US3550864A - High efficiency flashing nozzle - Google Patents

High efficiency flashing nozzle Download PDF

Info

Publication number
US3550864A
US3550864A US689653A US3550864DA US3550864A US 3550864 A US3550864 A US 3550864A US 689653 A US689653 A US 689653A US 3550864D A US3550864D A US 3550864DA US 3550864 A US3550864 A US 3550864A
Authority
US
United States
Prior art keywords
nozzle
flow
liquid
throat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US689653A
Inventor
Douglas A East
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
York International Corp
Original Assignee
Borg Warner Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borg Warner Corp filed Critical Borg Warner Corp
Application granted granted Critical
Publication of US3550864A publication Critical patent/US3550864A/en
Assigned to YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAND AVENUE, YORK, PA 17403, A CORP. OF DE reassignment YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAND AVENUE, YORK, PA 17403, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BORG-WARNER CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3402Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to avoid or to reduce turbulencies, e.g. comprising fluid flow straightening means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M19/00Details, component parts, or accessories of carburettors, not provided for in, or of interest apart from, the apparatus of groups F02M1/00 - F02M17/00
    • F02M19/08Venturis

Definitions

  • McCurry ABSTRACT A high-efficiency flashing nozzle having a con- [54] S N F NOZZLE verging inlet section and a diverging outlet section
  • the rawmg diverging section which extends from the throat to the exit has [52] U.S.Cl 239/601 a sufficiently rapid enlargement at or near the point where [5 1] Int. Cl A62c 31/02 evaporation begins to prevent an excessive drop of the wall [50] Field of Search 239/601 static pressure in this region.
  • FATtNTED DEC 2 91976 LINE OF CONSTANT PRESSURE FOR METASTABLE LIQUID STATES ⁇ LINE 0: CONSTAN'T passsuraa FOR STABLE, EQUILIBRIUM STATES LINE OF CONSTANT PRESSURE POI? LIQUID STATES I4 0 DE L INVENTOR BY W 1M ATTORNEY HIGH EFFICIENCY FLASHING NOZZLE EACKGROUND AND SUMMARY OF THE INVENTION
  • compressed liquid at a particular stagnation temperature and pressure is accelerated in a nozzle to a high velocity at a lower pressure; the pressure of the flow exiting from the nozzle is sufficiently low that the flow is a two-phase mixture of liquid and vapor.
  • compressed liquid refers to a liquid, the pressure of which is in excess of the equilibrium saturation pressure corresponding to its temperature.
  • the subject of this invention is a novel design of a flashing nozzle which yields efftciencies up to about 85 percent.
  • Another object of the invention is to provide an improved nozzle configuration with improved efficiencies during operation with a two-phase mixture of liquid and vapor.
  • FIG. 1 shows a portion of a temperature-entropy diagram DESCRIPTION OF THE INVENTION
  • State 1 is a stagnation state; as the flow accelerates and the pressure decreases through the nozzle, the states encountered fall on the line between state 1 and state 2. Between state 1 and state 3, the fluid is all liquid, and between state 3 and state 2 the flow has an increasing percentage of vapor by mass (increasing quality), with evaporation beginning at state 3. For this flow, it is possible to calculate the fluid properties at each pressure, and from this, one can calculate the cross-sectional area required for the nozzle at each pressure.
  • the nozzle shape is determined for this assumed isentropic, equilibrium-flow nozzle- -In a real nozzle, the flow events occur over finite time intervals and it is not possible to have a succession of equilibrium states within the flow.
  • vapor is generated, heat is transferred within each phase and between the phases, and in general the flow at any one cross section is not at uniform velocity or temperature as required by the isentropic, equilibrium-flow assumed above.
  • a real nozzle will have adifferent profile of area versus pressure, and hence a well designed nozzle will have a different profile of area versus length.
  • the difference in rates can be reduced by increasing the cross-sectional area of the nozzle at the point where the pressure experiences this sudden drop in order to maintain a smooth change of pressure with length down the nozzle.
  • this area increase may require an abrupt change ofslope, or of radius, of the nozzle wall near the point at which evaporation begins.
  • the flow passage for the nozzle is provided by any suitable means designated generally at 10 which is a flow passage constructed with a specific contour.
  • the entranceend 11 is supplied with some fluid, which in the case of a refrigeration system is a low-boiling refrigerant such as R-l2.
  • the nozzle is divided into a first section 12 having a surface converging toward a throat 14.
  • the shape of the converging section may be of any conventional design and in the example illustrated is generally parabolic.
  • a second diverging section 16 extends from the throat 14 to an exit opening 18.
  • the nozzle is essentially axisymmetric and its axis is essentially a straight line.
  • the converging section may be any standard converging nozzle designed for single-phase flows for example, the profile may be a circular arc, or it may have the shape of an ASME elliptical flow-nozzle.
  • the diameter of the diverging section may be specified by an equation such as the following (see FIG. 3):
  • n has a value greater than unity, and is typically of the 14 as shown. Ease of fabrication may require some rounding of this edge. and it has been found that some rounding of this comer is possible without affecting the flow or the nozzle efficiency. Such rounding should be kept to a minimum; however, the radius of the round may be 1/4 of the radius of the throat without affecting nozzle performance, but in no circumstance should it exceed the radius of the flow passage at the throat.
  • a nozzle adapted for use in an ejector comprising means defining an elongated, axisymmetric fluid passage, said fluid passage having an inlet section adapted to receive a substantially liquid stream, said section converging in the direction of fluid flow and terminating at a throat of diameter, D said fluid passage having second section of length L diverging in the direction of fluid flow and extending from throat to an exit of diameter D the contour of said second section, as established by any distance L in a direction downstream from said throat and a corresponding diameter D at length L, defined substantially by the following equation:
  • n has a value greater than unity.
  • n is in the range of

Description

0 United States Patent 1 1 3,550,864
[72] Inventor Douglas A. East [56] References Cited Sudbury, Mass. UNITED STATES PATENTS 1 pp 689,653 2,583,726 1/1952 Chalom 239/601 1 PM Dec-11,1967 3,130,920 4/1964 Devillard 239/601 [45] Patented Dec. 29, 1970 FOREIGN PATENTS [73] Assignee Borg Warner Corporation Chicago, Ill. 163,586 6/1958 Sweden 239/601 corporatkm ofnelawal'ey mesne Primary Examiner-Lloyd L. King assignments Att0rneysDonald W. Banner, Lyle S. Motley, C G. Stallings and William S. McCurry ABSTRACT: A high-efficiency flashing nozzle having a con- [54] S N F NOZZLE verging inlet section and a diverging outlet section The rawmg diverging section which extends from the throat to the exit has [52] U.S.Cl 239/601 a sufficiently rapid enlargement at or near the point where [5 1] Int. Cl A62c 31/02 evaporation begins to prevent an excessive drop of the wall [50] Field of Search 239/601 static pressure in this region.
FATtNTED DEC 2 91976 LINE OF CONSTANT PRESSURE FOR METASTABLE LIQUID STATES \LINE 0: CONSTAN'T passsuraa FOR STABLE, EQUILIBRIUM STATES LINE OF CONSTANT PRESSURE POI? LIQUID STATES I4 0 DE L INVENTOR BY W 1M ATTORNEY HIGH EFFICIENCY FLASHING NOZZLE EACKGROUND AND SUMMARY OF THE INVENTION In certain flow processes, compressed liquid at a particular stagnation temperature and pressure is accelerated in a nozzle to a high velocity at a lower pressure; the pressure of the flow exiting from the nozzle is sufficiently low that the flow is a two-phase mixture of liquid and vapor.
As used herein, the term compressed liquid refers to a liquid, the pressure of which is in excess of the equilibrium saturation pressure corresponding to its temperature.
If such a nozzle is designed according to the best current practice and technology, the efficiency of this nozzle would be quite low, e.g. on the order of 50 percent. The subject of this invention is a novel design of a flashing nozzle which yields efftciencies up to about 85 percent.
Accordingly, it is a principal object of the invention to provide an improved nozzle, suitable for use in a multiphase ejector such as disclosed, for example, in US. Pat. No. 3,277,660
to Clarence A. Kemper et al. issued on Oct. 1 l, 1966.
Another object of the invention is to provide an improved nozzle configuration with improved efficiencies during operation with a two-phase mixture of liquid and vapor.
Additional objects and advantages will' be apparent from reading the detailed description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a portion of a temperature-entropy diagram DESCRIPTION OF THE INVENTION In order to appreciate fully the nature of the invention, one must understand the concept of liquid superheat. .First, it is necessary to analyze the idealized process of a liquid flowing from state I to state 2 on the temperature-entropy diagram in FIG. 1.
The process is assumed to consist of stable, equilibrium states along an isentrope. State 1 is a stagnation state; as the flow accelerates and the pressure decreases through the nozzle, the states encountered fall on the line between state 1 and state 2. Between state 1 and state 3, the fluid is all liquid, and between state 3 and state 2 the flow has an increasing percentage of vapor by mass (increasing quality), with evaporation beginning at state 3. For this flow, it is possible to calculate the fluid properties at each pressure, and from this, one can calculate the cross-sectional area required for the nozzle at each pressure. If one specifies a desired profile of pressure versus length down the nozzle, the nozzle shape is determined for this assumed isentropic, equilibrium-flow nozzle- -In a real nozzle, the flow events occur over finite time intervals and it is not possible to have a succession of equilibrium states within the flow. During the expansion process to lower pressures, vapor is generated, heat is transferred within each phase and between the phases, and in general the flow at any one cross section is not at uniform velocity or temperature as required by the isentropic, equilibrium-flow assumed above. Thus, a real nozzle will have adifferent profile of area versus pressure, and hence a well designed nozzle will have a different profile of area versus length.
Flow in a real nozzle differs from the assumed ideal isentropic equilibrium flow in a second way. When the flow occurs at finite velocities. it has been discovered that the flow does not begin to generate vapor at the saturated-liquid line depicted in FIG. 1, but rather the flow tends to persist as substantially all liquid at pressures which are below the pressure for which equilibrium evaporation occurs for that temperature. This effect is well known, and such a fluid is said to be in a metastable state. It is possible to represent approximately such a metastable state on a temperature-entropy diagram as shown in FIG. 2 by extrapolating the liquid properties into the region under the saturation dome. I
The proper design of an efficient nozzle must take into ac-. count both of the effects discussed above-the existence of metastable liquid states, and the existence ofnonequilibrium states in the evaporating flow with rate processes tending to drive the flow toward equilibrium states The principal effect of the rate processes is to require relatively long nozzles so that the heat transfer and other rate processes have sufficient time for the desired interactions to occur. The principal effect of the existence of metastable states prior to flashing is that.
once some evaporation has occurred, there is a large temperatur'edifference between the bulk of the liquid and the bulk of the vapor so that the initial heat-transfer rates and the initial evaporation rates are unusually large. If the nozzle area does not increase rapidly at this point also, the flow must accelerate because of the increased volumetric flow. Since the vapor has a smaller mass density than the liquid, the vapor will tend to accelerate more rapidly than the liquid. The resulting difference in velocities will cause viscous dissipation of a portion of the kinetic energy of the flow, thus lowering the efficiency of the nozzle. The presence of this undesirable difference in acceleration can be detected as a sudden drop in the static pressure of the flow (as measuredat the wall) as it proceeds downstream in the nonle.
The difference in rates can be reduced by increasing the cross-sectional area of the nozzle at the point where the pressure experiences this sudden drop in order to maintain a smooth change of pressure with length down the nozzle. For the degree of mestastability usually encountered in a flashing flow, this area increase may require an abrupt change ofslope, or of radius, of the nozzle wall near the point at which evaporation begins.
Referring now to FIG. 3, there is shown a preferred nozzle design which is constructed in accordance with the principles of the present invention. Essentially, the flow passage for the nozzle is provided by any suitable means designated generally at 10 which is a flow passage constructed with a specific contour. The entranceend 11 is supplied with some fluid, which in the case of a refrigeration system is a low-boiling refrigerant such as R-l2. The nozzle is divided into a first section 12 having a surface converging toward a throat 14. The shape of the converging section may be of any conventional design and in the example illustrated is generally parabolic. A second diverging section 16 extends from the throat 14 to an exit opening 18.
It has been found that the following criteria are essential for maximum efficiency operation of a nozzle which is used to accelerate a flow of compressed liquid into the two-phase, liquid-vapor region:
1. The nozzle is essentially axisymmetric and its axis is essentially a straight line.
2. The converging section may be any standard converging nozzle designed for single-phase flows for example, the profile may be a circular arc, or it may have the shape of an ASME elliptical flow-nozzle.
3. The diameter of the diverging section may be specified by an equation such as the following (see FIG. 3):
211 2 DE c L=LE where D is the diameter at any length L downstream from the throat; where D is the diameter at the throat; where D and L are the diameter of, and the length to, the exit section; and
. where n has a value greater than unity, and is typically of the 14 as shown. Ease of fabrication may require some rounding of this edge. and it has been found that some rounding of this comer is possible without affecting the flow or the nozzle efficiency. Such rounding should be kept to a minimum; however, the radius of the round may be 1/4 of the radius of the throat without affecting nozzle performance, but in no circumstance should it exceed the radius of the flow passage at the throat.
Other shapes similar to that specified by l, 2, and 3 above will be equally satisfactory. The important aspects of this profile are:
A. Careful treatment of the liquid flow in the converging section to prevent boundary layer separation or excessive viscous losses;
B. A sufficiently rapid enlargement of the nozzle at or near the point where evaporation begins so that the wall static pressure does not fall excessively in that region;
C. A downstream section which is long enough to permit the flow to drive to states near equilibrium states, yet not so long that excessive viscous losses are incurred.
With reference to aspect B above, it is important that all points on the diverging section of the nozzle which lie within a distance downstream of the throat equal to at least five times the diameter of the throat. lie outside of a surface of revolution generated by rotating about the nozzle axis a straight line which is tangent to the nozzle surface in the region of the throat; which intersects the nozzle axis; and which intersects the nozzle surface at the exit of the nozzle. Another way of looking at this same statement is that these points lie outside of an imaginary cone which is tangent to the nozzle surface in the region of the throat and intersects the nozzle surface at the exit of the nozzle.
It should be pointed out that it is customary in the design of supersonic gas nozfles, when high efficiency is a principal aim. that nozzles are used which employ a contour similar to the one described herein. However, in the case of gas nozzles. this contouring is done to avoid oblique shock losses; whereas. in the present invention (where a liquid is supplied to the nozzle inlet), this type of contouring is used to suppress metastability losses. In using the term liquid," this is meant to include streams which are substantially liquid, normally not exceeding 20 percent vapor, and in any event, not exceeding 50 percent vapor.
While this invention has been described in connection with a certain specific embodiment thereof, it is to be understood that this is by way of illustration and not by way of limitation.
I claim:
1. A nozzle adapted for use in an ejector comprising means defining an elongated, axisymmetric fluid passage, said fluid passage having an inlet section adapted to receive a substantially liquid stream, said section converging in the direction of fluid flow and terminating at a throat of diameter, D said fluid passage having second section of length L diverging in the direction of fluid flow and extending from throat to an exit of diameter D the contour of said second section, as established by any distance L in a direction downstream from said throat and a corresponding diameter D at length L, defined substantially by the following equation:
where n has a value greater than unity.
2. A nozzle as defined in claim 1 wherein n is in the range of
US689653A 1967-12-11 1967-12-11 High efficiency flashing nozzle Expired - Lifetime US3550864A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68965367A 1967-12-11 1967-12-11

Publications (1)

Publication Number Publication Date
US3550864A true US3550864A (en) 1970-12-29

Family

ID=24769374

Family Applications (1)

Application Number Title Priority Date Filing Date
US689653A Expired - Lifetime US3550864A (en) 1967-12-11 1967-12-11 High efficiency flashing nozzle

Country Status (1)

Country Link
US (1) US3550864A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707265A (en) * 1971-03-03 1972-12-26 Incoe Corp Nozzle for an injection molding machine
US3957258A (en) * 1973-08-08 1976-05-18 Italsider S.P.A. Nozzles of the lance heads for blowing oxygen from above in the refining processes
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
FR2537668A1 (en) * 1982-12-08 1984-06-15 Dow Chemical Co Choking nozzle for pressure reduction
US5392993A (en) * 1994-01-21 1995-02-28 Grinnell Corporation, Fire protection nozzle
US5421904A (en) * 1991-06-27 1995-06-06 Carlson; Gilbert B. Perpendicular drain pipe clean out nozzle
US5782414A (en) * 1995-06-26 1998-07-21 Nathenson; Richard D. Contoured supersonic nozzle
WO1999051356A1 (en) * 1998-04-03 1999-10-14 Advanced Energy Systems, Inc. Fluid nozzle system, energy emission system for photolithography and its method of manufacture
US6105885A (en) * 1998-04-03 2000-08-22 Advanced Energy Systems, Inc. Fluid nozzle system and method in an emitted energy system for photolithography
EP1228264A1 (en) * 1999-09-09 2002-08-07 AeroGen, Inc. Improved aperture plate and methods for its construction and use
US6978941B2 (en) 2001-05-02 2005-12-27 Aerogen, Inc. Base isolated nebulizing device and methods
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US7040549B2 (en) 1991-04-24 2006-05-09 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US7195011B2 (en) 2001-03-20 2007-03-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US7201167B2 (en) 2004-04-20 2007-04-10 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US7290541B2 (en) 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7322349B2 (en) 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US7331339B2 (en) 2000-05-05 2008-02-19 Aerogen, Inc. Methods and systems for operating an aerosol generator
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US7600511B2 (en) 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US7771642B2 (en) 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707265A (en) * 1971-03-03 1972-12-26 Incoe Corp Nozzle for an injection molding machine
US3957258A (en) * 1973-08-08 1976-05-18 Italsider S.P.A. Nozzles of the lance heads for blowing oxygen from above in the refining processes
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
FR2537668A1 (en) * 1982-12-08 1984-06-15 Dow Chemical Co Choking nozzle for pressure reduction
US7040549B2 (en) 1991-04-24 2006-05-09 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US5421904A (en) * 1991-06-27 1995-06-06 Carlson; Gilbert B. Perpendicular drain pipe clean out nozzle
DE4480591C2 (en) * 1994-01-21 2000-11-09 Grinnell Corp Fire protection nozzle
US5392993A (en) * 1994-01-21 1995-02-28 Grinnell Corporation, Fire protection nozzle
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US8561604B2 (en) 1995-04-05 2013-10-22 Novartis Ag Liquid dispensing apparatus and methods
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US5782414A (en) * 1995-06-26 1998-07-21 Nathenson; Richard D. Contoured supersonic nozzle
US6437349B1 (en) 1998-04-03 2002-08-20 Advanced Energy Systems, Inc. Fluid nozzle system and method in an emitted energy system for photolithography
US6105885A (en) * 1998-04-03 2000-08-22 Advanced Energy Systems, Inc. Fluid nozzle system and method in an emitted energy system for photolithography
WO1999051356A1 (en) * 1998-04-03 1999-10-14 Advanced Energy Systems, Inc. Fluid nozzle system, energy emission system for photolithography and its method of manufacture
EP1228264A1 (en) * 1999-09-09 2002-08-07 AeroGen, Inc. Improved aperture plate and methods for its construction and use
US7066398B2 (en) * 1999-09-09 2006-06-27 Aerogen, Inc. Aperture plate and methods for its construction and use
US8398001B2 (en) 1999-09-09 2013-03-19 Novartis Ag Aperture plate and methods for its construction and use
EP1228264B1 (en) * 1999-09-09 2017-05-31 Novartis AG Improved aperture plate and methods for its construction and use
US7331339B2 (en) 2000-05-05 2008-02-19 Aerogen, Inc. Methods and systems for operating an aerosol generator
US7748377B2 (en) 2000-05-05 2010-07-06 Novartis Ag Methods and systems for operating an aerosol generator
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US7322349B2 (en) 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US7195011B2 (en) 2001-03-20 2007-03-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US8196573B2 (en) 2001-03-20 2012-06-12 Novartis Ag Methods and systems for operating an aerosol generator
US7104463B2 (en) 2001-05-02 2006-09-12 Aerogen, Inc. Base isolated nebulizing device and methods
US6978941B2 (en) 2001-05-02 2005-12-27 Aerogen, Inc. Base isolated nebulizing device and methods
US7600511B2 (en) 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US8539944B2 (en) 2002-01-07 2013-09-24 Novartis Ag Devices and methods for nebulizing fluids for inhalation
US7771642B2 (en) 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US7290541B2 (en) 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7267121B2 (en) 2004-04-20 2007-09-11 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7201167B2 (en) 2004-04-20 2007-04-10 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods

Similar Documents

Publication Publication Date Title
US3550864A (en) High efficiency flashing nozzle
US5059226A (en) Centrifugal two-phase flow distributor
AU750712B2 (en) Method and Apparatus for the Separation of Components of Gas Mixtures and Liquefaction of a Gas
US4543802A (en) Evaporating apparatus
US5343711A (en) Method of reducing flow metastability in an ejector nozzle
Livio et al. The formation of planetary nebulae with close binary nuclei
US20060162365A1 (en) Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel
EP3708852B1 (en) Ejector and refrigerating system
Hopfinger et al. Explosive breakup of a liquid jet by a swirling coaxial gas jet
US3156811A (en) Gaseous sealing means in an apparatus for working materials by a beam of charged particles
JP2727723B2 (en) Gas-liquid two-phase fluid distributor
US3541801A (en) Thermal separator
JPH05507648A (en) Improved desuperheater for controllable injection of cooling water into steam or gas lines
US3522710A (en) Vortex tube
US20120134776A1 (en) Nozzle Capable of Maximizing the Quantity of Movement Produced by a Two-Phase Flow Through the Relief of a Saturating Flow
US4526014A (en) Water spray unit for ice product making machine
US3610775A (en) Turbine wheel
US3589395A (en) Refrigeration component
US2854828A (en) Free flow evaporator
CN110296555B (en) Liquid separating mechanism with uniform liquid separating function, mounting method thereof and air conditioning system
US3944399A (en) Method of physical separation of components of a molecular beam
SE445488B (en) NOZZLE FOR KYLANGA BY AN ANGLE CONDENSOR
JPH01121667A (en) Refrigerant flow diverter
JPH05203285A (en) Heat exchanger
US4255938A (en) Water boiler/venturi cooler

Legal Events

Date Code Title Description
AS Assignment

Owner name: YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE;ASSIGNOR:BORG-WARNER CORPORATION;REEL/FRAME:004676/0360

Effective date: 19860609