US3097991A - Synthetic fibrous products - Google Patents

Synthetic fibrous products Download PDF

Info

Publication number
US3097991A
US3097991A US664772A US66477257A US3097991A US 3097991 A US3097991 A US 3097991A US 664772 A US664772 A US 664772A US 66477257 A US66477257 A US 66477257A US 3097991 A US3097991 A US 3097991A
Authority
US
United States
Prior art keywords
fibers
paper
synthetic
inch
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US664772A
Inventor
Walter A Miller
Jr Charles N Merriam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US664772A priority Critical patent/US3097991A/en
Priority to FR1203873D priority patent/FR1203873A/en
Priority to GB18304/58A priority patent/GB836328A/en
Priority to DEU5391A priority patent/DE1060246B/en
Application granted granted Critical
Publication of US3097991A publication Critical patent/US3097991A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/02Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/20Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of organic non-cellulosic fibres too short for spinning, with or without cellulose fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/32Incompatible blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/08Fibrillating cellular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/47Processes of splitting film, webs or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates generally to paper making and more particularly to specialty paper or paper-like products and to synthetic fiber pulps suitable for making paper containing synthetic fibers in combination with natural cellulosic paper making fibers.
  • Interfelting is primarily due to an intertangling of microscopic fibrallae on the surface of a fiber with the fibrallae of other fibers.
  • the synthetic fibers that have been proposed, prior to the present invention, for paper making have been extruded or spun through very small orifices either in solution on in the molten state to form long continuous fibers, the surfaces of which are quite smooth and slippery. As such they have no fibrallae to interfelt. Nor are they capable of being easily and uniformly dispersed in a water media or of fibrillating by being beaten while dispersed in water as is the case with natural fibers.
  • the lack of fibrillae in synthetic fibers can be compensated for by causing the fibers to bond to each other in such a manner that the bonding forces are molecular rather than mechanical. subjecting a synthetic fiber web to the action of heat or a suitable solvent, or both, may bring about this bonding.
  • the effect of either treatment is to soften the fibers to such an extent that fusion occurs at the points of contact of the fibers with each other.
  • Such methods are usually difiicult to control, require the use of hazardous inflammable solvents, and to some extent destroy the molecular orientation frequently induced in the raw fibers to increase their strength and resistance to degeneration by ultra violet light.
  • This invention utilizes as a base material to form feltable paper forming fibers, stretch oriented synthetic monofilaments prepared by the extrusion of a mixture of two or more linear polymeric thermoplastic materials, mutually incompatible with each other, through a single orifice die forming a composite monofilament product.
  • monofilament as used in the invention is meant the product obtained by melt extrusion of a mixture of two or more incompatible thermoplastic resins, said monofiiament after extrusion having been stretch oriented.
  • This monofilament is composed of individual fibrils having longitudinal axes essentially parallel to each other and are weakly attached in a lateral direction, i.e., contact of one fibril with another is along a line running longitudinally along the outer surface of the fibrils.
  • Fibril groups comprised of several fibrils of each of the incompatible resin making up the monofilament, when split off from the monofilament are designated as fibers.
  • the number of fibrils comprising each fiber may be in the range of about 2 to 100.
  • Such monofilaments may be produced according to the following generalized process steps.
  • Two or more incompatible resins may be blended by mixing them on heated differential rolls, in a kneader, or with a Banbury mixer, or any other suitable means for obtaining an intimate mixture, such as dissolving them in a solvent and then evaporating the solvent.
  • the temperatures used for mixing will vary but should be sufiicient to give a well dispersed mixture but not high enough to induce decomposition.
  • the fiuxed sheets are cooled, granulated to a suitable size, and fed to an extruder.
  • the mixture may be extruded in any conventional extruder operated at a temperature low enough to prevent decomposition and high enough to be consistent with processing viscosity. It is not necessary to heat the resin mixture hot enough to maintain all components in a molten state. One or more components may be heated only enough to achieve workable plasticity while the remaining components are molten. Hot drawing of the plastic mixture as it emerges from the extruder is not necessary but may be done if a reduction in size of the monofilament is desired. Cold drawing to induce molecular orientation in the fibrils comprising the monofilament is necessary however if a product which will fibrillate readily is to be produced. The optimum degree of orientation induced will vary depending on the composition of the monofilament.
  • orientation up to 2,000 percent may sometimes be advantageous.
  • molecular orientation imparts improved physical properties to a large number of fiber forming polymers such as polyamides, polyesters, polyurethanes, and vinyl and acrylic type polymers, and as a consequence, improves the paper made from them.
  • Fibrillation of the monofilaments produced when two or more incompatible plastic materials are extruded by a process of which Examples I and II are typical, can be advantageously carried out by mechanical beating or working.
  • Chopped monofilament A to inch in length are generally suitable for any of the numerous mechanical methods available.
  • a typical fibrillation operation may be carried out in a commercial Holland paper beater which consists of a cylinder of knives or bars and an adjustable bed plate. Chopped monofilament in a water media is circulated repeatedly under the beater roll by flowing around a circular trough. The filaments immediately begin to break up and within a few hours the plastic pulp resembles normal cellulose pulp.
  • FIG. 1 is an enlargement (100x) of synthetic fibers of the type utilized in the present invention. These fibers were produced by fibrillating an extruded composite monofilament consisting of 80 parts by weight of a vinyl acetate-vinyl chloride copolymer (Bakelite Co.s VMCH) and 20 parts by weight of a solid polyethylene (Bakelite Co.s DYNH). The large number of fibrallae available for interfelting is typical.
  • FIG. 1 is an enlargement (100x) of synthetic fibers of the type utilized in the present invention. These fibers were produced by fibrillating an extruded composite monofilament consisting of 80 parts by weight of a vinyl acetate-vinyl chloride copolymer (Bakelite Co.s VMCH) and 20 parts by weight of a solid polyethylene (Bakelite Co.s DYNH). The large number of fibrallae available for interfelting is typical.
  • FIG. 1 is an enlargement (100x)
  • Dynel a commercial vinyl chloride-acrylonitrile copolymer
  • Rapid fibrillation can be accomplished by ball milling the chopped mixed strand with water.
  • An air micronizer or a micropulverizer or other machines such as a Jordan or a Sutherland mill perform this operation equally well.
  • the mention of these specific means is not intended to exclude other equivalent means which perform the operation with equal facility and still are within the scope of the invention.
  • the dimensions of the staple fibers i.e., those fibers relatively short in length produced from chopped filament, depend somewhat on the fibrillation method employed and are normally in the range of 1 to microns in diameter. Fibers with diameters in the range of 10 to 30 microns are easily produced in a Holland paper beater. For instance chopped monofilaments produced in subsequent Examples I and II were fed into the beater in the ratio of 2 pounds of filament to 4 gallons of water and beaten for S to 8 hours. Since beating to some extent breaks the staple fibers laterally as well as longitudinally, the fibers in each case had an average length somewhat shorter than their original M; to A inch length. This length however always remains many fold larger than the diameter which averaged about 20 microns.
  • polyamides or the various nylon resins may include among others, polyamides or the various nylon resins; polyvinyl compositions and copolymers such as Saran (vinylidene chloride-vinyl chloride), Vinyon HH (vinyl chloride-vinyl acetate); polyethylene; polyesters such as Dacron (polyethylene terephthalate); and polyurethanes such as Perlon U.
  • EXAMPLE I Fifty five parts of polystyrene (M. Wt. 70,000 to 80,- 000) and 45 parts of polyethylene (M. Wt. 20,000 to 22,000) in the form of inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1 /4 inch bore extruder.
  • the extruder temperature conditions were: die, 450 to 470 F.; front half, 430 to 450 F.; rear half, to F.
  • the polymer mixture was fed to the extruder at a rate of 4 to 5 pounds per hour, extruded through a /8 inch diameter die at the rate of 5 to 10 ft./min.
  • the extruded filament was hot drawn on a conventional hot draw godet and passed through a bath of ethylene glycol heated to about 270 to 285 F. to bring the filament to the proper temperature for stretch orientation.
  • the orientation godet traveled at the rate of 600 ft./min. as did the wind up roll.
  • the resulting filament was about 20 to 30 mils in diameter and oriented 500 percent.
  • EXAMPLE II Fifty parts polystyrene (M. Wt. 70,000 to 80,000) and 50 parts of a hard tough interpolymer consisting of 70 parts styrene and 30 parts acrylonitrile (M. Wt. 70,000 to 80,000) in the form of inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1% inch extruder.
  • the extruder temperature conditions were: die, 470 to 490 F.; front half, 470 to 480 F.; rear half, 210 to 220 F.
  • the polymer mixture was fed to the extruder at a rate of 4 to 5 pounds per hour, extruded through a inch diameter die at the rate of 5 to 10 ft./min., and the filament ultimately wound at 600 ft./ min. Elongation and orientation of the filament was accomplished by the same apparatus as described in Example I except that the ethylene glycol bath was heated to 280 to 300 F. The resulting monofilament was about 20 to 30 mils in diameter and oriented 500 percent.
  • EXAMPLE III Eighty parts by weight of a vinyl copolymer consisting of 85 to 88 weight percent vinyl chloride, 11 to 14.3 percent vinyl acetate, 0.7 to 1.0 interpolymerized maleic anhydride and 20 parts normally solid polyethylene having an average molecular weight of 20,000 and 4 parts basic lead silicate (Tribase) were compounded to a smooth sheet on differential rolls heated to 140 C. The time of compounding was about 10 minutes for a forty pound batch. The sheet was granulated to about inch pellets and fed to a 1% inch extruder. The feed end of the extruder was water cooled (30 C.) and the die end of the extruder heated to about 250 F. The die 4; inch diameter was heated to about 270 to 280 F.
  • Tribase basic lead silicate
  • the pellets were fed to the extruder through the die at a rate of 13 to 14 pounds per hour and passed between draw rolls, situated about 2 /2 feet from the end of the die, running at a speed of 28 ft./ min.
  • the filament then passed through a bath of hot water (100 C.) to godet rolls traveling at a speed of 185 feet per minute, and fromthere to wind up rolls.
  • the resulting filament was about 40 to 60 mils in diameter and oriented about 550 percent over the hot drawn length.
  • EXAMPLE IV Thirty five parts by weight polyethylene (M. Wt. 20,000 to 22,000) and 65 parts by weight Saran 281-S905 in the form of A inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1% inch Hartig extruder.
  • the extruder temperature conditions were: die, 330F.; front barrel, 330 F.
  • the polymer mixture was fed to the extruder at a rate of 4 to pounds per hour, and extruded through a A; inch diameter die at the rate of 5 to ft./min.
  • the extruded filament was hot drawn at the rate of 25 ft./min. and cold drawn at room temperature at a rate suflicient to impart a molecular orientation of between 350 and 400 percent.
  • EXAMPLE V The extruded filament in Example III was used for the preparation of a heat scalable paper.
  • the filaments were chopped into 4; inch to inch lengths, charged with water, in the ratio of 1 pound chopped filament to 3 gallons of water, into a paper beater, and beaten for 3 to 4 hours.
  • Sufiicient pulp prepared from a standard Tappi cellulosic blotting paper was added to give a mixed pulp having equal weight percentage of synthetic fiber and natural fiber.
  • the mixed pulp was then sheeted in the known manner on a Fourdrinier machine and dried at a temperature below the softening point of the plastic. It was found that the dried sheet could be sealed electronically at 250 F.
  • EXAMPLE VI The extruded filament in Example III was chopped into inch to A inch lengths and beaten for 3 to 4 hours with water in the proportion of 1 pound chopped filament to 3 gallons of water. A hand sheet was formed from this pulp which could be removed from the screen without tearing.
  • EXAMPLE VII Filaments having the same composition and made according to the process described in Examples I and II were chopped and beaten for 5 to 8 hours with water in the proportion of 2 pounds chopped filament to 4 gallons of water.
  • the fibers resulting were A; inch to inch in length and had an average diameter of 20 microns.
  • Portions of these synthetic fiber pulps were mixed with varying amounts of paper pulp made from a standard 6 Tappi blotting paper. These mixed pulps were then sheeted in the known manner on a Fourdrinier machine and dried over drying rolls heated to 225 -F. Sheets cut to measure 8 inches by 8 inches and were pressed under a pressure of 250 psi. at to C. before testing. The results of the tests are shown in the tables below:
  • Cellulose Synthetic Pulp Fiber Pulp The pulps were mixed 10 minutes and sheeted in the known manner on a. Fourdrinier machine. In all sheets there was sufficient interfelting of the synthetic fibers with each other and with cellulosic fibers to permit removal of the sheets from the screen without tearing.
  • EXAMPLE IX A low softening composite, fibrous monofilament consisting of polyvinyl acetate and polyethylene was prepared as follows: 80 parts of polyvinyl acetate (Bakelite Co.s AYAT) and 20 parts polyethylene (DYNB) were milled together on rolls heated to 280 F. The mill sheet was cooled, dried, and fed to an extruder and extruded under the following temperature conditions:
  • a fibrous pulp comprising inert liquid dispersed molecularly oriented composite fibers of synthetic plastic material having lateral surfaces and ends frayed into microscopic fibrillate and having diameters from 0.2 to 100 microns and lengths from to A; inch, said fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resins.
  • a pulp suitable for paper making comprising an inert liquid dispersed interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials hav: ing diameters from 0.2 to 100 microns and lengths from ,5 to 4; inch and having surfaces and ends frayed into microscopic tendrils. .l
  • a fibrous pulp suitable for making paper-like products comprising'an inert'liquid dispersed mixture of fibers said mixture comprising from 5 to 75 percent by weight-molecularlyoriented composite fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible,-synthetic thermoplastic resin materials, said synthetic fibers having lateral surfaces and ends frayed into microscopic fibrillae and 25 to 95 percent by weight of natural cellulosic paper making fibers.
  • a paper product comprising cellulosic fibers and interfelted molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having microscopic tendrils protruding from ends and lateral surfaces.
  • a paper product comprising an interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having diameters of between 0.2 and 100 microns and lengths of between 3& and inch and having ends and lateral surfaces frayed into microscopic tendrils.
  • a paper product comprising an interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having ends and lateral surfaces frayed into microscopic fibrillae, and said synthetic fibers having diameters of between 0.2 and 100 microns and lengths of between and inch, and constituting between 5 and percent by weight of the fiber content of said product.

Description

I y 1963 w. A. MILLER ETAL 3,097,991
SYNTHETIC FIBROUS PRODUCTS Filed June 10, 1957 INVENTORS WALTER A. MILLER CHARLES N. MERRIAM,JR.
By M 4/6 A TORNEY 3,097,991 SYNTHETIC FIBROUS PRODUCTS Walter A. Miller, North Caldwell, and Charles N. Merrram, Jr., Florham Park, N.J., assigiors to Union Carbide Corporation, a corporation of New York Filed June 10, 1957, Ser. No. 664,772 6 Claims. (Cl. 162-157) The present invention relates generally to paper making and more particularly to specialty paper or paper-like products and to synthetic fiber pulps suitable for making paper containing synthetic fibers in combination with natural cellulosic paper making fibers.
During recent years a need has developed throughout industry for a better paper or paper product containing one or more types of synthetic fibers. Several synthetic fiber paper compositions and processes by which such paper can be made have been proposed. For certain rather limited and specialized purposes, the prior art compositions have been successful. However because the synthetic fibers contained in these compositions are not at all similar in structure to natural paper making fibers, the compositions have not been successful in the vast number of situations where a product is required which has essentially paper-like characteristics in addition to certain qualities not found in natural fiber paper. Such papers should have improved flexing qualities and crease resistance, high tensile and bursting strengths both when wet and when dry, be at least as resistant to high temperatures as natural fiber paper and be simply and economically produced.
One of the most critical points in making paper from synthetic fibers is in removing the web or water laid sheet from the forming screen in the case of a Fourdrinier type machine or the cylinder of a cylinder type machine. At this point the web must be strong enough to support itself though thoroughly wet. With natural fiber pulps, i.e., those made from any type of cellulosic material such as wood pulp, rags, or even straw, the web easily supports itself due to a high degree of interfelting of the fibers brought about by proper beating of the pulp. Heretofore, the synthetic fibers proposed for use in paper making have not been capable of interfeltin'g to any appreciable degree. As a consequence the paper made from these fibers had a low wet strength especially when only a small amount of the total fiber content was of the cellulosic type.
Interfelting is primarily due to an intertangling of microscopic fibrallae on the surface of a fiber with the fibrallae of other fibers. The synthetic fibers that have been proposed, prior to the present invention, for paper making have been extruded or spun through very small orifices either in solution on in the molten state to form long continuous fibers, the surfaces of which are quite smooth and slippery. As such they have no fibrallae to interfelt. Nor are they capable of being easily and uniformly dispersed in a water media or of fibrillating by being beaten while dispersed in water as is the case with natural fibers. A specific example of the difiiculty encountered with this type of fiber was demonstrated when an attempt was made to form a paper sheet from Dynel, a vinyl chloride-acrylonitrile copolymer. Whereas vinyl fibers in general, when woven into fabric, are known to Patented July 16, 1963 ice have a very high inter-fiber friction as compared to other extruded or spun synthetic fibers, Dynel fibers have in addition a highly irregular cross-section shape which increases inter-fiber friction. It is significant to note therefore, that when this resin was extruded into fine fibers, chopped into to A inch lengths, and sheeted in the conventional manner on a laboratory hand sheeting machine, the sheet produced could not 'be removed from the screen without tearing and was not self-sustaining.
To a certain extent the lack of fibrillae in synthetic fibers can be compensated for by causing the fibers to bond to each other in such a manner that the bonding forces are molecular rather than mechanical. subjecting a synthetic fiber web to the action of heat or a suitable solvent, or both, may bring about this bonding. The effect of either treatment is to soften the fibers to such an extent that fusion occurs at the points of contact of the fibers with each other. Such methods are usually difiicult to control, require the use of hazardous inflammable solvents, and to some extent destroy the molecular orientation frequently induced in the raw fibers to increase their strength and resistance to degeneration by ultra violet light.
Apart from the problem of wet strength of synthetic fiber paper, there exists the problem of producing raw fibers in the desired length and fineness for paper making. This is in large measure due to the difii-culty encountered in converting continuous extruded or spun fibers of suitable fineness into staple lengths for incorporation into paper.
Applicants have now been able to produce a superior pulp and a paper product made therefrom containing, in combination with natural fibers conventionally used in paper pulps, a substantial percentage of synthetic fibers. The actual ratio of synthetic to natural fibers may vary over a wide range depending primarily on the chemical composition of the synthetic fiber used and the use to which the paper or paper-like product is to be put. These new paper products are characterized by having synthetic fibers whose surface and ends are frayed into minute tendrils or fibrillae. The physical structure of these fibers being similar to that of natural fibers, a much higher degree of interfelting occurs than in pulps made from synthetic fibers by prior known methods.
With the improved interfelting qualities of the paper product coming within the scope of the present invention, there is no longer any need to incorporate synthetic fibers having a softening point low enough to be rendered tacky at temperatures below C. Synthetic fibers having either a high or a low softening point may be used or a combination of the two, depending on the properties required in the finished paper.
This invention utilizes as a base material to form feltable paper forming fibers, stretch oriented synthetic monofilaments prepared by the extrusion of a mixture of two or more linear polymeric thermoplastic materials, mutually incompatible with each other, through a single orifice die forming a composite monofilament product. By the term monofilament as used in the invention is meant the product obtained by melt extrusion of a mixture of two or more incompatible thermoplastic resins, said monofiiament after extrusion having been stretch oriented. This monofilament is composed of individual fibrils having longitudinal axes essentially parallel to each other and are weakly attached in a lateral direction, i.e., contact of one fibril with another is along a line running longitudinally along the outer surface of the fibrils. Fibril groups, comprised of several fibrils of each of the incompatible resin making up the monofilament, when split off from the monofilament are designated as fibers. The number of fibrils comprising each fiber may be in the range of about 2 to 100.
Such monofilaments may be produced according to the following generalized process steps. Two or more incompatible resins may be blended by mixing them on heated differential rolls, in a kneader, or with a Banbury mixer, or any other suitable means for obtaining an intimate mixture, such as dissolving them in a solvent and then evaporating the solvent. When mechanical mixing is employed, the temperatures used for mixing will vary but should be sufiicient to give a well dispersed mixture but not high enough to induce decomposition. The fiuxed sheets are cooled, granulated to a suitable size, and fed to an extruder.
The mixture may be extruded in any conventional extruder operated at a temperature low enough to prevent decomposition and high enough to be consistent with processing viscosity. It is not necessary to heat the resin mixture hot enough to maintain all components in a molten state. One or more components may be heated only enough to achieve workable plasticity while the remaining components are molten. Hot drawing of the plastic mixture as it emerges from the extruder is not necessary but may be done if a reduction in size of the monofilament is desired. Cold drawing to induce molecular orientation in the fibrils comprising the monofilament is necessary however if a product which will fibrillate readily is to be produced. The optimum degree of orientation induced will vary depending on the composition of the monofilament. Generally 350 to 550 percent orientation is adequate but orientation up to 2,000 percent may sometimes be advantageous. Aside from facilitating fibrillation, molecular orientation imparts improved physical properties to a large number of fiber forming polymers such as polyamides, polyesters, polyurethanes, and vinyl and acrylic type polymers, and as a consequence, improves the paper made from them.
Fibrillation of the monofilaments produced when two or more incompatible plastic materials are extruded by a process of which Examples I and II are typical, can be advantageously carried out by mechanical beating or working. Chopped monofilament A to inch in length are generally suitable for any of the numerous mechanical methods available.
A typical fibrillation operation may be carried out in a commercial Holland paper beater which consists of a cylinder of knives or bars and an adjustable bed plate. Chopped monofilament in a water media is circulated repeatedly under the beater roll by flowing around a circular trough. The filaments immediately begin to break up and within a few hours the plastic pulp resembles normal cellulose pulp.
In the drawing the photomicrographs permit a comparison of the fibers proposed by prior art and those proposed by the present invention for use in making paper and paper-like products. FIG. 1 is an enlargement (100x) of synthetic fibers of the type utilized in the present invention. These fibers were produced by fibrillating an extruded composite monofilament consisting of 80 parts by weight of a vinyl acetate-vinyl chloride copolymer (Bakelite Co.s VMCH) and 20 parts by weight of a solid polyethylene (Bakelite Co.s DYNH). The large number of fibrallae available for interfelting is typical. FIG. 2 shows a loose mat of extruded Dynel (a commercial vinyl chloride-acrylonitrile copolymer) fibers enlarged 100 times. The smooth surface of the fibers and the small number of contact points the fibers make with 4 one another are typical of the synthetic fibers in prior art paper products.
Rapid fibrillation can be accomplished by ball milling the chopped mixed strand with water. An air micronizer or a micropulverizer or other machines such as a Jordan or a Sutherland mill perform this operation equally well. The mention of these specific means is not intended to exclude other equivalent means which perform the operation with equal facility and still are within the scope of the invention.
The dimensions of the staple fibers, i.e., those fibers relatively short in length produced from chopped filament, depend somewhat on the fibrillation method employed and are normally in the range of 1 to microns in diameter. Fibers with diameters in the range of 10 to 30 microns are easily produced in a Holland paper beater. For instance chopped monofilaments produced in subsequent Examples I and II were fed into the beater in the ratio of 2 pounds of filament to 4 gallons of water and beaten for S to 8 hours. Since beating to some extent breaks the staple fibers laterally as well as longitudinally, the fibers in each case had an average length somewhat shorter than their original M; to A inch length. This length however always remains many fold larger than the diameter which averaged about 20 microns.
Typical extrusion processes in which stretch oriented filaments of a suitable nature for use in the product of this invention are shown in Examples I and II. Unless otherwise stated, all parts recited in the following examples are to be understood as being parts by weight.
The use of specifically defined polymers and copolymers in the foregoing examples are not intended to limit the scope of the invention. Owing to the fact that operable polymers are defined by physical properties more than by chemical composition, a vast number of varied polymers are applicable. Thus, in general, normally solid fiber forming resins are applicable so long as pairs or groups are so chosen that at least two incompatible polymers, copolymers or mixtures are extruded as a monofilament. These may include among others, polyamides or the various nylon resins; polyvinyl compositions and copolymers such as Saran (vinylidene chloride-vinyl chloride), Vinyon HH (vinyl chloride-vinyl acetate); polyethylene; polyesters such as Dacron (polyethylene terephthalate); and polyurethanes such as Perlon U.
EXAMPLE I Fifty five parts of polystyrene (M. Wt. 70,000 to 80,- 000) and 45 parts of polyethylene (M. Wt. 20,000 to 22,000) in the form of inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1 /4 inch bore extruder. The extruder temperature conditions were: die, 450 to 470 F.; front half, 430 to 450 F.; rear half, to F. The polymer mixture was fed to the extruder at a rate of 4 to 5 pounds per hour, extruded through a /8 inch diameter die at the rate of 5 to 10 ft./min. The extruded filament was hot drawn on a conventional hot draw godet and passed through a bath of ethylene glycol heated to about 270 to 285 F. to bring the filament to the proper temperature for stretch orientation. The orientation godet traveled at the rate of 600 ft./min. as did the wind up roll. The resulting filament was about 20 to 30 mils in diameter and oriented 500 percent.
. EXAMPLE II Fifty parts polystyrene (M. Wt. 70,000 to 80,000) and 50 parts of a hard tough interpolymer consisting of 70 parts styrene and 30 parts acrylonitrile (M. Wt. 70,000 to 80,000) in the form of inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1% inch extruder. The extruder temperature conditions were: die, 470 to 490 F.; front half, 470 to 480 F.; rear half, 210 to 220 F. The polymer mixture was fed to the extruder at a rate of 4 to 5 pounds per hour, extruded through a inch diameter die at the rate of 5 to 10 ft./min., and the filament ultimately wound at 600 ft./ min. Elongation and orientation of the filament was accomplished by the same apparatus as described in Example I except that the ethylene glycol bath was heated to 280 to 300 F. The resulting monofilament was about 20 to 30 mils in diameter and oriented 500 percent.
EXAMPLE III Eighty parts by weight of a vinyl copolymer consisting of 85 to 88 weight percent vinyl chloride, 11 to 14.3 percent vinyl acetate, 0.7 to 1.0 interpolymerized maleic anhydride and 20 parts normally solid polyethylene having an average molecular weight of 20,000 and 4 parts basic lead silicate (Tribase) were compounded to a smooth sheet on differential rolls heated to 140 C. The time of compounding was about 10 minutes for a forty pound batch. The sheet was granulated to about inch pellets and fed to a 1% inch extruder. The feed end of the extruder was water cooled (30 C.) and the die end of the extruder heated to about 250 F. The die 4; inch diameter was heated to about 270 to 280 F. The pellets were fed to the extruder through the die at a rate of 13 to 14 pounds per hour and passed between draw rolls, situated about 2 /2 feet from the end of the die, running at a speed of 28 ft./ min. The filament then passed through a bath of hot water (100 C.) to godet rolls traveling at a speed of 185 feet per minute, and fromthere to wind up rolls. The resulting filament was about 40 to 60 mils in diameter and oriented about 550 percent over the hot drawn length.
EXAMPLE IV Thirty five parts by weight polyethylene (M. Wt. 20,000 to 22,000) and 65 parts by weight Saran 281-S905 in the form of A inch pellets were tumbled together in a conical blender and the resultant mixture fed to a 1% inch Hartig extruder. The extruder temperature conditions were: die, 330F.; front barrel, 330 F. The polymer mixture was fed to the extruder at a rate of 4 to pounds per hour, and extruded through a A; inch diameter die at the rate of 5 to ft./min. The extruded filament was hot drawn at the rate of 25 ft./min. and cold drawn at room temperature at a rate suflicient to impart a molecular orientation of between 350 and 400 percent.
EXAMPLE V The extruded filament in Example III was used for the preparation of a heat scalable paper. The filaments were chopped into 4; inch to inch lengths, charged with water, in the ratio of 1 pound chopped filament to 3 gallons of water, into a paper beater, and beaten for 3 to 4 hours. Sufiicient pulp prepared from a standard Tappi cellulosic blotting paper was added to give a mixed pulp having equal weight percentage of synthetic fiber and natural fiber. The mixed pulp was then sheeted in the known manner on a Fourdrinier machine and dried at a temperature below the softening point of the plastic. It was found that the dried sheet could be sealed electronically at 250 F.
EXAMPLE VI The extruded filament in Example III was chopped into inch to A inch lengths and beaten for 3 to 4 hours with water in the proportion of 1 pound chopped filament to 3 gallons of water. A hand sheet was formed from this pulp which could be removed from the screen without tearing.
EXAMPLE VII Filaments having the same composition and made according to the process described in Examples I and II were chopped and beaten for 5 to 8 hours with water in the proportion of 2 pounds chopped filament to 4 gallons of water. The fibers resulting were A; inch to inch in length and had an average diameter of 20 microns. Portions of these synthetic fiber pulps were mixed with varying amounts of paper pulp made from a standard 6 Tappi blotting paper. These mixed pulps were then sheeted in the known manner on a Fourdrinier machine and dried over drying rolls heated to 225 -F. Sheets cut to measure 8 inches by 8 inches and were pressed under a pressure of 250 psi. at to C. before testing. The results of the tests are shown in the tables below:
Table I POLYSTYRENE-POLYETHYLENE PULP PLUS BLEAOHED SULFITE CELLULOSE PULP Sample No 1 2 3 4 Weight percent plastic fiber pulp 1 0 10 25 50 Weight percent bleached sulfite cellulose pulp 100 90 75 50 Dry mullen 2 (bursting strength) 13.0 16.8 18.2 15.4 Wet Mullen 2.0 7.7 8. 5 10. 2
1 Plastic pulp from Example I. z Tappi 403-M-53.
Table II POLYSTYRENE AND STYRENE-ACRYLONITRILE CO- PULP PLUS BLEACHED SULFITE CELLULOSE The extruded filament from Example I was chopped into inch to /1 inch lengths, charged with water in the ratio of one pound chopped filament to three gallons of water into a conventional paper beater and beaten for 3 to 4 hours. Sufi'icient pulp prepared from a bleached hardwood sulphite cellulose was added to form a pulp having the following weight ratios of synthetic fiber to natural fiber:
Cellulose Synthetic Pulp Fiber Pulp The pulps were mixed 10 minutes and sheeted in the known manner on a. Fourdrinier machine. In all sheets there was sufficient interfelting of the synthetic fibers with each other and with cellulosic fibers to permit removal of the sheets from the screen without tearing.
EXAMPLE IX A low softening composite, fibrous monofilament consisting of polyvinyl acetate and polyethylene was prepared as follows: 80 parts of polyvinyl acetate (Bakelite Co.s AYAT) and 20 parts polyethylene (DYNB) were milled together on rolls heated to 280 F. The mill sheet was cooled, dried, and fed to an extruder and extruded under the following temperature conditions:
Back barrel of extruder F 220 Front barrel of extruder F" 250 Nozzle F 300 Hot draw it lrnin-.. 25 Cold draw (180 F.) percent 450 The filament when chopped and beaten in a conventional paper beater fibrillated readily. The pulp formed in the beater was mixed with equal parts by weight of a standard Tappi cellulose pulp and sheeted in the known manner on a Fourdrinier machine.
What is claimed is:
1. As an article of manufacture a fibrous pulp comprising inert liquid dispersed molecularly oriented composite fibers of synthetic plastic material having lateral surfaces and ends frayed into microscopic fibrillate and having diameters from 0.2 to 100 microns and lengths from to A; inch, said fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resins.
2. As an article of manufacture a pulp suitable for paper making comprising an inert liquid dispersed interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials hav: ing diameters from 0.2 to 100 microns and lengths from ,5 to 4; inch and having surfaces and ends frayed into microscopic tendrils. .l
3. As an article of manufacture a fibrous pulp suitable for making paper-like products comprising'an inert'liquid dispersed mixture of fibers said mixture comprising from 5 to 75 percent by weight-molecularlyoriented composite fibers comprising one or more fibrils of each of two or more normally solid, mutually incompatible,-synthetic thermoplastic resin materials, said synthetic fibers having lateral surfaces and ends frayed into microscopic fibrillae and 25 to 95 percent by weight of natural cellulosic paper making fibers. a
4. As an article of manufacture a paper product comprising cellulosic fibers and interfelted molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having microscopic tendrils protruding from ends and lateral surfaces.
5. As an article of manufacture a paper product comprising an interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having diameters of between 0.2 and 100 microns and lengths of between 3& and inch and having ends and lateral surfaces frayed into microscopic tendrils.
6. As an article of manufacture a paper product comprising an interfelted mixture of beaten cellulosic fibers and molecularly oriented composite fibers comprising one or more of each of two or more normally solid, mutually incompatible, synthetic thermoplastic resin materials, said synthetic fibers having ends and lateral surfaces frayed into microscopic fibrillae, and said synthetic fibers having diameters of between 0.2 and 100 microns and lengths of between and inch, and constituting between 5 and percent by weight of the fiber content of said product.
References Cited in the file of this patent UNITED STATES PATENTS 2,351,090 Alles June 13, 1944 2,443,711 Sisson June 22, 1948 2,531,234 Seckel Nov. 21, 1950 2,533,145 Schorger Dec. 5, 1950 2,545,869 Bailey Mar. 20, 1951 2,558,730 Cresswell July 3, 1951 2,579,589 Lehrnberg Dec. 25, 1951 2,736,946 Stanton Mar. 6, 1956 2,795,821 William June 18, 1957 2,796,656 Schappel June 25, 1957 2,810,646 Wooding Oct. 22, 1957 2,816,851 Arledter Dec. 17, 1957 FOREIGN PATENTS 687,041 Great Britain Feb. 4, 1953

Claims (1)

1. AS AN ARTICLE OF MANUFACTURE A FIBROUS PULP COMPRISING INERT LIQUID DISPERSED MOLECULAR ORIENTED COMPOSITED FIBERS OF SYNTHETIC PLASTIC MATERIAL HAVING LATERAL SURFACES AND ENDS FRAYED INTO MICROSCOPIC FIBRILLATE AND HAVING DIAMETES FROM 0.2 TO 100 MICRONS AND LENGHTS FROM 1/32 TO 1/2 INCH, SAID FIBERS COMPRISING ONE OR MORE FIBRILS OF EACH OF TWO OR MORE NORMALLY SOLID MUTUALLY INCOPATIBLE, SYNTHETIC THERMOPLASTIC RESINS.
US664772A 1957-06-10 1957-06-10 Synthetic fibrous products Expired - Lifetime US3097991A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US664772A US3097991A (en) 1957-06-10 1957-06-10 Synthetic fibrous products
FR1203873D FR1203873A (en) 1957-06-10 1958-06-04 Manufacturing process for synthetic fibrous products
GB18304/58A GB836328A (en) 1957-06-10 1958-06-09 Synthetic fibrous paper-like products
DEU5391A DE1060246B (en) 1957-06-10 1958-06-10 Process for making paper products containing synthetic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US664772A US3097991A (en) 1957-06-10 1957-06-10 Synthetic fibrous products

Publications (1)

Publication Number Publication Date
US3097991A true US3097991A (en) 1963-07-16

Family

ID=24667378

Family Applications (1)

Application Number Title Priority Date Filing Date
US664772A Expired - Lifetime US3097991A (en) 1957-06-10 1957-06-10 Synthetic fibrous products

Country Status (4)

Country Link
US (1) US3097991A (en)
DE (1) DE1060246B (en)
FR (1) FR1203873A (en)
GB (1) GB836328A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243339A (en) * 1960-12-06 1966-03-29 Scraggs Frederick Continuous monofilament
US3320107A (en) * 1963-01-30 1967-05-16 Gen Motors Corp Method of making a facing for use in energy transmitting device
US3323978A (en) * 1963-05-09 1967-06-06 Phillips Petroleum Co Artificial textile fibres and their production
US3384535A (en) * 1961-08-29 1968-05-21 Schweizerische Viscose Process for fibrillating polyamide-containing fibers with an acid swelling agent
US3433703A (en) * 1967-11-21 1969-03-18 Minnesota Mining & Mfg Method of forming paper from synthetic fibers having a skeletal structure
US3499822A (en) * 1965-02-23 1970-03-10 Rasmussen O B Extruded,expanded mat-like or web-like fibrillar sheet assembly and method for its production
US3518337A (en) * 1967-09-14 1970-06-30 Du Pont Process for dispersing partially miscible polymers in melt spinnable fiber-forming polymers
US3548049A (en) * 1966-04-27 1970-12-15 Pechiney Saint Gobain Process for spinning polyvinyl chloride fibers
US3549734A (en) * 1967-06-27 1970-12-22 Takeshi Yasuda Method of forming microfibers
US3765999A (en) * 1969-12-28 1973-10-16 Oji Yuka Goseishi Kk Synthetic paper
US3855056A (en) * 1969-03-19 1974-12-17 Hitachi Chemical Co Ltd Process for producing synthetic pulp-like materials and producing synthetic papers therefrom
US3914501A (en) * 1969-06-27 1975-10-21 Union Carbide Corp Porous products and processes therefor
US3916447A (en) * 1972-04-24 1975-11-04 Kimberly Clark Co Low cost, absorbent, clinging, aqueous liquid barrier protective covering
US3957573A (en) * 1971-11-09 1976-05-18 Dainichi-Nippon Cables, Ltd. Process for producing insulating paper where the paper is frictionally calendered
US3963821A (en) * 1973-07-19 1976-06-15 Toray Industries, Inc. Method for producing synthetic fiber for paper
US4028452A (en) * 1973-11-12 1977-06-07 Sun Ventures, Inc. Additives to improve wettability of synthetic paper pulp
US4264676A (en) * 1978-08-16 1981-04-28 Nitivy Co., Ltd. Process for preparing superfine ion-exchange fibers
US4392861A (en) * 1980-10-14 1983-07-12 Johnson & Johnson Baby Products Company Two-ply fibrous facing material
US4425126A (en) 1979-12-28 1984-01-10 Johnson & Johnson Baby Products Company Fibrous material and method of making the same using thermoplastic synthetic wood pulp fibers
US4439561A (en) * 1982-03-24 1984-03-27 Union Carbide Corporation Sealant composition and method
US4634739A (en) * 1984-12-27 1987-01-06 E. I. Du Pont De Nemours And Company Blend of polyethylene and polypropylene
US4783507A (en) * 1982-09-30 1988-11-08 Mitsui Petrochemical Industries, Ltd. Novel polyethylene synthetic pulp
US5120598A (en) * 1991-04-05 1992-06-09 Air Products And Chemicals, Inc. Fibrous material for oil spill clean-up
US5133835A (en) * 1990-03-05 1992-07-28 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US5145617A (en) * 1990-10-15 1992-09-08 Duro-Last, Inc. Method of processing scrap roof-membrane sheet material comprising a flexible synthetic fabric substrate enveloped in a thermoplastic plastic envelope
US5164132A (en) * 1991-04-05 1992-11-17 Air Products And Chemicals, Inc. Process for the production of ultra-fine polymeric fibers
US5403444A (en) * 1990-03-05 1995-04-04 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US6026819A (en) * 1998-02-18 2000-02-22 Filtrona International Limited Tobacco smoke filter incorporating sheath-core bicomponent fibers and tobacco smoke product made therefrom
US6071451A (en) * 1997-12-31 2000-06-06 Kimberly-Clark Worldwide, Inc. Process for making a nonwoven, porous fabric from polymer composite materials
US6090472A (en) * 1997-12-31 2000-07-18 Kimberly-Clark Worldwide, Inc. Nonwoven, porous fabric produced from polymer composite materials
US6153136A (en) * 1997-10-17 2000-11-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Process for manufacturing cellulosic microfibers
US6171443B1 (en) 1990-03-05 2001-01-09 Polyweave International, Llc Recyclable polymeric synthetic paper and method for its manufacture
US6228488B1 (en) 1998-05-22 2001-05-08 Alliedsignal Inc. Process for making load limiting yarn
US6261674B1 (en) 1998-12-28 2001-07-17 Kimberly-Clark Worldwide, Inc. Breathable microlayer polymer film and articles including same
US6429261B1 (en) 2000-05-04 2002-08-06 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6586529B2 (en) 2001-02-01 2003-07-01 Kimberly-Clark Worldwide, Inc. Water-dispersible polymers, a method of making same and items using same
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6630558B2 (en) 1998-12-31 2003-10-07 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US20050039872A1 (en) * 2003-05-08 2005-02-24 Dynax Corporation High torque capacity wet paper friction member
US6897168B2 (en) 2001-03-22 2005-05-24 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6908966B2 (en) 2001-03-22 2005-06-21 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US7070854B2 (en) 2001-03-22 2006-07-04 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US7101612B2 (en) 2000-05-04 2006-09-05 Kimberly Clark Worldwide, Inc. Pre-moistened wipe product
US7276459B1 (en) 2000-05-04 2007-10-02 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US20110189940A1 (en) * 2010-02-04 2011-08-04 Benjamin Obdyke Incorporated Ridge Vent and Roof Ridge Assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1218722B (en) * 1959-09-29 1966-06-08 Lonza Ag Thermoplastic molding compound
DE1224892B (en) * 1960-10-05 1966-09-15 Marianne Denk Geb Baumeister Paper bed linen
DE1206763B (en) * 1961-01-28 1965-12-09 Ornapress A G Process for decorating molded bodies

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2351090A (en) * 1941-11-21 1944-06-13 Du Pont Process of preparing rubber-coated artificial filaments
US2443711A (en) * 1943-05-13 1948-06-22 American Viscose Corp Method of manufacturing artificial filaments
US2531234A (en) * 1949-07-21 1950-11-21 Richard A Fisch Longitudinally separable extruded thermoplastic strip and process of producing same
US2533145A (en) * 1948-04-13 1950-12-05 Burgess Cellulose Company Stereotype mat
US2545869A (en) * 1948-02-17 1951-03-20 Plax Corp Multiple fiber strand
US2558730A (en) * 1947-09-04 1951-07-03 American Cyanamid Co Method of preparing shaped products from polymers and copolymers of acrylonitrile
US2579589A (en) * 1947-02-25 1951-12-25 American Felt Co Storage battery separator
GB687041A (en) * 1950-03-20 1953-02-04 American Viscose Corp Paper making
US2736946A (en) * 1952-07-03 1956-03-06 Dow Chemical Co Polyacrylonitrile fibers having a scaly integument
US2795821A (en) * 1954-03-16 1957-06-18 Okonite Co Production of extruded shapes having textured surfaces without recourse to external mechanical devices, such as embossing rolls and the like
US2796656A (en) * 1952-09-06 1957-06-25 American Viscose Corp Modified regenerated cellulose articles and method for making the same
US2810646A (en) * 1953-09-17 1957-10-22 American Cyanamid Co Water-laid webs comprising water-fibrillated, wet-spun filaments of an acrylonitrile polymer and method of producing them
US2816851A (en) * 1956-07-27 1957-12-17 Hurlbut Paper Company Decorative laminate containing a transparent printed overlay sheet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2351090A (en) * 1941-11-21 1944-06-13 Du Pont Process of preparing rubber-coated artificial filaments
US2443711A (en) * 1943-05-13 1948-06-22 American Viscose Corp Method of manufacturing artificial filaments
US2579589A (en) * 1947-02-25 1951-12-25 American Felt Co Storage battery separator
US2558730A (en) * 1947-09-04 1951-07-03 American Cyanamid Co Method of preparing shaped products from polymers and copolymers of acrylonitrile
US2545869A (en) * 1948-02-17 1951-03-20 Plax Corp Multiple fiber strand
US2533145A (en) * 1948-04-13 1950-12-05 Burgess Cellulose Company Stereotype mat
US2531234A (en) * 1949-07-21 1950-11-21 Richard A Fisch Longitudinally separable extruded thermoplastic strip and process of producing same
GB687041A (en) * 1950-03-20 1953-02-04 American Viscose Corp Paper making
US2736946A (en) * 1952-07-03 1956-03-06 Dow Chemical Co Polyacrylonitrile fibers having a scaly integument
US2796656A (en) * 1952-09-06 1957-06-25 American Viscose Corp Modified regenerated cellulose articles and method for making the same
US2810646A (en) * 1953-09-17 1957-10-22 American Cyanamid Co Water-laid webs comprising water-fibrillated, wet-spun filaments of an acrylonitrile polymer and method of producing them
US2795821A (en) * 1954-03-16 1957-06-18 Okonite Co Production of extruded shapes having textured surfaces without recourse to external mechanical devices, such as embossing rolls and the like
US2816851A (en) * 1956-07-27 1957-12-17 Hurlbut Paper Company Decorative laminate containing a transparent printed overlay sheet

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243339A (en) * 1960-12-06 1966-03-29 Scraggs Frederick Continuous monofilament
US3384535A (en) * 1961-08-29 1968-05-21 Schweizerische Viscose Process for fibrillating polyamide-containing fibers with an acid swelling agent
US3320107A (en) * 1963-01-30 1967-05-16 Gen Motors Corp Method of making a facing for use in energy transmitting device
US3323978A (en) * 1963-05-09 1967-06-06 Phillips Petroleum Co Artificial textile fibres and their production
US3499822A (en) * 1965-02-23 1970-03-10 Rasmussen O B Extruded,expanded mat-like or web-like fibrillar sheet assembly and method for its production
US3548049A (en) * 1966-04-27 1970-12-15 Pechiney Saint Gobain Process for spinning polyvinyl chloride fibers
US3549734A (en) * 1967-06-27 1970-12-22 Takeshi Yasuda Method of forming microfibers
US3518337A (en) * 1967-09-14 1970-06-30 Du Pont Process for dispersing partially miscible polymers in melt spinnable fiber-forming polymers
US3433703A (en) * 1967-11-21 1969-03-18 Minnesota Mining & Mfg Method of forming paper from synthetic fibers having a skeletal structure
US3855056A (en) * 1969-03-19 1974-12-17 Hitachi Chemical Co Ltd Process for producing synthetic pulp-like materials and producing synthetic papers therefrom
US3914501A (en) * 1969-06-27 1975-10-21 Union Carbide Corp Porous products and processes therefor
US3765999A (en) * 1969-12-28 1973-10-16 Oji Yuka Goseishi Kk Synthetic paper
US3957573A (en) * 1971-11-09 1976-05-18 Dainichi-Nippon Cables, Ltd. Process for producing insulating paper where the paper is frictionally calendered
US3916447A (en) * 1972-04-24 1975-11-04 Kimberly Clark Co Low cost, absorbent, clinging, aqueous liquid barrier protective covering
US3963821A (en) * 1973-07-19 1976-06-15 Toray Industries, Inc. Method for producing synthetic fiber for paper
US4028452A (en) * 1973-11-12 1977-06-07 Sun Ventures, Inc. Additives to improve wettability of synthetic paper pulp
US4264676A (en) * 1978-08-16 1981-04-28 Nitivy Co., Ltd. Process for preparing superfine ion-exchange fibers
US4425126A (en) 1979-12-28 1984-01-10 Johnson & Johnson Baby Products Company Fibrous material and method of making the same using thermoplastic synthetic wood pulp fibers
US4392861A (en) * 1980-10-14 1983-07-12 Johnson & Johnson Baby Products Company Two-ply fibrous facing material
US4439561A (en) * 1982-03-24 1984-03-27 Union Carbide Corporation Sealant composition and method
US4783507A (en) * 1982-09-30 1988-11-08 Mitsui Petrochemical Industries, Ltd. Novel polyethylene synthetic pulp
US4634739A (en) * 1984-12-27 1987-01-06 E. I. Du Pont De Nemours And Company Blend of polyethylene and polypropylene
US5133835A (en) * 1990-03-05 1992-07-28 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US5403444A (en) * 1990-03-05 1995-04-04 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US6171443B1 (en) 1990-03-05 2001-01-09 Polyweave International, Llc Recyclable polymeric synthetic paper and method for its manufacture
US5145617A (en) * 1990-10-15 1992-09-08 Duro-Last, Inc. Method of processing scrap roof-membrane sheet material comprising a flexible synthetic fabric substrate enveloped in a thermoplastic plastic envelope
US5120598A (en) * 1991-04-05 1992-06-09 Air Products And Chemicals, Inc. Fibrous material for oil spill clean-up
US5164132A (en) * 1991-04-05 1992-11-17 Air Products And Chemicals, Inc. Process for the production of ultra-fine polymeric fibers
US6153136A (en) * 1997-10-17 2000-11-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Process for manufacturing cellulosic microfibers
US6511746B1 (en) 1997-10-17 2003-01-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Cellulosic microfibers
US6071451A (en) * 1997-12-31 2000-06-06 Kimberly-Clark Worldwide, Inc. Process for making a nonwoven, porous fabric from polymer composite materials
US6090472A (en) * 1997-12-31 2000-07-18 Kimberly-Clark Worldwide, Inc. Nonwoven, porous fabric produced from polymer composite materials
US6026819A (en) * 1998-02-18 2000-02-22 Filtrona International Limited Tobacco smoke filter incorporating sheath-core bicomponent fibers and tobacco smoke product made therefrom
US6174603B1 (en) 1998-02-18 2001-01-16 Filtrona International Limited Sheath-core bicomponent fibers with blended ethylene-vinyl acetate polymer sheath, tobacco smoke filter products incorporating such fibers and tobacco smoke products made therefrom
US6228488B1 (en) 1998-05-22 2001-05-08 Alliedsignal Inc. Process for making load limiting yarn
US6261674B1 (en) 1998-12-28 2001-07-17 Kimberly-Clark Worldwide, Inc. Breathable microlayer polymer film and articles including same
US6630558B2 (en) 1998-12-31 2003-10-07 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6855790B2 (en) 1998-12-31 2005-02-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7276459B1 (en) 2000-05-04 2007-10-02 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6602955B2 (en) 2000-05-04 2003-08-05 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7101612B2 (en) 2000-05-04 2006-09-05 Kimberly Clark Worldwide, Inc. Pre-moistened wipe product
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6814974B2 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US6429261B1 (en) 2000-05-04 2002-08-06 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6586529B2 (en) 2001-02-01 2003-07-01 Kimberly-Clark Worldwide, Inc. Water-dispersible polymers, a method of making same and items using same
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6908966B2 (en) 2001-03-22 2005-06-21 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US7070854B2 (en) 2001-03-22 2006-07-04 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6897168B2 (en) 2001-03-22 2005-05-24 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US20050039872A1 (en) * 2003-05-08 2005-02-24 Dynax Corporation High torque capacity wet paper friction member
US20110189940A1 (en) * 2010-02-04 2011-08-04 Benjamin Obdyke Incorporated Ridge Vent and Roof Ridge Assembly
US9200453B2 (en) * 2010-02-04 2015-12-01 Benjamin Obdyke Incorporated Ridge vent mat and roof ridge assembly

Also Published As

Publication number Publication date
DE1060246B (en) 1959-06-25
GB836328A (en) 1960-06-01
FR1203873A (en) 1960-01-21

Similar Documents

Publication Publication Date Title
US3097991A (en) Synthetic fibrous products
US3546063A (en) Microfibers and shaped structures containing microfibers
US3047456A (en) Manufacture of paper products from fibers wet spun from polymer blends
US3047455A (en) Paper manufacture from synthetic non-cellulosic fibers
US3402231A (en) Process for preparing synthetic fibers for paper products
US3900549A (en) Method of spinning composite filaments
US3099067A (en) Plastic fibers
US5565158A (en) Process for recycling multicomponent mixed polymer wastes
US3783093A (en) Fibrous polyethylene materials
US4210487A (en) Process for making synthetic paper pulp
DE2537278B2 (en) Method and device for producing a fiber fleece
EP3129530B1 (en) Polymer fibre having improved dispersibility
JP3953107B2 (en) Plexifilamentary strands of blended polymers
US3611699A (en) Fibrous yarn product
TW201546341A (en) Polyester binder fiber
US3855056A (en) Process for producing synthetic pulp-like materials and producing synthetic papers therefrom
US2784135A (en) Process for the manufacture of polyacrylonitrile films and laminates
US3560318A (en) Fibrous pulp containing partially hydrolyzed polyvinyl acetate
US2899351A (en) Thermoplastic paper
US3984514A (en) Process for producing fine polyamide/polystyrene fibers
DE2063933C3 (en) Process for the production of polyolefin fibers
JPS58205520A (en) Filter medium
US4356234A (en) Thermoplastic synthetic filaments and process for producing the same
DE2009971C3 (en) Bicomponent synthetic thread of the matrix / fibril type
AT228616B (en) Manufacture of a paper product