US3472234A - Body organ electrode - Google Patents

Body organ electrode Download PDF

Info

Publication number
US3472234A
US3472234A US660661A US3472234DA US3472234A US 3472234 A US3472234 A US 3472234A US 660661 A US660661 A US 660661A US 3472234D A US3472234D A US 3472234DA US 3472234 A US3472234 A US 3472234A
Authority
US
United States
Prior art keywords
organ
conductor
cable
connector
helix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US660661A
Inventor
Henry N Tachick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3472234A publication Critical patent/US3472234A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode

Definitions

  • An implantable electric power supply may be connected to an organ which is to be stimulated with a ne insulated helically wound cable.
  • a stiff helical sleeve over an uninsulated end of the cable has a pointed tip and a keyengageable flattened convolution to facilitate screwing it into an organ with a stylet.
  • the bare ends of the conductors are helical, stiff and sharply pointed so they may be screwed into the tissue of the organ. This is done by inserting a hollow needle into the thorax until its distal tip contacts the myocardium. Then the conductor is passed from the proximal to the distal end of the needle and screwed into the myocardium after which the needle is slid back off of the conductor. The proximal end of the conductor is then connected and sealed to the implanted power supply.
  • the procedure may be performed exclusively through an incision or with a mediastinoscope, not shown, which has a tubular barrel and a pistol grip handle.
  • the barrel is about three-fourths of an inch in diameter and is longitudinally slotted coextensive with its length.
  • FIGURE 5 is a plan view of another embodiment of the invention.
  • Conductor is an insulated cable made of many extremely fine silver-coated stainless steel filaments as described in the above-cited application of Fisher et al.
  • the cable has a cross-sectional diameter of about .018 inch including its thin insulation coating.
  • the thin flexible insulating coating may be Teon or other suitable insulating material about .001 to .002 inch thick and it is applied before the cable is wound as a permanently set helix.
  • the distal end of the helix which lies within the limits of the bracket 20 in FIGURE 1 and which appears magnified in FIGURE 3, is not insulated so that the end 20 will conduct when it is screwed into an organ.

Description

Oct. 14, 1969 H. N. TAcH|cK 3472234 BODY ORGAN ELECTRODE Filed Aug. 15. 1967 "'Qa Q '/////////////////////////////////////////////w United States Patent O 3,472,234 BODY ORGAN ELECTRODE Henry N. Tachck, Pittsfield, Mass., assignor to General Electric Company, a corporation of New York Filed Aug. 15, 1967, Ser. No. 660,661 Int. Cl. A61n 1/04, 1/36 U.S. Cl. 12S-418 5 Claims ABSTRACT OF THE DISCLOSURE An implantable electric power supply may be connected to an organ which is to be stimulated with a ne insulated helically wound cable. A stiff helical sleeve over an uninsulated end of the cable has a pointed tip and a keyengageable flattened convolution to facilitate screwing it into an organ with a stylet.
CROSS-REFERENCE TO RELATED APPLICATIONS BACKGROUND OF THE INVENTION Pathological conditions of body organs, such as the heart, are now frequently palliated by stimulation with electric pulses from a power supply that is implanted in the body. In the early stages of the development of this procedure, the power supply was implanted at one site and uninsulated ends of conductors running from the supply were sutured into the organ to provide electrical connections. In the case of heart stimulation, this technique required open-chest surgery which has obvious disadvantages. In the above-cited application of J. G. Quinn, electrodes or conductors are proposed for obviating openchest surgery. In the Quinn application, at least the bare ends of the conductors are helical, stiff and sharply pointed so they may be screwed into the tissue of the organ. This is done by inserting a hollow needle into the thorax until its distal tip contacts the myocardium. Then the conductor is passed from the proximal to the distal end of the needle and screwed into the myocardium after which the needle is slid back off of the conductor. The proximal end of the conductor is then connected and sealed to the implanted power supply. Although this design resulted in simplification of the surgical procedure, it has the disadvantage of requiring that something more than a simple electrical plug-in connection be made to the implanted power supply during surgery.
SUMMARY OF THE INVENTION The electrodes of the present invention permit a new and simplified procedure of making electrical connections to an organ and to a power supply. One specie of the new electrode has two conductors extending from a plug that snaps on and is self-sealing to an implanted power supply. Each conductor comprises a cable of fine wire filaments and each cable is insulated and wound as a permanently set helix. The insulation on the helical cable is a thin coat- 3,472,234 Patented Oct. 14, 1969 ICC ing of Telion or the like, except that at. its distal end, it is uninsulated and made rigid. The rigid. end is helical, as is the cable, and it is sharply pointed. At least one convolution of the helix in the end region is deformed or out-of-round so that a fiat stylet may be admitted coaxially on the inside of the helix until it engages or keys with the deformed convolution. The stylet is then twisted to advance or screw the helical tip into the tissue of the organ.
The procedure may be performed exclusively through an incision or with a mediastinoscope, not shown, which has a tubular barrel and a pistol grip handle. The barrel is about three-fourths of an inch in diameter and is longitudinally slotted coextensive with its length. There is a light source in the handle and a small metal sheathed fiber optics bundle extending from the source to the end of the barrel to provide illumination at the distal end when it is inserted in a body cavity through an incision.
When the mediastinoscope barrel is inserted so that its distal end is in proximity to the heart, if that is the organ of interest, one helical conductor is admitted down the barrel until its pointed tip touches the organ. A flat Wire stylet is previously admitted between turns of the helix and advanced coaxially down its interior until they end of the stylet engages the deformed convolution of the helix. The stylet is then twisted to screw the tip of the conductor into the organ and the sylet is withdrawn. The tip becomes seized eventually by formation of brous tissue. The mediastinoscope is withdrawn after all conductors are attached, but it is not necessary to slide its barrel over the helical conductors and the connector because the conductors can be passed through the slot in the side of the barrel.
Objects of the invention are to provide a body implantable electrode: that obviates open chest surgery; that is easy to install; that reduces patient trauma; that is durable, exible and of loss mass; that effects a sound electrical connection with body tissue; and, that may be connected conveniently to an implanted organ stimulator power supply. How the foregoing and other more specific objects are achieved will appear in the ensuing specification which describes embodiments of the invention in reference to the drawing.
DESCRIPTION OF THE DRAWING FIGURE l is a perspective view of one type of the new body implantable electrode assembly;
FIGURE 2 is a horizontal section taken through the connector end or the left end of the electrode in FIG- URE l;
FIGURE 3 is an enlarged fragmentary perspective view of the helical, rigid distal end of the conductor with the end of the stylet inserted to illustrate how the helix may be screwed into an organ;
FIGURE 4 is a section taken on a line 4 4 in FIG- URE 3;
FIGURE 5 is a plan view of another embodiment of the invention; and,
FIGURE 6 is a partial vertical section taken through the connector or left end of the electrode assembly of FIGURE 5.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGURE l, the new electrode assembly comprises a molded connector plug 10l with a couple of connector pins 11 projecting from one end. The pins are surrounded by a metal shell 12 which has a flattened region 13 that compels proper alignment with a mating connector on an implantable electric power supply, not shown. The connector is essentially the same as the one described in the above-cited application of Fisher et al., and it will not be described in great detail herein because it is only incidental to the instant invention. Extending from the right end of connector body 10, as shown, are a pair of .silicone rubberinsulating tubes 14 from which a pair of helically wound insulated conductors 15- project. The interiors of tubes 14 are filled with a self-curing, flexible, medical grade silicone adhesive from the connector body to the points designated by the reference numeral 16. This construction excludes body fluid from the connector.
Additional details of connector may be seen in the sectional view of FIGURE 2, which shows that it has an outer silicone rubber sleeve 17 and an inner sleeve 18, the latter of which forms a passageway through which tubes 14 exit from the connector body. The region 19 and other silicone rubber interfaces are filled with silicone adhesive for excluding uids.
Conductor is an insulated cable made of many extremely fine silver-coated stainless steel filaments as described in the above-cited application of Fisher et al. The cable has a cross-sectional diameter of about .018 inch including its thin insulation coating. The thin flexible insulating coating may be Teon or other suitable insulating material about .001 to .002 inch thick and it is applied before the cable is wound as a permanently set helix. The distal end of the helix which lies within the limits of the bracket 20 in FIGURE 1 and which appears magnified in FIGURE 3, is not insulated so that the end 20 will conduct when it is screwed into an organ.
The distal end 20 will now be discussed in reference to FIGURES 3 and 4. In order to be screwed into tissue, the conductive distal tip must be rigid. This is accomplished preferably by swaging on the cable end a thin stainless steel tube 21 which is ground to a sharp point 22. About four convolutions of the cable are covered with tube 21 thereby producing a rigid end about one centimeter long measured along the axis of the helix. A few additional cable convolutions 23, shown stippled, adjacent the convolutions which are rigidified -by tube 21 are also uninsulated for the sake of flexibility and gradual stress transition. The few bare and flexible convolutions 23 may be screwed into the organ so that if a break occurs at the junction with the rigid part, there will still be conduction. Following these few convolutions 23, of course, the remainder of the convolutions have a Teflon or other insulation coating 30 back into connector 10.
One of the rigid convolutions in the end region has a at spot 24 imparted to it as can be seen in FIGURES 3 and 4. This deformation permits the helical conductor to be engaged internally with a correspondingly formed end of a stylet 2S. When the end of stylet 25 is keyed in the region of the deformed convolution 24, twisting of the stylet causes the pointed tip 22 of the rigid conductor end to screw into the organ. The stylet is ordinarily introduced coaxially inside the helical conductor through a convolution interspace that is remote from the distal end and then the stylet is advanced axially until its end keys with the deformed convolution in the rigid end of the conductor.
As indicated, tube 21 is swaged onto an uninsulated portion of the cable before it is wound as a helix. In a practical case, tube 21 has inside and outside diameters of 0.017 and 0.123 inch, respectively, and its length is sufficient to extend over four cable convolutions. The crosssection of the cable is normally a little larger than the inside diameter of the tube so the cable is stretched slightly to reduce its diameter while the tube is fit on. The inside and outside diameters of the helix convolution are approximately 0.046 and 0.078 inch, respectively. It should be understood that the end of the cable may be stiffened by means other than the metal tube such as by applying silver solder.
FIGURE 5 shows an alternative embodiment of the new electrode wherein only one helical conductor 1S is adapted for being connected directly to the organ which is to be stimulated. The second electrode for completing a circuit from the organ back to the power supply consists of several groups 26 of a plurality of turns of uninsulated cable that is wrapped around the connector tbody 10 as shown in FIGURE 5. As shown-in FIGURE 6, helical conductor 15 extends from a silicone insulatingY tube 14 as described in connection with the FIGUREl embodiment. The other bare conductor which is wrapped around the connector body emerges from a similar insulating tube 27 which terminates within the connector body. A straight part 28 of the cable conductor follows in parallelism with tube 14 to a hole 29 where it emerges from sleeve 18 and is wrapped around its outside as shown. The several groups 26 of cable turns constitute a large area electrode which compensates for the increased impedance that would otherwise result from the length of the return path through other body tissue from the point on the organ where the end of helical conductor 15 is screwed in.
In summary, an electrode has been described which permits making a quick and durable connection to an organ by merely screwing a helically shaped end into the organ with a stylet. The helical conductor is insulated and exible in the interspace between the organ and the surface of the body where an attachment plug facilitates rapid connection to a subcutaneously implanted electric power supply. The surgical procedure for attaching the electrode is less traumatic to the patient and merely involves admitting the electrode leads through a comparatively small incision or through a mediastinoscope, and after attachment, laying the conductors in a surface incision leading to the power supply and then suturing the incisions.
Although two embodiments of the invention have been described, such description is intended to be illustrative rather than limiting, for the invention may be variously embodied and is to be limited only by interpretation of the claims which follow.
I claim:
1. In a body implantable electrode assembly that includes a flexible insulated conductor projecting from a connector and wherein the distal end of the conductor is adapted for attachment to a body organ, the improvement which comprises:
(a) a conductor having its uninsulated distal end region formed as a rigid helix, and
(b) key engageable means on at least one convolution intermediate the ends of the rigid helix, whereby a slender key means that is admitted coaxially of the rigid helix may engage the key engageable means for screwing the helix into an organ.
2. The invention set forth in claim 1 wherein:
(a) said key engageable means constitute a deformation in at least one of the rigid convolutions.
3. The invention set forth in claim 1 wherein:
(a) said conductor comprises a flexible wire cable, and
(b) at least one convolution of said cable which is next in the proximal direction from said rigid distal end is uninsulated. Y
4. The invention set forth in claim 1 wherein:
(a) said conductor is a flexible wire cable, and
(b) said rigid helix comprises a thin metal tube means fit tightly on the distal end of the exible cable to stifen the same.
5. A body implantable electrode assembly comprising:
(a) an electrical connector and insulation encasing the connector,
(b) an insulated flexible conductor projecting at its proximal end from the connector and having its distal end formed as a rigid helix,
(c) key engageable means on at least one convolution intermediate the ends of the rigid helix, whereby a slender key means that is admitted coaxially of the rigid helix may engage the key engageable means for screwing the rigid helix into an organ,
(d) a second uninsulated conductor extending from the connector and emerging from the insulation, thereof,
(e) from its place of emergence, said second conductor being wound around said connector to form a large contact area electrode.
References Cited UNITED STATES PATENTS 2,890,266 6/ 1959 Ballmeer 339-256 X 3,216,424 11/1965 Chardack 128-4l8 3,253,595 5/1966 Murphy et al 12S- 418 3,348,548 10/ 1967 Chardack 12S-418 WILLIAM E. KAMM, Primary Examiner
US660661A 1967-08-15 1967-08-15 Body organ electrode Expired - Lifetime US3472234A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66066167A 1967-08-15 1967-08-15

Publications (1)

Publication Number Publication Date
US3472234A true US3472234A (en) 1969-10-14

Family

ID=24650453

Family Applications (1)

Application Number Title Priority Date Filing Date
US660661A Expired - Lifetime US3472234A (en) 1967-08-15 1967-08-15 Body organ electrode

Country Status (4)

Country Link
US (1) US3472234A (en)
CA (1) CA960758A (en)
DE (1) DE1764790A1 (en)
NL (1) NL6811039A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082703A5 (en) * 1970-03-24 1971-12-10 Zacouto Fred
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3737579A (en) * 1971-04-19 1973-06-05 Medtronic Inc Body tissue electrode and device for screwing the electrode into body tissue
US3750650A (en) * 1970-12-15 1973-08-07 Hewlett Packard Gmbh Double spiral electrode for intra-cavity attachment
US3788329A (en) * 1972-04-17 1974-01-29 Medtronic Inc Body implantable lead
US3804080A (en) * 1971-08-10 1974-04-16 Hewlett Packard Gmbh Device for obtaining measurement at or within parts of the human body
US3804098A (en) * 1972-04-17 1974-04-16 Medronic Inc Body implantable lead
US3827428A (en) * 1971-01-20 1974-08-06 R Hon Bipolar electrode structure for monitoring fetal heartbeat and the like
DE2334049A1 (en) * 1973-07-04 1975-01-16 Hans Dr Med Lagergren ENDOCARD ELECTRODE
USRE28990E (en) * 1972-12-04 1976-10-05 Corometrics Medical Systems, Inc. Bipolar electrode structure for monitoring fetal heartbeat and the like
DE2613044A1 (en) * 1975-04-23 1976-11-04 Medtronic Inc IMPLANTABLE LEAD
US4000745A (en) * 1968-08-05 1977-01-04 Goldberg Edward M Electrical leads for cardiac stimulators and related methods and means
FR2319385A1 (en) * 1975-04-21 1977-02-25 Medtronic Inc TREATMENT OF SPINE DEFORMATIONS
US4010758A (en) * 1975-09-03 1977-03-08 Medtronic, Inc. Bipolar body tissue electrode
FR2322582A1 (en) * 1975-09-05 1977-04-01 Osypka Peter Medical electrode for permanent positioning in muscle tissue - requiring minimum chest surgery and which remains permanently in place
US4026303A (en) * 1975-11-17 1977-05-31 Vitatron Medical B.V. Endocardial pacing electrode
US4217913A (en) * 1977-10-10 1980-08-19 Medtronic, Inc. Body-implantable lead with protected, extendable tissue securing means
EP0015229A1 (en) * 1979-02-21 1980-09-03 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Electrode for artificial pace-maker
US4254764A (en) * 1979-03-01 1981-03-10 Neward Theodore C Clip electrode
US4257428A (en) * 1977-12-09 1981-03-24 Barton Steven A Retractable stimulation electrode apparatus and method
US4282885A (en) * 1978-08-21 1981-08-11 Bisping Hans Juergen Electrode for implantation in the heart
US4355642A (en) * 1980-11-14 1982-10-26 Physio-Control Corporation Multipolar electrode for body tissue
US4374527A (en) * 1978-07-19 1983-02-22 Medtronic, Inc. Body stimulation lead
US4452254A (en) * 1981-07-13 1984-06-05 Goldberg Edward M Cardiac electrode and method for installing same
EP0396835A1 (en) * 1989-05-08 1990-11-14 Intermedics Inc. Transvenous defibrilating and pacing lead
US4974595A (en) * 1987-11-13 1990-12-04 Nordenstroem Bjoern Electrode device intended to be introduced into the body of a living being
US5150709A (en) * 1991-02-11 1992-09-29 Neward Theodore C Spiral electrode with contact retainer
EP0570499A1 (en) * 1991-02-04 1993-11-24 Edison Biotechnology Centers Double helix fes electrode
US5284141A (en) * 1992-07-31 1994-02-08 Eibling David L Electrode emplacement apparatus for amniotomy and fetal monitoring and method of use
US5330525A (en) * 1993-04-29 1994-07-19 Medtronic, Inc. Epicardial lead having dual rotatable anchors
US5342414A (en) * 1993-07-01 1994-08-30 Medtronic, Inc. Transvenous defibrillation lead
US5397342A (en) * 1993-06-07 1995-03-14 Cardiac Pacemakers, Inc. Resilient structurally coupled and electrically independent electrodes
WO1998034678A1 (en) 1997-02-10 1998-08-13 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US6104960A (en) * 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
US20020103522A1 (en) * 2001-01-31 2002-08-01 Swoyer John M. Implantable bifurcated gastrointestinal lead with active fixation
WO2003030988A2 (en) 2001-10-12 2003-04-17 Medtronic,Inc. Lead system for providing electrical stimulation to the bundle of his
US6952613B2 (en) 2001-01-31 2005-10-04 Medtronic, Inc. Implantable gastrointestinal lead with active fixation
US20060122682A1 (en) * 2004-12-03 2006-06-08 Sommer John L High impedance active fixation electrode of an electrical medical lead
US20080147158A1 (en) * 2006-12-18 2008-06-19 Quan Emerteq Corp. Implantable Medical Lead Having Coil Electrode
US20160120605A1 (en) * 2013-03-13 2016-05-05 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port
US10799293B2 (en) 2013-03-13 2020-10-13 The Spectranetics Corporation Laser ablation catheter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468755B2 (en) * 2009-09-30 2016-10-18 Respicardia, Inc. Medical lead with preformed bias

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890266A (en) * 1955-03-01 1959-06-09 Minnesota Mining & Mfg Wire-connector
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead
US3253595A (en) * 1963-08-07 1966-05-31 Cordis Corp Cardiac pacer electrode system
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890266A (en) * 1955-03-01 1959-06-09 Minnesota Mining & Mfg Wire-connector
US3216424A (en) * 1962-02-05 1965-11-09 William M Chardack Electrode and lead
US3253595A (en) * 1963-08-07 1966-05-31 Cordis Corp Cardiac pacer electrode system
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000745A (en) * 1968-08-05 1977-01-04 Goldberg Edward M Electrical leads for cardiac stimulators and related methods and means
FR2082703A5 (en) * 1970-03-24 1971-12-10 Zacouto Fred
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3750650A (en) * 1970-12-15 1973-08-07 Hewlett Packard Gmbh Double spiral electrode for intra-cavity attachment
US3827428A (en) * 1971-01-20 1974-08-06 R Hon Bipolar electrode structure for monitoring fetal heartbeat and the like
US3737579A (en) * 1971-04-19 1973-06-05 Medtronic Inc Body tissue electrode and device for screwing the electrode into body tissue
US3804080A (en) * 1971-08-10 1974-04-16 Hewlett Packard Gmbh Device for obtaining measurement at or within parts of the human body
US3788329A (en) * 1972-04-17 1974-01-29 Medtronic Inc Body implantable lead
US3804098A (en) * 1972-04-17 1974-04-16 Medronic Inc Body implantable lead
USRE28990E (en) * 1972-12-04 1976-10-05 Corometrics Medical Systems, Inc. Bipolar electrode structure for monitoring fetal heartbeat and the like
DE2334049C3 (en) * 1973-07-04 1988-12-22 Hans Dr Med Lagergren ENDOCARD ELECTRODE ARRANGEMENT
DE2334049A1 (en) * 1973-07-04 1975-01-16 Hans Dr Med Lagergren ENDOCARD ELECTRODE
FR2319385A1 (en) * 1975-04-21 1977-02-25 Medtronic Inc TREATMENT OF SPINE DEFORMATIONS
DE2613044A1 (en) * 1975-04-23 1976-11-04 Medtronic Inc IMPLANTABLE LEAD
US4010758A (en) * 1975-09-03 1977-03-08 Medtronic, Inc. Bipolar body tissue electrode
FR2322582A1 (en) * 1975-09-05 1977-04-01 Osypka Peter Medical electrode for permanent positioning in muscle tissue - requiring minimum chest surgery and which remains permanently in place
US4026303A (en) * 1975-11-17 1977-05-31 Vitatron Medical B.V. Endocardial pacing electrode
US4217913A (en) * 1977-10-10 1980-08-19 Medtronic, Inc. Body-implantable lead with protected, extendable tissue securing means
US4257428A (en) * 1977-12-09 1981-03-24 Barton Steven A Retractable stimulation electrode apparatus and method
US4374527A (en) * 1978-07-19 1983-02-22 Medtronic, Inc. Body stimulation lead
US4282885A (en) * 1978-08-21 1981-08-11 Bisping Hans Juergen Electrode for implantation in the heart
EP0015229A1 (en) * 1979-02-21 1980-09-03 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Electrode for artificial pace-maker
US4254764A (en) * 1979-03-01 1981-03-10 Neward Theodore C Clip electrode
US4355642A (en) * 1980-11-14 1982-10-26 Physio-Control Corporation Multipolar electrode for body tissue
US4452254A (en) * 1981-07-13 1984-06-05 Goldberg Edward M Cardiac electrode and method for installing same
US4974595A (en) * 1987-11-13 1990-12-04 Nordenstroem Bjoern Electrode device intended to be introduced into the body of a living being
EP0396835A1 (en) * 1989-05-08 1990-11-14 Intermedics Inc. Transvenous defibrilating and pacing lead
EP0570499A1 (en) * 1991-02-04 1993-11-24 Edison Biotechnology Centers Double helix fes electrode
EP0570499A4 (en) * 1991-02-04 1994-06-29 Edison Biotechnology Centers Double helix fes electrode
US5150709A (en) * 1991-02-11 1992-09-29 Neward Theodore C Spiral electrode with contact retainer
US5284141A (en) * 1992-07-31 1994-02-08 Eibling David L Electrode emplacement apparatus for amniotomy and fetal monitoring and method of use
US5330525A (en) * 1993-04-29 1994-07-19 Medtronic, Inc. Epicardial lead having dual rotatable anchors
US5397342A (en) * 1993-06-07 1995-03-14 Cardiac Pacemakers, Inc. Resilient structurally coupled and electrically independent electrodes
US5342414A (en) * 1993-07-01 1994-08-30 Medtronic, Inc. Transvenous defibrillation lead
WO1998034678A1 (en) 1997-02-10 1998-08-13 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US5796044A (en) * 1997-02-10 1998-08-18 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US6104960A (en) * 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
EP0972538A3 (en) * 1998-07-13 2000-12-20 Medtronic, Inc. System for providing medical electrical stimulation to a portion of the nervous system
US6952613B2 (en) 2001-01-31 2005-10-04 Medtronic, Inc. Implantable gastrointestinal lead with active fixation
US20020103522A1 (en) * 2001-01-31 2002-08-01 Swoyer John M. Implantable bifurcated gastrointestinal lead with active fixation
US6876885B2 (en) 2001-01-31 2005-04-05 Medtronic, Inc. Implantable bifurcated gastrointestinal lead with active fixation
WO2003030988A2 (en) 2001-10-12 2003-04-17 Medtronic,Inc. Lead system for providing electrical stimulation to the bundle of his
US7027876B2 (en) 2001-10-12 2006-04-11 Medtronic, Inc. Lead system for providing electrical stimulation to the Bundle of His
US20060122682A1 (en) * 2004-12-03 2006-06-08 Sommer John L High impedance active fixation electrode of an electrical medical lead
US7720550B2 (en) 2004-12-03 2010-05-18 Medtronic, Inc. High impedance active fixation electrode of an electrical medical lead
US20100292768A1 (en) * 2004-12-03 2010-11-18 Medtronic, Inc. High impedance active fixation electrode of an electrical medical lead
US8332051B2 (en) 2004-12-03 2012-12-11 Medtronic, Inc. High impedance active fixation electrode of an electrical medical lead
US20080147158A1 (en) * 2006-12-18 2008-06-19 Quan Emerteq Corp. Implantable Medical Lead Having Coil Electrode
US20160120605A1 (en) * 2013-03-13 2016-05-05 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US9937005B2 (en) * 2013-03-13 2018-04-10 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US10485613B2 (en) 2013-03-13 2019-11-26 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US10799293B2 (en) 2013-03-13 2020-10-13 The Spectranetics Corporation Laser ablation catheter
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port

Also Published As

Publication number Publication date
CA960758A (en) 1975-01-07
NL6811039A (en) 1969-02-18
DE1764790A1 (en) 1971-11-04

Similar Documents

Publication Publication Date Title
US3472234A (en) Body organ electrode
US3416534A (en) Body organ electrode
US3416533A (en) Conductive catheter
US3474791A (en) Multiple conductor electrode
US6066166A (en) Medical electrical lead
US5738683A (en) Mapping and ablation catheter
US4463765A (en) Screw-in pacing lead assembly
US4328812A (en) Ring electrode for pacing lead
US5133365A (en) Implantable tapered spiral endocardial lead for use in internal defibrillation
US5016808A (en) Implantable tapered spiral endocardial lead for use in internal defibrillation
US7162310B2 (en) Flat wire helix electrode used in screw-in cardiac stimulation leads
US6456888B1 (en) Geometry for coupling and electrode to a conductor
US3333045A (en) Body implantable electrical conductor
US3804098A (en) Body implantable lead
US4409994A (en) Lap joint molding member for a pacemaker electrode lead
US4026303A (en) Endocardial pacing electrode
US4444195A (en) Cardiac lead having multiple ring electrodes
US5769077A (en) Multi-contact implantable electrode cable with a resorbable stiffening element
US4930521A (en) Variable stiffness esophageal catheter
US5366493A (en) Double helix functional stimulation electrode
JPH06205842A (en) Lead assembly for implantable medical device
US6254425B1 (en) Electrical connector for cardiac devices
US7379776B1 (en) Stylet design
US6580949B1 (en) Implantable electrode lead
US1908583A (en) Diathermic electrode