US3039399A - Pump - Google Patents

Pump Download PDF

Info

Publication number
US3039399A
US3039399A US857896A US85789659A US3039399A US 3039399 A US3039399 A US 3039399A US 857896 A US857896 A US 857896A US 85789659 A US85789659 A US 85789659A US 3039399 A US3039399 A US 3039399A
Authority
US
United States
Prior art keywords
pump
diaphragms
resilient
units
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US857896A
Inventor
Hazen F Everett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foregger Co Inc
Original Assignee
Foregger Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foregger Co Inc filed Critical Foregger Co Inc
Priority to US857896A priority Critical patent/US3039399A/en
Application granted granted Critical
Publication of US3039399A publication Critical patent/US3039399A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/258Piston pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/438Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being mechanical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/835Constructional details other than related to driving of positive displacement blood pumps
    • A61M60/837Aspects of flexible displacement members, e.g. shapes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/89Valves
    • A61M60/894Passive valves, i.e. valves actuated by the blood
    • A61M60/896Passive valves, i.e. valves actuated by the blood having flexible or resilient parts, e.g. flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung

Definitions

  • a further object of the invention is to provide an improved pump having a minimum of frictionally engaged parts in order to provide for maximum longevity and minimum repair requirements.
  • Another object of the invention is to provide an improved pump requiring minimum priming.
  • Still another object of the invention is to provide an improved pump for processing fluid mediums transporting materials susceptible of being destroyed or injured by the application of pressure thereto.
  • a pump capable of producing or being adapted to produce complex pressure wave forms.
  • Still another object of the invention is to provide a pump structure susceptible of being designed to avoid positive pumping displacements in order to apply pressure gently to the fluid being processed.
  • Yet another object of the invention is to provide an improved pump adapted for employing replaceable pumping units of different capacity.
  • a pump provided in accordance with the invention may comprise a unit wherein a relatively rigid membar and a resilient member cooperatively define a pump chamber, special means being provided, preferably in detachable relationship with said unit, to operate said resilient member to perform a pumping action.
  • pumps of the invention are atraumatic with respect to blood and the like.
  • FIG. 1 is a front view, partially in section, of a pump provided in accordance with a preferred embodiment of the invention
  • FIG. 2 is a section-a1 view of a component of the structure of FIG. 1 taken on the vertical axis of symmetry thereof;
  • FIG. 3 is a front view of the pump illustrating the outer appearance thereof.
  • FIG. 4 is an end View of the pump structure shown in FIG. 3.
  • the pump illustrated in the drawing comprises generally a central section 10 having at its opposite extremities pump units 12 and 14 held thereagainst by means of an assembly unit 16.
  • the central section it) comprises a generally cylindiical casing or housing 18 having an opening 20 extending therethrough and provided at its lowermost section with an opening or slot 22.
  • Power source 24 may compn'se, for example, a double-acting piston and cylinder arrangement 26 of conventional construction, of which the piston is connected to a rod 28 which is given a linear reciprocating motion by the action of said piston and cylinder arrangement.
  • a collar or bracket 30 On the rod 28 is mounted a collar or bracket 30 by means of clamping bolts 32 or by mean of any conventional connecting arrangement, the bracket 30 supporting an arm 34. Arm 34 is, of course, given the reciprocating movement provided by the rod 28.
  • a rigid body 35 On the arm 34 in the opening 20 is mounted a rigid body 35 which is illustrated as a hollow metallic sleeve which is internally threaded. Extending from opposite ends of this body are two members 38 and 40 which are threadably and thereby adjustably engaged with the body 36 and which respectively include heads 42 and 44.
  • the housing 18 is a rigid body faricated from a metal such as stainless steel, aluminum or the like, or, alternatively, from a synthetic material having substantial axial strength, the need for which will become apparent hereinafter.
  • afiixed flexible diaphragms 46- and 48 are afiixed flexible diaphragms 46- and 48.
  • These flexible diaphragms may be made of a synthetic material such as, for example, neoprene or may be of a heavy .duty rubber capable of being repeatedly stretched and manipulated without tearing or being harmfully affected by the oscillating motion imparted thereto by body 36.
  • flexible diaphragms 46 and 48 are resilient and are formed with flanges 50 and 52 which snap over the housing 18 to constitute a unit therewith. It is to be noted that these diaphragms conveniently surround heads 42 and 44 which are molded therein.
  • the pump units 12 and 14 are detachable from the central section 10. These units are, in fact, simply held in abutting relationship therewith.
  • Each of these units comprises a recessed shell or substantially rigid member 54 which, in the preferred embodiment of the invention, is of concave shape.
  • This rigid member defines an inner opening or recess 56, there being provided a resiilent diaphragm 58 which confines the opening 56 in order to provide a variable-volume pumping chamber.
  • the shell 54 is preferably made of a material sufficient to resist deformation due to thrusts applied thereagainst by means of the assembly unit 16. Metals may, of course, be employed for this puropse, but certain plastics also have sufficient strength, and one particularly suitable plastic is polypropylene.
  • the resilient diaphragm 58 is formed with a flange 60 for peripherally engaging the outer extremity of the associated shell 54.
  • a separate band may be employed if desired to lock the diaphragm and shell together, although this has not been found necessary if the flange of the resilient diaphragm is properly designed.
  • the shall 54 and diaphragm 58 as will be seen, constitute an integrated unit forming a sub-assembly of the pump structure.
  • Each shell 54 is provided with threaded openings 62 and 64, by means of which are engaged the threaded extremities of tubes 66 and 6% (specific ones of which are hereinafter designated by a letter suflfix). These tubes constitute the outlet and inlet tubes associated with each unit. In each tube is provided a one-way or unidirectional valve 70 (also hereinafter specifically distinguished by letter suffixes).
  • the pumping units 12 and 14 are held in abutting relationship with the central section lit by means of the assembly unit 16. This sandwiches the resilient diaphragms against the flexible diaphragms (there is no mechanical connection between these diaphragms) and expels the air from between the diaphragms which in turn causes the diaphragms to adhere together with a suction-like eifect.
  • the assembly unit 16 is provided with a base 72 (FIGS. 3 and 4) provided with arms 74 and 76. At the extremities of these arms are internally threaded collars 78 and 86 through which extend threaded members 82 and 84 provided respectively with handles 86 and 88 which urge blocks 90 and 92 against the pump units 12 and 14.
  • the blocks 90 and 2 are conveniently provided with concave recesses 94 and 96 in order to accommodate readily the shells 54 of pump units 12 and 14.
  • the body 36 is given a reciprocating motion as indicated by arrow 9 8 to flex diaphragms 46 and 48 between the extreme positions illustrated by dotted lines at A and B in FIG. 2. It is seen, in FIG. 2, that in the median position of the diaphragm 46, as illustrated at C, the diaphragm has an undulated or flexed shape due to the fact that its effective area exceeds the cross-sectional area of the opening 20 of housing 18. This enables an undulating or wave-like deformation to be imparted to the diaphragms 46 and 4S and thus to the resilient diaphragms 58 of units 12 and 14-.
  • the units 12 and 14 repeatedly interchange functions and are reciprocally filled and exhausted as the operation of power source continues. Accordingly, a constant supply of fluid is assured alternatively via outlet tubes 66 and 66a and a supply of fluid is continuously draw into pump units 12 and 14- via inlet tubes 68 and 68a.
  • a pump of the above construction comprises a relatively rigid member such as the shell 54 having an inlet and an outlet opening with a relatively deformable and resilient member confining with said shell a variablevolume pump chamber, means being positioned externally of this chamber in engagement with the resilient member for oscillating the same towards and away from the rigid member to create a pumping action in the chamber.
  • the invention contemplates that two such pumping units be provided so that a continuous flow of fluid is assured, one unit complementing the action of the other, so that one unit is always being charged while the other is being discharged.
  • the means provided to apply forces to the resilient member of each unit is actually separate from the same and engages this member essentially in abutting relationship with suctionlike forces.
  • the flexible diaphragms 46 and 48 first apply pressure against the associated resilient diaphragms in the direction in which the resilient diaphragms are urged towards the associated shells. The resilient diaphragms then move away from the associated shells in response to the movement of their respective flexible diaphragms.
  • the curved shapes of the diaphragms cause them to protrude generally into the associated shells. This cuts down the normal volumes of these shells and minimizes the priming fluid required to initiate a pumping operation under certain circumstances. Further, the shapes of the diaphragms facilitate employing shells which are conical or similarly shaped, and are thus best suited to absorb the physical forces applied to them by blocks and 92.
  • the elfective areas of the flexible members 46 and 48 have been discussed above and it has been noted that these etfective areas exceed the corresponding crosssectional areas of the housing 18 so as to impart a wavelike pattern of motion to the flexible diaphragms. It is also to be noted that the flexible diaphragms engage the resilient diaphgragms in a positive manner only along limited areas since the areas of heads 42 and 44 are substantially less than the effective areas of resilient diaphragms 58. This means that pumping units 12 and 14 do not have positive displacements as would be employed,
  • units 12 and 14 are readily detachable from the remainder of the pump structure and this is especially valuable with respect to maintenance and repair.
  • This feature moreover, facilitates initial assembly and additionally permits the substitution of shells 54 of different sizes so as to permit an adjustment of basic pump capacity.
  • pumps of the invention have been found especially adaptable in connection with medical and surgical techniques. More specifically, pumps of the invention have been found especially suitable for use in extracorporeal blood circulation systems wherein they are employed to constitute artificial ventricles for simulating pulses.
  • the resilient diaphragms 58 are preferably made of a low durometer material having a smooth surface and a durometer constant of 40 (A scale) and preferably less than 20.
  • Conventional rubbers are generally not of such a low durometer except when foamed and amongst the suitable materials found useful for this application is a synthetic known as silicone rubber.
  • pumps of the inventon may be considered as being atnaumatic as regards blood cells and the like.
  • the shells 54 and diaphragms 58 constitute separable pumping units.
  • the materials indicated above for these elements are all non-toxic and capable of being exposed to high temperatures for sterilizing operations such as autoclaving. Accordingly, after a surgical operation it is possible to remove units 12 and 14 and sterilize the same as a whole without any complicated mechanical procedure so that the units may be readily used over and over again.
  • the wave form imparted to resilient diaphragms 58 by means of flexible diaphragms 46 and 48 is complex.
  • the character of such resilient members is comparable to the resilient character of the muscle tissues of the heart so that pumps of the invention can be used to simulate the operation of the ventricle in the human body. This provides a use which enhances the value of the invention.
  • the invention achieves its objective of providing an improved means for selectively applying pressure to fluids so as to cause a flow of movement thereof. It is obvious from the above that a pump has been provided having a minimum of parts which are readily assembled and disassembled. It should be further clear from the above description that an improved pump has been provided having a minimum of frictionally engaged parts so as to provide for improved operation.
  • pumps of the invention are especially adapted for processing fluids Without injuring the contents thereof and that these pumps are adapted for producing complex pressure wave forms for simulating the human pulse.
  • pumps of the invention are especially suited for hygienic, sterile and antiseptic techniques since units are included which are readily remounted for purposes of cleaning. This very same arrangement enables the ready substitution of pumping units of different capacities.
  • a pump comprising a relatively rigid member having an inlet opening and an outlet opening, and defining an open chamber, valve means operatively associated with said openings to provide for a one-way flow therethrough, a relatively deformable and resilient member extending across said rigid member and confining said open chamber to form a variable-volume pump chamber, and means positioned externally of said chamber and in engagement with said resilient member, said means oscillating said resilient member towards and away from said rigid member to create a pumping action in said chamber, said means being separate from said resilient member and engaging the same in abutting relationship, said means and resilient member including diaphragms in face-to-face relation with air excluded from therebetween so as to provide a suction eiiect between the diaphragms.
  • valve means comprises uni-directional valves coupled to said inlet and outlet openings.
  • a pump as claimed in claim 1, wherein said means comprises a rigid support and an oscillatable member movable with respect thereto, comprising clamp means for holding said rigid and resilient members detachably against said support with said resilient member in a position to be engaged by said oscillatable member.
  • a pump as claimed in claim 1, comprising means for applying to the first said means an adjustable, linear stroke.
  • a pump as claimed in claim 8 wherein the shell and resilient diaphragm of each pump unit are peripherally engaged, said units having only an abutting relationship with said flexible diaphragms, said pump further comprising assembly means for detachably holding said units against said housing with the flexible diaphragms sandwiched therebetween.
  • a pump as claimed in claim 10, wherein said assembly means comprises a bracket including spaced arms and threadably adjustable and opposed members on said arms and holding the units and housing therebetween.
  • a pump as claimed in claim 10 comprising a double-acting piston connected to and driving said movable member.

Description

June 19, 1962 H. F. EVERETT 3,039,399
PUMP
FIGJ
INVENTOR. HAZEN FRANK [VEEE 77' ATTORNEY June 19, 1962 EVERETT 3,039,399
PUMP
Filed Dec. 7, 1959 2 Sheets-Sheet 2 INVENTOR. HAZtA/ PEA/W6 EVA-T6577 ATTOEA/f) United States Patent 3,039,399 PUMP Hazen F. Everett, Hillsdale, N..l., assignor to The Foregger Company, Inc., Roslyn Heights, N.Y. Filed Dec. 7, 1959, Ser. No. 857,896 19 Qlaims. (Cl. 103-150) This invention relates to pump arrangements and structures and, in general, to devices for imparting movements to mediums such as fluids.
It is an object of the invention to provide an improved means for selectively applying pressures to fluids in such a manner as to cause a flow of the same.
It is also an object of the invention to provide an improved pump having a minimum of parts which are readily assembled and taken apart in order to facilitate manufacture and maintenance.
A further object of the invention is to provide an improved pump having a minimum of frictionally engaged parts in order to provide for maximum longevity and minimum repair requirements.
Another object of the invention is to provide an improved pump requiring minimum priming.
Still another object of the invention is to provide an improved pump for processing fluid mediums transporting materials susceptible of being destroyed or injured by the application of pressure thereto.
Also included among the objects of the invention is the provision of a pump capable of producing or being adapted to produce complex pressure wave forms.
Further, it is an object of the invention to provide an improved means for imparting movements to fluids and the like while handling the same in a hygienic, sterile and antiseptic manner.
Along similar lines, it is an object of the invention to provide an improved pump including pump units which are readily demounted for purposes of cleaning,
Still another object of the invention is to provide a pump structure susceptible of being designed to avoid positive pumping displacements in order to apply pressure gently to the fluid being processed.
Yet another object of the invention is to provide an improved pump adapted for employing replaceable pumping units of different capacity.
Briefly, a pump provided in accordance with the invention may comprise a unit wherein a relatively rigid membar and a resilient member cooperatively define a pump chamber, special means being provided, preferably in detachable relationship with said unit, to operate said resilient member to perform a pumping action.
Pumps provided in accordance with the invention have been very well received in the medical and surgical fields and, in this regard, it is an object of the invention to provide an improved articficial ventricle or pump adapted for simulating the action of the heart.
Moreover, in this regard, it is an object of the invention to provide an improved means for creating an artificial pulse for the handling of blood in an extra-corporeal blood circulation system and to assure that the blood is handled in an antiseptic manner.
Still further, inasmuch as blood cells are readily damaged by the application of pressure, it is an object of the invention to provide for processing blood without damaging the same. In other words, pumps of the invention are atraumatic with respect to blood and the like.
Other objects, features and advantages of the invention will be found in the following detailed description of a preferred embodiment thereof as illustrated in the accompanying drawing in which:
FIG. 1 is a front view, partially in section, of a pump provided in accordance with a preferred embodiment of the invention;
FIG. 2 is a section-a1 view of a component of the structure of FIG. 1 taken on the vertical axis of symmetry thereof;
FIG. 3 is a front view of the pump illustrating the outer appearance thereof; and
FIG. 4 is an end View of the pump structure shown in FIG. 3.
The pump illustrated in the drawing comprises generally a central section 10 having at its opposite extremities pump units 12 and 14 held thereagainst by means of an assembly unit 16.
The central section it) comprises a generally cylindiical casing or housing 18 having an opening 20 extending therethrough and provided at its lowermost section with an opening or slot 22.
Operatively associated with the pump is a source of reciprocating or oscillatory power 24. Power source 24 may compn'se, for example, a double-acting piston and cylinder arrangement 26 of conventional construction, of which the piston is connected to a rod 28 which is given a linear reciprocating motion by the action of said piston and cylinder arrangement.
On the rod 28 is mounted a collar or bracket 30 by means of clamping bolts 32 or by mean of any conventional connecting arrangement, the bracket 30 supporting an arm 34. Arm 34 is, of course, given the reciprocating movement provided by the rod 28.
On the arm 34 in the opening 20 is mounted a rigid body 35 which is illustrated as a hollow metallic sleeve which is internally threaded. Extending from opposite ends of this body are two members 38 and 40 which are threadably and thereby adjustably engaged with the body 36 and which respectively include heads 42 and 44.
The housing 18 is a rigid body faricated from a metal such as stainless steel, aluminum or the like, or, alternatively, from a synthetic material having substantial axial strength, the need for which will become apparent hereinafter. On the housing 18 at the opposite open extremities thereof are afiixed flexible diaphragms 46- and 48. These flexible diaphragms may be made of a synthetic material such as, for example, neoprene or may be of a heavy .duty rubber capable of being repeatedly stretched and manipulated without tearing or being harmfully affected by the oscillating motion imparted thereto by body 36. Preferably flexible diaphragms 46 and 48 are resilient and are formed with flanges 50 and 52 which snap over the housing 18 to constitute a unit therewith. It is to be noted that these diaphragms conveniently surround heads 42 and 44 which are molded therein.
The pump units 12 and 14 are detachable from the central section 10. These units are, in fact, simply held in abutting relationship therewith. Each of these units comprises a recessed shell or substantially rigid member 54 which, in the preferred embodiment of the invention, is of concave shape. This rigid member defines an inner opening or recess 56, there being provided a resiilent diaphragm 58 which confines the opening 56 in order to provide a variable-volume pumping chamber.
The shell 54 is preferably made of a material sufficient to resist deformation due to thrusts applied thereagainst by means of the assembly unit 16. Metals may, of course, be employed for this puropse, but certain plastics also have sufficient strength, and one particularly suitable plastic is polypropylene.
The resilient diaphragm 58 is formed with a flange 60 for peripherally engaging the outer extremity of the associated shell 54. A separate band may be employed if desired to lock the diaphragm and shell together, although this has not been found necessary if the flange of the resilient diaphragm is properly designed. The shall 54 and diaphragm 58, as will be seen, constitute an integrated unit forming a sub-assembly of the pump structure.
Each shell 54 is provided with threaded openings 62 and 64, by means of which are engaged the threaded extremities of tubes 66 and 6% (specific ones of which are hereinafter designated by a letter suflfix). These tubes constitute the outlet and inlet tubes associated with each unit. In each tube is provided a one-way or unidirectional valve 70 (also hereinafter specifically distinguished by letter suffixes).
As noted above, the pumping units 12 and 14 are held in abutting relationship with the central section lit by means of the assembly unit 16. This sandwiches the resilient diaphragms against the flexible diaphragms (there is no mechanical connection between these diaphragms) and expels the air from between the diaphragms which in turn causes the diaphragms to adhere together with a suction-like eifect. For this purpose, the assembly unit 16 is provided with a base 72 (FIGS. 3 and 4) provided with arms 74 and 76. At the extremities of these arms are internally threaded collars 78 and 86 through which extend threaded members 82 and 84 provided respectively with handles 86 and 88 which urge blocks 90 and 92 against the pump units 12 and 14. The blocks 90 and 2 are conveniently provided with concave recesses 94 and 96 in order to accommodate readily the shells 54 of pump units 12 and 14.
In operation, the body 36 is given a reciprocating motion as indicated by arrow 9 8 to flex diaphragms 46 and 48 between the extreme positions illustrated by dotted lines at A and B in FIG. 2. It is seen, in FIG. 2, that in the median position of the diaphragm 46, as illustrated at C, the diaphragm has an undulated or flexed shape due to the fact that its effective area exceeds the cross-sectional area of the opening 20 of housing 18. This enables an undulating or wave-like deformation to be imparted to the diaphragms 46 and 4S and thus to the resilient diaphragms 58 of units 12 and 14-.
With the flexible diaphragms being thus operated, a pumping condition is established in units 12 and 14, and, while the resilient diaphragm of one of these units is being forced towards the associated shell, the resilient diaphragm in the other of said units withdraws from its associated shell. This causes the fluid in one unit to be forced outwardly therefrom via the associated outlet tube while fluid is drawn into the other unit through the inlet tube associated therewith.
More specifically, in FIG. 1, flexible diaphragm 48 is being driven into pump unit 14. Fluid cannot flow out through inlet tube 68a inasmuch as the one-way valve 70a is closed. However, fluid is forced out of the unit 14 in the direction indicated by arrow 100 since the valve "70b in the outlet tube 66a readily yields to the pressure of the fluid.
At the same time, flexible diaphragm 46 releases its pressure on resilient diaphragm 58 in pump unit 12 and withdraws this resilient diaphragm from the shell 12. Fluid cannot flow via outlet tube 66 back into the unit 12 since the valve 70 acts to shut off this tube. However, fluid is drawn into unit 12 from a fluid source or reservoir (not shown) vi-a tube 68 due to the opening of valve 700.
The units 12 and 14 repeatedly interchange functions and are reciprocally filled and exhausted as the operation of power source continues. Accordingly, a constant supply of fluid is assured alternatively via outlet tubes 66 and 66a and a supply of fluid is continuously draw into pump units 12 and 14- via inlet tubes 68 and 68a.
Basically, a pump of the above construction comprises a relatively rigid member such as the shell 54 having an inlet and an outlet opening with a relatively deformable and resilient member confining with said shell a variablevolume pump chamber, means being positioned externally of this chamber in engagement with the resilient member for oscillating the same towards and away from the rigid member to create a pumping action in the chamber. In its more refined form, however, the invention contemplates that two such pumping units be provided so that a continuous flow of fluid is assured, one unit complementing the action of the other, so that one unit is always being charged while the other is being discharged.
As will be noted from the above description, the means provided to apply forces to the resilient member of each unit is actually separate from the same and engages this member essentially in abutting relationship with suctionlike forces. Moreover, it will be noted, for example, that the flexible diaphragms 46 and 48 first apply pressure against the associated resilient diaphragms in the direction in which the resilient diaphragms are urged towards the associated shells. The resilient diaphragms then move away from the associated shells in response to the movement of their respective flexible diaphragms.
An important feature of the invention which should be noted is that the curved shapes of the diaphragms cause them to protrude generally into the associated shells. This cuts down the normal volumes of these shells and minimizes the priming fluid required to initiate a pumping operation under certain circumstances. Further, the shapes of the diaphragms facilitate employing shells which are conical or similarly shaped, and are thus best suited to absorb the physical forces applied to them by blocks and 92.
The elfective areas of the flexible members 46 and 48 have been discussed above and it has been noted that these etfective areas exceed the corresponding crosssectional areas of the housing 18 so as to impart a wavelike pattern of motion to the flexible diaphragms. It is also to be noted that the flexible diaphragms engage the resilient diaphgragms in a positive manner only along limited areas since the areas of heads 42 and 44 are substantially less than the effective areas of resilient diaphragms 58. This means that pumping units 12 and 14 do not have positive displacements as would be employed,
. for example, in a conventional piston and cylinder type pump, since those areas of diaphragms 53 which are not positively subjected to pressure by heads 42 and 44 are yieldable.
It is also clear from the above description that units 12 and 14 are readily detachable from the remainder of the pump structure and this is especially valuable with respect to maintenance and repair. This feature, moreover, facilitates initial assembly and additionally permits the substitution of shells 54 of different sizes so as to permit an adjustment of basic pump capacity.
It has been mentioned above that pumps of the invention have been found especially adaptable in connection with medical and surgical techniques. More specifically, pumps of the invention have been found especially suitable for use in extracorporeal blood circulation systems wherein they are employed to constitute artificial ventricles for simulating pulses.
In the handling of blood, it is essential to avoid the crushing of the blood cells which are readily destroyed when subjected to mechanical pressure. Accordingly, it is especially advantageous to avoid a positive displacement by permitting a yielding of diaphragms 58 as noted above. Moreover, in a preferred embodiment of the invention the resilient diaphragms 58 are preferably made of a low durometer material having a smooth surface and a durometer constant of 40 (A scale) and preferably less than 20. Conventional rubbers are generally not of such a low durometer except when foamed and amongst the suitable materials found useful for this application is a synthetic known as silicone rubber. The use of low durometer, resilient materials as resilient diaphragms in structures of the invention have enabled the processing of blood with far less damage to blood cells in plasma than has been the case with known types of pumps. Accordingly, pumps of the inventon may be considered as being atnaumatic as regards blood cells and the like.
It is noted that the threaded engagement of members 38 and 49 with rigid body 36 is adapted to permit an adjustment of oscillation stroke independently of the operation of piston and cylinder arrangement 26. Generally heads 42 and 44 are so arranged as to permit the resilient diaphragms 58 to be at all times spaced from shells 54 even at the extremities of oscillation. This adds to the atraumatic characteristic of the pump as has already been indicated.
As noted above, the shells 54 and diaphragms 58 constitute separable pumping units. The materials indicated above for these elements are all non-toxic and capable of being exposed to high temperatures for sterilizing operations such as autoclaving. Accordingly, after a surgical operation it is possible to remove units 12 and 14 and sterilize the same as a whole without any complicated mechanical procedure so that the units may be readily used over and over again. The wave form imparted to resilient diaphragms 58 by means of flexible diaphragms 46 and 48 is complex. The character of such resilient members is comparable to the resilient character of the muscle tissues of the heart so that pumps of the invention can be used to simulate the operation of the ventricle in the human body. This provides a use which enhances the value of the invention.
With the above structure, the invention achieves its objective of providing an improved means for selectively applying pressure to fluids so as to cause a flow of movement thereof. It is obvious from the above that a pump has been provided having a minimum of parts which are readily assembled and disassembled. It should be further clear from the above description that an improved pump has been provided having a minimum of frictionally engaged parts so as to provide for improved operation.
Additionally, it has been indicated that pumps of the invention are especially adapted for processing fluids Without injuring the contents thereof and that these pumps are adapted for producing complex pressure wave forms for simulating the human pulse.
Moreover, it is clear that pumps of the invention are especially suited for hygienic, sterile and antiseptic techniques since units are included which are readily remounted for purposes of cleaning. This very same arrangement enables the ready substitution of pumping units of different capacities.
There will now be obvious to those skilled in the art many modifications and variations of the structures set forth above. These modifications and variations will not, however, depart from the scope of the invention it they are defined by the following claims.
What is claimed is:
1. A pump comprising a relatively rigid member having an inlet opening and an outlet opening, and defining an open chamber, valve means operatively associated with said openings to provide for a one-way flow therethrough, a relatively deformable and resilient member extending across said rigid member and confining said open chamber to form a variable-volume pump chamber, and means positioned externally of said chamber and in engagement with said resilient member, said means oscillating said resilient member towards and away from said rigid member to create a pumping action in said chamber, said means being separate from said resilient member and engaging the same in abutting relationship, said means and resilient member including diaphragms in face-to-face relation with air excluded from therebetween so as to provide a suction eiiect between the diaphragms.
2. A pump as claimed in claim 1, wherein said resilient member has a determinable effective area transverse to the direction of oscillation of said means, said means including a rigid portion or applying pressure to an area of said resilient member which latter area is substantially less than said determinable eiiective area whereby to avoid a positive displacement of the entire elfective area of the resilient member into the pump chamber.
3. A pump as claimed in claim 1, wherein said valve means comprises uni-directional valves coupled to said inlet and outlet openings.
4. A pump as claimed in claim 1, wherein the first said rigid member and said resilient member are affixed to each other and detachable as a unit from said means.
5. A pump as claimed in claim 1, wherein the resilient member has a durc-meter of less than 40.
6. A pump as claimed in claim 1, wherein said means comprises a rigid support and an oscillatable member movable with respect thereto, comprising clamp means for holding said rigid and resilient members detachably against said support with said resilient member in a position to be engaged by said oscillatable member.
7. A pump as claimed in claim 1, comprising means for applying to the first said means an adjustable, linear stroke.
8. A pump comprising a rigid housing having an opening extending therethrough, a rigid movable member extending through said opening, means coupled to said movable member to oscillate the same in said opening, flexible diaphragms on said housing at opposite ends of said opening and connected to said movable member to be displaced thereby, and variable volume pump units against said flexible diaphragms to be operated thereby, said pump units each comprising a rigid recessed shell defining an open chamber a resilient diaphragm mounted on said shell to define a closed pump chamber, each shell having inlet and outlet openings, and valve means operatively associated with said openings to provide for a one- Way flow therethrough said resilient diaphragm being mounted in abutting relationship with its associated flexible diaphragm.
9. A pump as claimed in claim 8, wherein the shell and resilient diaphragm of each pump unit are peripherally engaged, said units having only an abutting relationship with said flexible diaphragms, said pump further comprising assembly means for detachably holding said units against said housing with the flexible diaphragms sandwiched therebetween.
10. A pump as claimed in claim 9, wherein said valve means comprises unidirectional inlet and outlet valves connected to each unit.
11. A pump as claimed in claim 10, wherein said assembly means comprises a bracket including spaced arms and threadably adjustable and opposed members on said arms and holding the units and housing therebetween.
12. A pump as claimed in claim 10, wherein said movable member includes portions embedded in said flexible diaphragms.
13. A pump as claimed in claim 10, wherein said movable member includes a central main body and two members threadably adjustable on said body and in engagement with said flexible diaphragms.
14. A pump as claimed in claim 10, wherein said resilient diaphragms have a durometer of no more than about forty.
15. A pump as claimed in claim 10, comprising a double-acting piston connected to and driving said movable member.
16. A pump as claimed in claim 10, wherein said units are entirely of non-toxic autoclavable materials.
17. A pump as claimed in claim 10, comprising inlet and outlet tubes housing said valves and threadably engaged with said shells.
18. A pump as claimed in claim 10, wherein said housing has the shape of a cylinder.
19. A pump as claimed in claim 18, wherein said flexible diaphragms have areas exceeding the cross-sectional area of said cylinder so as to promote undulations in the flexible diaphragms during pumping operations.
References Cited in the file of this patent UNITED STATES PATENTS
US857896A 1959-12-07 1959-12-07 Pump Expired - Lifetime US3039399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US857896A US3039399A (en) 1959-12-07 1959-12-07 Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US857896A US3039399A (en) 1959-12-07 1959-12-07 Pump

Publications (1)

Publication Number Publication Date
US3039399A true US3039399A (en) 1962-06-19

Family

ID=25326974

Family Applications (1)

Application Number Title Priority Date Filing Date
US857896A Expired - Lifetime US3039399A (en) 1959-12-07 1959-12-07 Pump

Country Status (1)

Country Link
US (1) US3039399A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152340A (en) * 1960-11-28 1964-10-13 Interscience Res Inst Artificial heart
US3164101A (en) * 1962-09-27 1965-01-05 Ingersoll Rand Co Diaphragm pump
US3204631A (en) * 1961-05-01 1965-09-07 Louis G Fields Blood oxygenator and pump apparatus
US3335671A (en) * 1964-04-29 1967-08-15 Union Tank Car Co Pumping and injection system
US3367561A (en) * 1966-05-11 1968-02-06 Robertshaw Controls Co Diaphragm type air pump
US3400983A (en) * 1966-09-08 1968-09-10 Elgin Softener Inc Slurry feed pump
US3410263A (en) * 1965-05-13 1968-11-12 Westinghouse Electric Corp Blood-pumping apparatus provided with heart synchronizing means
US3424100A (en) * 1964-04-29 1969-01-28 Union Tank Car Co Injector assembly
US3426743A (en) * 1964-02-26 1969-02-11 United Aircraft Corp Heart pump augmentation system
US3433983A (en) * 1966-11-14 1969-03-18 United Aircraft Corp Electromagnetic actuator
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump
US3730652A (en) * 1972-09-21 1973-05-01 Gravoki Systems Ltd Fluid pressure devices
US3814547A (en) * 1970-10-01 1974-06-04 Tecna Corp Nontraumatic heart pump
JPS5166804U (en) * 1974-11-21 1976-05-26
US4043332A (en) * 1975-05-14 1977-08-23 Nathan Blumberg Constant flow rate liquid medicament administering device
US4126132A (en) * 1975-07-28 1978-11-21 Andros Incorporated Intravenous and intra arterial delivery system
FR2396553A1 (en) * 1977-07-05 1979-02-02 Andros Inc PUMP AND REPLACABLE PUMP CARTRIDGE FOR INFUSION UNIT
US4140118A (en) * 1977-03-09 1979-02-20 Andros Incorporated Cassette chamber for intravenous delivery system
US4157092A (en) * 1975-10-24 1979-06-05 Hoffmann-La Roche Inc. Direct-acting respirator
US4247264A (en) * 1979-04-13 1981-01-27 Wilden Pump & Engineering Co. Air driven diaphragm pump
US4252510A (en) * 1978-08-28 1981-02-24 Bruce A. Bromley Diaphragm pump
WO1981001182A1 (en) * 1979-10-29 1981-04-30 Caterpillar Tractor Co Self pumping seal for a reciprocating member
US4345768A (en) * 1979-10-29 1982-08-24 Caterpillar Tractor Co. Self pumping seal for a reciprocating member
US4403539A (en) * 1980-11-15 1983-09-13 Honda Giken Kogyo Kabushiki Kaisha Arrangement for connecting a diaphragm with an actuator rod in a diaphragm-operated device
US4449827A (en) * 1982-10-29 1984-05-22 Ethyl Molded Products Company Mixing device
US4495932A (en) * 1981-02-03 1985-01-29 Lincoln Manufacturing Company, Inc. Food steam heating apparatus
WO1985005657A1 (en) * 1984-06-01 1985-12-19 The Johns Hopkins University Single valve diaphragm pump with decreased sensitivity to ambient conditions
US4560326A (en) * 1983-10-28 1985-12-24 Mitsubishi Denki Kabushiki Kaisha Diaphragm type pump device
EP0226070A2 (en) * 1985-12-13 1987-06-24 Böllhoff Verfahrenstechnik GmbH & Co. KG Pump arrangement for delivering measured quantities of at least two components
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US4842498A (en) * 1987-01-20 1989-06-27 Thomas Industries, Inc. Diaphragm compressor
US4936753A (en) * 1988-06-03 1990-06-26 The Aro Corporation Diaphragm pump with interchangeable valves and manifolds
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5002471A (en) * 1987-07-20 1991-03-26 D.F. Laboratories Ltd. Disposable cell and diaphragm pump for use of same
US5061243A (en) * 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
US5108373A (en) * 1989-09-25 1992-04-28 Baxter International Inc. Intravenous metering device
US5190527A (en) * 1989-09-25 1993-03-02 Baxter International Inc. Intravenous metering device
US5368570A (en) * 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
US5407424A (en) * 1993-02-24 1995-04-18 Scimed Life Systems, Inc. Angioplasty perfusion pump
US5728069A (en) * 1995-02-06 1998-03-17 Dideco S.P.A. Device for the pulsed pumping of liquids, particularly blood
US5848738A (en) * 1997-03-28 1998-12-15 Tetra Laval Holdings & Finance, S.A. Fill system including a fill pump disconnect system
US20040001766A1 (en) * 2002-05-14 2004-01-01 Maianti Edgardo Costa Unit for pumping fluid, particularly blood
US20090092505A1 (en) * 2007-10-09 2009-04-09 Thetford Corporation, A Delaware Corporation Dual diaphragm pump assembly for a sanitation system
US20100313683A1 (en) * 2009-06-12 2010-12-16 Nickel Troy D Multiple-Specimen Device Testing with Particle Measurement
FR2969498A1 (en) * 2010-12-23 2012-06-29 Corhem Device for providing temporary extracorporeal circulatory assistance to heart during e.g. coronary heart disease, has actuator whose controlled displacement allows oscillation of membrane to generate systolic diastolic pulsated blood flow
US20130092863A1 (en) * 2010-07-07 2013-04-18 Borgwarner Inc. Valve control device
US10578098B2 (en) 2005-07-13 2020-03-03 Baxter International Inc. Medical fluid delivery device actuated via motive fluid
US11478578B2 (en) 2012-06-08 2022-10-25 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806268A (en) * 1929-03-08 1931-05-19 Stewart Warner Corp Fuel pump
US2702006A (en) * 1950-06-12 1955-02-15 Bachert Arthur Means for delivering brine under pressure for injection pickling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806268A (en) * 1929-03-08 1931-05-19 Stewart Warner Corp Fuel pump
US2702006A (en) * 1950-06-12 1955-02-15 Bachert Arthur Means for delivering brine under pressure for injection pickling

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152340A (en) * 1960-11-28 1964-10-13 Interscience Res Inst Artificial heart
US3204631A (en) * 1961-05-01 1965-09-07 Louis G Fields Blood oxygenator and pump apparatus
US3164101A (en) * 1962-09-27 1965-01-05 Ingersoll Rand Co Diaphragm pump
US3426743A (en) * 1964-02-26 1969-02-11 United Aircraft Corp Heart pump augmentation system
US3424100A (en) * 1964-04-29 1969-01-28 Union Tank Car Co Injector assembly
US3335671A (en) * 1964-04-29 1967-08-15 Union Tank Car Co Pumping and injection system
US3410263A (en) * 1965-05-13 1968-11-12 Westinghouse Electric Corp Blood-pumping apparatus provided with heart synchronizing means
US3367561A (en) * 1966-05-11 1968-02-06 Robertshaw Controls Co Diaphragm type air pump
US3400983A (en) * 1966-09-08 1968-09-10 Elgin Softener Inc Slurry feed pump
US3433983A (en) * 1966-11-14 1969-03-18 United Aircraft Corp Electromagnetic actuator
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump
US3814547A (en) * 1970-10-01 1974-06-04 Tecna Corp Nontraumatic heart pump
US3730652A (en) * 1972-09-21 1973-05-01 Gravoki Systems Ltd Fluid pressure devices
JPS555757Y2 (en) * 1974-11-21 1980-02-08
JPS5166804U (en) * 1974-11-21 1976-05-26
US4043332A (en) * 1975-05-14 1977-08-23 Nathan Blumberg Constant flow rate liquid medicament administering device
US4126132A (en) * 1975-07-28 1978-11-21 Andros Incorporated Intravenous and intra arterial delivery system
US4157092A (en) * 1975-10-24 1979-06-05 Hoffmann-La Roche Inc. Direct-acting respirator
US4140118A (en) * 1977-03-09 1979-02-20 Andros Incorporated Cassette chamber for intravenous delivery system
FR2396553A1 (en) * 1977-07-05 1979-02-02 Andros Inc PUMP AND REPLACABLE PUMP CARTRIDGE FOR INFUSION UNIT
US4199307A (en) * 1977-07-05 1980-04-22 Andros Incorporated Medical infusion system
US4252510A (en) * 1978-08-28 1981-02-24 Bruce A. Bromley Diaphragm pump
US4247264A (en) * 1979-04-13 1981-01-27 Wilden Pump & Engineering Co. Air driven diaphragm pump
WO1981001182A1 (en) * 1979-10-29 1981-04-30 Caterpillar Tractor Co Self pumping seal for a reciprocating member
US4345768A (en) * 1979-10-29 1982-08-24 Caterpillar Tractor Co. Self pumping seal for a reciprocating member
US4403539A (en) * 1980-11-15 1983-09-13 Honda Giken Kogyo Kabushiki Kaisha Arrangement for connecting a diaphragm with an actuator rod in a diaphragm-operated device
US4557671A (en) * 1980-11-15 1985-12-10 Honda Giken Kogyo Kabushiki Kaisha Arrangement of connecting a diaphragm with an actuator rod in a diaphragm-operated device
US4495932A (en) * 1981-02-03 1985-01-29 Lincoln Manufacturing Company, Inc. Food steam heating apparatus
US4449827A (en) * 1982-10-29 1984-05-22 Ethyl Molded Products Company Mixing device
US4560326A (en) * 1983-10-28 1985-12-24 Mitsubishi Denki Kabushiki Kaisha Diaphragm type pump device
WO1985005657A1 (en) * 1984-06-01 1985-12-19 The Johns Hopkins University Single valve diaphragm pump with decreased sensitivity to ambient conditions
US4594058A (en) * 1984-06-01 1986-06-10 The Johns Hopkins University Single valve diaphragm pump with decreased sensitivity to ambient conditions
US5061243A (en) * 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
EP0226070A2 (en) * 1985-12-13 1987-06-24 Böllhoff Verfahrenstechnik GmbH & Co. KG Pump arrangement for delivering measured quantities of at least two components
EP0226070A3 (en) * 1985-12-13 1989-01-25 Kopperschmidt-Mueller Gmbh & Co Kg Pump arrangement for delivering measured quantities of at least two components
US4842498A (en) * 1987-01-20 1989-06-27 Thomas Industries, Inc. Diaphragm compressor
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US5002471A (en) * 1987-07-20 1991-03-26 D.F. Laboratories Ltd. Disposable cell and diaphragm pump for use of same
US4936753A (en) * 1988-06-03 1990-06-26 The Aro Corporation Diaphragm pump with interchangeable valves and manifolds
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5108373A (en) * 1989-09-25 1992-04-28 Baxter International Inc. Intravenous metering device
US5190527A (en) * 1989-09-25 1993-03-02 Baxter International Inc. Intravenous metering device
US5368570A (en) * 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
US5407424A (en) * 1993-02-24 1995-04-18 Scimed Life Systems, Inc. Angioplasty perfusion pump
US5728069A (en) * 1995-02-06 1998-03-17 Dideco S.P.A. Device for the pulsed pumping of liquids, particularly blood
US5848738A (en) * 1997-03-28 1998-12-15 Tetra Laval Holdings & Finance, S.A. Fill system including a fill pump disconnect system
US7029245B2 (en) 2002-05-14 2006-04-18 Sorin Group Italia S.R.L. Blood pumping unit, with a coplanar disk inlet valve and an annular outlet valve
US20040001766A1 (en) * 2002-05-14 2004-01-01 Maianti Edgardo Costa Unit for pumping fluid, particularly blood
US11384748B2 (en) 2005-07-13 2022-07-12 Baxter International Inc. Blood treatment system having pulsatile blood intake
US10670005B2 (en) 2005-07-13 2020-06-02 Baxter International Inc. Diaphragm pumps and pumping systems
US10590924B2 (en) 2005-07-13 2020-03-17 Baxter International Inc. Medical fluid pumping system including pump and machine chassis mounting regime
US10578098B2 (en) 2005-07-13 2020-03-03 Baxter International Inc. Medical fluid delivery device actuated via motive fluid
US8529223B2 (en) * 2007-10-09 2013-09-10 Thetford Corporation Dual diaphragm pump assembly for a sanitation system
US20090092505A1 (en) * 2007-10-09 2009-04-09 Thetford Corporation, A Delaware Corporation Dual diaphragm pump assembly for a sanitation system
EP2048361A1 (en) * 2007-10-09 2009-04-15 Thetford Corporation Dual diaphragm pump assembly for a sanitation system
US20100313683A1 (en) * 2009-06-12 2010-12-16 Nickel Troy D Multiple-Specimen Device Testing with Particle Measurement
US8444935B2 (en) 2009-06-12 2013-05-21 Bose Corporation Multiple-specimen device testing with particle measurement
WO2010144269A1 (en) * 2009-06-12 2010-12-16 Bose Corporation Multiple-specimen device testing with particle measurement
US9222585B2 (en) * 2010-07-07 2015-12-29 Borgwarner Inc. Valve control device
US20130092863A1 (en) * 2010-07-07 2013-04-18 Borgwarner Inc. Valve control device
FR2969498A1 (en) * 2010-12-23 2012-06-29 Corhem Device for providing temporary extracorporeal circulatory assistance to heart during e.g. coronary heart disease, has actuator whose controlled displacement allows oscillation of membrane to generate systolic diastolic pulsated blood flow
US11478578B2 (en) 2012-06-08 2022-10-25 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods

Similar Documents

Publication Publication Date Title
US3039399A (en) Pump
US3148624A (en) Hydraulic pump
US4222127A (en) Blood pump and method of pumping blood
US3568214A (en) Artificial heart system and method of pumping blood by electromagnetically pulsed fluid
US6273868B1 (en) Breast pump
US5119804A (en) Heart massage apparatus
JPH07112492B2 (en) Biological fluid pump
SE7702507L (en) DEVICE FOR PULSED BLOOD PUMPS
EP1745809B1 (en) Device for cardiocirculatory assistance
JPH064092B2 (en) Blood pump
US6224572B1 (en) Piston-actuated attachable topical fluid delivery system
US20140207068A1 (en) Pumping device, as for enteral feeding assembly
CH657053A5 (en) DEVICE FOR CONTINUOUSLY CIRCUITING ORGANIC-BIOLOGICAL LIQUIDS, ESPECIALLY BLOOD, AND METHOD FOR OPERATING THIS DEVICE.
US3218979A (en) Hydraulic blood pump
DE69025059D1 (en) Hemodialysis system
JPH01502564A (en) Improved complete artificial heart
Han et al. Design of a muscle-powered soft robotic Bi-VAD for long-term circulatory support
CN1011476B (en) Blood pump
GB2431439A (en) Volumetric dosing apparatus
CN209500221U (en) A kind of cerebral infarction instrument
CN209137517U (en) A kind of medical hydrops suction means of internal medicine
GB2622571A (en) A breast shield for a breast pump
SU1680144A1 (en) Apparatus for extraction of embryos
CN113171552A (en) Fluid driving device with valve structure and application thereof
GB1336118A (en) Medical infusion apparatus