Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicken Sie auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit Ihrem Reader.

Patente

  1. Erweiterte Patentsuche
VeröffentlichungsnummerUS3501366 A
PublikationstypErteilung
Veröffentlichungsdatum17. März 1970
Eingetragen25. Mai 1965
Prioritätsdatum29. Mai 1964
VeröffentlichungsnummerUS 3501366 A, US 3501366A, US-A-3501366, US3501366 A, US3501366A
ErfinderAnthony Bramley, John F Gilbert
Ursprünglich BevollmächtigterAnthony Bramley
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links: USPTO, USPTO-Zuordnung, Espacenet
Production of netting
US 3501366 A
Bilder(3)
Previous page
Next page
Beschreibung  (OCR-Text kann Fehler enthalten)

March 17, 1970 A. BRAMLEY ET AL 3,501,366

PRODUCTION OF NETTING Filed May 25, 1965 3 Sheets-Sheet 1 4TTORNEXS' March 17, 1970 BRAMLEY ETAL 3,501,366

PRODUCTION OF NETTING Filed May 25, 1965 3 Sheets-Sheet 2 ATTORNEKS March 17, 1970 Filed May 25. 1965 A. BRAMLEY ET AL PRODUCTION OF NETTING 5 Sheets-Sheet 5 z/wi%M/V% A TTORNE Y5 United States Patent O 3,501,366 PRODUCTION OF NETTING Anthony Bramley, Gosford House, Gosford, Kidlingtou, Oxford, England, and John F. Gilbert, Chalford, Stroud, England; said Gilbert assiguor to said Bramley Filed May 25, 1965, Ser. No. 458,591 Int. Cl. B32b /12, 3/10 U.S. Cl. 161-57 5 Claims ABSTRACT OF THE DISCLOSURE The present invention relates to the production of netting and provides a method of and apparatus for such production.

In making nets by the conventional method, the constituent threads or strands are knotted together in the net making machine or by hand. The present invention provides a new process which produces netting having different or improved properties as compared with netting made in the conventional way.

The netting according to the invention comprises a plurality of spaced, longitudinally extending, flexible threads and a plurality of spaced transverse, flexible threads interconnecting the longitudinal threads and secured thereto where they cross the same by a small mass of plastics material. It is preferred that at the crossing of a longitudinal and a transverse thread one or both of the threads deviates from a straight line in such a manner that the two threads bear against one another to lend strength to the bond between them.

The invention also provides a method of producing netting in which a plurality of flexible transverse threads are laid across a plurality of flexible longitudinal threads, a small mass of plastic material is applied to the threads at crossing points to secure the longitudinal to the transverse threads and the plastics mass is allowed to harden. The preferred resins are thermoplastic, and the small masses can then readily be applied under pressure in a heat-softened condition and hardened by cooling. A number of such small plastic masses can be applied simultaneously to a corresponding number of crossings.

The invention further provides apparatus for making netting by the foregoing method which comprises a mold cavity, means for introducing longitudinal andtransverse thread into the cavity to cross therein and means for injecting a moldable plastics material into the cavity to form a plastics mass round the thread crossing. For continuous production, the apparatus includes multiple molding assemblies with multiple or separate dies, in which a number of plastics masses, preferably distributed across the whole width of the netting, can be formed simultaneously at respective thread crossings.

In the preferred form of the method according to the invention, a transverse thread is drawn across at least two spaced longitudinal threads, each crossing of a longitudinal thread and the transverse thread is enclosed in a die assembly, quantities of heated plastics material of a molding consistency are severally injected into the die ice assemblies to form a bond between the longitudinal and transverse threads and the bonded portions are removed from the die assemblies by longitudinal movement of the longitudinal threads, this cycle of operations being performed repeatedly along the length of the longitudinal threads.

It is preferable that either of, or advantageously both, the longitudinal and the transverse threads are bent or curved round the other at their crossing, as this adds strength to the bond, as indicated above. This can be achieved by appropriate design of the die assemblies, and the manner in which the threads are inserted in the dies.

A lower limit is set to the working temperature by the necessity for the plastics material to be of a consistency suitable for molding or being injected into the die assemblies.

The method is especially suitable for use in the production of netting from threads which include thermoplastic material, for example polyethylene monofilaments or twine. In this case, injection of a thermoplastic material near the lower temperature limit forms a bond the strength of which is limited to the resistance offered to slipping of the threads, and is usually well below the breaking strain of the threads themselves.

Where thermoplastic strand materials are employed, an upper temperature limit also exists, being that at which the thermoplastic material of the threads melts within the die assembly. In this case also, the bond has a breaking strain lower than that of the thread itself. The optimum working temperature lies between these upper and lower limits, where the molded material welds to the threads without significant melting of the threads.

The preferred form of apparatus according to the invention comprises means for advancing a plurality of spaced, longitudinal threads, a plurality of injection molding die assemblies corresponding in number and disposition to the longitudinal threads, means for supplying transverse threads to the die assemblies, each die assembly being adapted to receive in each cycle of operation one longitudinal thread and a transverse thread crossing and extending between at least two longitudinal threads, and means for injecting heated thermoplastic material of a molding consistency into each die assembly to form a bond therein between the longitudinal and transverse threads, the die assemblies being openable for the removal of the bonded portions of the threads by the advancement of the longitudinal threads.

The longitudinal threads are preferably drawn intermittently through the die assemblies and the transverse thread drawn across the longitudinal threads in front of the die assemblies during the molding of plastic masses onto the crossings of the previously drawn transverse thread. The transverse thread is preferably supplied from a continuous length of transverse thread mate-rial and detached therefrom before its removal from the die assemblies, when bonding is complete.

The preferred form of die assembly includes two cooperating dies, movable with respect to each other, a die cavity formed within the two dies and portions at the edges of the cavity where the threads emerge which are shaped to engage tightly the threads emerging from the dies and prevent egress of plastics material during the molding operation.

The injection of plastics material is conveniently brought about by the use of a heated injector barrel through which granular material can be forced by means of a plunger and provided with a nozzle adapted to cooperate with a recess in one of the dies communicating with the moulding cavity. Alternatively, the injector barrel can be adapted to receive predetermined lengths of cut rod or pellets of a thermoplastic material corresponding in diameter to the internal diameter of the barrel, a

further length or pellets being inserted after each injection stroke.

The netting according to the invention can be used for a variety of purposes for which conventionally made net: ting can be employed, depending on the material of the threads and their configuration. One important application is as fencing netting, and if the longitudinal and/or transverse threads include electrically conductive material the netting may be useful in the erection of electrified fences or enclosures.

For example, one form of netting for use in the erection of electrified enclosures comprises a plurality of longitudinal, flexible, electrically conductive threads having an exposed conductive surface, and a large number of transverse threads of flexible, electrically non-conductive material inter-connecting the conductive threads and secured thereto by small plastics masses where they cross the same. The threads may be monofilaments, or spun or twisted.

The preferred construction uses conductive threads consisting of or containing metallic filaments and transverse threads consisting of twine formed from a synthetic resin, for example polyethylene.

One particular form of conductive thread which is very useful in the netting according to the invention comprises several strands twisted together, each strand consisting of a number of filaments, at least one of said filaments being a metallic conductor and at least one being non-metallic so twisted together that the metallic conductor lies exposed on the surface of the strand at intervals determined by the amount of twist imparted to the strand. This conductive thread is light, and netting formed from lengths of this thread and transverse threads of polyethylene twine is of outstanding lightness.

An outstanding advantage of netting manufactured in this way is that the form of the netting is Very precise and is not subject to distortion after the manner of conventional netting. It can be transported and erected with a minimum of labour since it is light and can be carried on light posts. Moreover, owing to its greatly reduced tendency to distort and the reduced tendency to tangle, it need not be rolled but can be quickly and neatly folded and unfolded.

Examples of netting, processes and apparatus according to the invention will now be described with reference to the accompanying drawings in which:

FIG. 1 is a general schematic diagram of net-making apparatus according to the invention;

FIG. 2 is an enlarged perspective view of a thread crossing in netting as shown in FIG. 1;

FIG. 3 is a more detailed isometric view of an open die assembly in the apparatus shown in FIG. 1;

FIG. 4 is a diagrammatic isometric view illustrating the formation of a bond between crossing strands within a closed die assembly;

FIG. 5 is a diagrammatic vertical section through a portion of the apparatus in the region of the die assemblies, showing the injection mechanism;

FIGS. 6 and 7 are a side elevation and plan view respectively of an alternative form of lower die; and

FIGS. 8A and B are cross-sections at different points of the channel portions of the die shown in FIG. 6.

As shown in FIG. 1 of the drawings, feed spools 10 for the longitudinal threads 11 are disposed at one end of the apparatus, the threads being drawn oif intermittently in the direction of the arrow by take-up mechanism for the finished net at the opposite end of the apparatus.

The longitudinal threads 11 pass through die assemblies 13 where they are crossed by a transverse thread 14 drawn off a feed spool 15. The die assemblies are arranged to apply to the crossings of thethreads small masses 16 of plastics material which bond the crossing threads together. A cutter 17 is provided to sever the transverse thread from the material remaining on the spool 15. The severed end of the material on the feed spool may be recovered by hand and drawn through the e, a emb es o p o the next succeeding transverse thread. Alternatively, drawing mechanism (not shown) may be employed. Hot wire or other cutters 18 and 19 are also provided for final trimming of the transverse threads.

The form of netting shown in FIG. 1 is suitable for use in the construction of sheep fencing. For this purpose the transverse strands may be threads of polyethylene twine and the longitudinal strands or threads of polyethylene twine which incorporate a conductive wire or wires by virtue of which an erected fence can be electrified. The widely spaced transverse threads 21 extend the whole width of the netting and are trimmed by the cutters 18. The more closely spaced transverse threads 22 exterd only half the width of the netting and are trimmed by the cutters 19.

The construction of a thread crossing is shown in FIG. 2 with the threads 11 and 21 secured together at their intersect ons by small masses 20 of a resin such as polyethylene. The conductive threads 11 each consist of a current conductor formed by twisting together three strands 53 each of which contain one metal filament 54 and five polyethylene filaments 55. This arrangement ensures that the metal filaments appear frequently at the surface of the thread, affording ample opportunity for contact with an animal through which the animal can receive a mild electrical shock.

The small mass 20 of resin may have the form of a sphere or other central mass surrounding the intersection of threads 11 and 21 with additional portions 56 extending in a cruciform arrangement. The masses 20 can be applied by a process of injection molding, as described in detail hereinafter, and by the use of multiple molding assemblies a number of masses can be formed simultaneously. For example, if a head is employed which covers the area 57 of the netting, shown in a broken line in FIG. 1 twenty intersections can be secured in one operation.

In netting arranged as shown in FIG. 1 only evey other transverse thread 21 extends the full width of the netting, the remaining threads 22 extending only half-way. Where conductive transverse threads in such netting are spaced at about one foot, the netting can be employed for retaining sheep and lambs, being erected with the short threads 22 at the bottom. The narrow spacing then serves to retain the lambs, while the wider spacing above suffices to retain the sheep, and a 25% saving in polyethylene twine is achieved as compared with the use of an equal number of transverse threads 22 all of which extend the full width. For most purposes, however, all the transverse threads extend the full width of the netting.

Since the; individual conductive threads 11 are insulated from one another, all or any one of combination of them may be electrified as desired when the netting is erected as a fence. Thus the lowermost may not bt electrified at all, in order to eliminate losses due to earthing of the conductor, or may be electrified from a separate generator in order that earthing of the lowermost thread or threads should not aifect the operation of the remainder of the netting.

,As an alternative and particularly advantageous arrang'ement is to employ the lowermost conductive thread as an earth wireand to .connect the earth terminal of the electrical pulse generator to this thread, the remainder of the threads being connected together to tht live terminal. Shortlengths of conductive thread fitted with metal eyelets maybe secured .at intervals to the lowermost thread and the ground spikes of the fencing posts em- .ployed can then be passed through the eyelets before in- One form of die assembly is shown in FIG. 3 and includes an upper die 23 and a lower die 24. The upper die is formed with a cavity including a channel. portion 25 of semicircular section and a central approximately hemispherical portion26. A conical recess 27 receives the conical nozzle of the injector to be described later, and leads to the inlet port through which injected material enters the die cavity.

The lower die 24 also has a die cavity including a channel portion 28 and an approximately hemispherical portion 29. The channel 28 in the lower die is disposed at right angles to the channel portion 25 in the upper die.

The upper die 23 carries four adjustable guides 31 which capture and laterally locate the threads as the dies are closed together. The lower die 24 carries four guides 32 for locating the threads and also carries four adjustable jaws 33 which engage the guides 31 on the upper die to grip and compress the threads tightly and prevent egress of plastic material during the molding operation. The vertical location of the threads within the die cavity is determined by the adjustment of the jaws 33 and the guides 31.

It is preferable that the threads should be deflected from a straight path Within tht cavity, since this confers additional strength on the resulting bond. This can be achieved, as shown in FIG. 3, by ensuring that a thread 34, which enters and leaves the cavity at a relatively high level, crosses beneath a thread 35, which enters and leaves at a lower level.

An alternative preferred form of die is illustrated by the lower die shown in FIGS. 6 and 7. The die includes a cylindrical block 61 in which in formed a central cavity 62 and two opposite open channel portions 63. The other part of the total cavity is formed in the cooperating upper die (not shown). The channel portions 63 are wider and shallower nearer the centre of the die (FIG. 8A) than near the edge (FIG. '8B), and the wider, shallow portion is adapted to engage the emerging thread tightly to seal the die. The die is preferably water-cooled, and in such a case, slight leakage of plastics material into the channel portions 63 does not progress far before the plastics material is hardened. Round the periphery of the lower die are tapered recesses which do not perform any gripping function but merely serve to locate and lead the threads.

The injection mechanism shown in FIG. includes an injector barrel 36 surrounded by an electrical band heater 37 which can be controlled to give a steady desired working temperature. The working temperature varies with the plastics employed, and can be found by experiment. For high density polyethylene used to bond high density polyethylene therads, the preferred temperature lies within the range of ZOO-250 C. A conical nozzle 38 cooperates with the recess 27 on the upper die 23. Granular plastics material is fed into the barrel from a granule hopper 40 by the operation of a plunger 41.

The plunger and the dies may be operated by any convenient mechanism. Thus, for example, the plunger may be connected .for operation by an air cylinder 42, the upper die 23 may be loosely supported or floating, and the lower die 24 may be supported on the rod of the piston of a second air cylinder 43. This mechanism can be repeated for each die assembly across the width of the apparatus, but for the sake of simplicity is only shown once in FIG. 4. Operation of the air cylinders 43 and 42 can be under automatic control, which for the production of the netting shown in FIG. 1 may determine that certain of the injectors and die assemblies are not actuated in every cycle of operation. 7 j I I As an alternative to the drawing of the transverse thread through the dies,,as shown in FIGURE 1, it is preferred for fast Working that the transverse thread should be drawn across the longitudinal threads in front of the dies while molding of the previously drawn transverse thread proceeds in the dies. When the dies openand the formed 6 netting is advanced, the transverse thread is drawn laterally into the die assemblies. Once again, the transverse thread may be drawn by hand, but a gripping shackle (not shown) may be employed to take the free end of the thread material from the spool, and to draw the transverse thread, the thread being then gripped by two arms,'one at each end, and the arms moved to introduce the transverse thread into the dies when they open. 7 i

The preferred cycle of operation is thus as follows. With the longitudinal threads 11 and transverse thread 14 in position in the die assemblies, the dies 23 and 24 in each assembly are closed by the lower cylinders 43. Simultaneously, the transverse thread may be parted from the feed spool 15. Actuation of the upper cylinders 42 effects injection of molding material, pressure being maintained on the plungers 41 until the die cavities are full,

whereafter the motion of the cylinders 42 is reversed. In

the meantime, a further length of transverse thread material is drawn across in front of the dies, in preparation for the next molding cycle. The dies are opened by returning the lower cylinders 43 and the longitudinal threads 11 are advanced one step, a further length of transverse thread 14 being simultaneously drawn laterally into the die assemblies. Operation of the cutters 18 and 19 can be arranged to occur at any convenient point in the cycle when the longitudinal threads are stationary.

We claim:

1. Elongated rectangular netting, comprising:

a first plurality of spaced, parallel and flexible threads each containing thermoplastic material and continuously extending longitudinally throughout the length of said netting, at least one of said longitudinal threads comprising a first filament of metal extending continuously throughout the length of said thread and a second filament of organic thermoplastic material extending continuously throughout the length of said thread, said second filament defining at least part of the periphery of said thread throughout the length of said thread;

a second plurality of spaced, parallel and flexible threads each containing thermoplastic material and extending transversely across said longitudinal threads substantially perpendicularly thereto, said transverse threads extending substantially perpendicular to the elongated direction of said netting; and

a plurality of small masses of thermoplastic material individually molded about the intersections of said longitudinal and transverse threads and welded to the thermoplastic material of each thread to form an integral connection therebetween.

2. Netting according to claim 1 in which the one longi tudinal thread comprises several strands twisted together, each strand consisting of a number of filaments, at least one of the filaments being a metallic conductor and comprising said first filament and at least one being nonmetallic and comprising said second filament, the filaments being so twisted together ttat the metallic conductor lies exposed on the surface of the strand at intervals determined by the amount of twist imparted to the strands.

3. Netting according to claim 1, in which said threads each comprise twine including several strands twisted together, and each strand comprises a number of filaments, at least some of said filaments being of thermoplastic material.

4. Netting according to claim 1, wherein each of the threads is comprised of plural twisted filaments and wherein at-least some of the longitudinal threads contain at least onefilament which isan exposed metallic conductor extending substantially the full length of said netting. p I

5. A method of producing rectangular netting which comprises the steps l (a) providing a supply of flexible threads each containingvthermoplastic material, at least one of said threads containing a continuous metallic filament;

7 (b) drawing a first plurality of such threads, including said one thread containing the metal filament therein, in spaced parallel and substantially coplanar relationship through a molding head containing a plurality of aligned molding dies, each thread passing continuously through one ofisaid dies;

(c) drawing at least one further said thread transversely across said first threads substantially perpendicular thereto and through said molding head until an elongated portion of said further thread extends through said aligned dies, said further thread being movable through said dies independently of said first threads;

(d) closing said dies;

(e) admitting to said dies a thermoplastic material at a temperature at which said material is in a fluid or plastic condition and forming small molded masses of said plastic material respectively enclosing each crossing of said further thread with one of said first threads and forming a welded bond between said plastic material and the thermoplastic material of said threads whereby said threads are fixedly and integrally interconnected through said masses;

(f) opening said dies;

(g) severing said elongated portion of said further thread from the supply thereof;

(h) advanceing said first threads with said portion of said further thread fixedly connected thereto longi- 8. tudinally of said first threads and transversely of said portion of said further thread until said portion of said further thread is clear of said dies; and

(i) cyclically repeating steps (b) to (h) to continuously produce thereby an elongated length of rectangular netting in which said first threads individually continuously extend longitudinally throughout said length and said portions of said further thread extend perpendicular to the longitudinaldirection.

References Cited UNITED STATES PATENTS 2,148,380 2/1939 Schueler 256- 2,291,545 7/1942 Ganz et al. 264-251 X 2,337,550 12/1943 Crosby 264-255 X 2,384,771 9/1945 Ryan 161-91 2,920,354 1/1960 Zumbrunnen 264251 X 3,152,919 10/1964 Biles. et al. 161-64 X 2,522,527 9/1950 Manning.

ROBERT F. BURNETT, Primary Examiner M. A. LITMAN, Assistant Examiner U.S. Cl. X.R.

Patentzitate
Zitiertes PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US2148380 *2. Apr. 193721. Febr. 1939Continental Steel CorpWoven wire fencing
US2291545 *4. Juni 194028. Juli 1942Ganz DanielFoundation member
US2337550 *21. Aug. 193928. Dez. 1943Hydraulic Dev Corp IncDie casting-plastic injection method of molding
US2384771 *2. Okt. 194311. Sept. 1945Ioco Rubber And WaterproofingCovering material for aircraft frame structures and the like and method of producing the same
US2522527 *9. Okt. 194619. Sept. 1950Fred W ManningSpinning gun for the production of filaments and method of making nonwoven fabrics
US2920354 *14. Aug. 195712. Jan. 1960Viso S AProcess for making spaced reinforcements on shaped elongate structures from fiber-forming materials
US3152919 *9. Okt. 196113. Okt. 1964Monsanto CoStabilized acrylic fabrics and method for treatment of acrylic fabrics
Referenziert von
Zitiert von PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US3950584 *15. Apr. 197413. Apr. 1976Anthony BramleyComposite net
US3983280 *25. März 197528. Sept. 1976Anthony BramleyNetting
US4112163 *13. Juli 19765. Sept. 1978Manfred BrokmannNet for forming an elastic support in furniture
US4157411 *14. März 19785. Juni 1979Thomson Walter GConnector arrangement for cross-stranded netting
US4201814 *30. Juni 19786. Mai 1980John Francis GilbertMesh structures
US700504331. Dez. 200228. Febr. 2006Albany International Corp.Method of fabrication of a dryer fabric and a dryer fabric with backside venting for improved sheet stability
US700504431. Dez. 200228. Febr. 2006Albany International Corp.Method of fabricating a belt and a belt used to make bulk tissue and towel, and nonwoven articles and fabrics
US700851331. Dez. 20027. März 2006Albany International Corp.Method of making a papermaking roll cover and roll cover produced thereby
US701473531. Dez. 200221. März 2006Albany International Corp.Method of fabricating a belt and a belt used to make bulk tissue and towel, and nonwoven articles and fabrics
US702220831. Dez. 20024. Apr. 2006Albany International Corp.Methods for bonding structural elements of paper machine and industrial fabrics to one another and fabrics produced thereby
US716619631. Dez. 200223. Jan. 2007Albany International Corp.Method for manufacturing resin-impregnated endless belt structures for papermaking machines and similar industrial applications and belt
US716926531. Dez. 200230. Jan. 2007Albany International Corp.Method for manufacturing resin-impregnated endless belt and a belt for papermaking machines and similar industrial applications
US729723427. Jan. 200620. Nov. 2007Albany International Corp.Methods for bonding structural elements of paper machine and industrial fabrics to one another and fabrics produced thereby
US781597815. Aug. 200719. Okt. 2010Albany International Corp.Method for controlling a functional property of an industrial fabric
US791917331. Dez. 20025. Apr. 2011Albany International Corp.Method for controlling a functional property of an industrial fabric and industrial fabric
CN100429346C6. Nov. 200329. Okt. 2008阿尔巴尼国际公司Methods for bonding structural elements of paper machine and industrial fabrics to one another and fabrics produced thereby
WO2003035303A1 *26. Okt. 20011. Mai 2003Gomez Sanchez Felix ArturoMachine to assemble or produce sandwich-type panels and the panel thus obtained
WO2004061199A2 *6. Nov. 200322. Juli 2004Albany Int CorpMethods for bonding structural elements of paper machine and industrial fabrics to one another and fabrics produced thereby
Klassifizierungen
US-Klassifikation428/107, 264/257, 156/245, 156/309.6, 156/181, 264/103, 264/168
Internationale KlassifikationB29C45/14, E04H17/04, B29C45/00, B29C65/00, D04G1/00, B29D28/00, D04H3/12, B29C69/00, A01K3/00, B29C61/00, E04C5/16, B21F27/08, D04H3/04, B29C65/70
UnternehmensklassifikationB29C66/71, B29C45/14581, A01K3/00, B29L2028/00, E04H17/04, B29C66/69, D04H3/12, B21F27/08, B29C65/70, B29C45/00, A01K3/005, E04C5/166
Europäische KlassifikationB29C66/69, B29C65/70, A01K3/00, B21F27/08, E04H17/04, D04H3/12, B29C45/14H2C, E04C5/16B2, A01K3/00C