US3419079A - Well tool with expansible anchor - Google Patents

Well tool with expansible anchor Download PDF

Info

Publication number
US3419079A
US3419079A US683752A US68375267A US3419079A US 3419079 A US3419079 A US 3419079A US 683752 A US683752 A US 683752A US 68375267 A US68375267 A US 68375267A US 3419079 A US3419079 A US 3419079A
Authority
US
United States
Prior art keywords
abutment
conduit
slip
well
bridge plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US683752A
Inventor
James H Current
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US503503A external-priority patent/US3371716A/en
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US683752A priority Critical patent/US3419079A/en
Application granted granted Critical
Publication of US3419079A publication Critical patent/US3419079A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1293Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S411/00Expanded, threaded, driven, headed, tool-deformed, or locked-threaded fastener
    • Y10S411/924Coupled nut and bolt
    • Y10S411/929Thread lock

Definitions

  • ATTORNEY nited States ABSTRACT OF THE DISCLOSURE Apparatus for use in locking the normally retracted parts of a well packer in expanded positions in a well bore including an inner member having a buttress thread form on its outer periphery, an outer member having a helical groove therein, and the resilient, helically arranged lock means engaging said thread form and movably disposed in said groove.
  • This invention relates generally to subsurface well tools and, more particularly, to a permanently set bridge plug for blocking fluid flow in a well conduit.
  • a bridge plug which is permanently set in a well bore to isolate zones from one another usually has a mandrel which carries normally retracted slips and packing elements. At setting depth, the slips and packing elements are expanded into anchoring and sealing contact with the well bore wall. In order for the bridge plug to remain permanently set, it is desirable to provide a locking mechanism which functions to prevent relative movements of parts once the slips and packing elements have been expanded.
  • Apparatus in accordance with the present invention comprises an elongated tubular body which carries normally retracted anchors and packing.
  • the body is provided with a fixed abutment and a movable abutment.
  • the latter abutment is movable along the body to shift the normally retracted anchors into engagement with the well conduit and to foreshorten and expand the packing.
  • a locking device between the movable abutment and the body locks the bridge plug permanently set in a well conduit.
  • the locking device includes a resilient element which is cooperable with a thread form on the body and is movably disposed in an helical groove on the movable abutment, permitting relative movement between the body and the movable abutment in one direction to enable expansion of the anchors and packing, but preventing relative movement in the other direction to lock the plug in expanded.
  • FIG. 1 is a longitudinal half-section view of a new and improved bridge plug with parts in their normally retracted positions for running-in to a well conduit;
  • FIG. 2 is a fragmentary enlarged view of the new and improved locking device of the present invention.
  • FIG. 3 is a fragmentary view of the various part of the bridge plug when permanently set in a well conduit.
  • the bridge plug includes an elongated tubular body having a lower guide and abutment 11 integrally formed on its lower end. Centrally of the body is a lower blind bore 12 and an upper threaded bore 13. Between these two bores is a solid plug 14 which prevents any fluid flow through the body.
  • the threaded bore 13 provides a means for attaching the body to a conventional setting tool (not shown) in a well-known manner.
  • the upper abutment Movably disposed on the upper portion of the body 10 is an upper abutment 15.
  • the upper abutment is in the form of an annular sleeve which is sized for reception on the tubular body.
  • a locking device 16 Between the sleeve and body is a locking device 16 for unidirectionally permitting longitudinal relative motion therebetween. The structure and function of the locking device 16 will be more fully described hereinafter.
  • an integral, expansible slip member 18 Abutting an upper shoulder 17 on the lower abutment 11 is an integral, expansible slip member 18 having downward facing wickers or teeth 19 on the periphery thereof.
  • An annular inclined surface 20 is formed on the interior of the slip member 18.
  • Another integral, expansible slip member 21 abuts a lower shoulder 22 on the movable abutment 15 and is substantially identical to the lower slip member but is oppositely disposed and has upwardly facing wickers or teeth 23 on the periphery thereof.
  • Both slip members have peripheral grooves 24 which receive encircling expansible restraining bands 25, 26 of differing predetermined strengths. The bands aid in initially holding the slips in inoperative positions as well as allowing various elements of the bridge plug to be selectively 0perated in response to setting force of predetermined magnitudes.
  • Each slip element is made radially expansible by providing a first series of radially cut slots 27 around the circumference thereof and providing a second series of like slots 28 alternately disposed between the first series. These slots extend from one end of each slip element to points 29 near the respective opposite ends of each slip element.
  • the slip elements are integrally formed, they have sufiicient resiliency to be readily expanded into engagement with the conduit wall.
  • An annular elastomer packing element 30 surrounds the body 10 and is disposed between an upper expander 31 and a lower expander 32, the elements being slidably carried on body 10.
  • the upper expander is generally frusto-conically shaped.
  • the outer surface 33 thereof is overlaid by a frusto-conical thin metal sheet 34 which extends from near the base of the cone to its apex.
  • the upper expander is cooperable with the upper slip element 21 to laterally shift the slip element outwardly of the body and into gripping engagement with the conduit as the slip element is driven downwardly over the expander during setting of the bridge plug.
  • the lower expander 32 and thin metal overlay 35 are identical in configuration to the upper expander and metal overlay but are oppositely disposed and are cooperable with lower slip element 18 to laterally shift the lower slip element outwardly of body 10.
  • the expanders 31, 32 are made of an elastomeric material such as Hycar having a significantly greater durometer hardness value than the annular elastomer packing element 30.
  • packing element 30 may have a durometer hardness value in a range of -70, while the elastomer expanders 31, 32 may have durometer hardness values in the range of -100.
  • a characteristic of such elastomers is that they behave like incompressible fluids. External forces applied thereto will generate internal pressures within elastomers which may cause cold flow or extrusion along paths of least resistance. But, if the system is closed, the elastomers will transmit such pressures to the enclosure, there being no substantial change in volume of the elastomers.
  • the expanders 31, 32 have suflicient hardness to cause radial expansion of the integral expansible slip elements 18, 21 as the abutments force the slips over the expanders.
  • Metal overlays 34, 35 reduce the frictional drag.
  • the wickers or teeth 19, 23 engage the wall of the conduit.
  • peripheral portions 37, 38 of the expanders flow outwardly to engage the wall of conduit 36.
  • both the elastomer expanders 31, 32 and the elastomer packing element 30 are confined by the wall of conduit 36, the plug body and the metal overlays 34, 35 which are backed by the wall engaged slips elements. The system is then closed. Further increased setting forces generate further pressures within the elastomers. Pressures within packing element 30 create a tight pack-off between the conduit 36 and body 10. Pressures generated within expanders 31, 32 act outwardly on the slip elements to dig the wickers or teeth 19, 23 into the Wall of the conduit and firmly anchor the bridge plug therein.
  • the radially outer portions 37, 38 of the expanders 31, 32 cold flow outwardly to engage the wall of conduit 36.
  • These annular portions, being of high hardness relative to packing element 30 serve to prevent cold fiow of extrusion of the packing element under pressure.
  • the slip elements 18, 21 themselves serve as back-ups for both the outer portions 37, 38 of the expanders and the packing element 30 to aid in effectively packing-off the annulus between the conduit 36 and body 10.
  • FIG. 2 An upper peripheral portion 39 of body 10 has a special thread form 40 formed thereon.
  • This thread form is a modified coarse buttress variety and defines a helical thread track 41.
  • An upper beveled surface of the thread form 40 provides a helical cam surface 42.
  • Internally formed in movable abutment 15 is a helical groove 43, the groove having the same lead as thread form 40.
  • Received in track 41 and partially in groove 43 is a locking device in the form of a rectangular wire coil spring 44.
  • the inside diameter of the spring in its u-nflexed condition is approximately equal to the diameter of thread track 41.
  • the width of the spring is slightly less than the depth of groove 43.
  • cam surface 42 on thread form 40 acts to radially expand the coil spring 44 outwardly into groove 43 until the spring disengages from thread form 40.
  • the upper face 45 of the spring passes the lower face 46 of the thread form, the inherent resiliency of the spring will cause it to snap inwardly into track 41.
  • Abutment between the upper face 45 of spring 44 and the lower face 46 of thread form 40 locks the movable abutment and body together.
  • the elements of the bridge plug are assembled as shown in FIG. 1 and the plug is operatively connected to a setting tool which is capable of exerting an upward pull on body 10 and a downward push on abutment 15.
  • a setting tool which is capable of exerting an upward pull on body 10 and a downward push on abutment 15.
  • Such setting tools are well known and need not be fully described here.
  • the apparatus is then shifted downwardly through the well conduit to a predetermined setting point.
  • the setting tool is actuated and an upwardly directed setting force isapplied to body 10 and a downwardly directed setting force is applied through a setting sleeve (not shown) to movable abutment 15.
  • upper restraining band 25 is made to have less strength than lower restraining band 26 Therefore, as
  • cam surface 42 on thread form causes the coil spring 44 to resiliently flex outwardly and into the helical groove 43.
  • the spring repeatedly flexes and returns into the helical track 41 until the abutment 15 is in its lowermost position relative to body 10.
  • Apparatus for use in a well conduit comprising: a body; normally retracted means on said body; an abutment movable in one direction along said body for shifting said normally retracted means into engagement with the conduit; and lock means for preventing movement of said abutment in a direction opposite to said one direction whereby said normally retracted means is maintained in engagement with the conduit, said lock means including a thread form on said body forming a helical track, an internal helical groove on said abutment, and a resilient lock member normally engaging said thread form and movably disposed in said groove.
  • a body In a well tool: a body; slip and expander means on said body; an abutment movably mounted on said body for coaction with said slip and expander means to shift said slips means outwardly of said body; and means 5 6 cooperable with said abutment and body for permitting 2,893,492 7/1959 Brown 166119 unidirectional relative movement therebetween, said last- 3,000,443 9/ 1961 Thompson 166135 mentioned means including a buttress thread form on said 3,105,556 10/ 1963 Raulins 166214 body, a helical groove in said abutment, and a resilient 3,236,309 2/1966 Conrad 166212 X helical lock member engaging said thread form and mov- 5 3,244,233 4/ 1966 Villalon 166-134 X ably disposed in said groove.

Description

Dec. 31, 1968 J; CURRENT WELL TOOL WITH EXPANSIBLE ANCHOR Original Filed Oct. 23, 1965 M3076: u/r207,
ATTORNEY nited States ABSTRACT OF THE DISCLOSURE Apparatus for use in locking the normally retracted parts of a well packer in expanded positions in a well bore, including an inner member having a buttress thread form on its outer periphery, an outer member having a helical groove therein, and the resilient, helically arranged lock means engaging said thread form and movably disposed in said groove.
This is a division of application Ser. No. 503,503, filed Oct. 23, 1965, now Patent No. 3,371,716.
This invention relates generally to subsurface well tools and, more particularly, to a permanently set bridge plug for blocking fluid flow in a well conduit.
A bridge plug which is permanently set in a well bore to isolate zones from one another usually has a mandrel which carries normally retracted slips and packing elements. At setting depth, the slips and packing elements are expanded into anchoring and sealing contact with the well bore wall. In order for the bridge plug to remain permanently set, it is desirable to provide a locking mechanism which functions to prevent relative movements of parts once the slips and packing elements have been expanded.
It is accordingly an object of the invention to provide a new and improved locking device for maintaining parts of the bridge plug in expanded positions in a well conduit.
Apparatus in accordance with the present invention comprises an elongated tubular body which carries normally retracted anchors and packing. The body is provided with a fixed abutment and a movable abutment. The latter abutment is movable along the body to shift the normally retracted anchors into engagement with the well conduit and to foreshorten and expand the packing. A locking device between the movable abutment and the body locks the bridge plug permanently set in a well conduit. The locking device includes a resilient element which is cooperable with a thread form on the body and is movably disposed in an helical groove on the movable abutment, permitting relative movement between the body and the movable abutment in one direction to enable expansion of the anchors and packing, but preventing relative movement in the other direction to lock the plug in expanded.
The novel features of the present invention are set forth with particularly in the appended claims. The present invention both as to its structural organization and utility together with further objects and advantages thereof may best be understood by way of illustration and example of one embodiment when taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a longitudinal half-section view of a new and improved bridge plug with parts in their normally retracted positions for running-in to a well conduit;
FIG. 2 is a fragmentary enlarged view of the new and improved locking device of the present invention; and
FIG. 3 is a fragmentary view of the various part of the bridge plug when permanently set in a well conduit.
atent Turning now to FIG. 1, the bridge plug includes an elongated tubular body having a lower guide and abutment 11 integrally formed on its lower end. Centrally of the body is a lower blind bore 12 and an upper threaded bore 13. Between these two bores is a solid plug 14 which prevents any fluid flow through the body. The threaded bore 13 provides a means for attaching the body to a conventional setting tool (not shown) in a well-known manner.
Movably disposed on the upper portion of the body 10 is an upper abutment 15. The upper abutment is in the form of an annular sleeve which is sized for reception on the tubular body. Between the sleeve and body is a locking device 16 for unidirectionally permitting longitudinal relative motion therebetween. The structure and function of the locking device 16 will be more fully described hereinafter.
Abutting an upper shoulder 17 on the lower abutment 11 is an integral, expansible slip member 18 having downward facing wickers or teeth 19 on the periphery thereof. An annular inclined surface 20 is formed on the interior of the slip member 18. Another integral, expansible slip member 21 abuts a lower shoulder 22 on the movable abutment 15 and is substantially identical to the lower slip member but is oppositely disposed and has upwardly facing wickers or teeth 23 on the periphery thereof. Both slip members have peripheral grooves 24 which receive encircling expansible restraining bands 25, 26 of differing predetermined strengths. The bands aid in initially holding the slips in inoperative positions as well as allowing various elements of the bridge plug to be selectively 0perated in response to setting force of predetermined magnitudes.
Each slip element is made radially expansible by providing a first series of radially cut slots 27 around the circumference thereof and providing a second series of like slots 28 alternately disposed between the first series. These slots extend from one end of each slip element to points 29 near the respective opposite ends of each slip element. Although the slip elements are integrally formed, they have sufiicient resiliency to be readily expanded into engagement with the conduit wall.
An annular elastomer packing element 30 surrounds the body 10 and is disposed between an upper expander 31 and a lower expander 32, the elements being slidably carried on body 10. The upper expander is generally frusto-conically shaped. The outer surface 33 thereof is overlaid by a frusto-conical thin metal sheet 34 which extends from near the base of the cone to its apex. The upper expander is cooperable with the upper slip element 21 to laterally shift the slip element outwardly of the body and into gripping engagement with the conduit as the slip element is driven downwardly over the expander during setting of the bridge plug. The lower expander 32 and thin metal overlay 35 are identical in configuration to the upper expander and metal overlay but are oppositely disposed and are cooperable with lower slip element 18 to laterally shift the lower slip element outwardly of body 10.
The expanders 31, 32 are made of an elastomeric material such as Hycar having a significantly greater durometer hardness value than the annular elastomer packing element 30. By way of example, packing element 30 may have a durometer hardness value in a range of -70, while the elastomer expanders 31, 32 may have durometer hardness values in the range of -100. A characteristic of such elastomers is that they behave like incompressible fluids. External forces applied thereto will generate internal pressures within elastomers which may cause cold flow or extrusion along paths of least resistance. But, if the system is closed, the elastomers will transmit such pressures to the enclosure, there being no substantial change in volume of the elastomers.
The expanders 31, 32 have suflicient hardness to cause radial expansion of the integral expansible slip elements 18, 21 as the abutments force the slips over the expanders. Metal overlays 34, 35 reduce the frictional drag. Eventually, the wickers or teeth 19, 23 engage the wall of the conduit. A part of the forces transmitted by the abutments to the slip elements during setting of the bridge plug acts to move expanders 31, 32 toward each other to foreshorten and expand packing element 30. Also, peripheral portions 37, 38 of the expanders flow outwardly to engage the wall of conduit 36. When the teeth have engaged the wall as shown in FIG. 3, both the elastomer expanders 31, 32 and the elastomer packing element 30 are confined by the wall of conduit 36, the plug body and the metal overlays 34, 35 which are backed by the wall engaged slips elements. The system is then closed. Further increased setting forces generate further pressures within the elastomers. Pressures within packing element 30 create a tight pack-off between the conduit 36 and body 10. Pressures generated within expanders 31, 32 act outwardly on the slip elements to dig the wickers or teeth 19, 23 into the Wall of the conduit and firmly anchor the bridge plug therein.
As previously mentioned, the radially outer portions 37, 38 of the expanders 31, 32 cold flow outwardly to engage the wall of conduit 36. These annular portions, being of high hardness relative to packing element 30 serve to prevent cold fiow of extrusion of the packing element under pressure. It -will also be noted that the slip elements 18, 21 themselves serve as back-ups for both the outer portions 37, 38 of the expanders and the packing element 30 to aid in effectively packing-off the annulus between the conduit 36 and body 10.
Turning now to the locking device 16 between the upper movable abutment and body 10, attention is directed to FIG. 2. An upper peripheral portion 39 of body 10 has a special thread form 40 formed thereon. This thread form is a modified coarse buttress variety and defines a helical thread track 41. An upper beveled surface of the thread form 40 provides a helical cam surface 42. Internally formed in movable abutment 15 is a helical groove 43, the groove having the same lead as thread form 40. Received in track 41 and partially in groove 43 is a locking device in the form of a rectangular wire coil spring 44. The inside diameter of the spring in its u-nflexed condition is approximately equal to the diameter of thread track 41. The width of the spring is slightly less than the depth of groove 43. If a downward force is exerted on abutment 15 to move it downwardly relative to body 10, cam surface 42 on thread form 40 acts to radially expand the coil spring 44 outwardly into groove 43 until the spring disengages from thread form 40. When the upper face 45 of the spring passes the lower face 46 of the thread form, the inherent resiliency of the spring will cause it to snap inwardly into track 41. Thus, it will be apparent that downward movement of the abutment 15 relative to body 10 is permitted. However, it will also be apparent that upward movement of the abutment relative to the body is not permitted. Abutment between the upper face 45 of spring 44 and the lower face 46 of thread form 40 locks the movable abutment and body together.
In operation, the elements of the bridge plug are assembled as shown in FIG. 1 and the plug is operatively connected to a setting tool which is capable of exerting an upward pull on body 10 and a downward push on abutment 15. Such setting tools are well known and need not be fully described here. The apparatus is then shifted downwardly through the well conduit to a predetermined setting point. When desired, the setting tool is actuated and an upwardly directed setting force isapplied to body 10 and a downwardly directed setting force is applied through a setting sleeve (not shown) to movable abutment 15. Generally, upper restraining band 25 is made to have less strength than lower restraining band 26 Therefore, as
upper abutment 15 moves downwardly on the body 10, the top slip element 21 is wedged over the expander 31 and expanded against the well conduit 36 prior to expansion of the lower slip element 18.
When the upper slip element 21 abuts the conduit wall, downward shifting of the movable abutment 15 halted and the applied setting forces cause body 10 with integral abutment 11 to move upwardly, wedging the lower slip element 18 over the lower expander 32 and expanding the lower slip element against the conduit wall. During this movement, the lower and upper elastomer expanders 31, 32 are moved toward each other to foreshorten and expand the annular elastomer packing element outwardly into firm sealing engagement with the wall of the well conduit. The outer peripheral portions 37, 38 of the upper and lower expanders are also deformed slightly and engage the conduit so that there is no substantial annular clearance space through which the relatively softer packing element 30 can cold flow or extrude. Further setting forces substantially increase pressure within the expanders 31, 32 which act on slip elements 18, 21 to cause teeth 19, 23 to dig into the wall of conduit 36.
As the upper abutment 15 is moving downwardly relative to the body 10, cam surface 42 on thread form causes the coil spring 44 to resiliently flex outwardly and into the helical groove 43. The spring repeatedly flexes and returns into the helical track 41 until the abutment 15 is in its lowermost position relative to body 10. When the elements of the plug are fully expanded, the aforementioned setting tool releases from the bridge plug automatically and since upward movement of the abutment 15 relative to the body is prevented by abutment between the upper face 45 of the helical coil spring 44 and the lower face 46 of threaded form 40, the bridge plug is locked in set condition.
Any tendency of the bridge plug to move upwardly in the well conduit will be resisted by the upper slip element 21, and conversely downward movement is resisted by the lower slip element 18. Pressure differentials acting across the plug from either above or below will only serve to more firmly anchor the plug in the well conduit.
It will be observed from the foregoing that applicant has provided a new and improved bridge plug which is economical to manufacture and will function to effectively plug fluid flow in a well conduit. The slip expanders prevent cold-flow or extrusion of the annular packing element as well as performing the function of wedging and expanding the slips outwardly and supporting the slips in gripping engagement with the well conduit. No heavy steel cones are used. After full expansion of parts of the bridge plug, it is permanently locked in set condition in the well conduit.
Since certain changes may be made in the above-disclosed apparatus without departing from the scope of the inventive concept involved, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. Apparatus for use in a well conduit comprising: a body; normally retracted means on said body; an abutment movable in one direction along said body for shifting said normally retracted means into engagement with the conduit; and lock means for preventing movement of said abutment in a direction opposite to said one direction whereby said normally retracted means is maintained in engagement with the conduit, said lock means including a thread form on said body forming a helical track, an internal helical groove on said abutment, and a resilient lock member normally engaging said thread form and movably disposed in said groove.
2. In a well tool: a body; slip and expander means on said body; an abutment movably mounted on said body for coaction with said slip and expander means to shift said slips means outwardly of said body; and means 5 6 cooperable with said abutment and body for permitting 2,893,492 7/1959 Brown 166119 unidirectional relative movement therebetween, said last- 3,000,443 9/ 1961 Thompson 166135 mentioned means including a buttress thread form on said 3,105,556 10/ 1963 Raulins 166214 body, a helical groove in said abutment, and a resilient 3,236,309 2/1966 Conrad 166212 X helical lock member engaging said thread form and mov- 5 3,244,233 4/ 1966 Villalon 166-134 X ably disposed in said groove. 3,311,171 3/1967 Castro 166-182 X References Cited DAVID H. BROWN, Primary Examiner. UNITED STATES PATENTS 2,737,248 3/1956 Baker 2s5 141 X 10 2,751,238 6/1956 Vegren 15114 X 166237; 151-14; 285318
US683752A 1965-10-23 1967-09-27 Well tool with expansible anchor Expired - Lifetime US3419079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US683752A US3419079A (en) 1965-10-23 1967-09-27 Well tool with expansible anchor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US503503A US3371716A (en) 1965-10-23 1965-10-23 Bridge plug
US683752A US3419079A (en) 1965-10-23 1967-09-27 Well tool with expansible anchor

Publications (1)

Publication Number Publication Date
US3419079A true US3419079A (en) 1968-12-31

Family

ID=27054531

Family Applications (1)

Application Number Title Priority Date Filing Date
US683752A Expired - Lifetime US3419079A (en) 1965-10-23 1967-09-27 Well tool with expansible anchor

Country Status (1)

Country Link
US (1) US3419079A (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623551A (en) * 1970-01-02 1971-11-30 Schlumberger Technology Corp Anchoring apparatus for a well packer
DE3426848A1 (en) * 1983-12-29 1985-07-11 Dril-Quip, Inc., Houston, Tex. LOCKING CONNECTION
US5906240A (en) * 1997-08-20 1999-05-25 Halliburton Energy Services, Inc. Slip having passageway for lines therethrough
US20040017081A1 (en) * 2002-07-06 2004-01-29 Simpson Neil Andrew Abercrombie Coupling tubulars
US6685236B2 (en) * 2002-06-28 2004-02-03 Weatherford/Lamb, Inc. Helically wound expandable tubular insert
US20040104575A1 (en) * 2002-09-13 2004-06-03 Peter Ellington Expandable coupling
US20040108119A1 (en) * 2002-12-06 2004-06-10 Maguire Patrick G. Wire lock expandable connection
US20040135370A1 (en) * 2002-09-17 2004-07-15 Evans Jason David Tubing connection arrangement
GB2397837A (en) * 2003-01-30 2004-08-04 Weatherford Lamb Unidirectional cementing plug
US20040231839A1 (en) * 2003-05-22 2004-11-25 Peter Ellington Thread integrity feature for expandable connections
SG109410A1 (en) * 1993-03-10 2005-03-30 Halliburton Energy Serv Inc Slip assembly for a lock for use in a subterranean tubular member
US6938697B2 (en) 2001-05-17 2005-09-06 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7017950B2 (en) 2002-09-25 2006-03-28 Weatherford/Lamb, Inc. Expandable connection
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7083005B2 (en) 2002-12-13 2006-08-01 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US7090023B2 (en) 2002-10-11 2006-08-15 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7093675B2 (en) 2000-08-01 2006-08-22 Weatherford/Lamb, Inc. Drilling method
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7117957B2 (en) 1998-12-22 2006-10-10 Weatherford/Lamb, Inc. Methods for drilling and lining a wellbore
US7128161B2 (en) 1998-12-24 2006-10-31 Weatherford/Lamb, Inc. Apparatus and methods for facilitating the connection of tubulars using a top drive
US7131505B2 (en) 2002-12-30 2006-11-07 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7147068B2 (en) 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7165634B2 (en) 1994-10-14 2007-01-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US7191840B2 (en) 2003-03-05 2007-03-20 Weatherford/Lamb, Inc. Casing running and drilling system
US7213656B2 (en) 1998-12-24 2007-05-08 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of tubulars using a top drive
US7216727B2 (en) 1999-12-22 2007-05-15 Weatherford/Lamb, Inc. Drilling bit for drilling while running casing
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US7228901B2 (en) 1994-10-14 2007-06-12 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US20070175631A1 (en) * 2006-02-02 2007-08-02 O'brien Robert S Extended reach anchor
US7264067B2 (en) 2003-10-03 2007-09-04 Weatherford/Lamb, Inc. Method of drilling and completing multiple wellbores inside a single caisson
US7284617B2 (en) 2004-05-20 2007-10-23 Weatherford/Lamb, Inc. Casing running head
US7303022B2 (en) 2002-10-11 2007-12-04 Weatherford/Lamb, Inc. Wired casing
US7311148B2 (en) 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7325610B2 (en) 2000-04-17 2008-02-05 Weatherford/Lamb, Inc. Methods and apparatus for handling and drilling with tubulars or casing
US7334650B2 (en) 2000-04-13 2008-02-26 Weatherford/Lamb, Inc. Apparatus and methods for drilling a wellbore using casing
US7360594B2 (en) 2003-03-05 2008-04-22 Weatherford/Lamb, Inc. Drilling with casing latch
US7370707B2 (en) 2003-04-04 2008-05-13 Weatherford/Lamb, Inc. Method and apparatus for handling wellbore tubulars
US7413020B2 (en) 2003-03-05 2008-08-19 Weatherford/Lamb, Inc. Full bore lined wellbores
US7503397B2 (en) 2004-07-30 2009-03-17 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
US7509722B2 (en) 1997-09-02 2009-03-31 Weatherford/Lamb, Inc. Positioning and spinning device
US7617866B2 (en) 1998-08-24 2009-11-17 Weatherford/Lamb, Inc. Methods and apparatus for connecting tubulars using a top drive
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7712523B2 (en) 2000-04-17 2010-05-11 Weatherford/Lamb, Inc. Top drive casing system
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US7887103B2 (en) 2003-05-22 2011-02-15 Watherford/Lamb, Inc. Energizing seal for expandable connections
US7895726B2 (en) 2003-05-22 2011-03-01 Weatherford/Lamb, Inc. Tubing connector and method of sealing tubing sections
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US20130025883A1 (en) * 2011-07-25 2013-01-31 Mcr Oil Tools, Llc Permanent or removable positioning apparatus and method for downhole tool operations
CN109252827A (en) * 2017-07-14 2019-01-22 中国石油化工股份有限公司 A kind of anti-receding device and the packer comprising it
US10337271B2 (en) 2012-07-24 2019-07-02 Robertson Intellectual Properties, LLC Downhole positioning and anchoring device
US11047192B2 (en) 2012-07-24 2021-06-29 Robertson Intellectual Properties, LLC Downhole positioning and anchoring device
US11078777B2 (en) 2011-07-25 2021-08-03 Robertson Intellectual Properties, LLC Permanent or removable positioning apparatus and method for downhole tool operations
US11098542B2 (en) 2018-11-19 2021-08-24 Baker Hughes, A Ge Company, Llc Anchor and method for making
US11591872B2 (en) 2012-07-24 2023-02-28 Robertson Intellectual Properties, LLC Setting tool for downhole applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737248A (en) * 1950-07-10 1956-03-06 Baker Oil Tools Inc Nonrotary threaded coupling
US2751238A (en) * 1952-07-02 1956-06-19 Conrad R Vegren Quick acting connector
US2893492A (en) * 1954-11-15 1959-07-07 Cicero C Brown Well packers
US3000443A (en) * 1957-08-19 1961-09-19 Dresser Ind Bridging plug
US3105556A (en) * 1959-05-28 1963-10-01 Otis Eng Co Anchoring and sealing devices
US3236309A (en) * 1958-08-08 1966-02-22 Martin B Conrad Retrievable packer holddown device
US3244233A (en) * 1963-04-04 1966-04-05 Halliburton Co Retrievable bridge plug
US3311171A (en) * 1964-06-29 1967-03-28 Baker Oil Tools Inc Retrievable well packer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737248A (en) * 1950-07-10 1956-03-06 Baker Oil Tools Inc Nonrotary threaded coupling
US2751238A (en) * 1952-07-02 1956-06-19 Conrad R Vegren Quick acting connector
US2893492A (en) * 1954-11-15 1959-07-07 Cicero C Brown Well packers
US3000443A (en) * 1957-08-19 1961-09-19 Dresser Ind Bridging plug
US3236309A (en) * 1958-08-08 1966-02-22 Martin B Conrad Retrievable packer holddown device
US3105556A (en) * 1959-05-28 1963-10-01 Otis Eng Co Anchoring and sealing devices
US3244233A (en) * 1963-04-04 1966-04-05 Halliburton Co Retrievable bridge plug
US3311171A (en) * 1964-06-29 1967-03-28 Baker Oil Tools Inc Retrievable well packer

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623551A (en) * 1970-01-02 1971-11-30 Schlumberger Technology Corp Anchoring apparatus for a well packer
DE3426848A1 (en) * 1983-12-29 1985-07-11 Dril-Quip, Inc., Houston, Tex. LOCKING CONNECTION
US4659119A (en) * 1983-12-29 1987-04-21 Dril-Quip, Inc. Latching connector
SG109410A1 (en) * 1993-03-10 2005-03-30 Halliburton Energy Serv Inc Slip assembly for a lock for use in a subterranean tubular member
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7228901B2 (en) 1994-10-14 2007-06-12 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7165634B2 (en) 1994-10-14 2007-01-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7147068B2 (en) 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US5906240A (en) * 1997-08-20 1999-05-25 Halliburton Energy Services, Inc. Slip having passageway for lines therethrough
US7509722B2 (en) 1997-09-02 2009-03-31 Weatherford/Lamb, Inc. Positioning and spinning device
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7617866B2 (en) 1998-08-24 2009-11-17 Weatherford/Lamb, Inc. Methods and apparatus for connecting tubulars using a top drive
US7117957B2 (en) 1998-12-22 2006-10-10 Weatherford/Lamb, Inc. Methods for drilling and lining a wellbore
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US7213656B2 (en) 1998-12-24 2007-05-08 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of tubulars using a top drive
US7128161B2 (en) 1998-12-24 2006-10-31 Weatherford/Lamb, Inc. Apparatus and methods for facilitating the connection of tubulars using a top drive
US7311148B2 (en) 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7216727B2 (en) 1999-12-22 2007-05-15 Weatherford/Lamb, Inc. Drilling bit for drilling while running casing
US7334650B2 (en) 2000-04-13 2008-02-26 Weatherford/Lamb, Inc. Apparatus and methods for drilling a wellbore using casing
US7325610B2 (en) 2000-04-17 2008-02-05 Weatherford/Lamb, Inc. Methods and apparatus for handling and drilling with tubulars or casing
US7712523B2 (en) 2000-04-17 2010-05-11 Weatherford/Lamb, Inc. Top drive casing system
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US7093675B2 (en) 2000-08-01 2006-08-22 Weatherford/Lamb, Inc. Drilling method
US7073598B2 (en) 2001-05-17 2006-07-11 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US6938697B2 (en) 2001-05-17 2005-09-06 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US20040145184A1 (en) * 2002-06-28 2004-07-29 Weatherford/Lamb, Inc. Helically wound expandable tubular insert
US6685236B2 (en) * 2002-06-28 2004-02-03 Weatherford/Lamb, Inc. Helically wound expandable tubular insert
US20080007060A1 (en) * 2002-07-06 2008-01-10 Simpson Neil Andrew Abercrombi Coupling tubulars
US7578043B2 (en) 2002-07-06 2009-08-25 Weatherford/Lamb, Inc. Coupling tubulars
US20040017081A1 (en) * 2002-07-06 2004-01-29 Simpson Neil Andrew Abercrombie Coupling tubulars
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US7107663B2 (en) 2002-09-13 2006-09-19 Weatherford/Lamb, Inc. Expandable coupling
US20040104575A1 (en) * 2002-09-13 2004-06-03 Peter Ellington Expandable coupling
US20100005643A1 (en) * 2002-09-17 2010-01-14 Jason David Evans Tubing connection arrangement
US20040135370A1 (en) * 2002-09-17 2004-07-15 Evans Jason David Tubing connection arrangement
US8136216B2 (en) 2002-09-17 2012-03-20 Weatherford/Lamb, Inc. Method of coupling expandable tubing sections
US7240928B2 (en) 2002-09-17 2007-07-10 Weatherford/Lamb, Inc. Tubing connection arrangement
US7017950B2 (en) 2002-09-25 2006-03-28 Weatherford/Lamb, Inc. Expandable connection
US7303022B2 (en) 2002-10-11 2007-12-04 Weatherford/Lamb, Inc. Wired casing
US7090023B2 (en) 2002-10-11 2006-08-15 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US6981547B2 (en) 2002-12-06 2006-01-03 Weatherford/Lamb, Inc. Wire lock expandable connection
US20040108119A1 (en) * 2002-12-06 2004-06-10 Maguire Patrick G. Wire lock expandable connection
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
US7083005B2 (en) 2002-12-13 2006-08-01 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7131505B2 (en) 2002-12-30 2006-11-07 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
GB2397837A (en) * 2003-01-30 2004-08-04 Weatherford Lamb Unidirectional cementing plug
US7128154B2 (en) 2003-01-30 2006-10-31 Weatherford/Lamb, Inc. Single-direction cementing plug
GB2397837B (en) * 2003-01-30 2006-11-22 Weatherford Lamb Single-direction cementing plug
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US7191840B2 (en) 2003-03-05 2007-03-20 Weatherford/Lamb, Inc. Casing running and drilling system
US7360594B2 (en) 2003-03-05 2008-04-22 Weatherford/Lamb, Inc. Drilling with casing latch
US7413020B2 (en) 2003-03-05 2008-08-19 Weatherford/Lamb, Inc. Full bore lined wellbores
US7370707B2 (en) 2003-04-04 2008-05-13 Weatherford/Lamb, Inc. Method and apparatus for handling wellbore tubulars
US7025135B2 (en) 2003-05-22 2006-04-11 Weatherford/Lamb, Inc. Thread integrity feature for expandable connections
US7887103B2 (en) 2003-05-22 2011-02-15 Watherford/Lamb, Inc. Energizing seal for expandable connections
US7895726B2 (en) 2003-05-22 2011-03-01 Weatherford/Lamb, Inc. Tubing connector and method of sealing tubing sections
US20040231839A1 (en) * 2003-05-22 2004-11-25 Peter Ellington Thread integrity feature for expandable connections
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7264067B2 (en) 2003-10-03 2007-09-04 Weatherford/Lamb, Inc. Method of drilling and completing multiple wellbores inside a single caisson
US7284617B2 (en) 2004-05-20 2007-10-23 Weatherford/Lamb, Inc. Casing running head
US7503397B2 (en) 2004-07-30 2009-03-17 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
US7588078B2 (en) * 2006-02-02 2009-09-15 Baker Hughes Incorporated Extended reach anchor
US20070175631A1 (en) * 2006-02-02 2007-08-02 O'brien Robert S Extended reach anchor
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US20130025883A1 (en) * 2011-07-25 2013-01-31 Mcr Oil Tools, Llc Permanent or removable positioning apparatus and method for downhole tool operations
US9863235B2 (en) * 2011-07-25 2018-01-09 Robertson Intellectual Properties, LLC Permanent or removable positioning apparatus and method for downhole tool operations
US11078777B2 (en) 2011-07-25 2021-08-03 Robertson Intellectual Properties, LLC Permanent or removable positioning apparatus and method for downhole tool operations
US11732574B2 (en) 2011-07-25 2023-08-22 Robertson Intellectual Properties, LLC Permanent or removable positioning apparatus and method for downhole tool operations
US10337271B2 (en) 2012-07-24 2019-07-02 Robertson Intellectual Properties, LLC Downhole positioning and anchoring device
US11047192B2 (en) 2012-07-24 2021-06-29 Robertson Intellectual Properties, LLC Downhole positioning and anchoring device
US11591872B2 (en) 2012-07-24 2023-02-28 Robertson Intellectual Properties, LLC Setting tool for downhole applications
CN109252827A (en) * 2017-07-14 2019-01-22 中国石油化工股份有限公司 A kind of anti-receding device and the packer comprising it
US11098542B2 (en) 2018-11-19 2021-08-24 Baker Hughes, A Ge Company, Llc Anchor and method for making

Similar Documents

Publication Publication Date Title
US3419079A (en) Well tool with expansible anchor
US3371716A (en) Bridge plug
US3298440A (en) Non-retrievable bridge plug
US3343607A (en) Non-retrievable bridge plug
US4745972A (en) Well packer having extrusion preventing rings
US3631926A (en) Well packer
US3623551A (en) Anchoring apparatus for a well packer
US3358766A (en) Anti-extrusion device for a well tool packing element
US3306362A (en) Permanently set bridge plug
US4457369A (en) Packer for high temperature high pressure wells
US3517742A (en) Well packer and packing element supporting members therefor
US4018272A (en) Well packer apparatus
US3229767A (en) Well packer
EP1408195B1 (en) High expansion packer
CA2444588C (en) High temperature, high pressure retrievable packer
US3136365A (en) Packer with spring biased threaded slips
US6302217B1 (en) Extreme service packer having slip actuated debris barrier
US3082824A (en) Well packing devices
US3507327A (en) Retrievable subsurface well tools
US3282346A (en) Subsurface well packers
US3278192A (en) Sealing devices
US2921632A (en) Expansible and retractable packing structure
GB2098676A (en) Annulus sealing device
US3385679A (en) Blank for forming an expansible ring member
US3036639A (en) Expandible packing apparatus