US3421511A - Implantable electrode for nerve stimulation - Google Patents

Implantable electrode for nerve stimulation Download PDF

Info

Publication number
US3421511A
US3421511A US512981A US3421511DA US3421511A US 3421511 A US3421511 A US 3421511A US 512981 A US512981 A US 512981A US 3421511D A US3421511D A US 3421511DA US 3421511 A US3421511 A US 3421511A
Authority
US
United States
Prior art keywords
nerve
electrodes
leads
substance
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US512981A
Inventor
Seymour I Schwartz
Robert C Wingrove
James A Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Application granted granted Critical
Publication of US3421511A publication Critical patent/US3421511A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0556Cuff electrodes

Definitions

  • Electrode apparatus for connection to a nerve, having a pair of electrodes partially embedded within a substance inert to body fluids and tissue, the exposed portions of the electrodes lying in a groove generally conformed to the shape of the nerve for providing atraumatic egress of the nerve to the electrode, and including a further connected portion of the material inert to body food and tissue for covering the groove after the electrodes have been connected to space points on the nerve.
  • Coiled leads are connected to the nerve, and are also encased in material inert to body foods and tissue.
  • This invention relates to medical apparatus, and more particularly to an implantable electrode for electrical stimulation of a single nerve within the body of an animal.
  • the word animal is here used in its broad sense, including Homo sapiens.
  • the apparatus of this invention comprises a pair of electrodes almost entirely embedded within a substance, such as silicon rubber, which is inert to body fluids and tissue, and is thus suitable for implantation in the body of an animal.
  • a pair of flexible leads are connected to the electrodes and may be used to connect the electrodes to an implanted or external source of electrical signal energy.
  • the leads are also embedded in a substance which acts as an electrical insulator as well as being inert to body fluids and tissue.
  • An exposed portion of each of the electrodes is formed to be connected to spaced points along a single nerve, to provide electrical stimulation of the nerve from the source of signal energy.
  • the electrodes and the leads are also made of a material inert to body fluids and tissue; such as platinum or stainless steel.
  • An extra member of the substance is provided, such as a flap, for tying down over the electrodes after they have been connected to the nerve.
  • Electrical impulses for major organs of the body of an animal may be transmitted to that organ by means of pointed electrodes which penetrate the body of the organ and indirectly make contact with a nerve network without damaging the organ.
  • Such general stimulation is not etfective where the impulse must be superimposed on one particular nerve and that nerve alone.
  • the present structure is designed to allow transmission of an electrical impulse specifically and solely to a selected nerve, such as the carotid sinus nerve or the vagus nerve, by way of example.
  • FIG. 1 is a view of a first embodiment of the invention as may be used with an implantable source of electrical signal energy;
  • FIG. 2 is a sectional view of FIG. 1 taken along the line 2-2 and showing a hinged flap which may be fastened over a nerve connected to the electrodes;
  • FIG. 3 is a sectional view of FIG. 2 taken along the line 3-3;
  • FIG. 4 is a plan view of the first embodiment of this invention showing the flap fastened over the electrodes connected to a nerve;
  • FIG. 5 is a sectional view of FIG. 4 taken along the line 55;
  • FIG. 6 is a view of a second embodiment of this invention also connected to the implantable source of electrical signal energy
  • FIG. 7 is a sectional side view of the second embodiment of this invention showing the head of the second embodiment having a slot forming an upper and lower layer;
  • FIG. 10 is a sectional view of the drawing of FIG. 6 taken along the line 10-10.
  • FIG. 1 discloses a first embodiment of this invention having a head indicated generally at 12, including an electrode carrying member 13 and a flap member 15.
  • a lead carrying member or tail 14 is connected to head 12.
  • Tail 14 is also shown connected to an implantable source of electrical signal energy 11.
  • FIG. 2 is a side view of head 12 showing a groove 20 in member 13, and showing flap 15 folded over and connected to member 13.
  • FIG. 3 discloses a pair of electrodes 22 and 24 partially encapsulated in member 13 and formed into the groove 20.
  • a pair of leads 26 and 28, here shown as coiled lengths of an electrically conductive material, are connected, respectively, to electrodes 22 and 24.
  • Leads 26 and 28 are also encapsulated in the substance of tail 14.
  • FIG. 4 discloses electrodes 22 and 24 connected to spaced points along a nerve 27 in groove 20. Flap 15 is shown folded over to cover and thus insulate electrodes 22 and 24 and nerve 27 in groove 20. Flap 15 is fastened to member 13 by use of sutures 29.
  • FIG. 5 also discloses the nerve 27 as covered over by the flap 15 fastened to member 13 by sutures 29.
  • FIG. 6 discloses a second embodiment of this invention having a head indicated generally at 112, a tail 114 connected to head 112 and also connected to a source of electrical signal energy 111.
  • FIG. 7 is a side view of head 112 disclosing a slot 121 out in head 112 to form an upper layer 115 and a lower layer 113. A groove is shown in lower layer 113.
  • FIG. 8 discloses a pair of electrodes 122 and 124 partially encapsulated in the substance of lower layer 113, and partially formed to groove 120.
  • a pair of leads 126 and 128, here shown as coiled lengths of an electrically conductive material, are connected, respectively, to electrodes 122 and 124.
  • Leads 126 and 128 are encapsulated in the substance of tail 114.
  • FIG. 9 is a perspective view which discloses electrodes 122 and 124 connected to spaced points along the length of a nerve 127.
  • FIG. 10 again shows nerve 127 within the groove 120 with upper layer 115 fastened to lower layer 113 by sutures 129.
  • this invention comprises electrodes which are to be implanted within the body of an animal, it is necessary that the substance which comprises head 12 and 112 and .9 tail 14 and 114, be inert to body fluids and tissue.
  • a substance which has been successfully used is silicon rub'ber.
  • electrodes 22 and 24, and 112 and 124, which must connect directly to the outer wall of a nerve 27 or 127 be of a material inert to body fluids and tissue and be not harmful to the outer wall of the nerve to which they are attached.
  • Such a material which has been successfully used is platinum.
  • Another material which may also be used is stainless steel.
  • Leads 26 and 28, and 126 and 128 must also be of a material inert to body fluids and tissue. It may be desirable, but is not mandatory that leads 26 and 28, and 126 and 128, be of the same material as electrodes 22 and 24, and 122 and 124.
  • leads in the embodiments here shown are disclosed as being coiled lengths of a material, to facilitate ease of flexibility. This has proven to be a highly desirable type of lead structure, but it is not intended that this entire invention be limited to such a lead structure.
  • the embodiments of this invention provide either a flap 15 or an upper layer 115. As shown in FIGS. 4 and 5, flap 15 may be folded over to cover electrodes 22 and 24 when they are connected to nerve 27. Flap 15 is then fastened to member 13, such as by sutures 29. As shown in FIGS. 7, 9 and 10, upper layer 115 is separated from lower layer 113 only by the width of slot 121. When electrodes 122 and 124 have been connected to nerve 127, upper layer 115 may be fastened down upon them by means such as sutures 29.
  • Groove 20 in member 13, and groove 120 in lower layer 113 are shaped generally to the configuration of nerves 27 and 127, respectively, and also facilitate firm fastening and insulation of the connection of the electrodes to the nerves.
  • the sources of electrical signal energy 11 and 111 may be transistorized blocking oscillators powered by long life rechangeable batteries, which provide pulses at a predetermined frequency to the nerves 27 and 127, respectively.
  • the sources 11 and 111 shown here are implantable, that is, are encapsulated in a substance inert to body fluids and tissue for implantation in the body of an animal, it is not mandatory that the electrode apparatus of this invention be used with an implantable source of electrical signal energy.
  • the tails 14 and 114 including leads 26 and 28, and 126 and 128, respectively, may extend from within the body to a point external to the body, and be connected to any one of a number of sources of electrical signal energy. Also, the leads may extend to a circuit implanted in the body but powered from a source external to the body.
  • the electrode apparatus of this invention has been successfully implanted in a human being, and shown to be fully operable in providing electrical impulse stimulation to a carotid sinus nerve in one case and to a vagus nerve in a second case.
  • silicon rubber was used as the substance to encapsulate the leads and electrodes.
  • the electrodes were made of platinum, while the leads were made of coiled lengths of stainless steel.
  • the apparatus of this invention provides a noved structure for connection of a source of signal energy to a single nerve, to provide artificial stimulation of that nerve by timed electrical impulses from the source of signal energy. Further, the apparatus of this invention has been used and has been successful in alleviating medical problems of human beings.
  • Electrode apparatus implantable in the body of an animal for stimulation of a single nerve comprising:
  • a slot in said head dividing a part of said head into an upper layer and a lower layer;
  • a pair of electrodes of an electrically conductive material substantially inert to body fluids and tissue, and encased in said head of said housing in spaced relation to one another;
  • each of said pair of electrodes formed to and fitted in said groove, said portions adapted to be connected to spaced points on a single nerve in the body of an animal;
  • said upper layer of said housing adapted to be fastened to said lower layer to hold and shield the single nerve in contact with said pair of electrodes;
  • each of said pair of leads connected to a-ditferent one of said pair of electrodes, for connecting said pair of electrodes to a source of signal energy for stimulating the single nerve.
  • Medical apparatus for implantation into the body of an animal comprising:
  • first and second electrodes of an electrically conductive material substantially inert to body fluids and tissue
  • first and second electrodes adapted to be connected to a source of electrical signal energy
  • first and second electrodes and said first and second leads being encapsulated in a housing of an electrically insulating substance substantially inert to body fluids and tissue;
  • a second portion of said first and second electrodes adapted to be connected to spaced points along a single nerve in the body of an animal, for stimulation of the single nerve upon receipt of a signal from the source of signal energy;
  • a further member of said substance flexibly connected to said housing for fastening over said second portion of said first and second electrodes when connected to the single nerve.

Description

IMPLANTABLE ELECTRODE FOR NERVE STIMULATION 1969} s. 1. SCHWARTZ ET AL Sheet of 2 Filed Dec. 10,
INVENTOR. 55.01001: 2'. SCb'k/Jlfz Roazzr c'. MIA/GROVE BY JIMEJ A. 400E250 Jan. 14, 1969 5 1, SCHWARTZ ET AL 3,421,511
IMPLANTABLE ELECTRODE FOR NERVE STIMULATION Filed DecL Sheet 5 of 2 /2 7 INVENIORS 55:41am? .2: SCHWARTZ ROBERT c. MIA/020V: BY Jone-s A. mvosksou United States Patent 2 Claims ABSTRACT OF THE DISCLOSURE Electrode apparatus for connection to a nerve, having a pair of electrodes partially embedded within a substance inert to body fluids and tissue, the exposed portions of the electrodes lying in a groove generally conformed to the shape of the nerve for providing atraumatic egress of the nerve to the electrode, and including a further connected portion of the material inert to body food and tissue for covering the groove after the electrodes have been connected to space points on the nerve. Coiled leads are connected to the nerve, and are also encased in material inert to body foods and tissue.
This invention relates to medical apparatus, and more particularly to an implantable electrode for electrical stimulation of a single nerve within the body of an animal. The word animal is here used in its broad sense, including Homo sapiens.
Briefly described, the apparatus of this invention comprises a pair of electrodes almost entirely embedded within a substance, such as silicon rubber, which is inert to body fluids and tissue, and is thus suitable for implantation in the body of an animal. A pair of flexible leads are connected to the electrodes and may be used to connect the electrodes to an implanted or external source of electrical signal energy. The leads are also embedded in a substance which acts as an electrical insulator as well as being inert to body fluids and tissue. An exposed portion of each of the electrodes is formed to be connected to spaced points along a single nerve, to provide electrical stimulation of the nerve from the source of signal energy. The electrodes and the leads are also made of a material inert to body fluids and tissue; such as platinum or stainless steel. An extra member of the substance is provided, such as a flap, for tying down over the electrodes after they have been connected to the nerve.
The need for the apparatus of this invention is apparent upon consideration of such modern medical equipment as the carotid sinus nerve stimulator fully described in a co-pending application by Seymour I. Schwartz and Robert C. Wingrove, Ser. No. 397,899, entitled Implantable Stimulator for Reducing Blood Pressure in Hypertensive Persons. In this co-pending application there is described the use of an implantable, artificial nerve stimulator, which provides electrical impulses for stimulation of the carotid sinus nerve to alleviate the problems of hypertensive animals.
Electrical impulses for major organs of the body of an animal may be transmitted to that organ by means of pointed electrodes which penetrate the body of the organ and indirectly make contact with a nerve network without damaging the organ. Such general stimulation is not etfective where the impulse must be superimposed on one particular nerve and that nerve alone. The present structure is designed to allow transmission of an electrical impulse specifically and solely to a selected nerve, such as the carotid sinus nerve or the vagus nerve, by way of example.
In the drawings,
FIG. 1 is a view of a first embodiment of the invention as may be used with an implantable source of electrical signal energy;
FIG. 2 is a sectional view of FIG. 1 taken along the line 2-2 and showing a hinged flap which may be fastened over a nerve connected to the electrodes;
FIG. 3 is a sectional view of FIG. 2 taken along the line 3-3;
FIG. 4 is a plan view of the first embodiment of this invention showing the flap fastened over the electrodes connected to a nerve;
FIG. 5 is a sectional view of FIG. 4 taken along the line 55;
FIG. 6 is a view of a second embodiment of this invention also connected to the implantable source of electrical signal energy;
FIG. 7 is a sectional side view of the second embodiment of this invention showing the head of the second embodiment having a slot forming an upper and lower layer;
FIG. 8 is a sectional view of FIG. 7 taken along the line 8-8;
FIG. 9 is a perspective view of the second embodiment of this invention; and
FIG. 10 is a sectional view of the drawing of FIG. 6 taken along the line 10-10.
FIG. 1 discloses a first embodiment of this invention having a head indicated generally at 12, including an electrode carrying member 13 and a flap member 15. A lead carrying member or tail 14 is connected to head 12. Tail 14 is also shown connected to an implantable source of electrical signal energy 11.
FIG. 2 is a side view of head 12 showing a groove 20 in member 13, and showing flap 15 folded over and connected to member 13.
FIG. 3 discloses a pair of electrodes 22 and 24 partially encapsulated in member 13 and formed into the groove 20. A pair of leads 26 and 28, here shown as coiled lengths of an electrically conductive material, are connected, respectively, to electrodes 22 and 24. Leads 26 and 28 are also encapsulated in the substance of tail 14.
FIG. 4 discloses electrodes 22 and 24 connected to spaced points along a nerve 27 in groove 20. Flap 15 is shown folded over to cover and thus insulate electrodes 22 and 24 and nerve 27 in groove 20. Flap 15 is fastened to member 13 by use of sutures 29.
FIG. 5 also discloses the nerve 27 as covered over by the flap 15 fastened to member 13 by sutures 29.
FIG. 6 discloses a second embodiment of this invention having a head indicated generally at 112, a tail 114 connected to head 112 and also connected to a source of electrical signal energy 111.
FIG. 7 is a side view of head 112 disclosing a slot 121 out in head 112 to form an upper layer 115 and a lower layer 113. A groove is shown in lower layer 113.
FIG. 8 discloses a pair of electrodes 122 and 124 partially encapsulated in the substance of lower layer 113, and partially formed to groove 120. A pair of leads 126 and 128, here shown as coiled lengths of an electrically conductive material, are connected, respectively, to electrodes 122 and 124. Leads 126 and 128 are encapsulated in the substance of tail 114.
FIG. 9 is a perspective view which discloses electrodes 122 and 124 connected to spaced points along the length of a nerve 127.
FIG. 10 again shows nerve 127 within the groove 120 with upper layer 115 fastened to lower layer 113 by sutures 129.
Since this invention comprises electrodes which are to be implanted within the body of an animal, it is necessary that the substance which comprises head 12 and 112 and .9 tail 14 and 114, be inert to body fluids and tissue. Such a substance which has been successfully used is silicon rub'ber. It is also necessary that electrodes 22 and 24, and 112 and 124, which must connect directly to the outer wall of a nerve 27 or 127, be of a material inert to body fluids and tissue and be not harmful to the outer wall of the nerve to which they are attached. Such a material which has been successfully used is platinum. Another material which may also be used is stainless steel. Leads 26 and 28, and 126 and 128 must also be of a material inert to body fluids and tissue. It may be desirable, but is not mandatory that leads 26 and 28, and 126 and 128, be of the same material as electrodes 22 and 24, and 122 and 124.
The leads in the embodiments here shown are disclosed as being coiled lengths of a material, to facilitate ease of flexibility. This has proven to be a highly desirable type of lead structure, but it is not intended that this entire invention be limited to such a lead structure.
While it is necessary that a portion of electrodes 22 and 24, and 122 and 124, not be encapsulated in the substance of head 12 so that the electrodes may be connected to nerve 27 or 127, it is highly undesirable to leave the electrodes exposed after connection to the nerve. To overcome this problem the embodiments of this invention provide either a flap 15 or an upper layer 115. As shown in FIGS. 4 and 5, flap 15 may be folded over to cover electrodes 22 and 24 when they are connected to nerve 27. Flap 15 is then fastened to member 13, such as by sutures 29. As shown in FIGS. 7, 9 and 10, upper layer 115 is separated from lower layer 113 only by the width of slot 121. When electrodes 122 and 124 have been connected to nerve 127, upper layer 115 may be fastened down upon them by means such as sutures 29.
Groove 20 in member 13, and groove 120 in lower layer 113, are shaped generally to the configuration of nerves 27 and 127, respectively, and also facilitate firm fastening and insulation of the connection of the electrodes to the nerves.
The sources of electrical signal energy 11 and 111, shown in FIGS. 1 and 6, respectively, may be transistorized blocking oscillators powered by long life rechangeable batteries, which provide pulses at a predetermined frequency to the nerves 27 and 127, respectively. Though the sources 11 and 111 shown here are implantable, that is, are encapsulated in a substance inert to body fluids and tissue for implantation in the body of an animal, it is not mandatory that the electrode apparatus of this invention be used with an implantable source of electrical signal energy. The tails 14 and 114, including leads 26 and 28, and 126 and 128, respectively, may extend from within the body to a point external to the body, and be connected to any one of a number of sources of electrical signal energy. Also, the leads may extend to a circuit implanted in the body but powered from a source external to the body.
The electrode apparatus of this invention has been successfully implanted in a human being, and shown to be fully operable in providing electrical impulse stimulation to a carotid sinus nerve in one case and to a vagus nerve in a second case. In the various embodiments successfully used, silicon rubber was used as the substance to encapsulate the leads and electrodes. In at least one such embodiment the electrodes were made of platinum, while the leads were made of coiled lengths of stainless steel.
It is apparent from the foregoing description that the apparatus of this invention provides a noved structure for connection of a source of signal energy to a single nerve, to provide artificial stimulation of that nerve by timed electrical impulses from the source of signal energy. Further, the apparatus of this invention has been used and has been successful in alleviating medical problems of human beings.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Electrode apparatus implantable in the body of an animal for stimulation of a single nerve comprising:
a housing of an electrically insulating substance substantially inert to body fluids and tissue, said housing having a head and a tail extending therefrom;
a slot in said head dividing a part of said head into an upper layer and a lower layer;
a groove in said lower layer adjacent said slot;
a pair of electrodes of an electrically conductive material substantially inert to body fluids and tissue, and encased in said head of said housing in spaced relation to one another;
a portion of each of said pair of electrodes formed to and fitted in said groove, said portions adapted to be connected to spaced points on a single nerve in the body of an animal;
said upper layer of said housing adapted to be fastened to said lower layer to hold and shield the single nerve in contact with said pair of electrodes;
a pair of leads of said material encased in said tail of said housing; and
each of said pair of leads connected to a-ditferent one of said pair of electrodes, for connecting said pair of electrodes to a source of signal energy for stimulating the single nerve.
2. Medical apparatus for implantation into the body of an animal comprising:
first and second electrodes of an electrically conductive material substantially inert to body fluids and tissue;
first and second leads of said material connected, re-
spectively, to said first and second electrodes, and adapted to be connected to a source of electrical signal energy;
a first portion of said first and second electrodes and said first and second leads being encapsulated in a housing of an electrically insulating substance substantially inert to body fluids and tissue;
a second portion of said first and second electrodes adapted to be connected to spaced points along a single nerve in the body of an animal, for stimulation of the single nerve upon receipt of a signal from the source of signal energy; and
a further member of said substance flexibly connected to said housing for fastening over said second portion of said first and second electrodes when connected to the single nerve.
References Cited UNITED STATES PATENTS 3,157,181 11/1964 McCarty 128-404 3,216,424 11/1965 Chardack 128418 WILLIAM E. KAMM, Primary Examiner.
US512981A 1965-12-10 1965-12-10 Implantable electrode for nerve stimulation Expired - Lifetime US3421511A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51298165A 1965-12-10 1965-12-10

Publications (1)

Publication Number Publication Date
US3421511A true US3421511A (en) 1969-01-14

Family

ID=24041428

Family Applications (1)

Application Number Title Priority Date Filing Date
US512981A Expired - Lifetime US3421511A (en) 1965-12-10 1965-12-10 Implantable electrode for nerve stimulation

Country Status (2)

Country Link
US (1) US3421511A (en)
BE (1) BE690958A (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596662A (en) * 1968-09-04 1971-08-03 Medtronic Inc Electrode for cardiac stimulator
US3650276A (en) * 1969-03-26 1972-03-21 Inst Demedicina Si Farmacie Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US3650277A (en) * 1969-02-24 1972-03-21 Lkb Medical Ab Apparatus for influencing the systemic blood pressure in a patient by carotid sinus nerve stimulation
US3654933A (en) * 1968-11-18 1972-04-11 Medtronic Inc Implatable electrode
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3788329A (en) * 1972-04-17 1974-01-29 Medtronic Inc Body implantable lead
US3989038A (en) * 1974-11-25 1976-11-02 Neward Theodore C Fetal electrode and biopsy device
US4940065A (en) * 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
US5031621A (en) * 1989-12-06 1991-07-16 Grandjean Pierre A Nerve electrode with biological substrate
US5038781A (en) * 1988-01-21 1991-08-13 Hassan Hamedi Multi-electrode neurological stimulation apparatus
US5092332A (en) * 1990-02-22 1992-03-03 Medtronic, Inc. Steroid eluting cuff electrode for peripheral nerve stimulation
US5265608A (en) * 1990-02-22 1993-11-30 Medtronic, Inc. Steroid eluting electrode for peripheral nerve stimulation
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5344438A (en) * 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5700282A (en) * 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
WO2002034327A2 (en) 2000-10-26 2002-05-02 Medtronic, Inc. Method and apparatus to minimize the effects of a cardiac insult
WO2002034330A2 (en) 2000-10-26 2002-05-02 Medtronic, Inc. Method and apparatus to minimize the effects of a cardiac insult
US20020107553A1 (en) * 2000-10-26 2002-08-08 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
WO2002096512A1 (en) 2001-05-29 2002-12-05 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US20030100924A1 (en) * 2001-04-20 2003-05-29 Foreman Robert D. Cardiac neuromodulation and methods of using same
US20040138579A1 (en) * 2002-10-09 2004-07-15 Deadwyler Sam A. Wireless systems and methods for the detection of neural events using onboard processing
US20050143779A1 (en) * 2003-12-24 2005-06-30 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US20050149128A1 (en) * 2003-12-24 2005-07-07 Heil Ronald W.Jr. Barorflex stimulation system to reduce hypertension
US20050149130A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation synchronized to circadian rhythm
US20050149156A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Lead for stimulating the baroreceptors in the pulmonary artery
US20050251212A1 (en) * 2000-09-27 2005-11-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US20050278000A1 (en) * 2004-06-10 2005-12-15 Strother Robert B Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20060079945A1 (en) * 2004-10-12 2006-04-13 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US20060224188A1 (en) * 2005-04-05 2006-10-05 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US20060265038A1 (en) * 2005-05-19 2006-11-23 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20060271137A1 (en) * 2005-05-25 2006-11-30 The Cleveland Clinic Foundation Apparatus and system to stimulate a nerve
US20070021794A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex Therapy for Disordered Breathing
US20070060980A1 (en) * 2004-06-10 2007-03-15 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070060972A1 (en) * 2000-09-27 2007-03-15 Cvrx, Inc. Devices and methods for cardiovascular reflex treatments
US20070060968A1 (en) * 2004-06-10 2007-03-15 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070066995A1 (en) * 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070092591A1 (en) * 2005-10-24 2007-04-26 Cyberonics, Inc. Vacuum mandrel for use in fabricating an implantable electrode
US20070100406A1 (en) * 2005-10-28 2007-05-03 Cyberonics, Inc. Insert for implantable electrode
US20070156200A1 (en) * 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
US20070179580A1 (en) * 2006-01-27 2007-08-02 Cyberonics, Inc. Multipolar stimulation electrode
US20070185543A1 (en) * 2000-09-27 2007-08-09 Cvrx, Inc. System and method for sustained baroreflex stimulation
US20070191895A1 (en) * 2001-04-20 2007-08-16 Foreman Robert D Activation of cardiac alpha receptors by spinal cord stimulation produces cardioprotection against ischemia, arrhythmias, and heart failure
US20070213773A1 (en) * 2001-10-26 2007-09-13 Hill Michael R Closed-Loop Neuromodulation for Prevention and Treatment of Cardiac Conditions
US20070244535A1 (en) * 2006-04-18 2007-10-18 Cyberonics, Inc. Heat dissipation for a lead assembly
US20070293910A1 (en) * 2004-06-10 2007-12-20 Ndi Medical, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
EP1870127A1 (en) * 2006-06-19 2007-12-26 Lifestim S.r.l. Electrical catheter for use in neurostimulation with adaptable neurostimulating tip
US20080015641A1 (en) * 2006-07-12 2008-01-17 Cyberonics, Inc. Implantable Medical Device Charge Balance Assessment
US20080172116A1 (en) * 2007-01-16 2008-07-17 Ndi Medical, Inc. Devices, systems, and methods employing a molded nerve cuff electrode
US20080172101A1 (en) * 2000-09-27 2008-07-17 Cvrx, Inc. Non-linear electrode array
US20080183258A1 (en) * 2007-01-26 2008-07-31 Inman D Michael Electrode assembly with fibers for a medical device
US20080200925A1 (en) * 2006-09-22 2008-08-21 Northstar Neuroscience, Inc. Methods and systems for securing electrode leads
US20090030493A1 (en) * 2007-07-27 2009-01-29 Colborn John C Ribbon Electrode
US20090112292A1 (en) * 2007-10-26 2009-04-30 Cyberonics Inc. Dynamic lead condition detection for an implantable medical device
US20090125079A1 (en) * 2007-10-26 2009-05-14 Cyberonics Inc. Alternative operation mode for an implantable medical device based upon lead condition
US20090234418A1 (en) * 2000-09-27 2009-09-17 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US20090275996A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20100114221A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US20100114224A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114203A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114201A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114199A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114205A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US20100114208A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114211A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US20100114200A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114197A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114198A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114202A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100121399A1 (en) * 2005-04-05 2010-05-13 Mccabe Aaron Closed loop neural stimulation synchronized to cardiac cycles
US20100138340A1 (en) * 2002-09-19 2010-06-03 John Earl Shirey System and apparatus for transaction fraud processing
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US20100192374A1 (en) * 2006-07-26 2010-08-05 Cyberonics, Inc. Multi-Electrode Assembly for an Implantable Medical Device
US7797058B2 (en) 2004-08-04 2010-09-14 Ndi Medical, Llc Devices, systems, and methods employing a molded nerve cuff electrode
US20100249874A1 (en) * 2000-09-27 2010-09-30 Bolea Stephen L Baroreflex therapy for disordered breathing
WO2011136894A1 (en) 2010-04-30 2011-11-03 Medtronic, Inc. Method and apparatus to enhance therapy during stimulation of the vagus nerve
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US8452394B2 (en) 2008-10-31 2013-05-28 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8478428B2 (en) 2010-04-23 2013-07-02 Cyberonics, Inc. Helical electrode for nerve stimulation
US8498698B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US8548585B2 (en) 2009-12-08 2013-10-01 Cardiac Pacemakers, Inc. Concurrent therapy detection in implantable medical devices
US8560060B2 (en) 2008-10-31 2013-10-15 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US8805494B2 (en) 2005-05-10 2014-08-12 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
EP2833961A4 (en) * 2012-04-02 2015-11-25 Bio Control Medical B C M Ltd Electrode cuffs
US9314635B2 (en) 2003-12-24 2016-04-19 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US20170333692A1 (en) * 2016-05-23 2017-11-23 Boston Scientific Neuromodulation Corporation Lead for electrostimulation of a target stimulation region
US20190143102A1 (en) * 2017-11-10 2019-05-16 Board Of Regents, The University Of Texas System Devices and Methods for Neuromodulation
WO2020231440A1 (en) * 2019-05-16 2020-11-19 Board Of Regents, The University Of Texas System Devices and methods for neuromodulation
US11369794B2 (en) 2005-05-25 2022-06-28 Cardiac Pacemakers, Inc. Implantable neural stimulator with mode switching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157181A (en) * 1962-05-02 1964-11-17 Dow Chemical Co Nerve electrode apparatus
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead
US3157181A (en) * 1962-05-02 1964-11-17 Dow Chemical Co Nerve electrode apparatus

Cited By (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596662A (en) * 1968-09-04 1971-08-03 Medtronic Inc Electrode for cardiac stimulator
US3654933A (en) * 1968-11-18 1972-04-11 Medtronic Inc Implatable electrode
US3650277A (en) * 1969-02-24 1972-03-21 Lkb Medical Ab Apparatus for influencing the systemic blood pressure in a patient by carotid sinus nerve stimulation
US3650276A (en) * 1969-03-26 1972-03-21 Inst Demedicina Si Farmacie Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3788329A (en) * 1972-04-17 1974-01-29 Medtronic Inc Body implantable lead
US3989038A (en) * 1974-11-25 1976-11-02 Neward Theodore C Fetal electrode and biopsy device
US5038781A (en) * 1988-01-21 1991-08-13 Hassan Hamedi Multi-electrode neurological stimulation apparatus
US4940065A (en) * 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
US5031621A (en) * 1989-12-06 1991-07-16 Grandjean Pierre A Nerve electrode with biological substrate
US5265608A (en) * 1990-02-22 1993-11-30 Medtronic, Inc. Steroid eluting electrode for peripheral nerve stimulation
US5092332A (en) * 1990-02-22 1992-03-03 Medtronic, Inc. Steroid eluting cuff electrode for peripheral nerve stimulation
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5344438A (en) * 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5700282A (en) * 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US8712531B2 (en) 2000-09-27 2014-04-29 Cvrx, Inc. Automatic baroreflex modulation responsive to adverse event
US8060206B2 (en) 2000-09-27 2011-11-15 Cvrx, Inc. Baroreflex modulation to gradually decrease blood pressure
US20080171923A1 (en) * 2000-09-27 2008-07-17 Cvrx, Inc. Assessing autonomic activity using baroreflex analysis
US20080177350A1 (en) * 2000-09-27 2008-07-24 Cvrx, Inc. Expandable Stimulation Electrode with Integrated Pressure Sensor and Methods Related Thereto
US20080172101A1 (en) * 2000-09-27 2008-07-17 Cvrx, Inc. Non-linear electrode array
US20070185543A1 (en) * 2000-09-27 2007-08-09 Cvrx, Inc. System and method for sustained baroreflex stimulation
US9044609B2 (en) 2000-09-27 2015-06-02 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US8880190B2 (en) 2000-09-27 2014-11-04 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US8838246B2 (en) 2000-09-27 2014-09-16 Cvrx, Inc. Devices and methods for cardiovascular reflex treatments
US8718789B2 (en) 2000-09-27 2014-05-06 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US9427583B2 (en) 2000-09-27 2016-08-30 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US20050251212A1 (en) * 2000-09-27 2005-11-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US8606359B2 (en) 2000-09-27 2013-12-10 Cvrx, Inc. System and method for sustained baroreflex stimulation
US20080215111A1 (en) * 2000-09-27 2008-09-04 Cvrx, Inc. Devices and Methods for Cardiovascular Reflex Control
US20090234418A1 (en) * 2000-09-27 2009-09-17 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US8583236B2 (en) 2000-09-27 2013-11-12 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US20100174347A1 (en) * 2000-09-27 2010-07-08 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US8290595B2 (en) 2000-09-27 2012-10-16 Cvrx, Inc. Method and apparatus for stimulation of baroreceptors in pulmonary artery
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US20100179614A1 (en) * 2000-09-27 2010-07-15 Kieval Robert S Devices and methods for cardiovascular reflex control
US7949400B2 (en) 2000-09-27 2011-05-24 Cvrx, Inc. Devices and methods for cardiovascular reflex control via coupled electrodes
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US20070021794A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex Therapy for Disordered Breathing
US20070021792A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex Modulation Based On Monitored Cardiovascular Parameter
US20070038262A1 (en) * 2000-09-27 2007-02-15 Cvrx, Inc. Baroreflex stimulation system to reduce hypertension
US20070038255A1 (en) * 2000-09-27 2007-02-15 Cvrx, Inc. Baroreflex stimulator with integrated pressure sensor
US7813812B2 (en) * 2000-09-27 2010-10-12 Cvrx, Inc. Baroreflex stimulator with integrated pressure sensor
US20070060972A1 (en) * 2000-09-27 2007-03-15 Cvrx, Inc. Devices and methods for cardiovascular reflex treatments
US20100249874A1 (en) * 2000-09-27 2010-09-30 Bolea Stephen L Baroreflex therapy for disordered breathing
US20100191303A1 (en) * 2000-09-27 2010-07-29 Cvrx, Inc. Automatic baroreflex modulation responsive to adverse event
WO2002034327A2 (en) 2000-10-26 2002-05-02 Medtronic, Inc. Method and apparatus to minimize the effects of a cardiac insult
US8417334B2 (en) 2000-10-26 2013-04-09 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US7218964B2 (en) 2000-10-26 2007-05-15 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US7010345B2 (en) 2000-10-26 2006-03-07 Medtronic, Inc. Method and apparatus to minimize effects of a cardiac insult
US20030004549A1 (en) * 2000-10-26 2003-01-02 Medtronic, Inc. Method and apparatus to minimize the effects of a cardiac insult
US9656079B2 (en) 2000-10-26 2017-05-23 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US20020143369A1 (en) * 2000-10-26 2002-10-03 Medtronic, Inc. Method and apparatus to minimize effects of a cardiac insult
US20020107553A1 (en) * 2000-10-26 2002-08-08 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
WO2002034330A2 (en) 2000-10-26 2002-05-02 Medtronic, Inc. Method and apparatus to minimize the effects of a cardiac insult
US20070191895A1 (en) * 2001-04-20 2007-08-16 Foreman Robert D Activation of cardiac alpha receptors by spinal cord stimulation produces cardioprotection against ischemia, arrhythmias, and heart failure
US20060111746A1 (en) * 2001-04-20 2006-05-25 Foreman Robert D Cardiac neuromodulation and methods of using same
US7769441B2 (en) 2001-04-20 2010-08-03 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US7860563B2 (en) 2001-04-20 2010-12-28 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US9072901B2 (en) 2001-04-20 2015-07-07 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US20110066200A1 (en) * 2001-04-20 2011-03-17 Foreman Robert D Cardiac neuromodulation and methods of using same
US10279180B2 (en) 2001-04-20 2019-05-07 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US20060111745A1 (en) * 2001-04-20 2006-05-25 Foreman Robert D Cardiac neuromodulation and methods of using same
US20030100924A1 (en) * 2001-04-20 2003-05-29 Foreman Robert D. Cardiac neuromodulation and methods of using same
WO2002096512A1 (en) 2001-05-29 2002-12-05 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US20080097540A1 (en) * 2001-09-26 2008-04-24 Cvrx, Inc. Ecg input to implantable pulse generator using carotid sinus leads
US20070213773A1 (en) * 2001-10-26 2007-09-13 Hill Michael R Closed-Loop Neuromodulation for Prevention and Treatment of Cardiac Conditions
US20100138340A1 (en) * 2002-09-19 2010-06-03 John Earl Shirey System and apparatus for transaction fraud processing
US20040138579A1 (en) * 2002-10-09 2004-07-15 Deadwyler Sam A. Wireless systems and methods for the detection of neural events using onboard processing
US7460904B2 (en) 2002-10-09 2008-12-02 Wake Forest University Health Sciences Wireless systems and methods for the detection of neural events using onboard processing
US20090036752A1 (en) * 2002-10-09 2009-02-05 Deadwyler Sam A Wireless systems and methods for the detection of neural events using onboard processing
US20100125307A1 (en) * 2003-11-03 2010-05-20 Pastore Joseph M Multi-site ventricular pacing therapy with parasympathetic stimulation
US8571655B2 (en) 2003-11-03 2013-10-29 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US8131373B2 (en) 2003-12-24 2012-03-06 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US20050149128A1 (en) * 2003-12-24 2005-07-07 Heil Ronald W.Jr. Barorflex stimulation system to reduce hypertension
US8818513B2 (en) 2003-12-24 2014-08-26 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US8805513B2 (en) 2003-12-24 2014-08-12 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US20050149130A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation synchronized to circadian rhythm
US20050149156A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Lead for stimulating the baroreceptors in the pulmonary artery
US20100185255A1 (en) * 2003-12-24 2010-07-22 Imad Libbus Baroreflex stimulation synchronized to circadian rhythm
US7643875B2 (en) 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US10342978B2 (en) 2003-12-24 2019-07-09 Cardiac Pacemakers, Inc. Vagus nerve stimulation responsive to a tachycardia precursor
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US8639322B2 (en) 2003-12-24 2014-01-28 Cardiac Pacemakers, Inc. System and method for delivering myocardial and autonomic neural stimulation
US9440078B2 (en) 2003-12-24 2016-09-13 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8473076B2 (en) 2003-12-24 2013-06-25 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8195289B2 (en) 2003-12-24 2012-06-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US8442640B2 (en) 2003-12-24 2013-05-14 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US9314635B2 (en) 2003-12-24 2016-04-19 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US20050143779A1 (en) * 2003-12-24 2005-06-30 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20100274324A1 (en) * 2004-06-10 2010-10-28 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation system
US20070293910A1 (en) * 2004-06-10 2007-12-20 Ndi Medical, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9216294B2 (en) 2004-06-10 2015-12-22 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US20050278000A1 (en) * 2004-06-10 2005-12-15 Strother Robert B Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9724526B2 (en) 2004-06-10 2017-08-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for operating the same
US10293168B2 (en) 2004-06-10 2019-05-21 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US8706252B2 (en) 2004-06-10 2014-04-22 Medtronic, Inc. Systems and methods for clinician control of stimulation system
US20070066995A1 (en) * 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US10434320B2 (en) 2004-06-10 2019-10-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070060980A1 (en) * 2004-06-10 2007-03-15 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070060968A1 (en) * 2004-06-10 2007-03-15 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7797058B2 (en) 2004-08-04 2010-09-14 Ndi Medical, Llc Devices, systems, and methods employing a molded nerve cuff electrode
US20100298920A1 (en) * 2004-08-04 2010-11-25 Ndi Medical, Llc Devices, Systems, and methods employing a molded nerve cuff electrode
US8175705B2 (en) 2004-10-12 2012-05-08 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
WO2006044025A1 (en) * 2004-10-12 2006-04-27 Cardiac Pacemakers, Inc. System for sustained baroreflex stimulation
US20060079945A1 (en) * 2004-10-12 2006-04-13 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US11724109B2 (en) 2004-10-12 2023-08-15 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US9211412B2 (en) 2005-04-05 2015-12-15 Cardiac Pacemakers, Inc. Closed loop neural stimulation synchronized to cardiac cycles
US20060224188A1 (en) * 2005-04-05 2006-10-05 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US20090228060A1 (en) * 2005-04-05 2009-09-10 Imad Libbus Method and apparatus for synchronizing neural stimulation to cardiac cycles
US9962548B2 (en) 2005-04-05 2018-05-08 Cardiac Pacemakers, Inc. Closed loop neural stimulation synchronized to cardiac cycles
US8406876B2 (en) 2005-04-05 2013-03-26 Cardiac Pacemakers, Inc. Closed loop neural stimulation synchronized to cardiac cycles
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US20100121399A1 (en) * 2005-04-05 2010-05-13 Mccabe Aaron Closed loop neural stimulation synchronized to cardiac cycles
US8452398B2 (en) 2005-04-05 2013-05-28 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US9504836B2 (en) 2005-05-10 2016-11-29 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US8805494B2 (en) 2005-05-10 2014-08-12 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US20080140167A1 (en) * 2005-05-19 2008-06-12 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20070276442A1 (en) * 2005-05-19 2007-11-29 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US7395119B2 (en) 2005-05-19 2008-07-01 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20060265038A1 (en) * 2005-05-19 2006-11-23 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US11890476B2 (en) 2005-05-25 2024-02-06 Cardiac Pacemakers, Inc. Implantable neural stimulator with mode switching
US20060271137A1 (en) * 2005-05-25 2006-11-30 The Cleveland Clinic Foundation Apparatus and system to stimulate a nerve
US11369794B2 (en) 2005-05-25 2022-06-28 Cardiac Pacemakers, Inc. Implantable neural stimulator with mode switching
US20100101944A1 (en) * 2005-10-24 2010-04-29 Cyberonics, Inc. Vacuum mandrel for use in fabricating an implantable electrode
US20070092591A1 (en) * 2005-10-24 2007-04-26 Cyberonics, Inc. Vacuum mandrel for use in fabricating an implantable electrode
US7901613B2 (en) 2005-10-24 2011-03-08 Cyberonics, Inc. Vacuum mandrel for use in fabricating an implantable electrode
US20070100406A1 (en) * 2005-10-28 2007-05-03 Cyberonics, Inc. Insert for implantable electrode
US8509914B2 (en) 2005-10-28 2013-08-13 Cyberonics, Inc. Insert for implantable electrode
US20070156200A1 (en) * 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
US7467016B2 (en) 2006-01-27 2008-12-16 Cyberonics, Inc. Multipolar stimulation electrode with mating structures for gripping targeted tissue
US20070179580A1 (en) * 2006-01-27 2007-08-02 Cyberonics, Inc. Multipolar stimulation electrode
US8180462B2 (en) 2006-04-18 2012-05-15 Cyberonics, Inc. Heat dissipation for a lead assembly
US20070244535A1 (en) * 2006-04-18 2007-10-18 Cyberonics, Inc. Heat dissipation for a lead assembly
US10322287B2 (en) 2006-05-17 2019-06-18 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
EP1870127A1 (en) * 2006-06-19 2007-12-26 Lifestim S.r.l. Electrical catheter for use in neurostimulation with adaptable neurostimulating tip
US8478420B2 (en) 2006-07-12 2013-07-02 Cyberonics, Inc. Implantable medical device charge balance assessment
US20080015641A1 (en) * 2006-07-12 2008-01-17 Cyberonics, Inc. Implantable Medical Device Charge Balance Assessment
US20100192374A1 (en) * 2006-07-26 2010-08-05 Cyberonics, Inc. Multi-Electrode Assembly for an Implantable Medical Device
US8483846B2 (en) 2006-07-26 2013-07-09 Cyberonics, Inc. Multi-electrode assembly for an implantable medical device
US9079012B2 (en) 2006-09-22 2015-07-14 Advanced Neuromodulation Systems, Inc. Methods for securing electrode leads
US8126529B2 (en) * 2006-09-22 2012-02-28 Advanced Neuromodulation Systems, Inc. Methods and systems for securing electrode leads
US20080200925A1 (en) * 2006-09-22 2008-08-21 Northstar Neuroscience, Inc. Methods and systems for securing electrode leads
US20080172116A1 (en) * 2007-01-16 2008-07-17 Ndi Medical, Inc. Devices, systems, and methods employing a molded nerve cuff electrode
US7996092B2 (en) 2007-01-16 2011-08-09 Ndi Medical, Inc. Devices, systems, and methods employing a molded nerve cuff electrode
US20080183258A1 (en) * 2007-01-26 2008-07-31 Inman D Michael Electrode assembly with fibers for a medical device
US8295946B2 (en) 2007-01-26 2012-10-23 Cyberonics, Inc. Electrode assembly with fibers for a medical device
US20110224767A1 (en) * 2007-01-26 2011-09-15 Cyberonics, Inc. Electrode assembly with fibers for a medical device
US7974707B2 (en) 2007-01-26 2011-07-05 Cyberonics, Inc. Electrode assembly with fibers for a medical device
US20090030493A1 (en) * 2007-07-27 2009-01-29 Colborn John C Ribbon Electrode
US7818069B2 (en) 2007-07-27 2010-10-19 Cyberonics, Inc. Ribbon electrode
US8868203B2 (en) 2007-10-26 2014-10-21 Cyberonics, Inc. Dynamic lead condition detection for an implantable medical device
US20090112292A1 (en) * 2007-10-26 2009-04-30 Cyberonics Inc. Dynamic lead condition detection for an implantable medical device
US20090125079A1 (en) * 2007-10-26 2009-05-14 Cyberonics Inc. Alternative operation mode for an implantable medical device based upon lead condition
US8942798B2 (en) 2007-10-26 2015-01-27 Cyberonics, Inc. Alternative operation mode for an implantable medical device based upon lead condition
US8315713B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090276025A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090276022A1 (en) * 2008-04-30 2009-11-05 Medtronic , Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090275956A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8532793B2 (en) 2008-04-30 2013-09-10 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090275996A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US9572982B2 (en) 2008-04-30 2017-02-21 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US9561369B2 (en) 2008-04-30 2017-02-07 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8260412B2 (en) 2008-10-31 2012-09-04 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114217A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US8005539B2 (en) 2008-10-31 2011-08-23 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8688210B2 (en) 2008-10-31 2014-04-01 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9026206B2 (en) 2008-10-31 2015-05-05 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US8611996B2 (en) 2008-10-31 2013-12-17 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114221A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US20100114224A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9192769B2 (en) 2008-10-31 2015-11-24 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US20100114202A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8560060B2 (en) 2008-10-31 2013-10-15 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US20100114198A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8532779B2 (en) 2008-10-31 2013-09-10 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114197A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8527045B2 (en) 2008-10-31 2013-09-03 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US8498698B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US20100114200A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114203A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8473057B2 (en) 2008-10-31 2013-06-25 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US8774918B2 (en) 2008-10-31 2014-07-08 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8452394B2 (en) 2008-10-31 2013-05-28 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114201A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9597505B2 (en) 2008-10-31 2017-03-21 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114199A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8249708B2 (en) 2008-10-31 2012-08-21 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9775987B2 (en) 2008-10-31 2017-10-03 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114211A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US20100114205A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US20100114208A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9227068B2 (en) 2009-12-08 2016-01-05 Cardiac Pacemakers, Inc. Concurrent therapy detection in implantable medical devices
US8548585B2 (en) 2009-12-08 2013-10-01 Cardiac Pacemakers, Inc. Concurrent therapy detection in implantable medical devices
US8478428B2 (en) 2010-04-23 2013-07-02 Cyberonics, Inc. Helical electrode for nerve stimulation
WO2011136894A1 (en) 2010-04-30 2011-11-03 Medtronic, Inc. Method and apparatus to enhance therapy during stimulation of the vagus nerve
US8755889B2 (en) 2010-04-30 2014-06-17 Medtronic, Inc. Method and apparatus to enhance therapy during stimulation of vagus nerve
EP2833961A4 (en) * 2012-04-02 2015-11-25 Bio Control Medical B C M Ltd Electrode cuffs
US20170333692A1 (en) * 2016-05-23 2017-11-23 Boston Scientific Neuromodulation Corporation Lead for electrostimulation of a target stimulation region
US20190143102A1 (en) * 2017-11-10 2019-05-16 Board Of Regents, The University Of Texas System Devices and Methods for Neuromodulation
WO2020231440A1 (en) * 2019-05-16 2020-11-19 Board Of Regents, The University Of Texas System Devices and methods for neuromodulation

Also Published As

Publication number Publication date
BE690958A (en) 1967-06-09

Similar Documents

Publication Publication Date Title
US3421511A (en) Implantable electrode for nerve stimulation
US3405715A (en) Implantable electrode
US4236525A (en) Multiple function lead assembly
US3216424A (en) Electrode and lead
US4590946A (en) Surgically implantable electrode for nerve bundles
US3522811A (en) Implantable nerve stimulator and method of use
US4030508A (en) Low output electrode for cardiac pacing
US3788329A (en) Body implantable lead
US4532931A (en) Pacemaker with adaptive sensing means for use with unipolar or bipolar leads
USRE31990E (en) Multiple function lead assembly and method for inserting assembly into an implantable tissue stimulator
CA1302504C (en) Intramuscular lead
US3057356A (en) Medical cardiac pacemaker
AU2007284033B2 (en) Implantable medical cuff with electrode array
US5709712A (en) Implantable cardiac stimulation device with warning system
US3348548A (en) Implantable electrode with stiffening stylet
US3490442A (en) Electrode with contact-forming suction cup means
US4033355A (en) Electrode lead assembly for implantable devices and method of preparing same
US3926198A (en) Cardiac pacer
US3822708A (en) Electrical spinal cord stimulating device and method for management of pain
US3867950A (en) Fixed rate rechargeable cardiac pacemaker
US3729008A (en) Electrode for atrial pacing with curved end for atrial wall engagement
DE3565777D1 (en) Surgical electrode
Ã…kerman et al. Observations on Central Regulation of Body: Temperature and of Food and Water Intake in the Pigeon (Columba livia)
US20080275524A1 (en) Implantable Electrode Arrangement
US5899933A (en) Nerve cuff electrode carrier