US3527220A - Implantable drug administrator - Google Patents

Implantable drug administrator Download PDF

Info

Publication number
US3527220A
US3527220A US741117A US3527220DA US3527220A US 3527220 A US3527220 A US 3527220A US 741117 A US741117 A US 741117A US 3527220D A US3527220D A US 3527220DA US 3527220 A US3527220 A US 3527220A
Authority
US
United States
Prior art keywords
pump
drug
bladder
switch
implantable drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US741117A
Inventor
George Donald Summers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Hiller Corp
Original Assignee
Fairchild Hiller Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Hiller Corp filed Critical Fairchild Hiller Corp
Application granted granted Critical
Publication of US3527220A publication Critical patent/US3527220A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/1238Machines, pumps, or pumping installations having flexible working members having peristaltic action using only one roller as the squeezing element, the roller moving on an arc of a circle during squeezing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3515Communication with implanted devices, e.g. external control using magnetic means

Definitions

  • An implantable drug administrator comprises a bladder having a self-sealing port through which it can be filled with a drug, a pump for selectively pumping the drug 7 from the bladder into any desired area of the body, and an indicator for indicating when the desired amount of the drug has been injected.
  • the present invention provides an improved implantable drug administration system which avoids the foregoing drawbacks and therefore is more reliable, easier to use, and of wider utility than known devices of this type.
  • a drug is pumped from an implanted bladder by means of an implanted pump which is powered by an extra-corporeal magnetic field.
  • the bladder includes a self-sealing port through which it can be refilled whenever desired.
  • An implanted light source indicates the rate at which the drug is being pumped and thus can also be used to indicate the total dosage administered.
  • FIG. 1 is a diagrammatic view showing how the invention typically would be implanted within the body ofa human
  • FIG. 2 is a perspective view of the invention prior to being implanted
  • FIG. 3 is a circuit diagram of the indicator circuit used in the preferred embodiment of the invention.
  • FIG. 4 is a detailed cross-sectional view of the inlet tube of the invention illustrated in FIG. 2;
  • FIG. 5 is a detailed broken sectional view of the switch and the pump ofthe invention illustrated in FIG. 2.
  • drug is used in the broadest sense and includes all therapeutic and diagnostic agents such as hormones, vitamins, antibiotics, anticoagulants, cancericidal and spermicidal agents, vasoactive agents, and all other substances used to control, treat, or diagnose, or otherwise affect, physical or mental conditions (normal and abnormal) existing in and/or on an animal body.
  • the invention is shown as comprising a bladder and a pump 12 having an inlet line 14 connected to the lowermost point of bladder 10.
  • the bladder 10 and pump 12 may be sutured in place within the abdominal cavity 16 of an individual, with a pump outlet line 18 leading into that portion of the body where it is desired to administer the drug.
  • Bladder 10 includes a port 20 which is self sealing and readily accessible from outside the individuals body although the port may be underneath the skin.
  • a miniature light source 22 is sewn to bladder 10 within abdominal cavity 16, and, when energized, can be observed through the individuals skin. As explained below, light source 22 provides an indication of the dosage or amount of the drug within bladder 10 administered by the pump 12.
  • pump 12 is of the type disclosed in the May/June 1967 issue of The Journal of the Association for the Advancement of Medical Instrumentation, in an article entitled A New Miniature Pump for the Treatment of Hydrocephalus” by Summers and Mathews.
  • pump 12 includes a rotor assembly which is coupled through a gear train to a rotatable magnetic disc.
  • the rotor contains three peripheral rollers which cyclically compress a length of tubing between the pump inlet 14 and outlet l8 with a peristatic action, thereby forcing fluid from inlet 14 to outlet 18. Since this construction is known, it is not illustrated and described here in detail.
  • the pump is driven by a rotatable magnet 24 located outside the body and rotated by a motor 26 suitably coupled thereto.
  • the rotation of magnet 24 rotates the pump magnet by the pull of its magnetic field thus pumping the drug from bladder 10 through pump inlet tube 14 and outlet tube 18.
  • This particular pump is highly desirable since it can be powered without penetrating the skin (exclusive of implantation), the advantages of which are self-evident.
  • the specific pump per se forms no part of this invention.
  • the manner in which the invention is employed is obvious from the preceding explanation.
  • the motor 26 is energized to rotate magnet 24 thus driving pump 12 as explained above.
  • the operation of the pump will cause the drug within bladder 10 to be administered through the distal end of outlet tube 18 wherever it is positioned.
  • the light source 22 may be energized a predetermined number of times during each revolution of the pump rotor to indicate that the pump is operating and to provide a measure of the dosage administered.
  • FIG. 2 shows certain specific details of the bladder 10, pump 12 and the energizing means for lamp 22.
  • the pump is retained within a sealed stainless steel (or plastic) casing 30 which includes a flange 32 having apertures 34 by means of which the pump may be sewn into the body.
  • a coil 36 is wrapped around a diameter of casing 30, with the coil leads 37 and 38 coupled, respectively to a miniature switch 40 within casing 30 and to the-lamp 22.
  • Switch 40 (shown diagrammatically in FIG. 3) is a single-pole, single-throw (normally open) switch which can be closed in any suitable fashion each time a roller of the pump rotor traverses the pump tubing between inlet 14 and outlet 18. The operation of a preferred embodiment of switch 40 is explained below with reference to FIG. 5.
  • the bladder 10 includes an inner layer 50 coated with an outer layer 52 which is compatible with animal tissue.
  • Various silicone rubber compositions are suitable for use as layer 52, representative examples being given in US Pat. No. 3,279,996 of Long. Since diffusion may occur through a silicone rubber layer, the inner layer 50 must be impervious to and not degraded by the drug used. Standard latex rubber is suitable for many purposes as the material of inner layer 50. The use of the silicone rubber layer provides a degree of selfsealing in the event the bladder is accidentally punctured during filling.
  • the self-sealing port 20 comprises a ring 54 made of a tissue compatible material such as a polycarbonate resin or stainless steel filled with a silicone rubber material 56 to a depth of about .25 inches. If necessary, an inner layer (not shown) of a material impervious to the drug may be used.
  • the raised ring 54 enables the doctor to locate the port 20 through the skin. Where ring 54 is made of magnetically permeable material it can be located by a common stud finder or the like.
  • a stiff plastic or metal striker plate 58 is bonded to the interior layer 50 opposite port 20 as protection against accidental puncture of the bladder during injection of the drug.
  • the inner surface of the port may be made concave so that there will always be a space between the port and striker plate 58.
  • the invention is not limited to any specific drug, and the drugs may be administered directly into tissue, organs, muscle, or body fluid (including blood).
  • the drugs may be administered directly into tissue, organs, muscle, or body fluid (including blood).
  • tube 18 may terminate in a rounded end 62 having side slots 64 through which the drug is dispensed. This construction will tend to prevent body fluid from entering tube 18 without interfering with the exit of the drug.
  • a woven tube 66 (for example, of Dacron) may be bonded to the exterior surface of tube 18. Animal tissue will grow into tube 66 to help anchor the tube in the desired area of the body and to seal the penetration site against flow of body fluids.
  • the light source may comprise a diode made of gallium arsenide phosphide, requiring a forward bias of about 1.5 to 2.0 volts. It is less than a tenth of an inch in diameter and has an overall length of about an eighth of an inch, including the lens cap. It is rated at 50 foot-Lamberts brightness at a forward bias of 1.65 volts and forward current of 50 milliamperes. At that voltage it has a continuous forward current rating of 100 milliamperes.
  • the skin In order to achieve maximum optical transmission through the skin, it is desirable to choose a wavelength in the zone of greatest skin transparency. However, this wavelength would be unsuitable as maximum transparency lies in the near-infrared region and is not visible to the human eye. On the other hand, the region of maximum sensitivity of the light-adapted human eye, about 570 millimicrons, is poorly transmitted through the skin. The wavelength of the selected lightemitting diode, in the 600-to-700 millimicron region, provides a compromise. The skin is reasonably transparent at this wavelength and the eye can easily detect the rich red color.
  • Penetration depth varies with skin pigmentation and is in the range of about two millimeters maximum. Data for transmission outward is not available, but in experiments the diode-emitted light was easily visible in a darkened room through chicken skin and tissue for depths of more than 8 millimeters.
  • the energizing circuit for light source 22 is shown in FIG. 3. It is a simple series circuit and also includes a protective diode 70 which prevents the application of excessive back voltages to the light source 22.
  • the power to operate lamp 22 may be provided by a battery or photo-voltaic cells.
  • the coil 36 may be made responsive to an inductive or RF electromagnetic field.
  • the electrical leads are covered with an insulating material 72 (FIG. 4) such as Teflon and the solder joints coated with an epoxy (not shown).
  • the wires are then bonded to the inlet tube 14 and the entire construction coated with a suitable silicone rubber composition 74.
  • FIG. 5 A preferred construction for switch 40 is shown in FIG. 5.
  • the pump includes a steel ring 80 within the pump casing 30.
  • the pump rollers (one of which is shown at 82) compress the tubing 84 between inlet and outlet tubes 14 and 18 against ring 80.
  • Switch 40 thus comprises the ring 80, a pressure sensitive paint 86, and a terminal 88 which is insulated from ring 80.
  • the switch leads 37 and 37 are mechanically coupled through casing 30 (and suitably sealed) into electrical contact with ring 80 and terminal 88, respectively.
  • Paint 86 is ofa type which undergoes an increase in conductivity upon application of pressure thereto.
  • a suitable paint of this type is manufactured by Clark Electronics Laboratories of Palm Springs, California and sold under the trademark Micro-Ducer (type 9A).
  • Micro-Ducer type 9A
  • switch constructions may be employed with the invention.
  • a magnetically actuated mechanical switch would be of particular utility since it would enable a simple means for testing whether the signalling system was in proper working order by applying an external magnetic field to latch the switch in its closed condition. If, because of the magnetic fields required to operate pump 12, such a switch could not be employed in place of switch 40, a normally open switch of this type could be located at the bladder 10 and placed electrically in parallel with the contacts of switch 40. Such a switch is shown in dotted lines at in FIG. 3.
  • the visual signalling system of the invention would have utility in other applications apart from the specific case herein illustrated. For example, it could be used to test the continuity of circuits where breakage or interruption of leads is a problem (as with cardiac pacemakers).
  • tissue compatible material such as silicone rubber
  • silicone rubber is not a sealant, it may be necessary or desirable to coat the parts with a sealant (e.g. an epoxy) prior to applying the silicone rubber coating.
  • the invention can be used in many different ways to inject varying amounts of a drug ranging, for example, from microliters per day to milliliters per day. It can be used continuously and, conceivably, actuation of the pump may be made automatically responsive to a measurable body condition (e.g. oxygen partial pressure in the blood) or responsive to a programmed time schedule.
  • the pump rotor can be made to rotate in both directions whereby a single pump can be used in conjunction with two bladders (and suitable valves) to selectively pump drugs from either bladder.
  • An implantable drug administrator for injecting a drug into an animal body comprising a bladder adapted to be implanted in the body having self-sealing means for permitting a drug to be injected into the interior of said bladder and a pump adapted to be implanted in the body for pumping the drug from said bladder, said pump having an inlet connected to said bladder and an outlet adapted to be positioned within said body.
  • An implantable drug administrator according to claim 2 including a striker plate bonded to said bladder in the area beneath said port.
  • An implantable drug administrator according to claim 2 wherein said port includes a magnetically permeable material.
  • An implantable drug administrator including means connected to said pump for indicating the rate at which said pump is operating.
  • An implantable drug administrator according to claim 6 including means for testing the operation of said indicator means.
  • said indicating means includes a coil for producing a current in response to a field exterior of said body.
  • An implantable drug administrator according to claim 8 wherein said pump is adapted to be operated by a magnetic field and said coil is wound around said pump to intersect said magnetic field.
  • An implantable drug administrator according to claim 8 wherein said indicating means includes a light source connected in circuit with said coil.
  • An implantable drug administrator including a switch connected in circuit with said coil and said light source, said switch being adapted to be activated in response to the operation of said pump.
  • An implantable drug administrator according to claim 11 wherein said pump includes a rotor, and said switch is adapted to be activated by said rotor.

Description

United States Patent Inventor George Donald Summers Stony Brook, New York Appl. No. 741,117
Filed June 28, 1968 Patented Sept. 8, 1970 Assignee Fairchlld Hiller Corporation Farmingdale, 12.1., New York a corporation of Maryland IMPLANTABLE DRUG ADMINISTRATOR 15 Claims, 5 Drawing Figs.
U.S. Cl 128/260, 3/1, 128/15, 128/273 Int. Cl. A61m 7/00 Field of Search 128/260,
[561 References Cited UNITED STATES PATENTS 2,625,158 1/1953 Lee et a1. 128/260 3,313,289 4/1967 Kapra1.... 3/1 3,443,561 5/1969 Reed 128/260 Primary Examiner-Adele M. Eager Attorney-Michael W. York ABSTRACT: An implantable drug administrator comprises a bladder having a self-sealing port through which it can be filled with a drug, a pump for selectively pumping the drug 7 from the bladder into any desired area of the body, and an indicator for indicating when the desired amount of the drug has been injected.
Patented Sept. 8, 1970 v 3,527,220
INVENTOR GEORGE DONALD SUMMERS ATTORNEYS IMPLANTABLE DRUG ADMINISTRATOR This invention relates to a device which can be implanted within an animal body for administering drugs or the like.
It has been proposed to implant a reservoir containing a drug or other medical preparation within a body cavity for purposes of administering the drug. to an animal. In such arrangements, the drug is generally permitted to escape into the body through perforations in the container or by diffusion through the container itself.
The prior art devices for this purpose have only attained limited utility principally because of their lack of reliability due, at least in part, to clogging of the container, and the obvious inconvenience of replacing an implantable container every time its drug supply is exhausted. Further drawbacks are the inability to situate the container in any desired area of the body while releasing the drug in a distant area ofthe body, and the lack of a practical monitoring device for assuring the proper operation of the system.
The present invention provides an improved implantable drug administration system which avoids the foregoing drawbacks and therefore is more reliable, easier to use, and of wider utility than known devices of this type.
Briefly, according to the invention, a drug is pumped from an implanted bladder by means of an implanted pump which is powered by an extra-corporeal magnetic field. The bladder includes a self-sealing port through which it can be refilled whenever desired. An implanted light source indicates the rate at which the drug is being pumped and thus can also be used to indicate the total dosage administered.
In the drawings:
FIG. 1 is a diagrammatic view showing how the invention typically would be implanted within the body ofa human;
FIG. 2 is a perspective view of the invention prior to being implanted;
FIG. 3 is a circuit diagram of the indicator circuit used in the preferred embodiment of the invention;
FIG. 4 is a detailed cross-sectional view of the inlet tube of the invention illustrated in FIG. 2; and
FIG. 5 is a detailed broken sectional view of the switch and the pump ofthe invention illustrated in FIG. 2.
In the specification and claims, the term "drug" is used in the broadest sense and includes all therapeutic and diagnostic agents such as hormones, vitamins, antibiotics, anticoagulants, cancericidal and spermicidal agents, vasoactive agents, and all other substances used to control, treat, or diagnose, or otherwise affect, physical or mental conditions (normal and abnormal) existing in and/or on an animal body.
Referring to FIGS. 1 and 2, the invention is shown as comprising a bladder and a pump 12 having an inlet line 14 connected to the lowermost point of bladder 10. The bladder 10 and pump 12 may be sutured in place within the abdominal cavity 16 of an individual, with a pump outlet line 18 leading into that portion of the body where it is desired to administer the drug.
Bladder 10 includes a port 20 which is self sealing and readily accessible from outside the individuals body although the port may be underneath the skin. A miniature light source 22 is sewn to bladder 10 within abdominal cavity 16, and, when energized, can be observed through the individuals skin. As explained below, light source 22 provides an indication of the dosage or amount of the drug within bladder 10 administered by the pump 12.
In the preferred embodiment of the invention, pump 12 is of the type disclosed in the May/June 1967 issue of The Journal of the Association for the Advancement of Medical Instrumentation, in an article entitled A New Miniature Pump for the Treatment of Hydrocephalus" by Summers and Mathews. As explained in that article, pump 12 includes a rotor assembly which is coupled through a gear train to a rotatable magnetic disc. The rotor contains three peripheral rollers which cyclically compress a length of tubing between the pump inlet 14 and outlet l8 with a peristatic action, thereby forcing fluid from inlet 14 to outlet 18. Since this construction is known, it is not illustrated and described here in detail.
The pump is driven by a rotatable magnet 24 located outside the body and rotated by a motor 26 suitably coupled thereto. The rotation of magnet 24 rotates the pump magnet by the pull of its magnetic field thus pumping the drug from bladder 10 through pump inlet tube 14 and outlet tube 18. This particular pump is highly desirable since it can be powered without penetrating the skin (exclusive of implantation), the advantages of which are self-evident. The specific pump per se, however, forms no part of this invention. The manner in which the invention is employed is obvious from the preceding explanation. After the bladder 10 and pump 12 have been implanted, the drug to be administered is injected into the bladder by means of a hypodermic needle and syringe or the like inserted through the seal-sealing plug 20. Thereafter, whenever it is desired to administer the drug, the motor 26 is energized to rotate magnet 24 thus driving pump 12 as explained above. The operation of the pump will cause the drug within bladder 10 to be administered through the distal end of outlet tube 18 wherever it is positioned.
The light source 22 may be energized a predetermined number of times during each revolution of the pump rotor to indicate that the pump is operating and to provide a measure of the dosage administered.
FIG. 2 shows certain specific details of the bladder 10, pump 12 and the energizing means for lamp 22. The pump is retained within a sealed stainless steel (or plastic) casing 30 which includes a flange 32 having apertures 34 by means of which the pump may be sewn into the body. A coil 36 is wrapped around a diameter of casing 30, with the coil leads 37 and 38 coupled, respectively to a miniature switch 40 within casing 30 and to the-lamp 22. Switch 40 (shown diagrammatically in FIG. 3) is a single-pole, single-throw (normally open) switch which can be closed in any suitable fashion each time a roller of the pump rotor traverses the pump tubing between inlet 14 and outlet 18. The operation of a preferred embodiment of switch 40 is explained below with reference to FIG. 5.
When the magnet 24 is rotated by motor 26, the resultant rotating magnetic field intersects coil 36 inducing a current in the coil. Accordingly, each time the contacts of switch 40 are closed, an energizing current is coupled to the light source 22. Thus, the energization of the light, which can be seen through the skin, indicates that the pump is operating properly. Since the volume amount of the drug displaced between successive rollers by rotation of the pump rotor is known, the flashes of light source 22 can be counted to measure the total administered dosage of the drug.
The bladder 10 includes an inner layer 50 coated with an outer layer 52 which is compatible with animal tissue. Various silicone rubber compositions are suitable for use as layer 52, representative examples being given in US Pat. No. 3,279,996 of Long. Since diffusion may occur through a silicone rubber layer, the inner layer 50 must be impervious to and not degraded by the drug used. Standard latex rubber is suitable for many purposes as the material of inner layer 50. The use of the silicone rubber layer provides a degree of selfsealing in the event the bladder is accidentally punctured during filling.
The self-sealing port 20 comprises a ring 54 made of a tissue compatible material such as a polycarbonate resin or stainless steel filled with a silicone rubber material 56 to a depth of about .25 inches. If necessary, an inner layer (not shown) of a material impervious to the drug may be used. The raised ring 54 enables the doctor to locate the port 20 through the skin. Where ring 54 is made of magnetically permeable material it can be located by a common stud finder or the like.
A stiff plastic or metal striker plate 58 is bonded to the interior layer 50 opposite port 20 as protection against accidental puncture of the bladder during injection of the drug. To ensure injection of the drug into the bladder, the inner surface of the port may be made concave so that there will always be a space between the port and striker plate 58.
As noted previously, the invention is not limited to any specific drug, and the drugs may be administered directly into tissue, organs, muscle, or body fluid (including blood). The
particular function in this respect will determine the size and construction of the needle or other termination of the outlet tube 18. As a specific example tube 18 may terminate in a rounded end 62 having side slots 64 through which the drug is dispensed. This construction will tend to prevent body fluid from entering tube 18 without interfering with the exit of the drug. A woven tube 66 (for example, of Dacron) may be bonded to the exterior surface of tube 18. Animal tissue will grow into tube 66 to help anchor the tube in the desired area of the body and to seal the penetration site against flow of body fluids.
The light source may comprise a diode made of gallium arsenide phosphide, requiring a forward bias of about 1.5 to 2.0 volts. It is less than a tenth of an inch in diameter and has an overall length of about an eighth of an inch, including the lens cap. It is rated at 50 foot-Lamberts brightness at a forward bias of 1.65 volts and forward current of 50 milliamperes. At that voltage it has a continuous forward current rating of 100 milliamperes.
In order to achieve maximum optical transmission through the skin, it is desirable to choose a wavelength in the zone of greatest skin transparency. However, this wavelength would be unsuitable as maximum transparency lies in the near-infrared region and is not visible to the human eye. On the other hand, the region of maximum sensitivity of the light-adapted human eye, about 570 millimicrons, is poorly transmitted through the skin. The wavelength of the selected lightemitting diode, in the 600-to-700 millimicron region, provides a compromise. The skin is reasonably transparent at this wavelength and the eye can easily detect the rich red color.
Some data on the depth of penetration of optical frequencies into the human have been reported. Penetration depth varies with skin pigmentation and is in the range of about two millimeters maximum. Data for transmission outward is not available, but in experiments the diode-emitted light was easily visible in a darkened room through chicken skin and tissue for depths of more than 8 millimeters. I
The energizing circuit for light source 22 is shown in FIG. 3. It is a simple series circuit and also includes a protective diode 70 which prevents the application of excessive back voltages to the light source 22.
In place of the coil 36, the power to operate lamp 22 may be provided by a battery or photo-voltaic cells. Also the coil 36 may be made responsive to an inductive or RF electromagnetic field.
In the preferred embodiment of the invention, the electrical leads are covered with an insulating material 72 (FIG. 4) such as Teflon and the solder joints coated with an epoxy (not shown). The wires are then bonded to the inlet tube 14 and the entire construction coated with a suitable silicone rubber composition 74.
A preferred construction for switch 40 is shown in FIG. 5. The pump includes a steel ring 80 within the pump casing 30. The pump rollers (one of which is shown at 82) compress the tubing 84 between inlet and outlet tubes 14 and 18 against ring 80. Switch 40 thus comprises the ring 80, a pressure sensitive paint 86, and a terminal 88 which is insulated from ring 80. The switch leads 37 and 37 are mechanically coupled through casing 30 (and suitably sealed) into electrical contact with ring 80 and terminal 88, respectively.
Paint 86 is ofa type which undergoes an increase in conductivity upon application of pressure thereto. (A suitable paint of this type is manufactured by Clark Electronics Laboratories of Palm Springs, California and sold under the trademark Micro-Ducer (type 9A).) Thus, each time a roller 82 passes over the terminal 88, the resultant increase in pressure closes" switch 40 to energize the light source 22.
Obviously, other switch constructions may be employed with the invention. A magnetically actuated mechanical switch would be of particular utility since it would enable a simple means for testing whether the signalling system was in proper working order by applying an external magnetic field to latch the switch in its closed condition. If, because of the magnetic fields required to operate pump 12, such a switch could not be employed in place of switch 40, a normally open switch of this type could be located at the bladder 10 and placed electrically in parallel with the contacts of switch 40. Such a switch is shown in dotted lines at in FIG. 3.
The visual signalling system of the invention would have utility in other applications apart from the specific case herein illustrated. For example, it could be used to test the continuity of circuits where breakage or interruption of leads is a problem (as with cardiac pacemakers).
Use of the invention is specifically contemplated in the treatment of diabetics or for chemotherapy of a carcinomatic condition. It could be used for the daily administration of a contraceptive, in the treatment of Hansens disease and in the administration of some hormones..The invention, however, is not in any respect limited as to its utility in special situations.
It is intended that the various parts of the invention will be sealed and coated with a tissue compatible material (such as silicone rubber) to whatever extent is required. Since silicone rubber is not a sealant, it may be necessary or desirable to coat the parts with a sealant (e.g. an epoxy) prior to applying the silicone rubber coating.
The invention can be used in many different ways to inject varying amounts of a drug ranging, for example, from microliters per day to milliliters per day. It can be used continuously and, conceivably, actuation of the pump may be made automatically responsive to a measurable body condition (e.g. oxygen partial pressure in the blood) or responsive to a programmed time schedule. The pump rotor can be made to rotate in both directions whereby a single pump can be used in conjunction with two bladders (and suitable valves) to selectively pump drugs from either bladder.
Iclaim:
1. An implantable drug administrator for injecting a drug into an animal body comprising a bladder adapted to be implanted in the body having self-sealing means for permitting a drug to be injected into the interior of said bladder and a pump adapted to be implanted in the body for pumping the drug from said bladder, said pump having an inlet connected to said bladder and an outlet adapted to be positioned within said body.
2. An implantable drug administrator according to claim 1 wherein said self-sealing means comprises a port.
3. An implantable drug administrator according to claim 2 wherein said port includes a protruding ring.
4. An implantable drug administrator according to claim 2 including a striker plate bonded to said bladder in the area beneath said port.
5. An implantable drug administrator according to claim 2 wherein said port includes a magnetically permeable material.
6. An implantable drug administrator according to claim 1 including means connected to said pump for indicating the rate at which said pump is operating.
7. An implantable drug administrator according to claim 6 including means for testing the operation of said indicator means.
8. An implantable drug administrator according to claim 6 wherein said indicating means includes a coil for producing a current in response to a field exterior of said body.
9. An implantable drug administrator according to claim 8 wherein said pump is adapted to be operated by a magnetic field and said coil is wound around said pump to intersect said magnetic field.
- 10. An implantable drug administrator according to claim 8 wherein said indicating means includes a light source connected in circuit with said coil.
11. An implantable drug administrator according to claim 10 including a switch connected in circuit with said coil and said light source, said switch being adapted to be activated in response to the operation of said pump.
12. An implantable drug administrator according to claim 11 wherein said pump includes a rotor, and said switch is adapted to be activated by said rotor.
13. An implantable drug administrator according to claim 12 wherein said pump includes an outer casing and said switch is mounted within said casing.
14. An implantable drug administrator according to claim
US741117A 1968-06-28 1968-06-28 Implantable drug administrator Expired - Lifetime US3527220A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74111768A 1968-06-28 1968-06-28

Publications (1)

Publication Number Publication Date
US3527220A true US3527220A (en) 1970-09-08

Family

ID=24979462

Family Applications (1)

Application Number Title Priority Date Filing Date
US741117A Expired - Lifetime US3527220A (en) 1968-06-28 1968-06-28 Implantable drug administrator

Country Status (1)

Country Link
US (1) US3527220A (en)

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device
US3640269A (en) * 1969-10-24 1972-02-08 Jose M R Delgado Fluid-conducting instrument insertable in living organisms
US3692027A (en) * 1971-04-23 1972-09-19 Everett H Ellinwood Jr Implanted medication dispensing device and method
US3730186A (en) * 1971-03-05 1973-05-01 Univ California Adjustable implantable artery-constricting device
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
US3731669A (en) * 1970-10-16 1973-05-08 Sander Nuclear Corp External implantation of energy to power internal devices
US3750194A (en) * 1971-03-16 1973-08-07 Fairchild Industries Apparatus and method for reversibly closing a natural or implanted body passage
US3757846A (en) * 1958-11-28 1973-09-11 H Herman Method and apparatus for effecting electromagnetic displacement of fluids
US3765414A (en) * 1972-03-10 1973-10-16 Hydro Med Sciences Inc Drug release system
US3783868A (en) * 1971-05-06 1974-01-08 Gulf Oil Corp Percutaneous implant
US3796217A (en) * 1972-03-10 1974-03-12 Hydr Med Sciences Inc Drug release system
US3831583A (en) * 1971-03-05 1974-08-27 Univ California Implantable bulb for inflation of surgical implements
US3923060A (en) * 1974-04-23 1975-12-02 Jr Everett H Ellinwood Apparatus and method for implanted self-powered medication dispensing having timing and evaluator means
US3971376A (en) * 1973-02-26 1976-07-27 Ceskoslovenska Akademie Ved Method and apparatus for introducing fluids into the body
FR2306712A1 (en) * 1975-04-07 1976-11-05 Metal Bellons Cy PUMP, FOR INFUSING FLUIDS, SUITABLE TO BE IMPLANTED
US3996933A (en) * 1972-10-02 1976-12-14 Morton Gutnick Intrauterine contraceptive devices and processes
US4013074A (en) * 1974-06-21 1977-03-22 Siposs George G Implantable medication-dispensing device
US4041954A (en) * 1974-05-07 1977-08-16 Kabushiki Kaisha Daini Seikosha System for detecting information in an artificial cardiac pacemaker
US4102998A (en) * 1972-10-02 1978-07-25 Morton Gutnick Process for the prevention of venereal disease
US4133302A (en) * 1976-04-30 1979-01-09 The Commonwealth Industrial Gases Limited Infant incubator
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4152098A (en) * 1977-01-03 1979-05-01 Clark Ivan P Micropump
WO1980001755A1 (en) * 1979-02-28 1980-09-04 Andros Inc Implantable infusion device
US4221219A (en) * 1978-07-31 1980-09-09 Metal Bellows Corporation Implantable infusion apparatus and method
US4253201A (en) * 1979-05-24 1981-03-03 Ross David A Prosthesis with self-sealing valve
US4445826A (en) * 1982-01-22 1984-05-01 Polaroid Corporation Peristaltic pump apparatus
FR2551350A1 (en) * 1983-09-02 1985-03-08 Buffet Jacques FLUID INJECTION DEVICE, WHICH CAN BE IMPLANTED
US4604090A (en) * 1983-11-22 1986-08-05 Consolidated Controls Corporation Compact implantable medication infusion device
US4615691A (en) * 1983-12-08 1986-10-07 Salomon Hakim Surgically-implantable stepping motor
US4677982A (en) * 1981-12-31 1987-07-07 New York University Infrared transcutaneous communicator and method of using same
US4687468A (en) * 1984-10-01 1987-08-18 Cook, Incorporated Implantable insulin administration device
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4710177A (en) * 1986-05-15 1987-12-01 Smith Robert R Subcutaneous ventricular injection apparatus and method
US4772257A (en) * 1983-12-08 1988-09-20 Salomon Hakim External programmer for magnetically-adjustable cerebrospinal fluid shunt valve
US4816016A (en) * 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4820273A (en) * 1988-03-01 1989-04-11 Eaton Corporation Implantable medication infusion device and bolus generator therefor
US4840190A (en) * 1986-09-12 1989-06-20 Dow Corning Wright Lozenge-shaped low profile injection reservoir
US4884013A (en) * 1988-01-15 1989-11-28 Sherwood Medical Company Motor unit for a fluid pump and method of operation
EP0392566A1 (en) * 1984-10-01 1990-10-17 Cook Incorporated Implantable insulin administration device
US5061243A (en) * 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
US5085644A (en) * 1990-04-02 1992-02-04 Pudenz-Schulte Medical Research Corporation Sterilizable medication infusion device with dose recharge restriction
US5152753A (en) * 1990-04-02 1992-10-06 Pudenz-Schulte Medical Research Corporation Medication infusion device with dose recharge restriction
US5762599A (en) * 1994-05-02 1998-06-09 Influence Medical Technologies, Ltd. Magnetically-coupled implantable medical devices
FR2809315A1 (en) 2000-05-24 2001-11-30 Medtronic Inc Implantable medical apparatus has external envelope housing reservoir for pharmaceutical, etc, and delivery device and envelope exterior has recesses equipped with sutures, etc.
WO2002017989A2 (en) 2000-08-30 2002-03-07 Medtronic, Inc. System and method for attaching upper and lower outer cases in an implantable drug pump
US6458118B1 (en) * 2000-02-23 2002-10-01 Medtronic, Inc. Drug delivery through microencapsulation
US6485462B1 (en) 1997-08-27 2002-11-26 Science Incorporated Fluid delivery device with heat activated energy source
US6582418B1 (en) 2000-06-01 2003-06-24 Medtronic, Inc. Drug pump with reinforcing grooves
US20030216714A1 (en) * 2002-04-30 2003-11-20 Gill Steven Streatfield Pump
US20040077996A1 (en) * 2002-10-22 2004-04-22 Jasperson Keith E. Drug infusion system with multiple medications
US20040077997A1 (en) * 2002-10-22 2004-04-22 Jasperson Keith E. Drug infusion system programmable in flex mode
US20040230182A1 (en) * 2002-12-27 2004-11-18 Medtronic, Inc. Drug delivery through encapsulation
US20040228411A1 (en) * 2003-05-12 2004-11-18 Sony Corporation Method and system for decoder clock control in presence of jitter
US20050033218A1 (en) * 2003-08-05 2005-02-10 Villafana Manuel A. Grafted network incorporating a multiple channel fluid flow connector
US20050033219A1 (en) * 2003-08-05 2005-02-10 Villafana Manuel A. Grafted network incorporating a multiple channel fluid flow connector
US7011643B2 (en) 2003-08-05 2006-03-14 Cabg Medical, Inc. Grafted network incorporating a multiple channel fluid flow connector
US20060106361A1 (en) * 2004-04-21 2006-05-18 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
EP1772162A1 (en) * 2005-10-08 2007-04-11 Boehringer Mannheim Gmbh Infusion system for delivery of a liquid drug
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20080097354A1 (en) * 2006-08-29 2008-04-24 Francois Lavigne Stent for irrigation and delivery of medication
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US20080304710A1 (en) * 2007-06-08 2008-12-11 Lijie Xu Method and apparatus for processing image of at least one seedling
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20100198247A1 (en) * 2004-04-21 2010-08-05 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
EP2288406A2 (en) * 2008-06-20 2011-03-02 Yehoshua Shachar A magnetic breather pump and a method for treating a brain tumor using the same
US8080000B2 (en) 2004-04-21 2011-12-20 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8100933B2 (en) 2002-09-30 2012-01-24 Acclarent, Inc. Method for treating obstructed paranasal frontal sinuses
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US20120045918A1 (en) * 2009-04-23 2012-02-23 Pierre-Yves Litzler Subcutaneous device for electrical percutaneous connection
US8142422B2 (en) 2004-04-21 2012-03-27 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8172828B2 (en) 2004-04-21 2012-05-08 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8246533B2 (en) 2006-10-20 2012-08-21 Ellipse Technologies, Inc. Implant system with resonant-driven actuator
US8414473B2 (en) 2004-04-21 2013-04-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US8639353B2 (en) 2009-04-23 2014-01-28 Centre Hospitalier Universitaire De Rouen Electrical connection device implantable in the human body
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US8715169B2 (en) 2004-04-21 2014-05-06 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8740929B2 (en) 2001-02-06 2014-06-03 Acclarent, Inc. Spacing device for releasing active substances in the paranasal sinus
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
JP2014210004A (en) * 2013-04-18 2014-11-13 ニプロ株式会社 Subcutaneously implanting-type port
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8979888B2 (en) 2008-07-30 2015-03-17 Acclarent, Inc. Paranasal ostium finder devices and methods
US9072626B2 (en) 2009-03-31 2015-07-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US9107574B2 (en) 2004-04-21 2015-08-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US9265407B2 (en) 2004-04-21 2016-02-23 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9289584B2 (en) 2010-09-13 2016-03-22 The University Of British Columbia Remotely controlled drug delivery systems
US9339636B1 (en) 2012-09-06 2016-05-17 Mubashir H Khan Subcutaneous fluid pump
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9468362B2 (en) 2004-04-21 2016-10-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US9839373B2 (en) * 2015-05-14 2017-12-12 Vesiflo System and method for collecting clinical data associated with a medical apparatus including an implantable device
US20180050154A1 (en) * 2016-08-17 2018-02-22 International Business Machines Corporation Portal system-based bionic pancreas
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
EP3138605B1 (en) 2010-04-23 2019-04-10 MED-EL Elektromedizinische Geräte GmbH Mri-safe disk magnet for implants
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US10349995B2 (en) 2007-10-30 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10517643B2 (en) 2009-02-23 2019-12-31 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US10524814B2 (en) 2009-03-20 2020-01-07 Acclarent, Inc. Guide system with suction
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11065061B2 (en) 2004-04-21 2021-07-20 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11439746B2 (en) 2015-06-19 2022-09-13 Ipadic B.V. Implantable infusion system
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11957318B2 (en) 2021-04-29 2024-04-16 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat

Cited By (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757846A (en) * 1958-11-28 1973-09-11 H Herman Method and apparatus for effecting electromagnetic displacement of fluids
US3640269A (en) * 1969-10-24 1972-02-08 Jose M R Delgado Fluid-conducting instrument insertable in living organisms
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
US3731669A (en) * 1970-10-16 1973-05-08 Sander Nuclear Corp External implantation of energy to power internal devices
US3730186A (en) * 1971-03-05 1973-05-01 Univ California Adjustable implantable artery-constricting device
US3831583A (en) * 1971-03-05 1974-08-27 Univ California Implantable bulb for inflation of surgical implements
US3750194A (en) * 1971-03-16 1973-08-07 Fairchild Industries Apparatus and method for reversibly closing a natural or implanted body passage
US3692027A (en) * 1971-04-23 1972-09-19 Everett H Ellinwood Jr Implanted medication dispensing device and method
US3783868A (en) * 1971-05-06 1974-01-08 Gulf Oil Corp Percutaneous implant
US3765414A (en) * 1972-03-10 1973-10-16 Hydro Med Sciences Inc Drug release system
US3796217A (en) * 1972-03-10 1974-03-12 Hydr Med Sciences Inc Drug release system
US4102998A (en) * 1972-10-02 1978-07-25 Morton Gutnick Process for the prevention of venereal disease
US3996933A (en) * 1972-10-02 1976-12-14 Morton Gutnick Intrauterine contraceptive devices and processes
US3971376A (en) * 1973-02-26 1976-07-27 Ceskoslovenska Akademie Ved Method and apparatus for introducing fluids into the body
US3923060A (en) * 1974-04-23 1975-12-02 Jr Everett H Ellinwood Apparatus and method for implanted self-powered medication dispensing having timing and evaluator means
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4041954A (en) * 1974-05-07 1977-08-16 Kabushiki Kaisha Daini Seikosha System for detecting information in an artificial cardiac pacemaker
US4013074A (en) * 1974-06-21 1977-03-22 Siposs George G Implantable medication-dispensing device
FR2306712A1 (en) * 1975-04-07 1976-11-05 Metal Bellons Cy PUMP, FOR INFUSING FLUIDS, SUITABLE TO BE IMPLANTED
US4133302A (en) * 1976-04-30 1979-01-09 The Commonwealth Industrial Gases Limited Infant incubator
US4152098A (en) * 1977-01-03 1979-05-01 Clark Ivan P Micropump
US4221219A (en) * 1978-07-31 1980-09-09 Metal Bellows Corporation Implantable infusion apparatus and method
WO1980001755A1 (en) * 1979-02-28 1980-09-04 Andros Inc Implantable infusion device
JPS56500241A (en) * 1979-02-28 1981-03-05
US4265241A (en) * 1979-02-28 1981-05-05 Andros Incorporated Implantable infusion device
US4253201A (en) * 1979-05-24 1981-03-03 Ross David A Prosthesis with self-sealing valve
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4677982A (en) * 1981-12-31 1987-07-07 New York University Infrared transcutaneous communicator and method of using same
US4445826A (en) * 1982-01-22 1984-05-01 Polaroid Corporation Peristaltic pump apparatus
US4747832A (en) * 1983-09-02 1988-05-31 Jacques Buffet Device for the injection of fluid, suitable for implantation
EP0140727A1 (en) * 1983-09-02 1985-05-08 Jacques Buffet Implantable fluid injection device
FR2551350A1 (en) * 1983-09-02 1985-03-08 Buffet Jacques FLUID INJECTION DEVICE, WHICH CAN BE IMPLANTED
US4604090A (en) * 1983-11-22 1986-08-05 Consolidated Controls Corporation Compact implantable medication infusion device
US4615691A (en) * 1983-12-08 1986-10-07 Salomon Hakim Surgically-implantable stepping motor
US4772257A (en) * 1983-12-08 1988-09-20 Salomon Hakim External programmer for magnetically-adjustable cerebrospinal fluid shunt valve
US4816016A (en) * 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
EP0392566A1 (en) * 1984-10-01 1990-10-17 Cook Incorporated Implantable insulin administration device
US4687468A (en) * 1984-10-01 1987-08-18 Cook, Incorporated Implantable insulin administration device
US5061243A (en) * 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
US4710177A (en) * 1986-05-15 1987-12-01 Smith Robert R Subcutaneous ventricular injection apparatus and method
US4840190A (en) * 1986-09-12 1989-06-20 Dow Corning Wright Lozenge-shaped low profile injection reservoir
US4884013A (en) * 1988-01-15 1989-11-28 Sherwood Medical Company Motor unit for a fluid pump and method of operation
US4820273A (en) * 1988-03-01 1989-04-11 Eaton Corporation Implantable medication infusion device and bolus generator therefor
US5085644A (en) * 1990-04-02 1992-02-04 Pudenz-Schulte Medical Research Corporation Sterilizable medication infusion device with dose recharge restriction
US5152753A (en) * 1990-04-02 1992-10-06 Pudenz-Schulte Medical Research Corporation Medication infusion device with dose recharge restriction
US5762599A (en) * 1994-05-02 1998-06-09 Influence Medical Technologies, Ltd. Magnetically-coupled implantable medical devices
US6485462B1 (en) 1997-08-27 2002-11-26 Science Incorporated Fluid delivery device with heat activated energy source
US6458118B1 (en) * 2000-02-23 2002-10-01 Medtronic, Inc. Drug delivery through microencapsulation
FR2809315A1 (en) 2000-05-24 2001-11-30 Medtronic Inc Implantable medical apparatus has external envelope housing reservoir for pharmaceutical, etc, and delivery device and envelope exterior has recesses equipped with sutures, etc.
US6592571B1 (en) 2000-05-24 2003-07-15 Medtronic, Inc. Drug pump with suture loops flush to outer surface
US6582418B1 (en) 2000-06-01 2003-06-24 Medtronic, Inc. Drug pump with reinforcing grooves
WO2002017989A2 (en) 2000-08-30 2002-03-07 Medtronic, Inc. System and method for attaching upper and lower outer cases in an implantable drug pump
US6719739B2 (en) 2000-08-30 2004-04-13 Medtronic, Inc. System and method for attaching upper and lower outer cases in an implantable drug pump
US8740929B2 (en) 2001-02-06 2014-06-03 Acclarent, Inc. Spacing device for releasing active substances in the paranasal sinus
US20030216714A1 (en) * 2002-04-30 2003-11-20 Gill Steven Streatfield Pump
US7341577B2 (en) 2002-04-30 2008-03-11 Renishaw Plc Implantable drug delivery pump
GB2389791B (en) * 2002-04-30 2006-12-13 Steven Gill Implantable drug delivery pump
US9457175B2 (en) 2002-09-30 2016-10-04 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8764786B2 (en) 2002-09-30 2014-07-01 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8100933B2 (en) 2002-09-30 2012-01-24 Acclarent, Inc. Method for treating obstructed paranasal frontal sinuses
US20040077996A1 (en) * 2002-10-22 2004-04-22 Jasperson Keith E. Drug infusion system with multiple medications
US7967806B2 (en) 2002-10-22 2011-06-28 Medtronic, Inc. Method of delivering a fluid medication to a patient in flex mode
US7967812B2 (en) 2002-10-22 2011-06-28 Medtronic, Inc. Drug infusion system programmable in flex mode
US20040077997A1 (en) * 2002-10-22 2004-04-22 Jasperson Keith E. Drug infusion system programmable in flex mode
US20070073230A1 (en) * 2002-10-22 2007-03-29 Medtronic, Inc. Drug infusions system with multiple medications
US8480655B2 (en) 2002-10-22 2013-07-09 Medtronic, Inc. Drug infusion system programmable in flex mode
US20040181204A1 (en) * 2002-10-22 2004-09-16 Jasperson Keith E. Method of delivering a fluid medication to a patient in flex mode
US20040230182A1 (en) * 2002-12-27 2004-11-18 Medtronic, Inc. Drug delivery through encapsulation
US20040228411A1 (en) * 2003-05-12 2004-11-18 Sony Corporation Method and system for decoder clock control in presence of jitter
US6991615B2 (en) 2003-08-05 2006-01-31 Cabg Medical, Inc. Grafted network incorporating a multiple channel fluid flow connector
US20050033218A1 (en) * 2003-08-05 2005-02-10 Villafana Manuel A. Grafted network incorporating a multiple channel fluid flow connector
US20050033219A1 (en) * 2003-08-05 2005-02-10 Villafana Manuel A. Grafted network incorporating a multiple channel fluid flow connector
US6986751B2 (en) 2003-08-05 2006-01-17 Cabg Medical, Inc. Grafted network incorporating a multiple channel fluid flow connector
US7011643B2 (en) 2003-08-05 2006-03-14 Cabg Medical, Inc. Grafted network incorporating a multiple channel fluid flow connector
US8852143B2 (en) 2004-04-21 2014-10-07 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8715169B2 (en) 2004-04-21 2014-05-06 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US11864725B2 (en) 2004-04-21 2024-01-09 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20100198247A1 (en) * 2004-04-21 2010-08-05 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US7785315B1 (en) 2004-04-21 2010-08-31 Acclarent, Inc. Methods for irrigation of ethmoid air cells and treatment of ethmoid disease
US11589742B2 (en) 2004-04-21 2023-02-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11511090B2 (en) 2004-04-21 2022-11-29 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US11202644B2 (en) 2004-04-21 2021-12-21 Acclarent, Inc. Shapeable guide catheters and related methods
US11065061B2 (en) 2004-04-21 2021-07-20 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US8080000B2 (en) 2004-04-21 2011-12-20 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8088101B2 (en) 2004-04-21 2012-01-03 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8090433B2 (en) 2004-04-21 2012-01-03 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8114062B2 (en) 2004-04-21 2012-02-14 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US11020136B2 (en) 2004-04-21 2021-06-01 Acclarent, Inc. Deflectable guide catheters and related methods
US11019989B2 (en) 2004-04-21 2021-06-01 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US10874838B2 (en) 2004-04-21 2020-12-29 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8123722B2 (en) 2004-04-21 2012-02-28 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8142422B2 (en) 2004-04-21 2012-03-27 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8172828B2 (en) 2004-04-21 2012-05-08 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US10856727B2 (en) 2004-04-21 2020-12-08 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10806477B2 (en) 2004-04-21 2020-10-20 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US10779752B2 (en) 2004-04-21 2020-09-22 Acclarent, Inc. Guidewires for performing image guided procedures
US10702295B2 (en) 2004-04-21 2020-07-07 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US8414473B2 (en) 2004-04-21 2013-04-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8425457B2 (en) 2004-04-21 2013-04-23 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
US10695080B2 (en) 2004-04-21 2020-06-30 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US10631756B2 (en) 2004-04-21 2020-04-28 Acclarent, Inc. Guidewires for performing image guided procedures
US10500380B2 (en) 2004-04-21 2019-12-10 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US10492810B2 (en) 2004-04-21 2019-12-03 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US10441758B2 (en) 2004-04-21 2019-10-15 Acclarent, Inc. Frontal sinus spacer
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US9241834B2 (en) 2004-04-21 2016-01-26 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US9220879B2 (en) 2004-04-21 2015-12-29 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9167961B2 (en) 2004-04-21 2015-10-27 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US9265407B2 (en) 2004-04-21 2016-02-23 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10098652B2 (en) 2004-04-21 2018-10-16 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8721591B2 (en) 2004-04-21 2014-05-13 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US10034682B2 (en) 2004-04-21 2018-07-31 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8764709B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8764726B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8777926B2 (en) 2004-04-21 2014-07-15 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US9826999B2 (en) 2004-04-21 2017-11-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8828041B2 (en) 2004-04-21 2014-09-09 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9649477B2 (en) 2004-04-21 2017-05-16 Acclarent, Inc. Frontal sinus spacer
US8858586B2 (en) 2004-04-21 2014-10-14 Acclarent, Inc. Methods for enlarging ostia of paranasal sinuses
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8870893B2 (en) 2004-04-21 2014-10-28 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US9610428B2 (en) 2004-04-21 2017-04-04 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8905922B2 (en) 2004-04-21 2014-12-09 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8945088B2 (en) 2004-04-21 2015-02-03 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US9370649B2 (en) 2004-04-21 2016-06-21 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8961398B2 (en) 2004-04-21 2015-02-24 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US8961495B2 (en) 2004-04-21 2015-02-24 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9468362B2 (en) 2004-04-21 2016-10-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9107574B2 (en) 2004-04-21 2015-08-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US20060106361A1 (en) * 2004-04-21 2006-05-18 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US9055965B2 (en) 2004-04-21 2015-06-16 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US9084876B2 (en) 2004-08-04 2015-07-21 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9039680B2 (en) 2004-08-04 2015-05-26 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9039657B2 (en) 2004-08-04 2015-05-26 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9308361B2 (en) 2005-01-18 2016-04-12 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
US8388642B2 (en) 2005-01-18 2013-03-05 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10124154B2 (en) 2005-06-10 2018-11-13 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10842978B2 (en) 2005-06-10 2020-11-24 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10639457B2 (en) 2005-09-23 2020-05-05 Acclarent, Inc. Multi-conduit balloon catheter
US9999752B2 (en) 2005-09-23 2018-06-19 Acclarent, Inc. Multi-conduit balloon catheter
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8968269B2 (en) 2005-09-23 2015-03-03 Acclarent, Inc. Multi-conduit balloon catheter
US9050440B2 (en) 2005-09-23 2015-06-09 Acclarent, Inc. Multi-conduit balloon catheter
EP1772162A1 (en) * 2005-10-08 2007-04-11 Boehringer Mannheim Gmbh Infusion system for delivery of a liquid drug
US20070083153A1 (en) * 2005-10-08 2007-04-12 Hans-Peter Haar Infusion system for administration of a liquid medication
US9198736B2 (en) 2006-05-17 2015-12-01 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US9629656B2 (en) 2006-05-17 2017-04-25 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8277503B2 (en) 2006-08-29 2012-10-02 Intersect Ent, Inc. Stent for irrigation and delivery of medication
US20090275882A1 (en) * 2006-08-29 2009-11-05 Francois Lavigne Stent for irrigation and delivery of medication
US8277504B2 (en) 2006-08-29 2012-10-02 Intersect Ent, Inc. Stent for irrigation and delivery of medication
US20080097354A1 (en) * 2006-08-29 2008-04-24 Francois Lavigne Stent for irrigation and delivery of medication
US7547323B2 (en) 2006-08-29 2009-06-16 Sinexus, Inc. Stent for irrigation and delivery of medication
US20090275903A1 (en) * 2006-08-29 2009-11-05 Francois Lavigne Stent for irrigation and delivery of medication
US10716629B2 (en) 2006-09-15 2020-07-21 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9572480B2 (en) 2006-09-15 2017-02-21 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9603506B2 (en) 2006-09-15 2017-03-28 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9179823B2 (en) 2006-09-15 2015-11-10 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US20110237861A1 (en) * 2006-10-20 2011-09-29 Ellipse Technologies, Inc. Adjustable implant and method of use
US9271857B2 (en) 2006-10-20 2016-03-01 Ellipse Technologies, Inc. Adjustable implant and method of use
US9526650B2 (en) 2006-10-20 2016-12-27 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US8808163B2 (en) 2006-10-20 2014-08-19 Ellipse Technologies, Inc. Adjustable implant and method of use
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US8246533B2 (en) 2006-10-20 2012-08-21 Ellipse Technologies, Inc. Implant system with resonant-driven actuator
US7981025B2 (en) 2006-10-20 2011-07-19 Ellipse Technologies, Inc. Adjustable implant and method of use
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US8715159B2 (en) 2006-10-20 2014-05-06 Ellipse Technologies, Inc. Adjustable implant and method of use
US10039661B2 (en) 2006-10-20 2018-08-07 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US9615775B2 (en) 2007-04-30 2017-04-11 Acclarent, Inc. Methods and devices for ostium measurements
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US9463068B2 (en) 2007-05-08 2016-10-11 Acclarent, Inc. Methods and devices for protecting nasal turbinates
US20080304710A1 (en) * 2007-06-08 2008-12-11 Lijie Xu Method and apparatus for processing image of at least one seedling
US10349995B2 (en) 2007-10-30 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US11172972B2 (en) 2007-10-30 2021-11-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US11850120B2 (en) 2007-12-20 2023-12-26 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US11311419B2 (en) 2007-12-20 2022-04-26 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9861793B2 (en) 2008-03-10 2018-01-09 Acclarent, Inc. Corewire design and construction for medical devices
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
EP2288406A2 (en) * 2008-06-20 2011-03-02 Yehoshua Shachar A magnetic breather pump and a method for treating a brain tumor using the same
EP2288406A4 (en) * 2008-06-20 2013-11-20 Yehoshua Shachar A magnetic breather pump and a method for treating a brain tumor using the same
US10271719B2 (en) 2008-07-30 2019-04-30 Acclarent, Inc. Paranasal ostium finder devices and methods
US8979888B2 (en) 2008-07-30 2015-03-17 Acclarent, Inc. Paranasal ostium finder devices and methods
US9750401B2 (en) 2008-07-30 2017-09-05 Acclarent, Inc. Paranasal ostium finder devices and methods
US11116392B2 (en) 2008-07-30 2021-09-14 Acclarent, Inc. Paranasal ostium finder devices and methods
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10517643B2 (en) 2009-02-23 2019-12-31 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US11207087B2 (en) 2009-03-20 2021-12-28 Acclarent, Inc. Guide system with suction
US10524814B2 (en) 2009-03-20 2020-01-07 Acclarent, Inc. Guide system with suction
US9072626B2 (en) 2009-03-31 2015-07-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9636258B2 (en) 2009-03-31 2017-05-02 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US10376416B2 (en) 2009-03-31 2019-08-13 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8545255B2 (en) * 2009-04-23 2013-10-01 Centre Hospitalier Universitaire De Rouen Subcutaneous device for electrical percutaneous connection
US20120045918A1 (en) * 2009-04-23 2012-02-23 Pierre-Yves Litzler Subcutaneous device for electrical percutaneous connection
US8639353B2 (en) 2009-04-23 2014-01-28 Centre Hospitalier Universitaire De Rouen Electrical connection device implantable in the human body
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
EP3138605B1 (en) 2010-04-23 2019-04-10 MED-EL Elektromedizinische Geräte GmbH Mri-safe disk magnet for implants
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
US9289584B2 (en) 2010-09-13 2016-03-22 The University Of British Columbia Remotely controlled drug delivery systems
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US9656049B1 (en) 2012-09-06 2017-05-23 Mubashir H. Khan Subcutaneous fluid pump
US9339636B1 (en) 2012-09-06 2016-05-17 Mubashir H Khan Subcutaneous fluid pump
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10524869B2 (en) 2013-03-15 2020-01-07 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
JP2014210004A (en) * 2013-04-18 2014-11-13 ニプロ株式会社 Subcutaneously implanting-type port
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US11331002B2 (en) * 2015-05-14 2022-05-17 Vesiflo, Inc. System and method for collecting clinical data associated with a medical apparatus including an implantable device
US9839373B2 (en) * 2015-05-14 2017-12-12 Vesiflo System and method for collecting clinical data associated with a medical apparatus including an implantable device
US11103154B2 (en) 2015-05-14 2021-08-31 Vesiflo, Inc. System and method for collecting clinical data associated with a medical apparatus including an implantable device
US10238314B2 (en) 2015-05-14 2019-03-26 Vesiflo System and method for collecting clinical data associated with a medical apparatus including an implantable device
US11439746B2 (en) 2015-06-19 2022-09-13 Ipadic B.V. Implantable infusion system
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US20180050154A1 (en) * 2016-08-17 2018-02-22 International Business Machines Corporation Portal system-based bionic pancreas
US11617832B2 (en) * 2016-08-17 2023-04-04 International Business Machines Corporation Portal system-based bionic pancreas
US11957318B2 (en) 2021-04-29 2024-04-16 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat

Similar Documents

Publication Publication Date Title
US3527220A (en) Implantable drug administrator
US5041107A (en) Electrically controllable, non-occluding, body implantable drug delivery system
US6554822B1 (en) Microbolus infusion pump
US4902278A (en) Fluid delivery micropump
CN110545862B (en) Insulin leak sensor with electronic control to stop insulin flow
US4552561A (en) Body mounted pump housing and pump assembly employing the same
US4013074A (en) Implantable medication-dispensing device
US7018360B2 (en) Flow restriction system and method for patient infusion device
US7899544B2 (en) Access port indicator for implantable medical device
US6458102B1 (en) External gas powered programmable infusion device
US5707361A (en) Implantable infusion system with a neutral pressure medication container
JP3974143B2 (en) Low profile automatic injection device with self-draining reservoir
US4373527A (en) Implantable, programmable medication infusion system
US4619652A (en) Dosage form for use in a body mounted pump
US4871351A (en) Implantable medication infusion system
US4923457A (en) Artificial gland for implantation in a human body
US4320757A (en) Self contained injection system
US9757518B2 (en) Mechanically actuated fluid infusion device
US5266013A (en) Portable pump for the administration of a therapeutic
US20110021993A1 (en) Miniature disposable or partially reusable dosing pump
JP2019504710A (en) Portable infusion pump and assembly for use with it
ES2924813T3 (en) Infusion pump with program key
US4505702A (en) Manually operable rotary syringe
CA3223473A1 (en) User removable fill closure tab with integrated membrane
JPH10248928A (en) Medical fluid supply jig and priming device