US3561437A - Apparatus for fixing fractures of the femur - Google Patents

Apparatus for fixing fractures of the femur Download PDF

Info

Publication number
US3561437A
US3561437A US714661A US3561437DA US3561437A US 3561437 A US3561437 A US 3561437A US 714661 A US714661 A US 714661A US 3561437D A US3561437D A US 3561437DA US 3561437 A US3561437 A US 3561437A
Authority
US
United States
Prior art keywords
nail
femur
elongated
channel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US714661A
Inventor
Jose Luis Orlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3561437A publication Critical patent/US3561437A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • A61B17/746Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to a plate opposite the femoral head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • A61B17/744Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to an intramedullary nail

Definitions

  • Apparatus for fixing fractures of the femur includes a plate which is held by screws to the upper part of the femur and a channel like member fixed to the proximal end of the plate for slidingly engaging a flanged nail which is driven into the head of the femur.
  • a second embodiment substitutes a eannulated pin which is inserted into the intramedullary canal of the femur.
  • PATENIEDFEB slsn 3.5614437 sum 1. or 2 25 FIG; I
  • This invention relates to apparatus for fixing lesions consisting primarily of fractures of the femur. More particularly, it relates to a pin and plate which may be used in combination with a flanged nail to fix fractures of the upper extremity ,of the femur which includes the head, the neck and the trochan' ters.
  • Fractures of the femur particularly fractures of the upper or proximal endof the femur are rather common. It was early determined that the setting of such fractures by using casts was not likely to be very successful. Thereafter,attempts were made at internal fixation through the use of round or polygonal nails. But this type of treatment was abandoned because it brought about partial and temporary fixation only. Then in the late twenties, it was discovered that good fixation could be achieved by using a flanged nail. This nail has come to be known as the Smith-Petersen nail after its inventor.
  • the disadvantages of prior plates and other devices attached to the shaft for use in combination with a Smith-Petersen nail or its equivalent are overcome by providing newand unobvious apparatus.
  • the apparatus which is fixed to the shaft of the femur slidingly engages the fixation nail, thereby permitting impaction at either the fracture or the osteotomy site, or both.
  • the patient can be immediately mobilized which promotes impaction and therefore provokes osteogenesis that results in the formation of callus.
  • the apparatus permits positioning of the channel member that retains the nail in a position that promotes healing.
  • the apparatus permits treatment of different types of bone lesion including fractures, osteoarthritis, and hip fusion;
  • the apparatus permits immediate weight bearing by the patient
  • the apparatus gives a strong immobilization of the parts of the bone
  • the apparatus permits impaction of the parts of the bone
  • the apparatus promotes faster and better healing
  • the apparatus When used with the operative technique described herein, the apparatus improves stability by permitting the shifting of the weight bearing line to a more perpendicular one since the shaft is displaced medially;
  • the apparatus promotes good fixation and healing of even the unstable transtrochanteric fractures which are a type of fracture that is poorly held by most of the conventional apparatus.
  • FIG. I is a perspective view of the first embodiment of this invention showing a Smith-Petersen nail and plate.
  • FIG. 2 is a transverse sectional view of the apparatus shown in FIG. 1 taken along the line 2-2. 4
  • FIG. 3 is a transverse sectional view of the apparatus shown in FIG. 1 taken along the line 3-3.
  • FIG. 4 is a posterior surface view of a femur showing the apparatus positioned thereon to fix an intracapsular fracture.
  • FIG. 5 is anelevational view of the second embodiment of the present invention showing a Smith-Petersen nail positioned on a pin for insertion into the intramedullary canal.
  • FIG. 6 is a transverse sectional view of the apparatus shown in FIG. 5 taken along the line 6-6.
  • FIG. 7 is a transverse sectional view of the apparatus shown in FIG. 5 taken along the line 7-7.
  • FIG. 8 is a view of the posterior surface of the femur showing the apparatus of FIG. 5 in position to fix a transtrochanteric fracture.
  • FIG. I the first embodiment of the apparatus for fixing fractures of the femur designated generally as 10.
  • the apparatus includes a nail 12 of the Smith- Petersen type.
  • the nail l2 conventionally includes a head 14 which is adapted to cooperate with an impacting tool which will drive it into the bone structure of the femur.
  • the nail body 16 supports three flanges 18, 20 and 22 which extend substantially the entire length of the nail and are equidistantly spaced apart at angles of
  • the Smith-Petersen nail is typical of the type of flanged nail commonly used to fix fractures of the femur. It should be understood, however, that there are other well-known types of nails which perform equivalent functions such as diamond shaped nails similar to the Hansen-Street nail used in surgery for reducing fractures of the shaft of the femur. Such equivalent nails may have specialized modifications but are still basically flanged nails. Accordingly, the Smith-Petersen nail should be regarded as exemplary rather than limiting. l
  • the nail I2 is supported at the end of the plate 24 by a channel member 26.
  • Plate 24 is elongated and provided with a plurality of chamfered holes 28 through which the screws 30 may beinserted for securing the plate to the shaft of the femur.
  • the plate 24 is curved about its longitudinal axis so as to match its surface to the curved surface of the lateral aspect of the femur.
  • the shaft of the human femur is generally cylindrical'and of substantially uniform diameter above center. Accordingly, little difficulty should be encountered in fitting the plate 24 to the shaft of any femur.
  • the plate 24 is bent at its upper or proximal end to provide a supporting surface 32 for the channel member 26.
  • Channel member 26 which is defined by upper and lower boundaries 33 and 35 is fixed to the supporting surface by any conventional method of joining metallic elements.
  • the channel member 26 is a unitary piece of metal which has been bent or otherwise deformed to define a channel having an open trefoil cross-sectional shape.
  • the trefoil or cloverleaf cross-sectional shape has been foundto provide excellent rigidity for the device while simultaneously being capable of slidingly retaining the nail.
  • the position of the nail 12 in the channel member 26 is best shown in FIG. 2.
  • the length of the channel member is sufficient to enable it to slidingly engage the nail 12 so as to prevent any lateral displacement thereof.
  • the upper and lower boundaries of channel member 26 extend laterally well beyond the concave surface of the plate 24 and at least a portion of the boundaries extend laterally outward from the convex surface of plate 24. Accordingly, the channel member must necessarily be positioned well below what would normally be the trochanteric region of the femur and thereby provide good support.
  • Other types of known plates mount the nail engaging portion well outside the axis of the shaft thereby reducing their supporting capability.
  • the angle between the longitudinal axis of the channel member 26 and the longitudinal axis of the plate 24 can be varied in accordance with the requirement of the case. ln ordinary cases requiring only the repair of an intracapsular or trochanteric fracture, the preferable angle is 150 as measured between the longitudinal axis of the plate 24 and the longitudinal axis of the channel member 26. This angle is taken in the first and fourth quadrant of coordinates intersecting at the junction of the aforesaid longitudinal axes. While 150 is the preferred angle for fixation of routine fractures, it is anticipated that the angle between the two longitudinal axes may vary from 115 to 170 depending upon the type of operation being perfonned. For example, in cases of hip arthrodesis, an angle of 170 may be required. ln cases of osteoarthritic lesions, the angle varies depending upon whether the head is found in the varus or valgus position.
  • the dimensions of the plate 24 and channel member 26 can be as follows:
  • the nail l2 and plate 24 are shown in position on a femur in FIG. 4.
  • the position shown illustrates how the apparatus 10 may be used to fix an intracapsular fracture.
  • the operative technique for arriving at this result is as follows:
  • the patient is placed in a prone position on a conventional operating table with slight flexion of the hip joint at about to B.
  • the patient is given anesthesia.
  • the type of anesthesia is determined by the anesthesiologist but an epidural anesthesia is to be preferred. This type of anesthesia is best for older persons and the position of the patient on the operating table is suitable for rendering the same.
  • a posterio-lateral incision is made. This incision is similar to the type sometimes called the southern approach or Moore incision.
  • the gluteus maximus and tensor fascia lata are divided along the line of incision.
  • the vastus lateralis and all external rotator muscles are separated by blunt bisection from their insertions.
  • the joint capsule is opened by a midlongitudinal incision so that the entire proximal end of the femur is exposed.
  • An osteotomy is done at the intertrochanteric region designated generally by the numeral 40. This allows medial displacement of the shaft 42 of the femur.
  • the angle of the channel member 26 is chosen according to the type of fracture or lesion being treated. In the embodiment shown, the femuris normal in the fracture of the intracapsular type. Accordingly, a 150 n gle is chosen.
  • the plate 24 is screwed to the lateral aspect of the femur shaft 42.
  • a guide hole is drilled through the trochanten'c region 40, the neck 44 and the head 46.
  • a nail 12 of the correct type and size is slid into the channel member 26 and then driven firmly into the head 46.
  • a nail as long as 20 centimeters may be used. This nail is driven through the head and into the iliac bone at the acetabulum. It may be driven into the iliac bone as far up as the sacroiliac joint.
  • the joint capsule is closed and all muscles, facia and skin are sutured in the conventional manner.
  • the advantage f permitting the nail 12 to slide back on the angled channel 26 is that it allows for impaction at the fracture site or at the osteotomy site.
  • the entire apparatus, including the plate 24 and nail 12 results in proper alignment of the joints, impaction and full immobilization of the fracture treated.
  • healing is promoted by accelerating osteogenesis because more raw bone surface is in contact at the fracture site.
  • the osteotomy improves stability by shifting the weight bearing line to one that is more perpendicular as a result of the shaft 42 being displaced medially
  • the entire operative procedure is relatively simple to perfonn and the time of performance is relatively short. In most cases, the plate 24 and pin 12 can be placed in 1 hour. No X- ray control is required because the hip joint is entirely exposed.
  • the plate 24 is replaced by a pin 50 which supports a nail 12 in a channel fixed at its proximal end.
  • the nail 12 is of the Smith-Petersen type and includes a head 14, a body 16 and flanges 18, 20 and 22.
  • the nail I2 is retained in a channel member 52 which is positioned on the proximal end of the pin 50.
  • the pin 50 is cannulated and has an open trefoil cross-sectional shape so as to define three flanges 54, 56 and 58.
  • the cannulated shape of the pin 50 permits it to be inserted into the intramedullary canal of the femur shaft without interferring with the overall function of that canal.
  • the trefoil shape which defines the three flanges 54, 56 and 58 prevents the pin from rotating once it is inserted in the intramedullary canal.
  • a slot 60 An opening in the fon'n of a slot 60 is formed in the central flange 56 of the pin 50 adjacent the junction with the channel member 52.
  • the longitudinal axis of the slot 60 is parallel to the longitudinal axis of the pin 50 and in the same plane as the longitudinal axis of the channel member 52.
  • the slot 60 permits the insertion of a screw 62 which cooperates with the slot to prevent rotation of the pin 50.
  • the use of an elongated slot (one that is substantially longer than the diameter of screw 62) permits the pin 50 to sink into the medullary canal when impaction occurs at the fracture site. To properly take advantage of this sinking feature, the screw 62 must extend through the slot 60 adjacent the end which is remote from the channel member 52.
  • the channel member 52 is formed as an integral part of the pin 50 and as such flares outwardly and inwardly to define an open trefoil cross-sectional shape as illustrated in FIG. 6.
  • the channel member 52 receives and retains the nail 12 in the manner shown in FIG. 6 and as described above with respect to the channel member 26. It should be noted, however, that the channel member 52 extends laterally only to one side of the pin 50. This is the side opposite the flange 56.
  • the angle of the longitudinal axis of the channel member 56 with respect to the longitudinal axis of the pin 50 is obviously the same as that described with respect to the plate 24 and channel member 26 and measured in the same manner.
  • the following dimensions may be used in constructing the pin 50 and its integral channel member 52:
  • Length of pin 50 from lower end to junction with channel member 52 variable, 15cm. being preferred.
  • Outside height and outside depth of cross section of pin 50 variable between 9 to 14mm.
  • Width of .slot 60 4mm. Length of channel member 52 25mm. Width of channel member 52 15mm. Wall thickness of channel member 52 2mm. Outside depth of channel member SZ lOmm.
  • the method of applying the pin 50 and nail 12 is substantially identical with that described above with respect to the plate 24 and nail 12. The only variation is in step F wherein the proper size pin is selected according to the size of the intramedullary canal and placed into such canal. The pin is held in place bythe medullary canal and rotation is prevented by one screw 62 that extends through the slot 60 adjacent its remote end. Otherwise the operative technique is identical.
  • the pin 50 is shown in position within the intramedullary canal of the shaft 42 of the femur in H6. 8.
  • the pin 50 and nail 12 are used to fix a transtrochanteric fracture of the femur, but other types of fractures could be fixed.
  • the position of the pin 50 and channel member 52 are well placed to support the nail.l2 and hence promote good fixation of the fracture.
  • the operative technique in placing the pin 50 is somewhat faster than the time required to place the plate 24. Since only one screw is used, the entire operative technique can normally be completed in 45 minutes.
  • each of the described embodiments of this invention accomplish three basic functions necessary to properly fix a fracture of the femur.
  • the apparatus a provides good, strong immobilization of the bone pans, b permits alignment of the bone parts and c allows impaction of the bone parts. The conjunction of the foregoing three factors produces better healing.
  • Both embodiments can be used to treat any of the several types of hip lesions such as osteoarthritic conditions, fractures and arthrodesis of the hip joint. Both embodiments permit immediate weight bearing after surgery and both permit almost perfect alignment, impaction and immobilization of the bone fragments. The natural result of the foregoing is to times.
  • both embodiments prevent nonunion of the femur neck which are frequent when other conventional devices are used because the fracture is impacted by muscle tension and primarily because of early provide much shorter.
  • healingweight bearing Early weight bearing is achieved because of the sliding nail.
  • the osteotomy improves the line of weight bearing by medially displacing the shaft and also promotes osteogenesis.
  • Transtrochanteric fractures including the unstable ones are likewise made stable and held in place by good callus formation.
  • both devices permit better alignment of the weight bearing line because the osteotomy permits the shift of the femural shaft while still holding it in place.
  • Apparatus for fixing fractures of the femur comprising a nail to be driven into the proximal extremity of the femur, an elongated plate, said plate being curved about its longitudinal axis to define a concave surface and a convex surface, a plurality of holes extending through said plate for accepting screws so that said plate can be' secured to the shaft of the femur, a member defining an elongated open channel having upper and lower boundaries fixed at one end of said plate, the longitudinal axes of said channel and said elongated plate defining an obtuse angle, said upper and lower boundaries of said channel extending outwardly beyond said concave surface and outwardly beyond said convex surface so that loads relative rotation therebetween.
  • Apparatus for fixing a fracture of the femur comprising a nail to be driven into the upper extremity of the femur, an elongated pin to be inserted into the intramedullary canal of the femur, a member defining an open channel fixed at one end of said elongated pin, the longitudinal axes of said channel and said elongated pin defining an obtuse angle, said nail being received in said channel for relative sliding movement therebetween along said nail, an elongated opening disposed along the longitudinal axis of said elongated pin, said elongated opening being remote from said channel, and said nail and said channel having mutual interlocking cross sections to prevent relative rotation therebetween.

Abstract

Apparatus for fixing fractures of the femur includes a plate which is held by screws to the upper part of the femur and a channel like member fixed to the proximal end of the plate for slidingly engaging a flanged nail which is driven into the head of the femur. A second embodiment substitutes a cannulated pin which is inserted into the intramedullary canal of the femur.

Description

llnited States Patent [72] Inventor Jose Luis Orlich Apartado 81, San Jose, Costa Rica [21] Appl. No. 714,661 [22] Filed Mar. 20, 1968 [45] Patented Feb. 9, 1971 [32] Priority Nov. 8, 1967 [3 3] Costa Rica [3 l 1,660
[54] APPARATUS FOR FIXING FRACTURES OF THE FEMUR 3 Claims, 8 Drawing Figs.
[5 2] US. Cl 128/92 [51] Int. Cl A61f 5/04 [50] Field of Search... 1225/92 B-B3, C-C, D, F
[56] References Cited UNITED STATES PATENTS 2,612,159 9/ 1952 Collison l. 128/92 2,621,653 12/1952 Briggs 128/92 2,761,444 9/1956 Luck 128/92 3,433,220 3/1969 Zickel 128/92 FOREIGN PATENTS 195,043 1963 U.S.S.R. 128/92 893,401 6/1944 France 128/92 OTHER REFERENCES Journal of Bone & Joint Surgery p. 7 Jan. 1955 Journal of Bone & Joint Surgery p. 38, Oct. 1951 Journal of Bone & Joint Surgery p. 162, Feb. 1952 Primary Examiner-Adele M. Eager Assistant Examiner-J Yasko AttorneySeidel and Gonda ABSTRACT: Apparatus for fixing fractures of the femur includes a plate which is held by screws to the upper part of the femur and a channel like member fixed to the proximal end of the plate for slidingly engaging a flanged nail which is driven into the head of the femur. A second embodiment substitutes a eannulated pin which is inserted into the intramedullary canal of the femur.
PATENIEDFEB slsn 3.5614437 sum 1. or 2 25 FIG; I
' .1055 LUIS ORL ICH ATTORNEYS.
PATENTED FEB 9|91| sum 2 0F 2 INVENTOR JOSE LUIS ORL/CH ATTORNEYS.
g V APPARATUS FOR FIXING FRACTURES OF THE FEMUR This invention relates to apparatus for fixing lesions consisting primarily of fractures of the femur. More particularly, it relates to a pin and plate which may be used in combination with a flanged nail to fix fractures of the upper extremity ,of the femur which includes the head, the neck and the trochan' ters.
Fractures of the femur, particularly fractures of the upper or proximal endof the femur are rather common. It was early determined that the setting of such fractures by using casts was not likely to be very successful. Thereafter,attempts were made at internal fixation through the use of round or polygonal nails. But this type of treatment was abandoned because it brought about partial and temporary fixation only. Then in the late twenties, it was discovered that good fixation could be achieved by using a flanged nail. This nail has come to be known as the Smith-Petersen nail after its inventor.
Soon after the development of the Smith-Petersen nail and its equivalents, it was determined that even better fixation of the fracture could be achieved by attaching a plate to the shaft of the femur. The plate produced particularly good results in the cases of fractures of the trochanteric region. However, such plates are rigidly fixed to the end of the nail thereby complicating their attachment to the femur and making it impossible for the nail to slide back on the plate to provide impaction at the fracture site. In addition, such devicesdo not allow the patient to be mobilized as soon as he should. This is because the rigid fixation of the apparatus, which on muscle tension or on weight bearing, applies a force to the nail which may cause it to move medially and penetrate the head or neck of the femur, or the reactive force may tear the plate loose from the shaft of the femur. This condition exists becausethe known prior art apparatus does not allow for a shortening of the apparatus. In the absence of a sliding mechanism, the patient has to wait until callus is fonned. The results of remaining too long in a sedentary position are well known to those in the medical profession. It is particularly hazardous for geriatrics, the group of persons most likely to incur fractures of the femur, because they readily contract pneumonia, pulmonary stasis, decubitus ulcers, or generalized weakness.
In accordance with the present invention, the disadvantages of prior plates and other devices attached to the shaft for use in combination with a Smith-Petersen nail or its equivalent are overcome by providing newand unobvious apparatus. In accordance with the present invention, the apparatus which is fixed to the shaft of the femur slidingly engages the fixation nail, thereby permitting impaction at either the fracture or the osteotomy site, or both. The patient can be immediately mobilized which promotes impaction and therefore provokes osteogenesis that results in the formation of callus. In addition, the apparatus permits positioning of the channel member that retains the nail in a position that promotes healing.
Some of the advantages of the apparatus for fixing fractures of the femur described herein can be stated as follows:
The apparatus permits treatment of different types of bone lesion including fractures, osteoarthritis, and hip fusion;
The apparatus permits immediate weight bearing by the patient;
The apparatus gives a strong immobilization of the parts of the bone;
' The apparatus allows for good alignment of the parts of the bone; I
The apparatus permits impaction of the parts of the bone;
The apparatus promotes faster and better healing;
When used with the operative technique described herein, the apparatus improves stability by permitting the shifting of the weight bearing line to a more perpendicular one since the shaft is displaced medially; and
The apparatus promotes good fixation and healing of even the unstable transtrochanteric fractures which are a type of fracture that is poorly held by most of the conventional apparatus.
For the purpose of illustrating the invention, there are shown in the drawings forms which are presently preferred; it
being understood, however, that this invention is not limited to the precise arrangements and instrumentalitiesshown.
FIG. I is a perspective view of the first embodiment of this invention showing a Smith-Petersen nail and plate.
FIG. 2 is a transverse sectional view of the apparatus shown in FIG. 1 taken along the line 2-2. 4
FIG. 3 is a transverse sectional view of the apparatus shown in FIG. 1 taken along the line 3-3.
FIG. 4 is a posterior surface view of a femur showing the apparatus positioned thereon to fix an intracapsular fracture.
FIG. 5 is anelevational view of the second embodiment of the present invention showing a Smith-Petersen nail positioned on a pin for insertion into the intramedullary canal.
FIG. 6 is a transverse sectional view of the apparatus shown in FIG. 5 taken along the line 6-6.
FIG. 7 is a transverse sectional view of the apparatus shown in FIG. 5 taken along the line 7-7.
FIG. 8 is a view of the posterior surface of the femur showing the apparatus of FIG. 5 in position to fix a transtrochanteric fracture.
Referring now to the drawings in detail, wherein like numerals indicate like elements, there is shown in FIG. I the first embodiment of the apparatus for fixing fractures of the femur designated generally as 10.
As shown, the apparatus includes a nail 12 of the Smith- Petersen type. The nail l2 conventionally includes a head 14 which is adapted to cooperate with an impacting tool which will drive it into the bone structure of the femur. The nail body 16 supports three flanges 18, 20 and 22 which extend substantially the entire length of the nail and are equidistantly spaced apart at angles of The Smith-Petersen nail is typical of the type of flanged nail commonly used to fix fractures of the femur. It should be understood, however, that there are other well-known types of nails which perform equivalent functions such as diamond shaped nails similar to the Hansen-Street nail used in surgery for reducing fractures of the shaft of the femur. Such equivalent nails may have specialized modifications but are still basically flanged nails. Accordingly, the Smith-Petersen nail should be regarded as exemplary rather than limiting. l
' The nail I2 is supported at the end of the plate 24 by a channel member 26. Plate 24 is elongated and provided with a plurality of chamfered holes 28 through which the screws 30 may beinserted for securing the plate to the shaft of the femur. As shown in FIG. 3, the plate 24 is curved about its longitudinal axis so as to match its surface to the curved surface of the lateral aspect of the femur. It should be noted that the shaft of the human femur is generally cylindrical'and of substantially uniform diameter above center. Accordingly, little difficulty should be encountered in fitting the plate 24 to the shaft of any femur.
The plate 24 is bent at its upper or proximal end to provide a supporting surface 32 for the channel member 26. Channel member 26 which is defined by upper and lower boundaries 33 and 35 is fixed to the supporting surface by any conventional method of joining metallic elements.
As best shown in FIGS. I and 2, the channel member 26 is a unitary piece of metal which has been bent or otherwise deformed to define a channel having an open trefoil cross-sectional shape. The trefoil or cloverleaf cross-sectional shape has been foundto provide excellent rigidity for the device while simultaneously being capable of slidingly retaining the nail. The position of the nail 12 in the channel member 26 is best shown in FIG. 2.
The length of the channel member is sufficient to enable it to slidingly engage the nail 12 so as to prevent any lateral displacement thereof. As positioned on the supporting surface 32, the upper and lower boundaries of channel member 26 extend laterally well beyond the concave surface of the plate 24 and at least a portion of the boundaries extend laterally outward from the convex surface of plate 24. Accordingly, the channel member must necessarily be positioned well below what would normally be the trochanteric region of the femur and thereby provide good support. Other types of known plates mount the nail engaging portion well outside the axis of the shaft thereby reducing their supporting capability.
The angle between the longitudinal axis of the channel member 26 and the longitudinal axis of the plate 24 can be varied in accordance with the requirement of the case. ln ordinary cases requiring only the repair of an intracapsular or trochanteric fracture, the preferable angle is 150 as measured between the longitudinal axis of the plate 24 and the longitudinal axis of the channel member 26. This angle is taken in the first and fourth quadrant of coordinates intersecting at the junction of the aforesaid longitudinal axes. While 150 is the preferred angle for fixation of routine fractures, it is anticipated that the angle between the two longitudinal axes may vary from 115 to 170 depending upon the type of operation being perfonned. For example, in cases of hip arthrodesis, an angle of 170 may be required. ln cases of osteoarthritic lesions, the angle varies depending upon whether the head is found in the varus or valgus position.
By way of example, but not of limitation, the dimensions of the plate 24 and channel member 26 can be as follows:
Width of plate 24 15 mm.
Thickness of plate 24 2.5mm.
Depth of curvature of plate 4.5mm.
Diameter of holes 28 mm.
Diameter of charnfer for holes 28 6.5mm.
Center to center distance between holes 28 21mm.
Length of plate 24 variable (15cm. preferred) Width of channel member 26 15mm.
Thickness of channel member 26 2mm.
Depth of channel member mm.
Length of channel member 26 25mm.
The nail l2 and plate 24 are shown in position on a femur in FIG. 4. The position shown illustrates how the apparatus 10 may be used to fix an intracapsular fracture. Briefly summarized, the operative technique for arriving at this result is as follows:
A. The patient is placed in a prone position on a conventional operating table with slight flexion of the hip joint at about to B. The patient is given anesthesia. The type of anesthesia is determined by the anesthesiologist but an epidural anesthesia is to be preferred. This type of anesthesia is best for older persons and the position of the patient on the operating table is suitable for rendering the same.
C. A posterio-lateral incision is made. This incision is similar to the type sometimes called the southern approach or Moore incision. The gluteus maximus and tensor fascia lata are divided along the line of incision. The vastus lateralis and all external rotator muscles are separated by blunt bisection from their insertions. The joint capsule is opened by a midlongitudinal incision so that the entire proximal end of the femur is exposed.
D. An osteotomy is done at the intertrochanteric region designated generally by the numeral 40. This allows medial displacement of the shaft 42 of the femur.
E. The angle of the channel member 26 is chosen according to the type of fracture or lesion being treated. In the embodiment shown, the femuris normal in the fracture of the intracapsular type. Accordingly, a 150 n gle is chosen.
F. The plate 24 is screwed to the lateral aspect of the femur shaft 42.
G. A guide hole is drilled through the trochanten'c region 40, the neck 44 and the head 46.
H. Thereafter, a nail 12 of the correct type and size is slid into the channel member 26 and then driven firmly into the head 46. In certain cases where it is desirable to immobilize the entire joint, such as cases of arthrodesis, a nail as long as 20 centimeters may be used. This nail is driven through the head and into the iliac bone at the acetabulum. It may be driven into the iliac bone as far up as the sacroiliac joint.
l. The joint capsule is closed and all muscles, facia and skin are sutured in the conventional manner.
J. Finally, impaction of all fragments is done while the patient remains on the operating table. This is done by striking at the patients heel with the leg straight. This impacts the fracture and immediate weight bearing can be started on the followi g day.
The advantage f permitting the nail 12 to slide back on the angled channel 26 is that it allows for impaction at the fracture site or at the osteotomy site. The entire apparatus, including the plate 24 and nail 12 results in proper alignment of the joints, impaction and full immobilization of the fracture treated. By using an osteotomy to position the plate, healing is promoted by accelerating osteogenesis because more raw bone surface is in contact at the fracture site. The osteotomy improves stability by shifting the weight bearing line to one that is more perpendicular as a result of the shaft 42 being displaced medially The entire operative procedure is relatively simple to perfonn and the time of performance is relatively short. In most cases, the plate 24 and pin 12 can be placed in 1 hour. No X- ray control is required because the hip joint is entirely exposed.
lt should be understood the foregoing has been described in respect to an intracapsular fracture with a brief reference to arthrodesis, but the apparatus and technique for applying it are equally applicable to other types of fractures such as transtrochanteric fracture or an extracapsular fracture with equal facility.
Referring now to FIGS. 5, 6, 7 and 8, there is shown a second embodiment of the present invention. In this embodiment, the plate 24 is replaced by a pin 50 which supports a nail 12 in a channel fixed at its proximal end. The nail 12 is of the Smith-Petersen type and includes a head 14, a body 16 and flanges 18, 20 and 22. As shown in FIG. 6, the nail I2 is retained in a channel member 52 which is positioned on the proximal end of the pin 50. The pin 50 is cannulated and has an open trefoil cross-sectional shape so as to define three flanges 54, 56 and 58. The cannulated shape of the pin 50 permits it to be inserted into the intramedullary canal of the femur shaft without interferring with the overall function of that canal. The trefoil shape which defines the three flanges 54, 56 and 58 prevents the pin from rotating once it is inserted in the intramedullary canal.
An opening in the fon'n of a slot 60 is formed in the central flange 56 of the pin 50 adjacent the junction with the channel member 52. The longitudinal axis of the slot 60 is parallel to the longitudinal axis of the pin 50 and in the same plane as the longitudinal axis of the channel member 52. The slot 60 permits the insertion of a screw 62 which cooperates with the slot to prevent rotation of the pin 50. The use of an elongated slot (one that is substantially longer than the diameter of screw 62) permits the pin 50 to sink into the medullary canal when impaction occurs at the fracture site. To properly take advantage of this sinking feature, the screw 62 must extend through the slot 60 adjacent the end which is remote from the channel member 52.
The channel member 52 is formed as an integral part of the pin 50 and as such flares outwardly and inwardly to define an open trefoil cross-sectional shape as illustrated in FIG. 6. The channel member 52 receives and retains the nail 12 in the manner shown in FIG. 6 and as described above with respect to the channel member 26. It should be noted, however, that the channel member 52 extends laterally only to one side of the pin 50. This is the side opposite the flange 56. The angle of the longitudinal axis of the channel member 56 with respect to the longitudinal axis of the pin 50 is obviously the same as that described with respect to the plate 24 and channel member 26 and measured in the same manner.
By way of example, but not of limitation, the following dimensions may be used in constructing the pin 50 and its integral channel member 52:
Length of pin 50 from lower end to junction with channel member 52 variable, 15cm. being preferred.
Wall thickness of pin 50 2mm.
Outside height and outside depth of cross section of pin 50 variable between 9 to 14mm.
- Length of slot 60 25mm.
Width of .slot 60 4mm. Length of channel member 52 25mm. Width of channel member 52 15mm. Wall thickness of channel member 52 2mm. Outside depth of channel member SZ lOmm. The method of applying the pin 50 and nail 12 is substantially identical with that described above with respect to the plate 24 and nail 12. The only variation is in step F wherein the proper size pin is selected according to the size of the intramedullary canal and placed into such canal. The pin is held in place bythe medullary canal and rotation is prevented by one screw 62 that extends through the slot 60 adjacent its remote end. Otherwise the operative technique is identical.
The pin 50 is shown in position within the intramedullary canal of the shaft 42 of the femur in H6. 8. In FIG. 8, the pin 50 and nail 12 are used to fix a transtrochanteric fracture of the femur, but other types of fractures could be fixed. As shown in FIG. 8, the position of the pin 50 and channel member 52 are well placed to support the nail.l2 and hence promote good fixation of the fracture.
The operative technique in placing the pin 50 is somewhat faster than the time required to place the plate 24. Since only one screw is used, the entire operative technique can normally be completed in 45 minutes.
From the foregoing, it must be apparent that each of the described embodiments of this invention accomplish three basic functions necessary to properly fix a fracture of the femur. The apparatus a provides good, strong immobilization of the bone pans, b permits alignment of the bone parts and c allows impaction of the bone parts. The conjunction of the foregoing three factors produces better healing.
From the foregoing, it can be seen that there has been described apparatus for fixing fractures of the femur which accomplishes the advantages set forth above. Both embodiments can be used to treat any of the several types of hip lesions such as osteoarthritic conditions, fractures and arthrodesis of the hip joint. Both embodiments permit immediate weight bearing after surgery and both permit almost perfect alignment, impaction and immobilization of the bone fragments. The natural result of the foregoing is to times.
With respect to intracapsular fractures, both embodiments prevent nonunion of the femur neck which are frequent when other conventional devices are used because the fracture is impacted by muscle tension and primarily because of early provide much shorter. healingweight bearing. Early weight bearing is achieved because of the sliding nail. The osteotomy improves the line of weight bearing by medially displacing the shaft and also promotes osteogenesis. Transtrochanteric fractures including the unstable ones are likewise made stable and held in place by good callus formation. Finally, both devices permit better alignment of the weight bearing line because the osteotomy permits the shift of the femural shaft while still holding it in place.
' The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification as. indicating the scope of the invention.
1 claim:
1. Apparatus for fixing fractures of the femur comprising a nail to be driven into the proximal extremity of the femur, an elongated plate, said plate being curved about its longitudinal axis to define a concave surface and a convex surface, a plurality of holes extending through said plate for accepting screws so that said plate can be' secured to the shaft of the femur, a member defining an elongated open channel having upper and lower boundaries fixed at one end of said plate, the longitudinal axes of said channel and said elongated plate defining an obtuse angle, said upper and lower boundaries of said channel extending outwardly beyond said concave surface and outwardly beyond said convex surface so that loads relative rotation therebetween.
2. Apparatus for fixing a fracture of the femur comprising a nail to be driven into the upper extremity of the femur, an elongated pin to be inserted into the intramedullary canal of the femur, a member defining an open channel fixed at one end of said elongated pin, the longitudinal axes of said channel and said elongated pin defining an obtuse angle, said nail being received in said channel for relative sliding movement therebetween along said nail, an elongated opening disposed along the longitudinal axis of said elongated pin, said elongated opening being remote from said channel, and said nail and said channel having mutual interlocking cross sections to prevent relative rotation therebetween.
3. Apparatus as defined in claim 2 wherein said opening is an elongated slot, an elongated fastening member to be inserted in the femur transversely of said elongated pin and be received in said elongated slot, and the length of said slot is substantially greater than the width of said fastening member to permit said elongated pin to'move longitudinally relative to said fastening member.

Claims (3)

1. Apparatus for fixing fractures of the femur comprising a nail to be driven into the proximal extremity of the femur, an elongated plate, said plate being curved about its longitudinal axis to define a concave surface and a convex surface, a plurality of holes extending through said plate for accepting screws so that said plate can be secured to the shaft of the femur, a member defining an elongated open channel having upper and lower boundaries fixed at one end of said plate, the longitudinal axes of said channel and said elongated plate defining an obtuse angle, said upper and lower boundaries of said channel extending outwardly beyond said concave surface and outwardly beyond said convex surface so that loads transmitted from said nail to said elongated plate will be distributed uniformly to said plate by said channel member to thereby maximize the supporting capability of said apparatus, said nail being received in said channel for relative sliding movement therebetween along said nail, and said nail and said channel having mutually interlocking cross sections to prevent relative rotation therebetween.
2. Apparatus for fixing a fracture of the femur comprising a nail to be driven into the upper extremity of the femur, an elongated pin to be inserted into the intramedullary canal of the femur, a member defining an open channel fixed at one end of said elongated pin, the longitudinal axes of said channel and said elongated pin defining an obtuse angle, said nail being received in said channel for relative sliding movement therebetween along said nail, an elongated opening disposed along the longitudinal axis of said elongated pin, said elongated opening being remote from said channel, and said nail and said channel having mutual interlocking cross sections to prevent relative rotation therebetween.
3. Apparatus as defined in claim 2 wherein said opening is an elongated slot, an elongated fastening member to be inserted in the femur transversely of said elongated pin and be received in said elongated slot, and the length of said slot is substantially greater than the width of said fastening member to permit said elongated pin to move longitudinally relative to said fastening member.
US714661A 1967-11-08 1968-03-20 Apparatus for fixing fractures of the femur Expired - Lifetime US3561437A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CR1660 1967-11-08
GB46300/68A GB1244492A (en) 1967-11-08 1968-09-30 Apparatus for fixing fractures of the femur

Publications (1)

Publication Number Publication Date
US3561437A true US3561437A (en) 1971-02-09

Family

ID=40328657

Family Applications (1)

Application Number Title Priority Date Filing Date
US714661A Expired - Lifetime US3561437A (en) 1967-11-08 1968-03-20 Apparatus for fixing fractures of the femur

Country Status (2)

Country Link
US (1) US3561437A (en)
GB (1) GB1244492A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009712A (en) * 1975-08-07 1977-03-01 The Sampson Corporation Fluted hip nail implant system for orthopaedic surgery
US4172452A (en) * 1978-05-15 1979-10-30 Howmedica, Inc. Fracture nail plate assembly
US4561432A (en) * 1983-09-15 1985-12-31 Floyd A. Coard, M.D. Fractured femur fixation system
US4612920A (en) * 1984-11-06 1986-09-23 Zimmer, Inc. Compression hip screw
US4697585A (en) * 1985-01-11 1987-10-06 Williams Michael O Appliance for fixing fractures of the femur
US5041114A (en) * 1986-06-23 1991-08-20 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5300074A (en) * 1990-12-17 1994-04-05 Synthes (U.S.A.) Two-part angle plate
WO1994027508A2 (en) * 1993-06-01 1994-12-08 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
US5484439A (en) * 1992-09-16 1996-01-16 Alphatec Manufacturing, Inc. Modular femur fixation device
US5741256A (en) * 1997-01-13 1998-04-21 Synthes (U.S.A.) Helical osteosynthetic implant
EP1072229A2 (en) * 1999-07-30 2001-01-31 LIMA Lto SpA Synthesis element for repairing fractures of the femur
US6221074B1 (en) 1999-06-10 2001-04-24 Orthodyne, Inc. Femoral intramedullary rod system
US6231576B1 (en) 1996-12-02 2001-05-15 Synthes (U.S.A.) Flat intramedullary nail
US6409730B1 (en) 2000-05-31 2002-06-25 Synthes (Usa) Humeral spiral blade
WO2002071963A1 (en) * 2001-03-14 2002-09-19 Pina Paez Jesus Ramon Guide plate for 95° angled plates in orthopedic surgery
US20040002707A1 (en) * 2002-06-28 2004-01-01 Chunfeng Zhao Spinal fixation support device and methods of using
US6736818B2 (en) 1999-11-11 2004-05-18 Synthes (U.S.A.) Radially expandable intramedullary nail
US20040193165A1 (en) * 2003-03-27 2004-09-30 Hand Innovations, Inc. Anatomical distal radius fracture fixation plate and methods of using the same
US20040193164A1 (en) * 2003-03-27 2004-09-30 Orbay Jorge L. Anatomical distal radius fracture fixation plate and methods of using the same
US20040225291A1 (en) * 2003-04-01 2004-11-11 Andy Schwammberger Implant
US20050010226A1 (en) * 2003-05-30 2005-01-13 Grady Mark P. Bone plate
US20050065524A1 (en) * 2003-03-27 2005-03-24 Orbay Jorge L. Anatomical distal radius fracture fixation plate with fixed-angle K-wire holes defining a three-dimensional surface
US20050065523A1 (en) * 2003-03-27 2005-03-24 Orbay Jorge L. Distal radius fracture fixation plate having K-wire hole structured to fix a K-wire in one dimension relative to the plate
US20060004361A1 (en) * 2004-06-21 2006-01-05 Garry Hayeck Bone plate
US7018380B2 (en) 1999-06-10 2006-03-28 Cole J Dean Femoral intramedullary rod system
US20070010818A1 (en) * 2005-07-06 2007-01-11 Stone Howard A Surgical system for joints
NL1030218C2 (en) 2005-10-18 2007-04-19 Gert Dr Ir Nijenbanning Medical device for treating fractured bones or attaching stabilizing elements to bone parts.
US20110152864A1 (en) * 2009-12-18 2011-06-23 Emil Schemitsch Bone fixation system
US8267972B1 (en) 2006-12-01 2012-09-18 Gehlert Rick J Bone plate
US9526543B2 (en) 2004-11-10 2016-12-27 Biomet C.V. Modular fracture fixation system
US20190125418A1 (en) * 2017-10-27 2019-05-02 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US10342586B2 (en) 2003-08-26 2019-07-09 DePuy Synthes Products, Inc. Bone plate
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US11596419B2 (en) 2017-03-09 2023-03-07 Flower Orthopedics Corporation Plating depth gauge and countersink instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781360B1 (en) * 1998-07-23 2000-09-08 Raymond Massaad FIXING DEVICE IN ORTHOPEDIC AND TRAUMATOLOGICAL SURGERY USING A NAIL-BLADE BLADE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU195043A1 (en) * М. Ахала Osteosynthesis
FR893401A (en) * 1940-02-05 1944-06-08 Tubular bone anchor or nail
US2612159A (en) * 1949-03-01 1952-09-30 Marie B Collison Trochanteric plate for bone surgery
US2621653A (en) * 1949-04-29 1952-12-16 Briggs Henry Fracture reducing device
US2761444A (en) * 1954-04-19 1956-09-04 Luck James Vernon Bone fixation device for the hip
US3433220A (en) * 1966-12-30 1969-03-18 Robert E Zickel Intramedullary rod and cross-nail assembly for treating femur fractures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU195043A1 (en) * М. Ахала Osteosynthesis
FR893401A (en) * 1940-02-05 1944-06-08 Tubular bone anchor or nail
US2612159A (en) * 1949-03-01 1952-09-30 Marie B Collison Trochanteric plate for bone surgery
US2621653A (en) * 1949-04-29 1952-12-16 Briggs Henry Fracture reducing device
US2761444A (en) * 1954-04-19 1956-09-04 Luck James Vernon Bone fixation device for the hip
US3433220A (en) * 1966-12-30 1969-03-18 Robert E Zickel Intramedullary rod and cross-nail assembly for treating femur fractures

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Journal of Bone & Joint Surgery p. 162, Feb. 1952 *
Journal of Bone & Joint Surgery p. 38, Oct. 1951 *
Journal of Bone & Joint Surgery p. 7 Jan. 1955 *

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009712A (en) * 1975-08-07 1977-03-01 The Sampson Corporation Fluted hip nail implant system for orthopaedic surgery
US4172452A (en) * 1978-05-15 1979-10-30 Howmedica, Inc. Fracture nail plate assembly
US4561432A (en) * 1983-09-15 1985-12-31 Floyd A. Coard, M.D. Fractured femur fixation system
US4612920A (en) * 1984-11-06 1986-09-23 Zimmer, Inc. Compression hip screw
US4697585A (en) * 1985-01-11 1987-10-06 Williams Michael O Appliance for fixing fractures of the femur
US5041114A (en) * 1986-06-23 1991-08-20 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5300074A (en) * 1990-12-17 1994-04-05 Synthes (U.S.A.) Two-part angle plate
US6261290B1 (en) 1992-06-01 2001-07-17 Wilhelm Friedl Osteosynthesis auxilliary for the treatment of subtrochanteric, peritrochanteric and femoral-neck fractures
US5484439A (en) * 1992-09-16 1996-01-16 Alphatec Manufacturing, Inc. Modular femur fixation device
US5713902A (en) * 1993-06-01 1998-02-03 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric peritrochanteric and femoral-neck fractures
US6224601B1 (en) 1993-06-01 2001-05-01 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric, peritochanteric and femoral-neck fractures
EP0745356A3 (en) * 1993-06-01 1996-12-11 Endocare Ag Osteosynthesis aid for the care of subtrochanteric, pertrochanteric and femoral neck fractures
WO1994027508A2 (en) * 1993-06-01 1994-12-08 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
EP0745356A2 (en) * 1993-06-01 1996-12-04 Endocare Ag Osteosynthesis aid for the care of subtrochanteric, pertrochanteric and femoral neck fractures
WO1994027508A3 (en) * 1993-06-01 1995-03-09 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
US5928235A (en) * 1993-06-01 1999-07-27 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric, peritrochanteric, and femoral-neck fractures
US6231576B1 (en) 1996-12-02 2001-05-15 Synthes (U.S.A.) Flat intramedullary nail
US5741256A (en) * 1997-01-13 1998-04-21 Synthes (U.S.A.) Helical osteosynthetic implant
US5908422A (en) * 1997-01-13 1999-06-01 Synthes (U.S.A) Helical osteosynthetic implant
US6221074B1 (en) 1999-06-10 2001-04-24 Orthodyne, Inc. Femoral intramedullary rod system
US7018380B2 (en) 1999-06-10 2006-03-28 Cole J Dean Femoral intramedullary rod system
US7041104B1 (en) 1999-06-10 2006-05-09 Orthodyne, Inc. Femoral intramedullary rod system
US6402753B1 (en) 1999-06-10 2002-06-11 Orthodyne, Inc. Femoral intramedullary rod system
US20060122600A1 (en) * 1999-06-10 2006-06-08 Orthodyne, Inc. Femoral intramedullary rod system
US7867231B2 (en) 1999-06-10 2011-01-11 Cole J Dean Femoral intramedullary rod system
EP1072229A2 (en) * 1999-07-30 2001-01-31 LIMA Lto SpA Synthesis element for repairing fractures of the femur
EP1072229A3 (en) * 1999-07-30 2001-05-30 LIMA Lto SpA Synthesis element for repairing fractures of the femur
US6736818B2 (en) 1999-11-11 2004-05-18 Synthes (U.S.A.) Radially expandable intramedullary nail
US6409730B1 (en) 2000-05-31 2002-06-25 Synthes (Usa) Humeral spiral blade
WO2002071963A1 (en) * 2001-03-14 2002-09-19 Pina Paez Jesus Ramon Guide plate for 95° angled plates in orthopedic surgery
US8043341B2 (en) 2002-06-28 2011-10-25 Mayo Foundation For Medical Education And Research Spinal fixation support device and methods of using
US20040002707A1 (en) * 2002-06-28 2004-01-01 Chunfeng Zhao Spinal fixation support device and methods of using
US7060066B2 (en) * 2002-06-28 2006-06-13 Mayo Foundation For Medical Education And Research Spinal fixation support device and methods of using
US20060122598A1 (en) * 2002-06-28 2006-06-08 Mayo Foundation For Medical Education And Research, A Minnesota Corporation Spinal fixation support device and methods of using
US20040193164A1 (en) * 2003-03-27 2004-09-30 Orbay Jorge L. Anatomical distal radius fracture fixation plate and methods of using the same
US7635381B2 (en) 2003-03-27 2009-12-22 Depuy Products, Inc. Anatomical distal radius fracture fixation plate with fixed-angle K-wire holes defining a three-dimensional surface
US20050065523A1 (en) * 2003-03-27 2005-03-24 Orbay Jorge L. Distal radius fracture fixation plate having K-wire hole structured to fix a K-wire in one dimension relative to the plate
US20050065524A1 (en) * 2003-03-27 2005-03-24 Orbay Jorge L. Anatomical distal radius fracture fixation plate with fixed-angle K-wire holes defining a three-dimensional surface
US8579946B2 (en) 2003-03-27 2013-11-12 Biomet C.V. Anatomical distal radius fracture fixation plate
US20040193165A1 (en) * 2003-03-27 2004-09-30 Hand Innovations, Inc. Anatomical distal radius fracture fixation plate and methods of using the same
US7857838B2 (en) 2003-03-27 2010-12-28 Depuy Products, Inc. Anatomical distal radius fracture fixation plate
US7282053B2 (en) * 2003-03-27 2007-10-16 Depuy Products, Inc. Method of using fracture fixation plate for performing osteotomy
US7294130B2 (en) 2003-03-27 2007-11-13 Depuy Products, Inc. Distal radius fracture fixation plate having K-wire hole structured to fix a K-wire in one dimension relative to the plate
US7731718B2 (en) 2003-04-01 2010-06-08 Zimmer, Gmbh Implant for the treatment of bone fractures
US20040225291A1 (en) * 2003-04-01 2004-11-11 Andy Schwammberger Implant
US10653466B2 (en) 2003-05-30 2020-05-19 DePuy Synthes Products, Inc. Bone plate
US11419647B2 (en) 2003-05-30 2022-08-23 DePuy Synthes Products, Inc. Bone plate
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US10231768B2 (en) 2003-05-30 2019-03-19 DePuy Synthes Products, Inc. Methods for implanting bone plates
US9931148B2 (en) 2003-05-30 2018-04-03 DePuy Synthes Products, Inc. Bone plate
US20050010226A1 (en) * 2003-05-30 2005-01-13 Grady Mark P. Bone plate
US9308034B2 (en) 2003-05-30 2016-04-12 DePuy Synthes Products, Inc. Bone plate
US10342586B2 (en) 2003-08-26 2019-07-09 DePuy Synthes Products, Inc. Bone plate
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US20100241173A1 (en) * 2003-09-17 2010-09-23 Orbay Jorge L Anatomical Distal Radius Fracture Fixation Plate With Ulnar Buttress
US9072558B2 (en) 2003-09-17 2015-07-07 Biomet C.V. Distal radius fracture fixation plate with ulnar buttress
US8556945B2 (en) 2003-09-17 2013-10-15 Biomet C.V. Anatomical distal radius fracture fixation plate with ulnar buttress
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US20060004361A1 (en) * 2004-06-21 2006-01-05 Garry Hayeck Bone plate
US7229445B2 (en) 2004-06-21 2007-06-12 Synthes (Usa) Bone plate with bladed portion
US9526543B2 (en) 2004-11-10 2016-12-27 Biomet C.V. Modular fracture fixation system
US9913671B2 (en) 2004-11-10 2018-03-13 Biomet C.V. Modular fracture fixation system
US20070010818A1 (en) * 2005-07-06 2007-01-11 Stone Howard A Surgical system for joints
WO2007046691A1 (en) 2005-10-18 2007-04-26 Baat Holding B.V. Medical device for treating broken bones or fixing stabilising elements to bone parts
NL1030218C2 (en) 2005-10-18 2007-04-19 Gert Dr Ir Nijenbanning Medical device for treating fractured bones or attaching stabilizing elements to bone parts.
US10463409B2 (en) 2006-09-28 2019-11-05 Biomet C.V. Modular fracture fixation system
US8267972B1 (en) 2006-12-01 2012-09-18 Gehlert Rick J Bone plate
US11399878B2 (en) 2008-01-14 2022-08-02 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US8579899B2 (en) 2009-12-18 2013-11-12 Emil Schemitsch Bone fixation system
US20110152864A1 (en) * 2009-12-18 2011-06-23 Emil Schemitsch Bone fixation system
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US11529176B2 (en) 2016-09-08 2022-12-20 DePuy Synthes Products, Inc. Variable angle bone plate
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US11596419B2 (en) 2017-03-09 2023-03-07 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10881436B2 (en) * 2017-10-27 2021-01-05 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
US11813003B2 (en) 2017-10-27 2023-11-14 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
US20190125418A1 (en) * 2017-10-27 2019-05-02 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings

Also Published As

Publication number Publication date
GB1244492A (en) 1971-09-02

Similar Documents

Publication Publication Date Title
US3561437A (en) Apparatus for fixing fractures of the femur
US5810822A (en) Apparatus for correcting long bone deformation
US11666363B2 (en) Method and apparatus for repairing the mid-foot region via an intramedullary nail
US6730090B2 (en) Fixation device for metaphyseal long bone fractures
US5053035A (en) Flexible intramedullary fixation rod
US4135507A (en) Condylocephalic nail for fixation of pertrochanteric fractures
EP1507486B1 (en) Intramedullary fixation device for metaphyseal long bone fractures
US7686808B2 (en) Fracture fixation device and implantation jig therefor
EP0192840B1 (en) Appliance for fixing fractures of the femur
US4913137A (en) Intramedullary rod system
US20060161156A1 (en) Fracture fixation device
EP1952776A1 (en) Implant for fixing two fragments of bone together in osteotomy procedures
US20030135211A1 (en) Intramedullary nail, device for inserting a screw into the same and method thereof
US20060149257A1 (en) Fracture fixation device
EP1675515A2 (en) An intramedullary implant for fracture fixation
WO1997047251A9 (en) Upper extremity bone plate
US4212294A (en) Orthopedic fracture fixation device
IL193043A (en) Fracture fixation device and implantation jig therefor
Johnson Indications, instrumentation, and experience with locked tibial nails
US11583328B2 (en) Femoral nail and instrumentation system
US20220273348A1 (en) MIS Bunion Correction System
RU216491U1 (en) PLATE FOR ANKLE ARTHRODESIS
CN108378916B (en) Locking steel plate for femoral neck fracture reduction
RU2014805C1 (en) Device for osteosynthesis of trochanteric fractures
KR100423699B1 (en) nail for the treatment of bone fractures