporation Tar acid products from solvent naphtha
US4189613A (en) * 1978-06-12 1980-02-19 Phillips Petroleum Company Hydrodealkylation process
US4205017A (en) * 1978-06-19 1980-05-27 Phillips Petroleum Company Hydrodehydroxylation process using a rhenium-fluorided alumina catalyst
US4230896A (en) * 1978-11-30 1980-10-28 Hydrocarbon Research, Inc. Catalytic steam dealkylation of alkyl phenols
US4420644A (en) * 1981-08-24 1983-12-13 Hydrocarbon Research, Inc. Lignin hydrocracking process to produce phenol and benzene
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11485694B2 (en) 2019-02-04 2022-11-01 China Petroleum & Chemical Corporation Dealklylation and transalkylation of mixed phenols to make cresols

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1208833A (en) * 1916-04-20 1916-12-19 Bostaph Engineering Company Process of producing phenols.
US2398687A (en) * 1942-12-18 1946-04-16 Koppers Co Inc Method of treating cresylic pitch to obtain tar-acids therefrom
US2636843A (en) * 1950-10-09 1953-04-28 Standard Oil Co Cracked naphtha desulfurization
US2705733A (en) * 1950-05-20 1955-04-05 Basf Ag Purification of crude benzene
US2773917A (en) * 1952-09-16 1956-12-11 Socony Mobil Oil Co Demethylation over chromia or molybdena catalysts
US2780661A (en) * 1951-08-15 1957-02-05 Exxon Research Engineering Co Reforming followed by hydrodealkylation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1208833A (en) * 1916-04-20 1916-12-19 Bostaph Engineering Company Process of producing phenols.
US2398687A (en) * 1942-12-18 1946-04-16 Koppers Co Inc Method of treating cresylic pitch to obtain tar-acids therefrom
US2705733A (en) * 1950-05-20 1955-04-05 Basf Ag Purification of crude benzene
US2636843A (en) * 1950-10-09 1953-04-28 Standard Oil Co Cracked naphtha desulfurization
US2780661A (en) * 1951-08-15 1957-02-05 Exxon Research Engineering Co Reforming followed by hydrodealkylation
US2773917A (en) * 1952-09-16 1956-12-11 Socony Mobil Oil Co Demethylation over chromia or molybdena catalysts

Cited By (410)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285986A (en) * 1962-03-12 1966-11-15 Phillips Petroleum Co Separation process
US4034048A (en) * 1971-11-15 1977-07-05 United States Steel Corporation Tar acid products from solvent naphtha
US4189613A (en) * 1978-06-12 1980-02-19 Phillips Petroleum Company Hydrodealkylation process
US4205017A (en) * 1978-06-19 1980-05-27 Phillips Petroleum Company Hydrodehydroxylation process using a rhenium-fluorided alumina catalyst
US4230896A (en) * 1978-11-30 1980-10-28 Hydrocarbon Research, Inc. Catalytic steam dealkylation of alkyl phenols
US4420644A (en) * 1981-08-24 1983-12-13 Hydrocarbon Research, Inc. Lignin hydrocracking process to produce phenol and benzene
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6994168B2 (en) * 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US7032660B2 (en) * 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11485694B2 (en) 2019-02-04 2022-11-01 China Petroleum & Chemical Corporation Dealklylation and transalkylation of mixed phenols to make cresols

Similar Documents

Publication Publication Date Title
US2998457A (en) Production of phenols
US3676519A (en) Quench process
US3075022A (en) Process for the production of naphthalene
US3835037A (en) Purification of aromatic hydrocarbons
US3622502A (en) Cracking hydrocarbon residua
US3907920A (en) Two-stage hydropyrolysis-cracking process for producing ethylene
US3326796A (en) Production of electrode grade petroleum coke
US2951886A (en) Recovery and purification of benzene
US3150196A (en) Production of naphthalene and benzene
US2756186A (en) Method for thermal recycle cracking
US2383072A (en) Producing toluene
US2840513A (en) Process for separating recycle hydrogen from entrained condensed gases in hydrodesulfurization process
US2632739A (en) Catalyst for producing aromatic hydrocarbons
US3408265A (en) Recovery of styrene from ethyl benzene by a single column distillation with styrene vapor side draw
US2831904A (en) Depolymerization of dicyclopentadiene
US2198185A (en) Production of aryl substituted olefins
US2969316A (en) Desulfurizing reformer feed
US3576734A (en) Process for production of synthetic crude oil from low temperature coal tars
US2508922A (en) Separation of dienes
US2999062A (en) Scrubbing fluid coking effluent
US2924569A (en) Hydrodealkylation of hydrocarbons
US2340960A (en) Cycle gas oils by thermal treatment
US2908625A (en) Olefin production process
US3153676A (en) Preparation of naphthalene and 2, 6-dimethylnaphthalene
US2345877A (en) Manufacture of liquid hydrocarbons