US3259904A - Antenna having combined support and lead-in - Google Patents

Antenna having combined support and lead-in Download PDF

Info

Publication number
US3259904A
US3259904A US325511A US32551163A US3259904A US 3259904 A US3259904 A US 3259904A US 325511 A US325511 A US 325511A US 32551163 A US32551163 A US 32551163A US 3259904 A US3259904 A US 3259904A
Authority
US
United States
Prior art keywords
conductors
dipole elements
antenna
rigid
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US325511A
Inventor
Isaac S Blonder
Schenfeld Abraham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLONDER TONGUE ELECT
BLONDER-TONGUE ELECTRONICS
Original Assignee
BLONDER TONGUE ELECT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23268187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3259904(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BLONDER TONGUE ELECT filed Critical BLONDER TONGUE ELECT
Priority to US325511A priority Critical patent/US3259904A/en
Application granted granted Critical
Publication of US3259904A publication Critical patent/US3259904A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means

Definitions

  • the present invention relates to directive antennas and, more specifically, to antennas adapted for receiving very high frequencies, such as the ultrahigh-frequency television band.
  • a further object of the invention is to provide a new and improved antenna particularly adapted for ultra-highfrequency television reception.
  • Still another object is to provide a novel antenna of improved performance for more general use, also.
  • the invention contemplates a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end thereof, means for feeding the energy received by the antenna at the said one end of the conductors, and means for mounting the antenna comprising a further pair of rigid, preferably diverging, conductive extensions of the said conductors mechanically secured in rigid spaced-apart relation at the end thereof. Further preferred details are hereinafter set forth.
  • FIG. 1 of which is an isometric 'view of an outdoor preferred embodiment thereof.
  • FIG. 2 is a similar view of a modified indoor version.
  • the antenna comprises a pair of rigid conductors 1, 1' held spaced apart a predetermined vertical distance in a vertical plane by forward and rearward insulating clamps 2 and 4. While the terms vertical and horizontal as herein employed describe the preferred orientation for ultra-high-frequency television reception, they are intended more generically to be illustrative of relative orientations without being confined to actual direction. Similarly, though the invention is decribed in connection with radio-wave reception, the antenna may also be used for transmission, if desired, as is well known.
  • first and second pluralities of horizontal dipole elements 5, 7, 9 11 and 5', 7', 9' 11' are provided, lying in corresponding first and second vertically spaced horizontal planes 1 and 1' containing the respective longitudinal conductors 1 and 1'.
  • the dipole elements are shown angularly extending transversely from opposite sides of each conductor at successive points therealong.
  • the dipole elements connected to one conductor moreover, extend in opposite horizontal directions to the corresponding dipole elements of the other conductor (such as 5 to the right 5' to the left; 7 to the right, 7' to the left; and so on).
  • the length of the dipole elements preferably successively increases from one end (5, 5' being shortest) towards the other end (11, 11 being longest), as is well known, to provide directivity.
  • a parallel-wire transmission line TL is connected at looped terminal portions 1" and 1" beyond the clamp 2 that secures the connecting portions 1" and 1" in spaced-apart relation, extending outside or to the left of the smallest dipole elements 5, 5'.
  • the line TL may be supported below the antenna by depending guides 2' and 4 in the respective clamps 2 and 4, the latter being shown positioned near the largest dipole elements 11, 11'.
  • the antenna of FIG. 1 is mounted upon a mast M through the use of pairs of horizontally spaced conductorloop extensions 10 and 10', shown extending to the right beyond the longest dipole elements 11, 11'.
  • the extensions 10, 10' respectively, terminate in upwardly and downwardly extending vertical loops 12 and 12' that may be transversely curved to fit the mast M, as shown, and are securely mechanically strapped at 14 and 14 to the mast to hold the system 1-1 in rigid spaced-apart relation at the mast end.
  • the extension 10' while in part initially extending in the lower horizontal plane I, diverges downwardly at 10".
  • this mechanical stability-providing diverging construction has been found minimally to affect the electrical field pattern, particularly if the length of the extension between the longest elements 11, 11' and the mast M is made comparable to the separation along conductors 1 and 1' of the last dipole elements 11 from the next-to-thelast element, to its left in FIG. 1.
  • Minimal field abberations and ghost reflections over the complete ultrahigh-frequency band has been thus attained with the above construction, together with satisfactory broad-band impedance matching, provided further that the vertical separation distance of the rigid conductors 1, 1' is kept less than the average distance between successive dipole elements (preferably the order of an inch for UHF band operation), and which, in turn, is kept much less than the Wavelengths involved, as is well known.
  • the UHF channel 47 frequency for example (671 megacycles)
  • a 20 decibel front-to-back ratio has been obtained with this construction, providing about a 36- degree half-power horizontal beam width and no detectable forward secondary lobes.
  • the small-dipole end of the antenna is used not only for the connection to the transmission line, but also for the support-providing extensions.
  • These extensions are illustrated as rigid conductors 20 and 20 depending at preferably an acute angle below the antenna at the insulating clamp 2 and slightly diverging for mechanical and impedance-matching purposes, being clamped at their bottom or free ends by a further insulating clamp 6.
  • the transmission line TL is thus connected to the conductors 1 and 1' by these combined extension-supporting and transmission-line feed members 20, 20'.
  • the clamp 6 is pivoted at 6' to a bracket carried by a base 22 so that the 3 members 1-1', -20 may be adjusted as a unit for both electrical impedance-matching purposes and appropriate pivoting action for reception-direction adjustment, the length of the preferably diverging extension lines 20, 20' is made substantially equal to the length of the rigid ante'nna-supporting conductors l, 1.
  • VHF reception is also to be provided, it has been found that minimal interference is caused by the antenna of the present invention if V-type VHF dipoles 30 are mounted on the base forward of the pivoted clamp 6 and with a sufficient included angle in the V to contain the array of the invention.
  • An antenna for ultra-high-frequency operation and the like having, in combination, a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end-thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors and means for mounting the antenna comprising a further pair of rigid diverging conductive extensions of said conductors mechanically secured in rigid spaced-apart relation at an end thereof, the said diverging conductive extensions being provided at the said other end of the pair of rigid conductors and each comprising a pair of horizontally spaced conductors terminally provided with a vertical loop, and
  • An antenna for ultra-high-frequency operation and the like having, in combination, a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors and means for mounting the antenna comprising a further pair of rigid diverging conductive extensions of said conductors mechanically secured in rigid spaced-apart relation at an end thereof, the transmission-line connecting means and the diverging conductive extensions being combined and extending downward from the said one end to include an acute angle between the dipole carrying conductors and their extensions.
  • An antenna for operation over a predetermined frequency band having, in combination, a pair of rigid longitudinal conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of dipole elements @lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of and transversely at an angle to each conductor at successivepoints therealong with dipole ele- I ments connected to one conductor extending in opposite direction to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards. the 1 other end thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors,
  • rigid insulating means securing the said connecting means i mechanically in spaced-apart relation and connected with means for supporting the transmission line near the said one end, and means for mounting the antenna at a region of the said conductors remote from the said one end, further rigid insulating means being provided for securing the said longitudinal conductors mechanically in rigid spaced-apart relation near the said region, the said vertii cal distance being less than the distances between the said successive points and less than the wavelengths of the said band.

Description

y 1966 l. s. BLONDER ETAL 3,259,904
ANTENNA HAVING COMBINED SUPPORT AND LEAD-IN Filed NOV. 21, 1963 1w i1, wx
INVENTO S ISAAC S. BLONDER ABRAHAM SCHENFELD m M flan ATTORNEYS United States Patent 3,259,904 ANTENNA HAVING COMBINED SUPPORT AND LEAD-IN Isaac S. Blonder, West Orange, NJ., and Abraham Schenfeld, New York, N.Y., assignors to Blonder- Tongue Electronics, Newark, NJ., a corporation of New Jersey Filed Nov. 21, 1963, Ser. No. 325,511 6 Claims. (Cl. 343-7925) The present invention relates to directive antennas and, more specifically, to antennas adapted for receiving very high frequencies, such as the ultrahigh-frequency television band.
Numerous types of antennas have been evolved for broad-band directive radio and television reception including driven arrays, Yagi-type arrays, log periodic linear and V-type antennas, helical antennas and other configurations. The problems of mounting such antennas upon masts for outdoor operation or upon portable structures adapted for directional adjustment in connection with indoor reception have, however, long plagued the art; the mounting and adjusting structures introducing ghosts and other deleterious electrical field-pattern aberrations over the band. It is to the improvement of such mounting structures and the minimizing of electrical interfering effects over a wide band of frequencies, including stabilizing of outdoor performance and providing for ready adjustability in indoor performance, that the present invention is primarily directed.
A further object of the invention is to provide a new and improved antenna particularly adapted for ultra-highfrequency television reception.
Still another object is to provide a novel antenna of improved performance for more general use, also.
Other objects will be made more evident hereinafter and will be particularly pointed out in the appended claims. In summary, however, the invention contemplates a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end thereof, means for feeding the energy received by the antenna at the said one end of the conductors, and means for mounting the antenna comprising a further pair of rigid, preferably diverging, conductive extensions of the said conductors mechanically secured in rigid spaced-apart relation at the end thereof. Further preferred details are hereinafter set forth.
The invention will now be described in connection with the accompanying drawing, FIG. 1 of which is an isometric 'view of an outdoor preferred embodiment thereof; and
FIG. 2 is a similar view of a modified indoor version.
Referring to FIG. 1, the antenna comprises a pair of rigid conductors 1, 1' held spaced apart a predetermined vertical distance in a vertical plane by forward and rearward insulating clamps 2 and 4. While the terms vertical and horizontal as herein employed describe the preferred orientation for ultra-high-frequency television reception, they are intended more generically to be illustrative of relative orientations without being confined to actual direction. Similarly, though the invention is decribed in connection with radio-wave reception, the antenna may also be used for transmission, if desired, as is well known.
3,259,904 Patented July 5, 1966 Unlike prior-art arrays, including Yagi arrays, conventional log-periodic structure and the like, first and second pluralities of horizontal dipole elements 5, 7, 9 11 and 5', 7', 9' 11' are provided, lying in corresponding first and second vertically spaced horizontal planes 1 and 1' containing the respective longitudinal conductors 1 and 1'. The dipole elements are shown angularly extending transversely from opposite sides of each conductor at successive points therealong. The dipole elements connected to one conductor, moreover, extend in opposite horizontal directions to the corresponding dipole elements of the other conductor (such as 5 to the right 5' to the left; 7 to the right, 7' to the left; and so on). The length of the dipole elements preferably successively increases from one end (5, 5' being shortest) towards the other end (11, 11 being longest), as is well known, to provide directivity. A parallel-wire transmission line TL is connected at looped terminal portions 1" and 1" beyond the clamp 2 that secures the connecting portions 1" and 1" in spaced-apart relation, extending outside or to the left of the smallest dipole elements 5, 5'. The line TL may be supported below the antenna by depending guides 2' and 4 in the respective clamps 2 and 4, the latter being shown positioned near the largest dipole elements 11, 11'.
The antenna of FIG. 1 is mounted upon a mast M through the use of pairs of horizontally spaced conductorloop extensions 10 and 10', shown extending to the right beyond the longest dipole elements 11, 11'. The extensions 10, 10', respectively, terminate in upwardly and downwardly extending vertical loops 12 and 12' that may be transversely curved to fit the mast M, as shown, and are securely mechanically strapped at 14 and 14 to the mast to hold the system 1-1 in rigid spaced-apart relation at the mast end. Further to aid in mechanical stability, the extension 10', while in part initially extending in the lower horizontal plane I, diverges downwardly at 10". Fortuitously, this mechanical stability-providing diverging construction has been found minimally to affect the electrical field pattern, particularly if the length of the extension between the longest elements 11, 11' and the mast M is made comparable to the separation along conductors 1 and 1' of the last dipole elements 11 from the next-to-thelast element, to its left in FIG. 1. Minimal field abberations and ghost reflections over the complete ultrahigh-frequency band, for example, has been thus attained with the above construction, together with satisfactory broad-band impedance matching, provided further that the vertical separation distance of the rigid conductors 1, 1' is kept less than the average distance between successive dipole elements (preferably the order of an inch for UHF band operation), and which, in turn, is kept much less than the Wavelengths involved, as is well known. At the UHF channel 47 frequency, for example (671 megacycles), a 20 decibel front-to-back ratio has been obtained with this construction, providing about a 36- degree half-power horizontal beam width and no detectable forward secondary lobes.
This same general type of construction has also been found admirably suited for indoor direction adjustable antennas, as shown in FIG. 2. In this embodiment, however, the small-dipole end of the antenna is used not only for the connection to the transmission line, but also for the support-providing extensions. These extensions are illustrated as rigid conductors 20 and 20 depending at preferably an acute angle below the antenna at the insulating clamp 2 and slightly diverging for mechanical and impedance-matching purposes, being clamped at their bottom or free ends by a further insulating clamp 6. The transmission line TL is thus connected to the conductors 1 and 1' by these combined extension-supporting and transmission-line feed members 20, 20'. The clamp 6 is pivoted at 6' to a bracket carried by a base 22 so that the 3 members 1-1', -20 may be adjusted as a unit for both electrical impedance-matching purposes and appropriate pivoting action for reception-direction adjustment, the length of the preferably diverging extension lines 20, 20' is made substantially equal to the length of the rigid ante'nna-supporting conductors l, 1.
If VHF reception is also to be provided, it has been found that minimal interference is caused by the antenna of the present invention if V-type VHF dipoles 30 are mounted on the base forward of the pivoted clamp 6 and with a sufficient included angle in the V to contain the array of the invention.
Further modifications will occur to those skilled in the art and all such are considered to fall within the spirit and scope of the invention as defined in the appended claims.
What is claimed is:
1. An antenna for ultra-high-frequency operation and the like, having, in combination, a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end-thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors and means for mounting the antenna comprising a further pair of rigid diverging conductive extensions of said conductors mechanically secured in rigid spaced-apart relation at an end thereof, the said diverging conductive extensions being provided at the said other end of the pair of rigid conductors and each comprising a pair of horizontally spaced conductors terminally provided with a vertical loop, and the said mechanical securing means comprising mast-strapping means for strapping the said vertical loops, and the distance of the said mast-strapping loopsfrom the said other end being comparable to the distance between the longest and next-to-longest pairs of dipole elements of the antenna.
2. An antenna for ultra-high-frequency operation and the like, having, in combination, a pair of rigid conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of horizontal dipole elements lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of each conductor at successive points therealong with dipole elements connected to one conductor extending in opposite horizontal directions to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards the other end thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors and means for mounting the antenna comprising a further pair of rigid diverging conductive extensions of said conductors mechanically secured in rigid spaced-apart relation at an end thereof, the transmission-line connecting means and the diverging conductive extensions being combined and extending downward from the said one end to include an acute angle between the dipole carrying conductors and their extensions.
3. An antenna as claimed in claim 2 and in which the conductive extensions are clamped at their free ends against relative movement with the clamp being pivotally mounted upon a base to permit adjustment, as a unit, of the dipole-carrying conductors and their extensions.
4. An antenna as claimed in claim 3 and in which a pair of V-type dipole elements for different frequency reception,'are mounted on the said base forward ,of the pivotal clamp, with the said horizontal dipole elements contained within the V.
5. An antenna for operation over a predetermined frequency band, having, in combination, a pair of rigid longitudinal conductors held spaced a predetermined vertical distance apart in a vertical plane, first and second pluralities of dipole elements @lying in corresponding first and second vertically spaced horizontal planes containing the respective conductors, the dipole elements extending from opposite sides of and transversely at an angle to each conductor at successivepoints therealong with dipole ele- I ments connected to one conductor extending in opposite direction to the corresponding dipole elements of the other conductor, the length of the dipole elements successively increasing from one end of the conductors towards. the 1 other end thereof, means for connecting a parallel-wire transmission line to the said one end of the conductors,
rigid insulating means securing the said connecting means i mechanically in spaced-apart relation and connected with means for supporting the transmission line near the said one end, and means for mounting the antenna at a region of the said conductors remote from the said one end, further rigid insulating means being provided for securing the said longitudinal conductors mechanically in rigid spaced-apart relation near the said region, the said vertii cal distance being less than the distances between the said successive points and less than the wavelengths of the said band.
6. An antenna as claimed in claim 2 and in which the lengths of the said conductors and of their extensions are substantially equal.
References Cited by the Examiner HERMAN IQARL SAALBACH, Primary Examiner.
C. BARAFF, E. LIEBERMAN, Assistant Examiners,

Claims (1)

1. AN ANTENNA FOR ULTRA-HIGH-FREQUENCY OPERATION AND THE LIKE, HAVING, IN COMBINATION, A PAIR OF RIGID CONDUCTORS HELD SPACED A PREDETERMINED VERTICAL DISTANCE APART IN A VERTICAL PLANE, FIRST AND SECOND PLURALITIES OF HORIZONTAL DIPOLE ELEMENTS LYING IN CORRESPONDING FIRST AND SECOND VERTICALLY SPACED HORIZONTAL PLANES CONTAINING THE RESPECTIVE CONDUCTORS, THE DIPOLE ELEMENTS EXTENDING FROM OPPOSITE SIDES OF EACH CONDUCTOR AT SUCCESSIVE POINTS THEREALONG WITH DIPOLE ELEMENTS CONNECTED TO ONE CONDUCTOR EXTENDING IN OPPOSITE HORIZONTAL DIRECTIONS TO THE CORRESPONDING DIPOLE ELEMENTS OF THE OTHER CONDUCTOR, THE LENGTH OF THE DIPOLE ELEMENTS SUCCESSIVELY INCREASING FROM ONE END OF THE CONDUCTORS TOWARD THE OTHER END THEREOF, MEANS FOR CONNECTING A PARALLEL-WIRE TRANSMISSION LINE TO THE SAID ONE END OF THE CONDUCTORS AND MEANS FOR MOUNTING THE ANTENNA COMPRISING A FURTHER PAIR OF RIGID DIVERGING CONDUCTIVE EXTENSIONS OF SAID CONDUCTORS MECHANICALLY SECURED IN RIGID SPACED-APART RELATION AT AN END THEREOF, THE SAID DIVERGING CONDUCTIVE EXTENSIONS BEING PROVIDED AT THE SAID OTHER END OF THE PAIR OF RIGID CONDUCTORS AND EACH COMPRISING A PAIR OF HORIZONTALLY SPACED CONDUCTORS TERMINALLY PROVIDED WITH A VERTICAL LOOP, AND THE SAID MECHANICAL SECURING MEANS COMPRISING MAST-STRAPPING MEANS FOR STRAPPING THE SAID VERTICAL LOOPS, AND THE DISTANCE OF THE SAID MAST-STRAPPING LOOPS FROM THE SAID OTHER END BEING COMPARABLE TO THE DISTANCE BETWEEN THE LONGEST AND NEXT-TO-LONGEST PAIRS OF DIPOLE ELEMENTS OF THE ANTENNA.
US325511A 1963-11-21 1963-11-21 Antenna having combined support and lead-in Expired - Lifetime US3259904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US325511A US3259904A (en) 1963-11-21 1963-11-21 Antenna having combined support and lead-in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US325511A US3259904A (en) 1963-11-21 1963-11-21 Antenna having combined support and lead-in

Publications (1)

Publication Number Publication Date
US3259904A true US3259904A (en) 1966-07-05

Family

ID=23268187

Family Applications (1)

Application Number Title Priority Date Filing Date
US325511A Expired - Lifetime US3259904A (en) 1963-11-21 1963-11-21 Antenna having combined support and lead-in

Country Status (1)

Country Link
US (1) US3259904A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362026A (en) * 1965-01-27 1968-01-02 Jen Chu Shortened log periodic antenna
US3396399A (en) * 1965-03-24 1968-08-06 Winegard Co Ultra-high frequency fishbone type television antenna
US3471859A (en) * 1965-09-30 1969-10-07 Sylvan Simons Increased gain broad-band television antenna
US3482250A (en) * 1966-10-06 1969-12-02 Viewall Television Products Co Dipole antenna array having equally spaced dipoles of decreasing lengths
US3509574A (en) * 1968-10-01 1970-04-28 Blonder Tongue Elect Combined vhf-uhf dipole antenna
US3573841A (en) * 1968-05-27 1971-04-06 Avnet Inc Television receiving antenna
US3576580A (en) * 1969-08-04 1971-04-27 Sylvania Electric Prod Boom and feedline construction for multielement antenna
JPS516040Y1 (en) * 1968-06-17 1976-02-19

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086206A (en) * 1960-10-19 1963-04-16 Channel Master Corp End fire planar dipole array with line transposition between dipoles and impedance increase towards feed
US3108280A (en) * 1960-09-30 1963-10-22 Univ Illinois Log periodic backward wave antenna array
US3134979A (en) * 1961-01-27 1964-05-26 Granger Associates Tapered ladder log periodic antenna
US3150376A (en) * 1964-04-03 1964-09-22 Univ Hlinois Foundation Multi-band log periodic antenna
US3210767A (en) * 1960-05-03 1965-10-05 Univ Illinois Frequency independent unidirectional antennas
US3212094A (en) * 1961-05-31 1965-10-12 Collins Radio Co Vertically polarized unidirectional log periodic antenna over ground

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210767A (en) * 1960-05-03 1965-10-05 Univ Illinois Frequency independent unidirectional antennas
US3108280A (en) * 1960-09-30 1963-10-22 Univ Illinois Log periodic backward wave antenna array
US3086206A (en) * 1960-10-19 1963-04-16 Channel Master Corp End fire planar dipole array with line transposition between dipoles and impedance increase towards feed
US3134979A (en) * 1961-01-27 1964-05-26 Granger Associates Tapered ladder log periodic antenna
US3212094A (en) * 1961-05-31 1965-10-12 Collins Radio Co Vertically polarized unidirectional log periodic antenna over ground
US3150376A (en) * 1964-04-03 1964-09-22 Univ Hlinois Foundation Multi-band log periodic antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362026A (en) * 1965-01-27 1968-01-02 Jen Chu Shortened log periodic antenna
US3396399A (en) * 1965-03-24 1968-08-06 Winegard Co Ultra-high frequency fishbone type television antenna
US3471859A (en) * 1965-09-30 1969-10-07 Sylvan Simons Increased gain broad-band television antenna
US3482250A (en) * 1966-10-06 1969-12-02 Viewall Television Products Co Dipole antenna array having equally spaced dipoles of decreasing lengths
US3573841A (en) * 1968-05-27 1971-04-06 Avnet Inc Television receiving antenna
JPS516040Y1 (en) * 1968-06-17 1976-02-19
US3509574A (en) * 1968-10-01 1970-04-28 Blonder Tongue Elect Combined vhf-uhf dipole antenna
US3576580A (en) * 1969-08-04 1971-04-27 Sylvania Electric Prod Boom and feedline construction for multielement antenna

Similar Documents

Publication Publication Date Title
US4038662A (en) Dielectric sheet mounted dipole antenna with reactive loading
US6759990B2 (en) Compact antenna with circular polarization
US3721990A (en) Physically small combined loop and dipole all channel television antenna system
CA2223668C (en) The strengthened quad antenna structure
US20110025569A1 (en) Cross-dipole antenna combination
US4286271A (en) Log-periodic monopole antenna
US3789416A (en) Shortened turnstile antenna
US20230411849A1 (en) Antenna Assemblies
US3259904A (en) Antenna having combined support and lead-in
CN108155460B (en) Double-frequency omni-directional coupling support-section loaded spiral antenna and manufacturing method thereof
CA2170918C (en) Double-delta turnstile antenna
US3727230A (en) Antenna having a combined dipole and loop portion
US4145694A (en) Compact, directive, broadband antenna system having end loaded dipoles
US3626418A (en) Broadband, omnidirectional, horizontally polarized, loop antenna
US4315264A (en) Circularly polarized antenna with circular arrays of slanted dipoles mounted around a conductive mast
KR101710803B1 (en) Base Station Antenna Radiator for Isolation of Polarization Diversity
US4257049A (en) Periodically loaded antenna structure
US3683390A (en) Hf broadband omnidirectional antenna
USRE23960E (en) lorusso
US3221332A (en) Log periodic antenna with plural crossed dipoles
US2817085A (en) Broad-band end-fire television antenna
US4616233A (en) Twin zig zag log periodic antenna
US2701308A (en) Television antenna
US3449751A (en) Complementary pair antenna element groups
Abdolahi et al. A new wideband modified biquad antenna at VHF for communication systems