US3113620A - Process for producing viscous oil - Google Patents

Process for producing viscous oil Download PDF

Info

Publication number
US3113620A
US3113620A US824967A US82496759A US3113620A US 3113620 A US3113620 A US 3113620A US 824967 A US824967 A US 824967A US 82496759 A US82496759 A US 82496759A US 3113620 A US3113620 A US 3113620A
Authority
US
United States
Prior art keywords
formation
oil
combustion
well bore
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US824967A
Inventor
Charles E Hemminger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US824967A priority Critical patent/US3113620A/en
Application granted granted Critical
Publication of US3113620A publication Critical patent/US3113620A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives
    • E21B43/2635Methods for stimulating production by forming crevices or fractures using explosives by means of nuclear energy

Definitions

  • the present invention relates to an improved process for recovering viscous oil from subsurface deposits and, more particularly to a method for utilizing high energy explosives combined with in-situ combustion in a subsurface bituminous deposit containing viscous oil.
  • Suitable deposits are subsurface strata containing hydrocarbons not naturally owable into a well bore traversing the deposit.
  • oil is produced from oil shale reserves.
  • thermonuclear explosives should be available for a fraction of a mill per kilowatt-hour equivalent
  • numerous applications involving underground explosions have been proposed.
  • ultra high energy explosions can be used in mining operations to break up formations, in the oil industry to increase or stimulate productivity by heating or raising the pressure of a reservoir, and in landscaping or earth moving techniques such as digging canals, making harbors, or removing troublesome obstacles.
  • the present invention is primarily directed to the production of oil. Further, it provides a method for preparing and utilizing an underground explosion chamber in a bituminous deposit suitable for the explosion of a high energy explosive charge.
  • oil is recovered from a subsurface bituminous formation by detonating an explosive within a well bore penetrating the formation and thereafter moving a combustion front downwardly through the formation adjacent the well bore. Oil is removed to the surface from the lower prtion of the formation through the single Well traversing the formation.
  • the above steps are repeated utilizing successively larger explosions until a cavity of approximately spherical dimensions is formed in the formation.
  • an ultra-high energy explosive is detonated in the chamber formed to fragment a large volume of the bituminous formation and lill the cavity with broken and crushed material of the formation.
  • the massive fragmented zone is then treated by conventional operations, such as in situ combustion or by water flooding With high temperature liquid phase Water in accordance with a process described in copending application S.N. 802,358, filed March 27, 1959.
  • nuclear energy can be released in an underground explosion of a thermonuclear device in a bituminous deposit containing hydrocarbons not naturally flowable into a Well bore traversing the deposit.
  • conventional molecular explosives can be employed.
  • ultra-high energy explosives either molecular or nuclear, can now be utilized by creating a specially prepared explosion chamber within the bituminous deposit.
  • a cavity or explosive chamber is formed in a bituminous deposit which deposit contains substantial amounts of magnesium and calcium carbonates according to this invention by first detonating a small explosive charge in the well bore, then initiating combustion in the upper portion adjacent the well bore to establish a combustion front and thereafter injecting a combustion-supporting gas into the upper portion of the deposit to move the flame front downwardly and outwardly around the well bore, and then detonating a second explosion.
  • the products of combustion remove substantially all organic material from an extended region in the vicinity of the Well bore, leaving a cavity in the deposit containing only a frail ash skeleton of rock.
  • the second explosion detonated in the bore hole shatters the frail ash skeleton of rock, thus forming the cavity and at the same time causes additional fractures in the walls of the cavity.
  • the in situ combustion step is repeated after each explosion, thereby forming another and larger area of frail ash skeleton of rock. Oil derived from the bituminous deposit by the combustion step can be removed to the Surface through the well bore extending through the bottom of the burned-out zone. By repeating the steps outlined, the cavity can be increased in size many fold.
  • An important feature of the present invention lies in the fact that, by creating an explosion chamber containing only a very friable skeleton of ash, many problems concerned with the shock wave created by the explosion are obviated. As most atomic devices release energy equivalent to that of a major earthquake, Without special precautions, shockwave can result in significant motion of the earths surface.
  • the loss of energy from an H-bomb or an A-bornb blast in the explosion chamber underground is substantially reduced due to transmission of shock wave energy through the skeleton ash material of the chamber. Therefore, substantially all the energy released can be utilized to provide sensible heat to raise the temperature of the fragmented rock which falls into the cavity following the expansion stage of the nuclear explosion.
  • the very frail skeleton ash can be knocked down prior to the detonation of the ultra-high energy device simply by exploding a small charge or by utilizing a water Washing technique in accordance with conventional ooding practice in secondary recovery operations.
  • the advantage of having a large, substantially empty cavity is readily apparent.
  • the extremely large cavity from which the ash skeleton has been knocked down or removed can be used to contain many tous of conventional molecular explosives. Further, it may be necessary to provide a suitable liner within the explosion chamber in order to avoid extensive contamination of underground formation materials and adjacent water tables by the radioactivity produced by the explosion of the device involving nuclear fission. In such cases extremely large cavities are required.
  • bituminous deposits containing oil-shale can be produced in accordance with the method of the present invention.
  • the process is suitable for rock formations known as oil shale which contain a combination of organic and inorganic sediments which have become hardened into impermeable rock. Suitable shales have a compressive strength in the range of 5000 to 30,000 p.s.i.
  • the organic portion laid down in layers is a solid amorphous material generally known as kerogen which can be converted to oil under the application of heat.
  • the oil recovered is a black viscous waxy substance which will not ow below about or 90 F.
  • FIGURE shows schematically a method of'recovering viscous oil and at the saine time preparing a subsurface explosion chamber in a bituminous Vdeposit in which a high energy explosive device can be exploded ⁇ to* produce a massive fractured zone of rook for subsequent underground treatment.
  • the :method of the present invention is employed with bituminous deposits lying in the range of from to 20,000- feet below the surface of the earth.
  • the minimum ground cover ⁇ required is that necessary to insure complete containment of the explosion. This depends upon the energy yield of the explosive utilized. For nuclear devices, the minimum depth in feet is approximately equal to in the range of 250 to 450 times the cube root of the size of the device in kilotons. Thus, the explosion from a one kiloton nuclear bomb is completely contained if the device is exploded 250 to 450 feet below the nearest surface point. The maximum depth is limited only by the economic considerations involved in penetrating very deep lying formations with conventional drilling equipment.
  • Explosives suitable for use within a subsurface bituminous deposit are Well known in the ar-t. Due to the space limitation inherent in the process involving detonation of an explosive in a well bore, explosives having a high energy yield for their size are especially preferred. Most preferably, the explosion will have an energy yield equivalent to in the range of 0.1 kiloton to megatons of TNT. However, inexpensive chemical explosives such as ammonium nitrate can be employed. In one embodiment, the method of the present invention is carried out utilizing a thermonuclear device such as a hydrogen or atomic bomb.
  • thermonuclear devices are now available for underground explosions; therefore, it is to be understood that the present discovery involves merely the use of a nuclear device in a novel and useful method ⁇ for exploiting oil deposits, and that the fabrication and manufacture of hydrogen and atomic bombs form no part of this invention.
  • thermonuclear device ⁇ when a thermonuclear device is exploded in an underground oil deposit, an isothermal ball of fire is produced, which produces a very high pressure and temperature.
  • the intensity of energy absorbed from the shock wave is sufficiently high near the fireball to vaporize rock and increase the size of the explosion chamber, then melt rock outside the vaporized sphere, and crush more rock outside the melted liner.
  • the cavity at much higher than equilibrium ground pressure, is held back by the inertia of the surrounding rock but then expands to equalize the cavity pressure with ground pressure pushing the crushed but -unvaporized rock ahead of it, more or less isotropically.
  • Recovery efficiencies approaching 100% can be achieved at reasonable rates of water injection suicient to advance the heated zone at a velocity in the range of 0.1 to 5 feet per day.
  • the flood water at a temperature in the range of 550 to 800 F. is supplied to the fragmented zone by injecting water, steam or brine or a mixture of these at high temperature at the top of the crushed zone.
  • oil can be produced by the action of the water from the bottom of the zone through a production well ⁇ set ⁇ to the lower most region of the fractured zone.
  • an in-situ combustion process can be employed.
  • reference character 1 designates a bituminous oil shale deposit which does not produce itself under natural conditions.
  • This deposit can be an oil-shale having essentially no permeability and containing non-mobile oil in the form of kerogen, laid down in the Irock in layers. It is isolated by adjacent strata 2 and 3.
  • bituminous deposit 1 which, for example, can be of the order of 1000 feet thick there has L been formed :a substantially spherical explosion chamber 4- containing a peripheral friable skeleton of ash 5 left in place following the combustion step.
  • Reference character 11 designates a well bore extending downwardly from the sunface 12 through formation 2- and terminating in formation 1. It will be understood that the weli bore actually extends through a plurality of subsurface formations and that only a total of three formations are shown in 4the drawing for simplification.
  • a well ⁇ casing 13 extends downwardly through the well bore 11 and into the bituminous deposit l1 to be exploited.
  • the upper end 14 of the casing is capped or closed off above the surface and a conduit 15 communi- Cates with the casing above the surface for purposes which will be hereinafter set forth.
  • a single string of tubing 16 is placed concentrically in casing 13 and terminates beiow the lower end of casing '13 whereby oil which accumulates in the well bore, as will be more fully hereinafter set forth, can be removed to the surface.
  • gas communication is established from the well bore at the upper portion of the formation downwardly through the formation around the well bore and lback into the well bore in the lower portion of the formation by detonating an explosive charge. Redrilling for setting casing 16 is usually required after the fracturing operation.
  • the casing 13 is cemented to the walls of the well bore 11 through the central portion of the oil bearing formation 1 as indicated by the reference character 17.
  • Ifor-mation 1 is in direct communication with the casing throughout the 11pper portion of the formation and the formation is in direct communication with tubing string ⁇ 16 through the lower end portion of the formation.
  • Air mixed with hydrocarbon fuel is forced through conduit 15 downwardly through the annulus between the casing 13 and tubing 16 and outwardly into the upper portion of the formation 1.
  • combustion can then be initiated by any suitable means.
  • the flame front resulting from the combustion is driven by air injection downwardly and outwardly through the formation 1 around the well bore in the directions indicated by the arrows.
  • the gases of combustion will be forced downwardly through the formations by the high pressure incoming fuel-air mixture and will enter tubing 16 to be carried to the surface.
  • oil containing materials and oil entrained in formation 1 around the well bore will be moved and directed into the lower portion of the well bore by the heat of combustion together with the resultant gas drive and will be carried up the tubing string 16 together with the gases of combustion or can be removed by any desired articial lifting means.
  • the amount and the pressure of the gas discharging into the lower portion of the well can be suhcient to provide removal of accumulated oil along with the combustion gases through the tubing.
  • Oil removed to the surface is separated from the combustion gases in separator 21. These gases are then sent by line 22 to a gas turbine 23 where they provide the energy to compress the air fed to the air compressor through line 26.
  • the back pressure in line 22 is of the order of 15 to 100 p.s.i. Additional air can be admitted through line 27 from other compressors as needed.
  • Fuel in the form of suitable hydrocarbon gases is introduced through line 2S and can be mixed if desired with compressed air coming through line 24 into the formation through line 15.
  • the gas turbine can be started up by means of natural gas or other fuel admitted by line 28 and is vented through line 30.
  • a well having a diameter of about 12 inches is drilled into an oil-shale deposit having a thickness of about 1000 feet, the top of the formation lying at a depth of about 1000 feet.
  • a 4" tubing string is placed to the bottom of the bore hole to serve as an internal exit pipe. Combustion is then initiated at the top of the formation. For approximately 20 days, 50,1000 cubic feet per minute of air mixed with 5 c.f./min. of 1000 B.t.u. gas is injected through the annulus between the exit pipe and the casing into the top of the formation with an inlet pressure of about 100 p.s.i.g. Thereafter, the 4 exit pipe is withdrawn and a second explosive charge is actuated in the formation.
  • the second explosive charge is preferably larger than the irst and in this example a charge of tons of TNT is employed.
  • a suitable hole is drilled into the bottom of the formation and the 4 exit pipe is again placed as an exit pipe for the recovery of produced oil. Again combustion is initiated and for 40 days 100,000 c.f./min. of air with 10 c.f./min. of 1000 B.t.u. gas is injected into the upper portion of the formation.
  • oil production begins to become significant and during the next 6010 days, 3000 barrels per day of oil can be produced by injecting 500,000 c.f./rnin. of air into the upper portion of the formation. This amounts to a total oil recovery by the 70th day of approximately 1.8 million barrels. During the same period, an average of 12 109 MM B.t.u./day of gas is available to run the gas turbines and auxiliary equipment at the surface.
  • combustion of air and shale or shale-oil vapors will reach local temperatures of about 1500 F. About 75% of the magnesium and calcium carbonates will be decomposed at these temperatures. Thus, the mass of the residual shale over and above the loss of about 10% by weight in the form of hydrocarbons will be substantially reduced by the carbon dioxide loss. In all, there will be approximately a 50% loss in mass within the portion of the formation exploited. Gases leaving the cavity will be at about 300 F. and will contain some oil in vapor form.
  • thermonuclear device By the process described above, a cavity of roughly spherical dimensions will be created having a diameter of about 500 feet. This chamber can then be utilized according to this invention to explode an ultra-high energy explosive charge. While conventional explosives can be employed, it is preferable to utilize a thermonuclear device.
  • Any suitable atomic device such as a ssion or a fusion bomb known in the art can be used in accordance with the present invention.
  • Suitable devices are those which release substantially all their available energy within not more than about 1 minute after the establishment of criticality by changes involving exoergic transformation.
  • the release of energy creates an extremely high pressure within the bomb cavity which has been prepared. Almost immediately the roof of the cavity will collapse and fractured rock from above completely llls the explosion cavity forming a massive zone of fractured rock. Trapped heat from the explosion will raise the temperature of the shattered and crushed material from its original underground temperature of about F. to a temperature on the average which is in the order of 200 to 300 F.
  • a single well is drilled into the fractured zone, casing is placed to the top of the zone, and a tubing string inside the casing is run to the bottom of the zone.
  • a 50% mixture of saturated liquid and saturated vapor water at 700 F. and 3100 p.s.i. is injected through the casing of the well into the uppermost portion of the fractured zone.
  • the steam and condensate is injected at a rate of approximately 2100 barrels per day for a period of time in the order of 3 years. Water and oil are produced through the tubing string from the bottom of the zone.
  • a process ffor producing oil from a bituminous formation consisting essentially of an oil shale deposit containing appreciable amounts of calcium and magnesium carbonate depo-sits and containing hydrocarbons not naturally flofwable into a well bore traversing said formation, which comprises fracturing said formation adjacent said well bore by detonating a first explosive charge therein, initiating combustion in the upper portion of said [formation adjacent said well bore to establish a combustion front, injecting into said upper portion of said formation a combustion-supporting gas to move said combustion front downwardly and outwardly around said well bore and leave only a frail ash skeleton of rock in the wake of said combustion front, detonating a second explosive charge in said well bore to knock down said ash skeleton of rock, thereby forming a chamber and fractur-ing additional portions of said formation proximate said well bore substantially unaffected by said iirst explosion and said combustion, thereafter again establishing a combustion front in the upper portion of said formation, and moving
  • a process for producing oil from a subsurface bituminous formation consisting essentially of an oil shale deposit containing appreciable amounts of calcium and magnesium carbonate deposits and containing hydrocarbons not naturally ilowable into a well bore penetrating said formation, which comprises creating within said formation an explosion chamber of approximately spherical dimensions having a diameter in the range of about 10 to 1500 feet, said explosion chamber being prepared by (l) drilling a well bore into said formation, (2) fractuning regions of said formation adjacent said Well bore by detonating an explosive charge within said well bore, (3) initiating combustion in the upper portion of the formation to establish a combustion front around said well bore, (4) injecting air into sa-id upper portion of said formation to move said combustion front downwardly through said formation leaving only a frail ash skeleton of rock in the wake of said combustion front, (S) then detonating a second explosive in said well bore shattering said ash skeleton of rock, thereby forming a cavity and producing additional fractures in said surrounding formation

Description

Dec. 10, 1963 c. E. Hl-:MMINGER 3,113,620
PRocEss FOR PRODUCING vIscoUs oIL Filed July 6, 1959 /ze f22 sl-:PARATOR l 2| -VENT w TLSRSINE a A|R g l COMPRESSOR Y A'R OIL l BITUMINOUS DEPOSIT Chdr|esE.Hemminger Inventor United States Patent O 3,113,620 PROCESS FR PRODUCENG VISCGUS @EL Charles E. Hemmingen', Westfield, NJ., assigner to Esso Research and Engineering Company, a corporation of Delaware Filed .Iuly 6, 1959, Ser. No. 824,967 6 Claims. (Cl. 166-11) The present invention relates to an improved process for recovering viscous oil from subsurface deposits and, more particularly to a method for utilizing high energy explosives combined with in-situ combustion in a subsurface bituminous deposit containing viscous oil. Suitable deposits are subsurface strata containing hydrocarbons not naturally owable into a well bore traversing the deposit. In a most preferred process, according to the instant invention, oil is produced from oil shale reserves.
Control of the tremendous energy of nuclear devices for peacetime uses has, of late, become a subject of considerable interest. With the knowledge that such energy in the form of thermonuclear explosives should be available for a fraction of a mill per kilowatt-hour equivalent, numerous applications involving underground explosions have been proposed. Further, it has now been realized that ultra high energy explosions can be used in mining operations to break up formations, in the oil industry to increase or stimulate productivity by heating or raising the pressure of a reservoir, and in landscaping or earth moving techniques such as digging canals, making harbors, or removing troublesome obstacles.
The present invention is primarily directed to the production of oil. Further, it provides a method for preparing and utilizing an underground explosion chamber in a bituminous deposit suitable for the explosion of a high energy explosive charge. In accordance with the instant invention, oil is recovered from a subsurface bituminous formation by detonating an explosive within a well bore penetrating the formation and thereafter moving a combustion front downwardly through the formation adjacent the well bore. Oil is removed to the surface from the lower prtion of the formation through the single Well traversing the formation. In a preferred process, the above steps are repeated utilizing successively larger explosions until a cavity of approximately spherical dimensions is formed in the formation. Thereafter, an ultra-high energy explosive is detonated in the chamber formed to fragment a large volume of the bituminous formation and lill the cavity with broken and crushed material of the formation. The massive fragmented zone is then treated by conventional operations, such as in situ combustion or by water flooding With high temperature liquid phase Water in accordance with a process described in copending application S.N. 802,358, filed March 27, 1959.
Advantageously, in accordance with the present invention, nuclear energy can be released in an underground explosion of a thermonuclear device in a bituminous deposit containing hydrocarbons not naturally flowable into a Well bore traversing the deposit. Alternately, conventional molecular explosives can be employed. A particular advantage of the invention is that ultra-high energy explosives, either molecular or nuclear, can now be utilized by creating a specially prepared explosion chamber within the bituminous deposit. A cavity or explosive chamber is formed in a bituminous deposit which deposit contains substantial amounts of magnesium and calcium carbonates according to this invention by first detonating a small explosive charge in the well bore, then initiating combustion in the upper portion adjacent the well bore to establish a combustion front and thereafter injecting a combustion-supporting gas into the upper portion of the deposit to move the flame front downwardly and outwardly around the well bore, and then detonating a second explosion. By this method, the products of combustion remove substantially all organic material from an extended region in the vicinity of the Well bore, leaving a cavity in the deposit containing only a frail ash skeleton of rock. The second explosion detonated in the bore hole shatters the frail ash skeleton of rock, thus forming the cavity and at the same time causes additional fractures in the walls of the cavity. The in situ combustion step is repeated after each explosion, thereby forming another and larger area of frail ash skeleton of rock. Oil derived from the bituminous deposit by the combustion step can be removed to the Surface through the well bore extending through the bottom of the burned-out zone. By repeating the steps outlined, the cavity can be increased in size many fold.
An important feature of the present invention lies in the fact that, by creating an explosion chamber containing only a very friable skeleton of ash, many problems concerned with the shock wave created by the explosion are obviated. As most atomic devices release energy equivalent to that of a major earthquake, Without special precautions, shockwave can result in significant motion of the earths surface. In accordance with this invention, the loss of energy from an H-bomb or an A-bornb blast in the explosion chamber underground is substantially reduced due to transmission of shock wave energy through the skeleton ash material of the chamber. Therefore, substantially all the energy released can be utilized to provide sensible heat to raise the temperature of the fragmented rock which falls into the cavity following the expansion stage of the nuclear explosion.
Alternately, the very frail skeleton ash can be knocked down prior to the detonation of the ultra-high energy device simply by exploding a small charge or by utilizing a water Washing technique in accordance with conventional ooding practice in secondary recovery operations. The advantage of having a large, substantially empty cavity is readily apparent. The extremely large cavity from which the ash skeleton has been knocked down or removed, can be used to contain many tous of conventional molecular explosives. Further, it may be necessary to provide a suitable liner within the explosion chamber in order to avoid extensive contamination of underground formation materials and adjacent water tables by the radioactivity produced by the explosion of the device involving nuclear fission. In such cases extremely large cavities are required.
Broadly, bituminous deposits containing oil-shale can be produced in accordance With the method of the present invention. The process is suitable for rock formations known as oil shale which contain a combination of organic and inorganic sediments which have become hardened into impermeable rock. Suitable shales have a compressive strength in the range of 5000 to 30,000 p.s.i. The organic portion laid down in layers is a solid amorphous material generally known as kerogen which can be converted to oil under the application of heat. The oil recovered is a black viscous waxy substance which will not ow below about or 90 F.
Further objects and features of the invention and an exemplary manner in which it is 'toi lbe performed will be more readily apparent from the accompanying description taken in connection 'with the drawing in which .the
4single FIGURE shows schematically a method of'recovering viscous oil and at the saine time preparing a subsurface explosion chamber in a bituminous Vdeposit in which a high energy explosive device can be exploded `to* produce a massive fractured zone of rook for subsequent underground treatment.
Advantageously, the :method of the present invention is employed with bituminous deposits lying in the range of from to 20,000- feet below the surface of the earth.
The minimum ground cover `required is that necessary to insure complete containment of the explosion. This depends upon the energy yield of the explosive utilized. For nuclear devices, the minimum depth in feet is approximately equal to in the range of 250 to 450 times the cube root of the size of the device in kilotons. Thus, the explosion from a one kiloton nuclear bomb is completely contained if the device is exploded 250 to 450 feet below the nearest surface point. The maximum depth is limited only by the economic considerations involved in penetrating very deep lying formations with conventional drilling equipment.
Explosives suitable for use within a subsurface bituminous deposit are Well known in the ar-t. Due to the space limitation inherent in the process involving detonation of an explosive in a well bore, explosives having a high energy yield for their size are especially preferred. Most preferably, the explosion will have an energy yield equivalent to in the range of 0.1 kiloton to megatons of TNT. However, inexpensive chemical explosives such as ammonium nitrate can be employed. In one embodiment, the method of the present invention is carried out utilizing a thermonuclear device such as a hydrogen or atomic bomb. Suitable thermonuclear devices are now available for underground explosions; therefore, it is to be understood that the present discovery involves merely the use of a nuclear device in a novel and useful method `for exploiting oil deposits, and that the fabrication and manufacture of hydrogen and atomic bombs form no part of this invention.
Initially, `when a thermonuclear device is exploded in an underground oil deposit, an isothermal ball of fire is produced, which produces a very high pressure and temperature. The intensity of energy absorbed from the shock wave is sufficiently high near the fireball to vaporize rock and increase the size of the explosion chamber, then melt rock outside the vaporized sphere, and crush more rock outside the melted liner. The cavity, at much higher than equilibrium ground pressure, is held back by the inertia of the surrounding rock but then expands to equalize the cavity pressure with ground pressure pushing the crushed but -unvaporized rock ahead of it, more or less isotropically. Almost immediately the cavity is collapsed and the crushed bituminous rock caves into the void which has been created, forming a massive fractured zone which is then exploited by a conventional process such as the hot water process already referred to. In this process, oil is recovered from the fragmented zone by supplying high pressure water, steam or brine to the zone through an injection well or injection wells at a temperature in the range of 550o to 800 F. to supply the hea-t to decompose the bituminous material and carry out the oil ythrough a production well. Sufficient pressure is employed to maintain the high temperature water in dense phase. Recovery efficiencies approaching 100% can be achieved at reasonable rates of water injection suicient to advance the heated zone at a velocity in the range of 0.1 to 5 feet per day. The flood water at a temperature in the range of 550 to 800 F. is supplied to the fragmented zone by injecting water, steam or brine or a mixture of these at high temperature at the top of the crushed zone. Where water is injected through the injection well through a casing set to the top of the fragmented Zone, oil can be produced by the action of the water from the bottom of the zone through a production well `set `to the lower most region of the fractured zone. Alternately, an in-situ combustion process can be employed.
Referring to the drawing in detail, reference character 1 designates a bituminous oil shale deposit which does not produce itself under natural conditions. This deposit can be an oil-shale having essentially no permeability and containing non-mobile oil in the form of kerogen, laid down in the Irock in layers. It is isolated by adjacent strata 2 and 3. Within bituminous deposit 1 which, for example, can be of the order of 1000 feet thick there has L been formed :a substantially spherical explosion chamber 4- containing a peripheral friable skeleton of ash 5 left in place following the combustion step.
Reference character 11 designates a well bore extending downwardly from the sunface 12 through formation 2- and terminating in formation 1. It will be understood that the weli bore actually extends through a plurality of subsurface formations and that only a total of three formations are shown in 4the drawing for simplification. A well `casing 13 extends downwardly through the well bore 11 and into the bituminous deposit l1 to be exploited. The upper end 14 of the casing is capped or closed off above the surface and a conduit 15 communi- Cates with the casing above the surface for purposes which will be hereinafter set forth. By drilling from the top of formation 1 to a predetermined depth a single string of tubing 16 is placed concentrically in casing 13 and terminates beiow the lower end of casing '13 whereby oil which accumulates in the well bore, as will be more fully hereinafter set forth, can be removed to the surface. In the case of impermeable shale rock, gas communication is established from the well bore at the upper portion of the formation downwardly through the formation around the well bore and lback into the well bore in the lower portion of the formation by detonating an explosive charge. Redrilling for setting casing 16 is usually required after the fracturing operation.
In practicing the present invention, the casing 13 is cemented to the walls of the well bore 11 through the central portion of the oil bearing formation 1 as indicated by the reference character 17. Thus, Ifor-mation 1 is in direct communication with the casing throughout the 11pper portion of the formation and the formation is in direct communication with tubing string `16 through the lower end portion of the formation.
Air mixed with hydrocarbon fuel is forced through conduit 15 downwardly through the annulus between the casing 13 and tubing 16 and outwardly into the upper portion of the formation 1. As the high pressure fuel and air mixture is supplied, combustion can then be initiated by any suitable means. The flame front resulting from the combustion is driven by air injection downwardly and outwardly through the formation 1 around the well bore in the directions indicated by the arrows. Also, the gases of combustion will be forced downwardly through the formations by the high pressure incoming fuel-air mixture and will enter tubing 16 to be carried to the surface.
As will be apparent, oil containing materials and oil entrained in formation 1 around the well bore will be moved and directed into the lower portion of the well bore by the heat of combustion together with the resultant gas drive and will be carried up the tubing string 16 together with the gases of combustion or can be removed by any desired articial lifting means. In some formations the amount and the pressure of the gas discharging into the lower portion of the well can be suhcient to provide removal of accumulated oil along with the combustion gases through the tubing.
Oil removed to the surface is separated from the combustion gases in separator 21. These gases are then sent by line 22 to a gas turbine 23 where they provide the energy to compress the air fed to the air compressor through line 26. To give economical operation of the gas turbine compressor combination the back pressure in line 22 is of the order of 15 to 100 p.s.i. Additional air can be admitted through line 27 from other compressors as needed. Fuel in the form of suitable hydrocarbon gases is introduced through line 2S and can be mixed if desired with compressed air coming through line 24 into the formation through line 15. The gas turbine can be started up by means of natural gas or other fuel admitted by line 28 and is vented through line 30.
In order that those skilled in the art may better understand how the present invention can be practiced, the following example is given by way of illustration. In-
itially, a well having a diameter of about 12 inches is drilled into an oil-shale deposit having a thickness of about 1000 feet, the top of the formation lying at a depth of about 1000 feet. In some instances it may be desirable to drill a bore hole having a diameter of the order of 4 feet. This will depend on the size and type of explosive to be employed. Generally holes in the range of 12" to 4 can be drilled with ordinarily available equipment.
In the oil-shale, which has a richness averaging about 25 gal. per ton, 1 ton of TNT is detonated to cause the initial fracturing and establish gas communication to the lower regions of the formation. The explosion will open up some permeability and allow the downward movement of a flame front.
Following the explosion (l ton equivalent), a 4" tubing string is placed to the bottom of the bore hole to serve as an internal exit pipe. Combustion is then initiated at the top of the formation. For approximately 20 days, 50,1000 cubic feet per minute of air mixed with 5 c.f./min. of 1000 B.t.u. gas is injected through the annulus between the exit pipe and the casing into the top of the formation with an inlet pressure of about 100 p.s.i.g. Thereafter, the 4 exit pipe is withdrawn and a second explosive charge is actuated in the formation.
The second explosive charge is preferably larger than the irst and in this example a charge of tons of TNT is employed. A suitable hole is drilled into the bottom of the formation and the 4 exit pipe is again placed as an exit pipe for the recovery of produced oil. Again combustion is initiated and for 40 days 100,000 c.f./min. of air with 10 c.f./min. of 1000 B.t.u. gas is injected into the upper portion of the formation.
Once again the 4" exit pipe is withdrawn and 100 tone of TNT is exploded in the central portion of the formation being produced. The explosion not only knocks down the peripheral layer of rock Skelton left in the cavity which has been formed but also brings about new fracturing of the formation. Combustion is initiated in the usual manner and a flame front moved downward through the newly fractured formation enlarging the chamber once more. This time 100,000 c.f./min. of air is injected with no fuel gas for a period of 40 days.
After the third explosion, and combustion steps, oil production begins to become significant and during the next 6010 days, 3000 barrels per day of oil can be produced by injecting 500,000 c.f./rnin. of air into the upper portion of the formation. This amounts to a total oil recovery by the 70th day of approximately 1.8 million barrels. During the same period, an average of 12 109 MM B.t.u./day of gas is available to run the gas turbines and auxiliary equipment at the surface.
Within the bituminous formation, combustion of air and shale or shale-oil vapors will reach local temperatures of about 1500 F. About 75% of the magnesium and calcium carbonates will be decomposed at these temperatures. Thus, the mass of the residual shale over and above the loss of about 10% by weight in the form of hydrocarbons will be substantially reduced by the carbon dioxide loss. In all, there will be approximately a 50% loss in mass within the portion of the formation exploited. Gases leaving the cavity will be at about 300 F. and will contain some oil in vapor form.
By the process described above, a cavity of roughly spherical dimensions will be created having a diameter of about 500 feet. This chamber can then be utilized according to this invention to explode an ultra-high energy explosive charge. While conventional explosives can be employed, it is preferable to utilize a thermonuclear device.
Any suitable atomic device such as a ssion or a fusion bomb known in the art can be used in accordance with the present invention. Suitable devices are those which release substantially all their available energy within not more than about 1 minute after the establishment of criticality by changes involving exoergic transformation. On the tiring of the 1-20 megaton device the release of energy creates an extremely high pressure within the bomb cavity which has been prepared. Almost immediately the roof of the cavity will collapse and fractured rock from above completely llls the explosion cavity forming a massive zone of fractured rock. Trapped heat from the explosion will raise the temperature of the shattered and crushed material from its original underground temperature of about F. to a temperature on the average which is in the order of 200 to 300 F. Thereafter, a single well is drilled into the fractured zone, casing is placed to the top of the zone, and a tubing string inside the casing is run to the bottom of the zone. Following this, a 50% mixture of saturated liquid and saturated vapor water at 700 F. and 3100 p.s.i. is injected through the casing of the well into the uppermost portion of the fractured zone. The steam and condensate is injected at a rate of approximately 2100 barrels per day for a period of time in the order of 3 years. Water and oil are produced through the tubing string from the bottom of the zone.
While in the foregoing, there has been shown and described the preferred embodiment of the present invention, it is to be understood that minor changes in details of construction, combination, and arrangement of parts may be resorted to without departing from the spirt and scope of the invention as claimed.
What is claimed is:
/1. A process ffor producing oil from a bituminous formation consisting essentially of an oil shale deposit containing appreciable amounts of calcium and magnesium carbonate depo-sits and containing hydrocarbons not naturally flofwable into a well bore traversing said formation, which comprises fracturing said formation adjacent said well bore by detonating a first explosive charge therein, initiating combustion in the upper portion of said [formation adjacent said well bore to establish a combustion front, injecting into said upper portion of said formation a combustion-supporting gas to move said combustion front downwardly and outwardly around said well bore and leave only a frail ash skeleton of rock in the wake of said combustion front, detonating a second explosive charge in said well bore to knock down said ash skeleton of rock, thereby forming a chamber and fractur-ing additional portions of said formation proximate said well bore substantially unaffected by said iirst explosion and said combustion, thereafter again establishing a combustion front in the upper portion of said formation, and moving said front downwardly through said formation and said chamber, wherein said combustion steps are carried out at temperatures up to about 1500" F., and removing to the surface from the lower portion .of said formation in said chamber oil produced by the combustion within said formation in said chamber.
2. The process of claim Il wherein said chamber is made larger by repeated explosion of increasingly larger explosive charges and thereafter fol-lowing each explosion, mowing a combustion front downwardly through the region fractured by the explosion.
3. A process for producing oil from a subsurface bituminous formation consisting essentially of an oil shale deposit containing appreciable amounts of calcium and magnesium carbonate deposits and containing hydrocarbons not naturally ilowable into a well bore penetrating said formation, which comprises creating within said formation an explosion chamber of approximately spherical dimensions having a diameter in the range of about 10 to 1500 feet, said explosion chamber being prepared by (l) drilling a well bore into said formation, (2) fractuning regions of said formation adjacent said Well bore by detonating an explosive charge within said well bore, (3) initiating combustion in the upper portion of the formation to establish a combustion front around said well bore, (4) injecting air into sa-id upper portion of said formation to move said combustion front downwardly through said formation leaving only a frail ash skeleton of rock in the wake of said combustion front, (S) then detonating a second explosive in said well bore shattering said ash skeleton of rock, thereby forming a cavity and producing additional fractures in said surrounding formation and again carrying out the combustion step, said combustion steps being carried out at temperatures up to about 1500 F., repeating this procedure until an explosion chamber of the desired size is obtained and (6) then detonating a high energy explosive in said explosion chamber rto form a massive fragmented zone within said formation and fill said chamber with fragments formed by said explosion, oodng said fragmented zone with Water at a temperature in the range of 550 to 800 F., and removing to the surface oil extracted from said zone by said Water.
4. The process according to claim 3 characterized further in that a single Well is drilled into said fractured zone with a casing set to the top olf said Zone and a pro- Iduc'tion tubing string Within said casing, set to the bottom portion of said zone, and said Water is injected into said zone 'through the annulus between `said Casing and said production tubing string.
5. The process according to claim 3 wherein said high energy explosive produces an underground explosion hav- 5% ing an energy yield equivalent to at least 0.1 kiloton of TNT.
6. The process according to claim 5 wherein said high energy explosive is a molecular explosive.
References Cited in the le of this patent UNITED STATES PATENTS 1,422,204 Hoover July 11, 1922 1,457,479 Wolcott June 5, 1923 2,780,449 Fisher Feb. 5, 1957 2,788,071 Pelzer Apr. 9, 1957 2,819,761 Popham et a1. Jan. 14, 1958 3,001,775 Allred Sept. 26, 1961 OTHER REFERENCES

Claims (1)

1. A PROCESS FOR PRODUCING OIL FROM A BITUMINOU FORMATION CONSISTING ESSENTIALLY OF AN OIL SHALE DEPOSIT CONTAINING APPRECIABLE AMOUNTS OF CALCIUM AND MAGNESIUM CARBONATE DEPOSITS CONTAINING HYDROCARBONS NOT NATURALLY FLOWABLE INTO A WELL BORE TRAVERSING SAID FORMATION, WHICH COMPRISES FRACTURING SAID FORMATION ADJACENT SAID WELL BORE BY DETONATING A FIRST EXPLOSIVE CHARGE THEREIN, INITIATING COMBUSTION IN THE UPPER PORTION OF SAID FORMATION ADJACENT SAID WELL BORE TO ESTABLISH A COMBUSTION FRONT, INJECTING INTO SAID UPPER PORTION OF SAID FOR-
US824967A 1959-07-06 1959-07-06 Process for producing viscous oil Expired - Lifetime US3113620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US824967A US3113620A (en) 1959-07-06 1959-07-06 Process for producing viscous oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US824967A US3113620A (en) 1959-07-06 1959-07-06 Process for producing viscous oil

Publications (1)

Publication Number Publication Date
US3113620A true US3113620A (en) 1963-12-10

Family

ID=25242765

Family Applications (1)

Application Number Title Priority Date Filing Date
US824967A Expired - Lifetime US3113620A (en) 1959-07-06 1959-07-06 Process for producing viscous oil

Country Status (1)

Country Link
US (1) US3113620A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283814A (en) * 1961-08-08 1966-11-08 Deutsche Erdoel Ag Process for deriving values from coal deposits
US3318378A (en) * 1964-03-23 1967-05-09 Chester L Coshow Method of sealing vuggy regions in well bores
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3379248A (en) * 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3404919A (en) * 1966-05-04 1968-10-08 Nuclear Proc Corp Method of creating large diameter boreholes using underground nuclear detonations
US3409082A (en) * 1964-04-20 1968-11-05 Continental Oil Co Process for stimulating petroliferous subterranean formations with contained nuclear explosions
US3451478A (en) * 1965-11-01 1969-06-24 Pan American Petroleum Corp Nuclear fracturing and heating in water flooding
US3464490A (en) * 1965-08-30 1969-09-02 Pan American Petroleum Corp Formation nuclear fracturing process
US3465819A (en) * 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3465818A (en) * 1967-11-07 1969-09-09 American Oil Shale Corp Undercutting of nuclearly detonated formations by subsequent nuclear detonations at greater depth and uses thereof in the recovery of various minerals
US3478825A (en) * 1967-08-21 1969-11-18 Shell Oil Co Method of increasing the volume of a permeable zone within an oil shale formation
US3499489A (en) * 1967-03-13 1970-03-10 Phillips Petroleum Co Producing oil from nuclear-produced chimneys in oil shale
US3506069A (en) * 1963-09-23 1970-04-14 Richfield Oil Corp Process for recovering petroleum utilizing a nuclear explosion
US3554283A (en) * 1967-11-28 1971-01-12 Alvin Abrams Situ recovery of petroleumlike hydrocarbons from underground formations
US3565171A (en) * 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3593789A (en) * 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3972372A (en) * 1975-03-10 1976-08-03 Fisher Sidney T Exraction of hydrocarbons in situ from underground hydrocarbon deposits
US4036299A (en) * 1974-07-26 1977-07-19 Occidental Oil Shale, Inc. Enriching off gas from oil shale retort
US4089375A (en) * 1976-10-04 1978-05-16 Occidental Oil Shale, Inc. In situ retorting with water vaporized in situ
US4091869A (en) * 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4109719A (en) * 1976-04-05 1978-08-29 Continental Oil Company Method for creating a permeable fragmented zone within a subterranean carbonaceous deposit for in situ coal gasification
US4185693A (en) * 1978-06-07 1980-01-29 Conoco, Inc. Oil shale retorting from a high porosity cavern
US4202168A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company Method for the recovery of power from LHV gas
US4202169A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company System for combustion of gases of low heating value
US4273615A (en) * 1978-07-17 1981-06-16 Farrokh Hirbod Oil stimulation process
US4491179A (en) * 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US6267182B1 (en) * 1996-06-12 2001-07-31 Petroleo Brasileiro S. A. - Petrobras Method and equipment for offshore oil production with primary gas separation and flow using the injection of high pressure gas
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US20060230760A1 (en) * 2003-07-14 2006-10-19 Hendershot William B Self-sustaining on-site production of electricity utilizing oil shale and/or oil sands deposits
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9103193B2 (en) 2011-04-07 2015-08-11 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1422204A (en) * 1919-12-19 1922-07-11 Wilson W Hoover Method for working oil shales
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2788071A (en) * 1954-03-05 1957-04-09 Sinclair Oil & Gas Company Oil recovery process
US2819761A (en) * 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US3001775A (en) * 1958-12-08 1961-09-26 Ohio Oil Company Vertical flow process for in situ retorting of oil shale

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1422204A (en) * 1919-12-19 1922-07-11 Wilson W Hoover Method for working oil shales
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2788071A (en) * 1954-03-05 1957-04-09 Sinclair Oil & Gas Company Oil recovery process
US2819761A (en) * 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US3001775A (en) * 1958-12-08 1961-09-26 Ohio Oil Company Vertical flow process for in situ retorting of oil shale

Cited By (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283814A (en) * 1961-08-08 1966-11-08 Deutsche Erdoel Ag Process for deriving values from coal deposits
US3506069A (en) * 1963-09-23 1970-04-14 Richfield Oil Corp Process for recovering petroleum utilizing a nuclear explosion
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3318378A (en) * 1964-03-23 1967-05-09 Chester L Coshow Method of sealing vuggy regions in well bores
US3409082A (en) * 1964-04-20 1968-11-05 Continental Oil Co Process for stimulating petroliferous subterranean formations with contained nuclear explosions
US3464490A (en) * 1965-08-30 1969-09-02 Pan American Petroleum Corp Formation nuclear fracturing process
US3451478A (en) * 1965-11-01 1969-06-24 Pan American Petroleum Corp Nuclear fracturing and heating in water flooding
US3379248A (en) * 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3404919A (en) * 1966-05-04 1968-10-08 Nuclear Proc Corp Method of creating large diameter boreholes using underground nuclear detonations
US3465819A (en) * 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3499489A (en) * 1967-03-13 1970-03-10 Phillips Petroleum Co Producing oil from nuclear-produced chimneys in oil shale
US3478825A (en) * 1967-08-21 1969-11-18 Shell Oil Co Method of increasing the volume of a permeable zone within an oil shale formation
US3465818A (en) * 1967-11-07 1969-09-09 American Oil Shale Corp Undercutting of nuclearly detonated formations by subsequent nuclear detonations at greater depth and uses thereof in the recovery of various minerals
US3554283A (en) * 1967-11-28 1971-01-12 Alvin Abrams Situ recovery of petroleumlike hydrocarbons from underground formations
US3593789A (en) * 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3565171A (en) * 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US4036299A (en) * 1974-07-26 1977-07-19 Occidental Oil Shale, Inc. Enriching off gas from oil shale retort
US3972372A (en) * 1975-03-10 1976-08-03 Fisher Sidney T Exraction of hydrocarbons in situ from underground hydrocarbon deposits
US4109719A (en) * 1976-04-05 1978-08-29 Continental Oil Company Method for creating a permeable fragmented zone within a subterranean carbonaceous deposit for in situ coal gasification
US4091869A (en) * 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4089375A (en) * 1976-10-04 1978-05-16 Occidental Oil Shale, Inc. In situ retorting with water vaporized in situ
US4202168A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company Method for the recovery of power from LHV gas
US4202169A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company System for combustion of gases of low heating value
US4185693A (en) * 1978-06-07 1980-01-29 Conoco, Inc. Oil shale retorting from a high porosity cavern
US4273615A (en) * 1978-07-17 1981-06-16 Farrokh Hirbod Oil stimulation process
US4491179A (en) * 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US6267182B1 (en) * 1996-06-12 2001-07-31 Petroleo Brasileiro S. A. - Petrobras Method and equipment for offshore oil production with primary gas separation and flow using the injection of high pressure gas
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7032660B2 (en) 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20060230760A1 (en) * 2003-07-14 2006-10-19 Hendershot William B Self-sustaining on-site production of electricity utilizing oil shale and/or oil sands deposits
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US10227855B2 (en) 2011-04-07 2019-03-12 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11939852B2 (en) 2011-04-07 2024-03-26 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US9366114B2 (en) 2011-04-07 2016-06-14 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US9121257B2 (en) 2011-04-07 2015-09-01 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US11913315B2 (en) 2011-04-07 2024-02-27 Typhon Technology Solutions (U.S.), Llc Fracturing blender system and method using liquid petroleum gas
US11851998B2 (en) 2011-04-07 2023-12-26 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US9103193B2 (en) 2011-04-07 2015-08-11 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US11613979B2 (en) 2011-04-07 2023-03-28 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11391136B2 (en) 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US10221668B2 (en) 2011-04-07 2019-03-05 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US11391133B2 (en) 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US10502042B2 (en) 2011-04-07 2019-12-10 Typhon Technology Solutions, Llc Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US10648312B2 (en) 2011-04-07 2020-05-12 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US10689961B2 (en) 2011-04-07 2020-06-23 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US10718194B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10718195B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US10724353B2 (en) 2011-04-07 2020-07-28 Typhon Technology Solutions, Llc Dual pump VFD controlled system for electric fracturing operations
US10774630B2 (en) 2011-04-07 2020-09-15 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10837270B2 (en) 2011-04-07 2020-11-17 Typhon Technology Solutions, Llc VFD controlled motor mobile electrically powered system for use in fracturing underground formations for electric fracturing operations
US10851634B2 (en) 2011-04-07 2020-12-01 Typhon Technology Solutions, Llc Dual pump mobile electrically powered system for use in fracturing underground formations
US10876386B2 (en) 2011-04-07 2020-12-29 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US10895138B2 (en) 2011-04-07 2021-01-19 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US10982521B2 (en) 2011-04-07 2021-04-20 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US11002125B2 (en) 2011-04-07 2021-05-11 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US11187069B2 (en) 2011-04-07 2021-11-30 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US11118438B2 (en) 2012-10-05 2021-09-14 Typhon Technology Solutions, Llc Turbine driven electric fracturing system and method
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US10107084B2 (en) 2012-10-05 2018-10-23 Evolution Well Services System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas
US10107085B2 (en) 2012-10-05 2018-10-23 Evolution Well Services Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US9475021B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9475020B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Similar Documents

Publication Publication Date Title
US3113620A (en) Process for producing viscous oil
US3465819A (en) Use of nuclear detonations in producing hydrocarbons from an underground formation
US3537528A (en) Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) Method for producing shale oil from an oil shale formation
US4091869A (en) In situ process for recovery of carbonaceous materials from subterranean deposits
US3342257A (en) In situ retorting of oil shale using nuclear energy
US3513913A (en) Oil recovery from oil shales by transverse combustion
US3578080A (en) Method of producing shale oil from an oil shale formation
US3120264A (en) Recovery of oil by in situ combustion
US3618663A (en) Shale oil production
US4185693A (en) Oil shale retorting from a high porosity cavern
US3474863A (en) Shale oil extraction process
US3434757A (en) Shale oil-producing process
US3586377A (en) Method of retorting oil shale in situ
US3661423A (en) In situ process for recovery of carbonaceous materials from subterranean deposits
US3565171A (en) Method for producing shale oil from a subterranean oil shale formation
US4059308A (en) Pressure swing recovery system for oil shale deposits
US4327805A (en) Method for producing viscous hydrocarbons
US3640336A (en) Recovery of geothermal energy by means of underground nuclear detonations
US3001775A (en) Vertical flow process for in situ retorting of oil shale
US3666014A (en) Method for the recovery of shale oil
US3734180A (en) In-situ gasification of coal utilizing nonhypersensitive explosives
US3460620A (en) Recovering oil from nuclear chimneys in oil-yielding solids
US3630278A (en) Method for strengthening reservoir fractures
US4015664A (en) Shale oil recovery process