US3336980A - Sand control in wells - Google Patents

Sand control in wells Download PDF

Info

Publication number
US3336980A
US3336980A US615027A US61502767A US3336980A US 3336980 A US3336980 A US 3336980A US 615027 A US615027 A US 615027A US 61502767 A US61502767 A US 61502767A US 3336980 A US3336980 A US 3336980A
Authority
US
United States
Prior art keywords
formation
sand
plastic
wells
perforation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US615027A
Inventor
James L Rike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Priority to US615027A priority Critical patent/US3336980A/en
Application granted granted Critical
Publication of US3336980A publication Critical patent/US3336980A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/025Consolidation of loose sand or the like round the wells without excessively decreasing the permeability thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof

Definitions

  • This invention relates generally to the control of sand production from oil and gas wells through which earth fluids are produced from unconsolidated subsurface formations.
  • thermosetting plastics or resins When the plastic sets, it binds the sand particles together, but permits Well liuids to flow to the well bore.
  • the present invention provides a method which overcomes the defects in sand control and lack of well productivity when resins are used to consolidate incompetent sands.
  • a limited void space is allowed to form or is intentionally created on the formation side of the perforation hole; and this void is maintained with fluid movement during the sand consolidating process and the void and perforation hole are packed immediately thereafter with a solid material, which is later flowed back from United States Patent O 3,336,980 Patented Aug. 22, 1967 ice the perforation hole upon resumption of production, after the consolidating resins have set around the sand grains beyond the void space.
  • a primary object, then, of the present invention is to provide a method for improving the success ratio of consolidating incompetent sands in subsurface formations through use of resin-strengthening techniques. Another primary object is the improvement of well productivity in resin-consolidated Wells.
  • FIG. 1 is a cross-sectional view of a borehole penetrating a subsurface formation illustrating the perforating step of the invention.
  • FIGS. 2 through 6 are schematic cross-sectional diagrams of a portion of the Well bore and surrounding earth formations illustrating the sequence of steps applied in accordance with the teachings of the invention.
  • a perforator gun is lowered to adjacent the incompetent productive formation and the formation is perforated with care ⁇ taken to insure that no sand will be produced from the formation during the perforating operation.
  • Fluid of sufficient Weight to con-trol the well is circulated through the small pipe and then the small pipe is withdrawn from the well bore.
  • the consolidation plastic may be directed down a channel formed between the cement and the formation before the plastic enters the unconsolidated sand formation.
  • the frequent use of fracturing pressures in consolidation treatments is a strong indication of this occcurrence. If sand adjacent to and immediately beyond the perforation hole is left unconsolidated, then an apparent failure in sand control would result even though consolidating plastic had consolidated the sand at some lower or higher point through a fracturing technique.
  • FIG. l a casing is shown surrounded by cement 11 and penetrating a unconsolidated formation 12.
  • a perforator gun 13 is positioned adjacent formation 12 and perforations 14 are formed in formation 12 when gun 13 is fired.
  • perforator gun 13 is lowered through casing 10 to adjacent unconsolidated formation 12 where it is fired with a differential pressure preferably into the well bore, P1 P2 to create perforation holes 14.
  • Approximately one barrel of iiow from the unconsolidated formation 12 through perforations 14 is then permitted. If necessary, the one barrel of iiow is induced by swabbing.
  • Gun 13 is then withdrawn from the well bore.
  • FIG. 2 illustrates the unconsolidated formation after it has been perforated.
  • a small tubing is lowered through casing 10 to adjacent perforations 14 and any sand or debris is washed from the well bore as the small tubing is run in.
  • the plastic is then flowed through tubing 15 into perforations 14 and the formation 12.
  • an afterflush is flowed down tubing 15 to wash excess plastic from the well bore.
  • a second afterflush containing particles of sand, aluminum spheres, glass beads, small plastic cylinders, ground calcium carbonate, -or other particulate solids 16 that are not wet with the plastic are flowed down tubing 15 and placed in the perforation holes 14 as illustrated in FIG. 4.
  • One quarter to three pounds of particulate solid material per gallon in a total of one to five barrels of afterfiush should be satisfactory for this step.
  • a prepared emulsion or filter cake building material is circulated down tubing 15 to form a filter cake cover 17 over the face of the perforation holes 14 containing the packed solids 16 as shown in FIG. 5.
  • a continual, light pressure, P2 P1 is held on the well bore to exert a physical force which holds the filter material 17 against the packed perforation holes and prevents the backfiow of sand or particulate solids into the well bore due to gravity.
  • Tubing 15 is removed from the well bore and the plastic in the unconsolidated formation 12 is permitted to set and harden.
  • a practical procedure for sand control 'with plastic consolidation according to the invention is as follows:
  • plastic ingredients are mixed according to the formation temperature anticipated and plastic is displaced behind the spacer fiuid.
  • the first overiiush is followed by a packing overflush which is 2% cresol in diesel oil and containing 1A to 3% p.p.g. of ground calcium carbonate, (50450 mixture of 30-50 mesh and 40-200 ⁇ mesh CaCO3).
  • the packing overfiush is adjusted according to h-ow much sand has been produced. New wells are done with 2 bbl. total and 1A to 1/2 p.p.g. of CaCO3 added. Treatments after sanding up will have 4 bbls. total and 1/2 to 3A ppg. of CaCO3.
  • Black Magic drilling mud is an oil base mud marketed by Oil Base, Inc. of Compton, Calif., which obtains filter cake building properties through emulsification and ground asphalt particles. Weight is obtained in the fiuid by adding ground calcium carbonate or barite.
  • a gelling agent may be added in the sixth step to insure that the solids are carried into the perforations.
  • a method for consolidating the san-ds of an incompetent subsurface formation comprising the steps of:
  • a method as recited in claim 1 including maintaining a pressure differential on the well bore suicient to exert a physical force to hold said solid particles in said perforation hole.
  • a method as recited in claim 2 including the step of introducing into the well bore adjacent said perforation a filter cake building material capable of forming a filter cake cover over the face of said perforation packed with solid particles following the step of introducing said particles into said formation and prior to the step of maintaining a pressure differential on the well bore.
  • a method as recited in claim 3 including the step of flowing a portion of said formation fluids through said perforation into said well bore following the step of perforating said formation and prior to the step of introducing said sand consolidating plastic into said formation.
  • a method as recited in claim 4 in which a silane bonding agent adapted to promote bonding between the sand and plastic is introduced into said formation.
  • a method as recited in claim 9 in which said formation is perforated while maintaining a pressure differential into said formation.

Description

Aug. 22, 1967 J. L. RIKE d 3,336,980
SAND CONTROL 1N WELLS Original Filed Nov. 25, 1964 FIG.2. Y/
A LLowING APLAsTI O INVENTOR.
JAMES L. RIKE,
g3* BY ATTORNEY.
//l/ ff WELL FLOw f A/ I REMOVING soLIOsQ/ 3,336,980 SAND CONTROL IN WELLS James L. Rike, New Orleans, La., assignor, by mesne assignments, to Esso Production Research Company, Houston, Tex., a corporation of Delaware Continuation of abandoned application Ser. No. 413,941, Nov. 25, 1964. This application Feb. 9, 1967, Ser. No.
11 Claims. (Cl. 166-33) ABSTRACT F THE DISCLOSURE This application is a continuationof application Ser. No. 413,941, entitled, Sand Control in Wells, filed Nov. 25', 1964, now abandoned, by James L. Rike.
This invention relates generally to the control of sand production from oil and gas wells through which earth fluids are produced from unconsolidated subsurface formations.
When fluids are produced from loosely consolidated, subsurface formations, sand is also produced. One technique for controlling sand production when producing uids from unconsolidated formations involves the treatment of the unconsolidated sand with thermosetting plastics or resins. When the plastic sets, it binds the sand particles together, but permits Well liuids to flow to the well bore.
Both phenol-formaldehyde and epoxy-type resins have been successfully used to consolidate sands in the field. U.S. Patent No. 3,022,825, issued Feb. 27, 1962, to W. O. Winsauer et al., entitled, Method for Sand Consolidation; U.S. Patent No. 3,047,067, issued July 3l, 1962, to R. E. Williams et al., entitled, Sand Consolidation Method; and U.S. Patent No. 3,097,692, issued July 16, 1963, to Williams et al., entitled, Sand Consolidation Method, illustrate a few of the practical sand consolidation methods using resins that have been employed in the past.
Although the process of sand consolidation with plastics or resins has been successful in many wells with a wide range of depth and with widely varying well conditions, it has not always been successful. Repeated treatments have been necessary in some wells to successfully control the sand production. In other wells sand production was controlled but productivity of the wells was much lower than anticipated. In some fields, resinconsolidated wells produced less than 80 bbls./day with tubing pressures of 20 to 100 p.s.i., whereas other wells completed in the same or similar formations demonstrated a capability of over 100 bbls./day at tubing pressures 400 p.s.i. and above.
The present invention provides a method which overcomes the defects in sand control and lack of well productivity when resins are used to consolidate incompetent sands. A limited void space is allowed to form or is intentionally created on the formation side of the perforation hole; and this void is maintained with fluid movement during the sand consolidating process and the void and perforation hole are packed immediately thereafter with a solid material, which is later flowed back from United States Patent O 3,336,980 Patented Aug. 22, 1967 ice the perforation hole upon resumption of production, after the consolidating resins have set around the sand grains beyond the void space.
A primary object, then, of the present invention is to provide a method for improving the success ratio of consolidating incompetent sands in subsurface formations through use of resin-strengthening techniques. Another primary object is the improvement of well productivity in resin-consolidated Wells.
Other objects and advantages of the invention will become apparent from the following, more detailed description of the invention when taken with the accompanying drawing wherein:
FIG. 1 is a cross-sectional view of a borehole penetrating a subsurface formation illustrating the perforating step of the invention; and
FIGS. 2 through 6 are schematic cross-sectional diagrams of a portion of the Well bore and surrounding earth formations illustrating the sequence of steps applied in accordance with the teachings of the invention.
The present practice in the art of consolidating the sands of incompetent formations with plastics includes the following steps:
(l) The casing is cemented in the well bore.
(2) A perforator gun is lowered to adjacent the incompetent productive formation and the formation is perforated with care `taken to insure that no sand will be produced from the formation during the perforating operation.
(3) The perforator gun is withdrawn and a small, concentric pipe is run in the casing and plastic materials are pumped through the small pipe and displaced into the formation through the pcrforations. During placement of the plastic, care is taken to prevent even momentary flow of fluids into the Well bore.
(4) The plastic materials are allowed to harden or set.
Fluid of sufficient Weight to con-trol the well is circulated through the small pipe and then the small pipe is withdrawn from the well bore.
(5) The well is placed on production, usually by swabbing.
In this operation, in accordance with current practice, all of the gun debris resulting from the perforating process tends to enter the perforation hole and become packed and consolidated in it as a result of the differential iluid pressure and the flow of resin into the hole. Even if the gun debris falls out of the perforation hole or is not of sufficient volume to restrict flow, the loose formation sands would tend to fill a portion of the perforation hole during the time it takes the plastic to set. This flow of sand into a portion of the perforation hole would occur despite pressure equilibrium because the formation sand has a higher specific gravity than the Well fluids. Gravity would tend to cause the hole to fill with the loose sand located immediately above the perforation holes. This loose sand accumulating in the perforation holes during the period prior to placing the plastic in the formation would become wet with plastic and would harden into strong consolidated sand particles when the curing or setting time for the resin had elapsed. The high pressure differential requiredl in moving resin liquids into the formation suggests that the reasons for poor consolidation in some areas are attributable to packing the perforation holes with gun debris in the aforementioned manner. Darcys law indicates that a ow of 25 bbls. of 3 cp. fluid daily through a 1/2 diameter by 2 long cylinder of 300 md. sand would require a pressure differential in eX- cess -of 20,000 p.s.i. It is seen, then, how the present Consolidation practice might easily result in reduced or zero productivity if only a fraction of the perforation hole is filled with consolidated sand. The reduced productivity sometimes results in sand control failure because of the high differential pressures incurred in trying to stimulate flow.
If gun debris which has little or no permeability is left packed in the perforation hole, the consolidation plastic may be directed down a channel formed between the cement and the formation before the plastic enters the unconsolidated sand formation. The frequent use of fracturing pressures in consolidation treatments is a strong indication of this occcurrence. If sand adjacent to and immediately beyond the perforation hole is left unconsolidated, then an apparent failure in sand control would result even though consolidating plastic had consolidated the sand at some lower or higher point through a fracturing technique.
Operation With reference to the figures for a more complete description of the operation of the present invention, in FIG. l a casing is shown surrounded by cement 11 and penetrating a unconsolidated formation 12. A perforator gun 13 is positioned adjacent formation 12 and perforations 14 are formed in formation 12 when gun 13 is fired. According to the method of the invention, perforator gun 13 is lowered through casing 10 to adjacent unconsolidated formation 12 where it is fired with a differential pressure preferably into the well bore, P1 P2 to create perforation holes 14. Approximately one barrel of iiow from the unconsolidated formation 12 through perforations 14 is then permitted. If necessary, the one barrel of iiow is induced by swabbing. Gun 13 is then withdrawn from the well bore.
FIG. 2 illustrates the unconsolidated formation after it has been perforated.
As illustrated in FIG. 3, a small tubing is lowered through casing 10 to adjacent perforations 14 and any sand or debris is washed from the well bore as the small tubing is run in. The plastic is then flowed through tubing 15 into perforations 14 and the formation 12. As is the usual practice, an afterflush is flowed down tubing 15 to wash excess plastic from the well bore.
Following this afterfiush, a second afterflush containing particles of sand, aluminum spheres, glass beads, small plastic cylinders, ground calcium carbonate, -or other particulate solids 16 that are not wet with the plastic are flowed down tubing 15 and placed in the perforation holes 14 as illustrated in FIG. 4. One quarter to three pounds of particulate solid material per gallon in a total of one to five barrels of afterfiush should be satisfactory for this step.
Following the solid-containing afterush solution, a prepared emulsion or filter cake building material is circulated down tubing 15 to form a filter cake cover 17 over the face of the perforation holes 14 containing the packed solids 16 as shown in FIG. 5. A continual, light pressure, P2 P1 is held on the well bore to exert a physical force which holds the filter material 17 against the packed perforation holes and prevents the backfiow of sand or particulate solids into the well bore due to gravity.
Tubing 15 is removed from the well bore and the plastic in the unconsolidated formation 12 is permitted to set and harden. v
As illustrated in FIG. 6, when the well is placed on production, the temporary packing material 16 and the filter cake 17 are carried from the perforation holes 14 as well as from small cavities behind casing 10. High productivity results from these conditions.
A practical procedure for sand control 'with plastic consolidation according to the invention is as follows:
(l) Following conventional perforation of the unconsolidated formation (with a pressure differential into the formation), a one-inch pipe is run into the perforated interval and the well bore is washed by circulation and reverse circulation to insure that all sand is washed out of the borehole. Reverse circulation is continued until clean water is obtained in the returns. The last water at the bottom of the hole just prior to discontinuing the wash operation should weigh 9.3 pounds/ gal. (p.p.g.) or more so that plastic will not tend to move downward past the perforations;
(2) Diesel oil is then circulated down the one-inch by 27s-inch annulus surrounding the one-inch pipe in sufficient volume to completely fill the annulus plus one-half barrel.
(3) After establishing that the perforation will accept clean fiuid at a reasonable pressure, 5 bbl. of preiiush (1% solution of Z-6020 in clean 9.0 -p.p..g. water) is bullheaded down the one-inch pipe (clean salt water is displaced into the perforations ahead =of the prefiush) followed by 3 bbl. of clean spacer water. Z-6020` is a trade name for a chemical agent manufactured and marketed by the Dow-Corning Corporation, Midland, Michigan. The compound is 2-aminoethyl aminopropyl trimethoxy silane. Silanes of this type promote bonding between the inorganic sand and the organic resin. A more complete -description of the use of the silane is described and claimed in U.S. patent application Ser. No. 183,751, entitled Sand Consolidation Method by Horace H. Spain, filed Mar. 30, 1962.
(4) The plastic ingredients are mixed according to the formation temperature anticipated and plastic is displaced behind the spacer fiuid.
(5) Introduction of the plastic mixture is followed by one to two bbl. of overflush (diesel oil containing 2% cresol). This first overflush is adjusted so that the formation is not overfiushed with more than 5 bbls. total.
(6) The first overiiush is followed by a packing overflush which is 2% cresol in diesel oil and containing 1A to 3% p.p.g. of ground calcium carbonate, (50450 mixture of 30-50 mesh and 40-200` mesh CaCO3). The packing overfiush is adjusted according to h-ow much sand has been produced. New wells are done with 2 bbl. total and 1A to 1/2 p.p.g. of CaCO3 added. Treatments after sanding up will have 4 bbls. total and 1/2 to 3A ppg. of CaCO3.
(7) The packing overflush is followed by Black Magic drilling mud to obtain a lock-up of pressure inside the tubing against the mud filter cake built up on the packed perforations. One drum (55 gal.) of Black Magic should be adequate for short perforated intervals of 10 holes or less; however, the amount of filter cake buil-ding material may be increased where necessary. Black Magic drilling mud is an oil base mud marketed by Oil Base, Inc. of Compton, Calif., which obtains filter cake building properties through emulsification and ground asphalt particles. Weight is obtained in the fiuid by adding ground calcium carbonate or barite.
(8) The drilling mud is displaced to the perforations until the injection pressure increases 400 p.s.i. as a result of CaCO3 packing or Black Magic filter cake building or both. After the 400 p.s.i. rise is obtained, pumping is resumed intermittently as pressure bleeds off until a pressure lock-up is obtained. At least Mt barrel of Black Magic is left in the well bore opposite the perforations regardless of pressure increase obtained.
A gelling agent may be added in the sixth step to insure that the solids are carried into the perforations.
Four wells treated according to this procedure were made to fiow after limited swabbing (about one-half day) whereas comparable completions have -previously required as much as three days swabbing to initiate fiow. Flowing tubing pressures were comparable to 200` p.s.i. higher than wells treated in the conventional manner. This tubing pressure was sometimes a increase in tubing pressure on the shallow (4000 to 5000) wells treated.
The invention described herein is not restricted to the specific mode of operation set forth as various modifications thereof may Ibe made without departing from the spirit and scope of the invention.
Having fully described the objects, advantages, and method of operation of my invention, I claim:
1. A method for consolidating the san-ds of an incompetent subsurface formation comprising the steps of:
perforating said formation to form a hole in said formation;
introducing a sand consolidating plastic into said perforation hole in said formation; introducing into said perforation hole in said formation behind said plastic solid particles not wetted with said plastic and adapted to be carried fr-om said perforation hole when said formation is produced; and
then producing said formation whereby the solid particles packed in said perforation hole are produced and high -productivity results through the void left by said solid particles.
2. A method as recited in claim 1 including maintaining a pressure differential on the well bore suicient to exert a physical force to hold said solid particles in said perforation hole.
3. A method as recited in claim 2 including the step of introducing into the well bore adjacent said perforation a filter cake building material capable of forming a filter cake cover over the face of said perforation packed with solid particles following the step of introducing said particles into said formation and prior to the step of maintaining a pressure differential on the well bore.
4. A method as recited in claim 3 including the step of flowing a portion of said formation fluids through said perforation into said well bore following the step of perforating said formation and prior to the step of introducing said sand consolidating plastic into said formation.
5. A method as recited in claim 4 in which a silane bonding agent adapted to promote bonding between the sand and plastic is introduced into said formation.
6. A method as recited in claim 5 in which said silane is introduced into said formation in a water solution prior to the step of introducing said sand consolidating plastic into said formation.
7. A method as `recited in claim 6 in which said solid particles are introduced into said formation in a mixture `of 2% cresol in diesel oil.
8. A method as recited in claim 7 in which said solid particles comprise calcium carbonate.
9. A method as recited in claim 8 in which said plastic is selected from the group consisting of phenol-formaldehyde type resin and epoxy type resin.
10. A method as recited in claim 9 in which said formation is perforated while maintaining a pressure differential into said Well bore.
11. A method as recited in claim 9 in which said formation is perforated while maintaining a pressure differential into said formation.
References Cited UNITED STATES PATENTS 2,986,538 5/1961 Nesbitt et al 166--33 X 3,022,825 2/ 1962 Winsaurer et al. 166--33 3,172,471 3/1965 Warren 166-33 3,280,912 10/1966 Sheflield 175-72 X CHARLES E. OCONNELL, Primary Examiner. DAVID H. BROWN, Examiner.

Claims (1)

1. A METHOD FOR CONSOLIDATING THE SANDS OF AN INCOMPETENT SUBSURFACE FORMATION COMPRISING THE STEPS OF: PERFORATING SAID FORMATION TO FORM A HOLE IN SAID FORMATION; INTRODUCING A SAND CONSOLIDATING PLASTIC INTO SAID PERFORATION HOLE IN SAID FORMATION; INTRODUCING INTO SAID PERFORATION HOLE IN SID FORMATION BEHIND SAID PLASTIC SOLID PARTICLES NOT WETTED WITH SAID PLASTIC AND ADAPTED TO BE CARRIED FROM SAID PERFORATION HOLE WHEN SAID FORMATION IS PRODUCED; AND THEN PRODUCING SAID FORMATION WHEREBY THE SOLID PARTICLES PACKED IN SAID PERFORMATION HOLE ARE PRODUCED AND HIGH PRODUCTIVITY RESULTS THROUGH THE VOID LEFT BY SAID SOLID PARTICLES.
US615027A 1967-02-09 1967-02-09 Sand control in wells Expired - Lifetime US3336980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US615027A US3336980A (en) 1967-02-09 1967-02-09 Sand control in wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US615027A US3336980A (en) 1967-02-09 1967-02-09 Sand control in wells

Publications (1)

Publication Number Publication Date
US3336980A true US3336980A (en) 1967-08-22

Family

ID=24463708

Family Applications (1)

Application Number Title Priority Date Filing Date
US615027A Expired - Lifetime US3336980A (en) 1967-02-09 1967-02-09 Sand control in wells

Country Status (1)

Country Link
US (1) US3336980A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393736A (en) * 1966-08-17 1968-07-23 Gulf Research Development Co Well completion method
US3415321A (en) * 1966-09-09 1968-12-10 Dresser Ind Shaped charge perforating apparatus and method
US3437143A (en) * 1966-12-27 1969-04-08 Mobil Oil Corp Formation consolidation
US3487877A (en) * 1967-12-27 1970-01-06 Oil Base Controlling consolidation of permeable earth formations
US3800847A (en) * 1973-07-20 1974-04-02 J Rike Sand consolidation by adhesive agent and particulate pack
FR2200433A1 (en) * 1972-09-14 1974-04-19 Banyaszati Kutato Intezet Direction well blasting before hydraulic fracturing - by pressure peak of two explosive shock waves
US3960801A (en) * 1973-06-18 1976-06-01 Halliburton Company Pumpable epoxy resin composition
US3983941A (en) * 1975-11-10 1976-10-05 Mobil Oil Corporation Well completion technique for sand control
US4589490A (en) * 1984-11-08 1986-05-20 Conoco Inc. Well bore recompletion
US5191931A (en) * 1991-09-24 1993-03-09 Halliburton Company Fluid loss control method
US5386875A (en) * 1992-12-16 1995-02-07 Halliburton Company Method for controlling sand production of relatively unconsolidated formations
US20050194137A1 (en) * 2004-03-05 2005-09-08 Halliburton Energy Services, Inc. Methods of using partitioned, coated particulates
US20060048944A1 (en) * 2004-09-09 2006-03-09 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
US20060283592A1 (en) * 2003-05-16 2006-12-21 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US20070017706A1 (en) * 2003-08-26 2007-01-25 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US7252146B2 (en) 2003-11-25 2007-08-07 Halliburton Energy Services, Inc. Methods for preparing slurries of coated particulates
US7264052B2 (en) 2003-03-06 2007-09-04 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
US7267171B2 (en) 2002-01-08 2007-09-11 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
US7273099B2 (en) * 2004-12-03 2007-09-25 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7306037B2 (en) 2003-04-07 2007-12-11 Halliburton Energy Services, Inc. Compositions and methods for particulate consolidation
US20080006406A1 (en) * 2006-07-06 2008-01-10 Halliburton Energy Services, Inc. Methods of enhancing uniform placement of a resin in a subterranean formation
US7318473B2 (en) 2005-03-07 2008-01-15 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores
US7334635B2 (en) 2005-01-14 2008-02-26 Halliburton Energy Services, Inc. Methods for fracturing subterranean wells
US7345011B2 (en) 2003-10-14 2008-03-18 Halliburton Energy Services, Inc. Methods for mitigating the production of water from subterranean formations
US7398825B2 (en) 2004-12-03 2008-07-15 Halliburton Energy Services, Inc. Methods of controlling sand and water production in subterranean zones
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US20090120639A1 (en) * 2007-11-14 2009-05-14 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US7541318B2 (en) 2004-05-26 2009-06-02 Halliburton Energy Services, Inc. On-the-fly preparation of proppant and its use in subterranean operations
US7552771B2 (en) 2007-11-14 2009-06-30 Halliburton Energy Services, Inc. Methods to enhance gas production following a relative-permeability-modifier treatment
US7563750B2 (en) 2004-01-24 2009-07-21 Halliburton Energy Services, Inc. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US7571767B2 (en) 2004-09-09 2009-08-11 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
US7589048B2 (en) 2004-01-20 2009-09-15 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7741251B2 (en) 2002-09-06 2010-06-22 Halliburton Energy Services, Inc. Compositions and methods of stabilizing subterranean formations containing reactive shales
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US7963330B2 (en) 2004-02-10 2011-06-21 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US8017561B2 (en) 2004-03-03 2011-09-13 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8272440B2 (en) 2008-04-04 2012-09-25 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US8278250B2 (en) 2003-05-16 2012-10-02 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US8354279B2 (en) 2002-04-18 2013-01-15 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
US8420576B2 (en) 2009-08-10 2013-04-16 Halliburton Energy Services, Inc. Hydrophobically and cationically modified relative permeability modifiers and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US8631869B2 (en) 2003-05-16 2014-01-21 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US8689872B2 (en) 2005-07-11 2014-04-08 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US8962535B2 (en) 2003-05-16 2015-02-24 Halliburton Energy Services, Inc. Methods of diverting chelating agents in subterranean treatments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986538A (en) * 1958-10-13 1961-05-30 Lyle E Nesbitt Particulate resin-coated composition
US3022825A (en) * 1958-09-08 1962-02-27 Jersey Prod Res Co Method for sand consolidation
US3172471A (en) * 1960-11-21 1965-03-09 Gulf Research Development Co Reduction of gas and water coning into oil wells
US3280912A (en) * 1963-12-09 1966-10-25 Exxon Production Research Co Restoring lost circulation in wells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022825A (en) * 1958-09-08 1962-02-27 Jersey Prod Res Co Method for sand consolidation
US2986538A (en) * 1958-10-13 1961-05-30 Lyle E Nesbitt Particulate resin-coated composition
US3172471A (en) * 1960-11-21 1965-03-09 Gulf Research Development Co Reduction of gas and water coning into oil wells
US3280912A (en) * 1963-12-09 1966-10-25 Exxon Production Research Co Restoring lost circulation in wells

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393736A (en) * 1966-08-17 1968-07-23 Gulf Research Development Co Well completion method
US3415321A (en) * 1966-09-09 1968-12-10 Dresser Ind Shaped charge perforating apparatus and method
US3437143A (en) * 1966-12-27 1969-04-08 Mobil Oil Corp Formation consolidation
US3487877A (en) * 1967-12-27 1970-01-06 Oil Base Controlling consolidation of permeable earth formations
FR2200433A1 (en) * 1972-09-14 1974-04-19 Banyaszati Kutato Intezet Direction well blasting before hydraulic fracturing - by pressure peak of two explosive shock waves
US3960801A (en) * 1973-06-18 1976-06-01 Halliburton Company Pumpable epoxy resin composition
US3800847A (en) * 1973-07-20 1974-04-02 J Rike Sand consolidation by adhesive agent and particulate pack
US3983941A (en) * 1975-11-10 1976-10-05 Mobil Oil Corporation Well completion technique for sand control
US4589490A (en) * 1984-11-08 1986-05-20 Conoco Inc. Well bore recompletion
US5191931A (en) * 1991-09-24 1993-03-09 Halliburton Company Fluid loss control method
US5386875A (en) * 1992-12-16 1995-02-07 Halliburton Company Method for controlling sand production of relatively unconsolidated formations
US7267171B2 (en) 2002-01-08 2007-09-11 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
US8354279B2 (en) 2002-04-18 2013-01-15 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
US7741251B2 (en) 2002-09-06 2010-06-22 Halliburton Energy Services, Inc. Compositions and methods of stabilizing subterranean formations containing reactive shales
US7264052B2 (en) 2003-03-06 2007-09-04 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
US7306037B2 (en) 2003-04-07 2007-12-11 Halliburton Energy Services, Inc. Compositions and methods for particulate consolidation
US8631869B2 (en) 2003-05-16 2014-01-21 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US7759292B2 (en) 2003-05-16 2010-07-20 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8278250B2 (en) 2003-05-16 2012-10-02 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US20060283592A1 (en) * 2003-05-16 2006-12-21 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8962535B2 (en) 2003-05-16 2015-02-24 Halliburton Energy Services, Inc. Methods of diverting chelating agents in subterranean treatments
US20070017706A1 (en) * 2003-08-26 2007-01-25 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US7345011B2 (en) 2003-10-14 2008-03-18 Halliburton Energy Services, Inc. Methods for mitigating the production of water from subterranean formations
US7252146B2 (en) 2003-11-25 2007-08-07 Halliburton Energy Services, Inc. Methods for preparing slurries of coated particulates
US7595283B2 (en) 2004-01-20 2009-09-29 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US8008235B2 (en) 2004-01-20 2011-08-30 Halliburton Energy Services, Inc. Permeability-modifying drilling fluids and methods of use
US7589048B2 (en) 2004-01-20 2009-09-15 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7563750B2 (en) 2004-01-24 2009-07-21 Halliburton Energy Services, Inc. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US7963330B2 (en) 2004-02-10 2011-06-21 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
US8017561B2 (en) 2004-03-03 2011-09-13 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7264051B2 (en) 2004-03-05 2007-09-04 Halliburton Energy Services, Inc. Methods of using partitioned, coated particulates
US7350571B2 (en) 2004-03-05 2008-04-01 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
US7261156B2 (en) 2004-03-05 2007-08-28 Halliburton Energy Services, Inc. Methods using particulates coated with treatment chemical partitioning agents
US20050194137A1 (en) * 2004-03-05 2005-09-08 Halliburton Energy Services, Inc. Methods of using partitioned, coated particulates
US7541318B2 (en) 2004-05-26 2009-06-02 Halliburton Energy Services, Inc. On-the-fly preparation of proppant and its use in subterranean operations
US7712531B2 (en) 2004-06-08 2010-05-11 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7571767B2 (en) 2004-09-09 2009-08-11 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
US20060048944A1 (en) * 2004-09-09 2006-03-09 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
US7255169B2 (en) 2004-09-09 2007-08-14 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7398825B2 (en) 2004-12-03 2008-07-15 Halliburton Energy Services, Inc. Methods of controlling sand and water production in subterranean zones
US7273099B2 (en) * 2004-12-03 2007-09-25 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7334635B2 (en) 2005-01-14 2008-02-26 Halliburton Energy Services, Inc. Methods for fracturing subterranean wells
US7318473B2 (en) 2005-03-07 2008-01-15 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US8689872B2 (en) 2005-07-11 2014-04-08 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US8443885B2 (en) 2006-02-10 2013-05-21 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US20080006406A1 (en) * 2006-07-06 2008-01-10 Halliburton Energy Services, Inc. Methods of enhancing uniform placement of a resin in a subterranean formation
US7500521B2 (en) 2006-07-06 2009-03-10 Halliburton Energy Services, Inc. Methods of enhancing uniform placement of a resin in a subterranean formation
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US7552771B2 (en) 2007-11-14 2009-06-30 Halliburton Energy Services, Inc. Methods to enhance gas production following a relative-permeability-modifier treatment
US20090120639A1 (en) * 2007-11-14 2009-05-14 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US8272440B2 (en) 2008-04-04 2012-09-25 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US8420576B2 (en) 2009-08-10 2013-04-16 Halliburton Energy Services, Inc. Hydrophobically and cationically modified relative permeability modifiers and associated methods

Similar Documents

Publication Publication Date Title
US3336980A (en) Sand control in wells
US3815680A (en) Method for fracturing and propping unconsolidated and dilatant subterranean formations
US5375661A (en) Well completion method
US4549608A (en) Hydraulic fracturing method employing special sand control technique
US3489222A (en) Method of consolidating earth formations without removing tubing from well
US3709298A (en) Sand pack-aided formation sand consolidation
US4875525A (en) Consolidated proppant pack for producing formations
US5358047A (en) Fracturing with foamed cement
US4842068A (en) Process for selectively treating a subterranean formation using coiled tubing without affecting or being affected by the two adjacent zones
AU662497B2 (en) Method for controlling solids accompanying hydrocarbon production
CA1152888A (en) Sand control method employing special hydraulic fracturing technique
US5226749A (en) Waste disposal in hydraulically fractured earth formations
CA2226928C (en) Multiple zone well completion method and apparatus
US2693854A (en) Formation of zones of high permeability in low permeability formations
US3119448A (en) Permeable well cement
US3224506A (en) Subsurface formation fracturing method
US3749174A (en) Method for selective plugging of wells
US2784787A (en) Method of suppressing water and gas coning in oil wells
US4160482A (en) Ball sealer diversion of matrix rate treatments of a well
US2782857A (en) Plugging off water sands
Abdo et al. Field experience with floodwater diversion by complexed biopolymers
US3327783A (en) Consolidation in incompetent stratum
US3088520A (en) Producing fluid from an unconsolidated subterranean reservoir
US3743021A (en) Method for cleaning well perforations
US3428121A (en) Permeable cementing composition and method