US3561444A - Ultrasonic drug nebulizer - Google Patents

Ultrasonic drug nebulizer Download PDF

Info

Publication number
US3561444A
US3561444A US730981A US3561444DA US3561444A US 3561444 A US3561444 A US 3561444A US 730981 A US730981 A US 730981A US 3561444D A US3561444D A US 3561444DA US 3561444 A US3561444 A US 3561444A
Authority
US
United States
Prior art keywords
column
cup
base
transducer
liquid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US730981A
Inventor
Raymond Marcel Gut Eoucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO LOGICS Inc
Original Assignee
BIO LOGICS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO LOGICS Inc filed Critical BIO LOGICS Inc
Application granted granted Critical
Publication of US3561444A publication Critical patent/US3561444A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0661Transducer materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/48Sonic vibrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Definitions

  • FIG. 9 is an enlarged, sectional view, taken along the lines 9-9 of FIG. 8, viewed in the direction of the arrows;
  • the nebulizing unit 10 consists of a flat-surfaced piezoelectric crystal 11 housed in an aluminum transducer base 12 and an aerosol chamber 13 mounted upon the base.
  • the crystal 11 transmits its acoustic energy through a cooling (coupling) liquid 14 to the medicament 15 which is held in a removable cup 16 thereby creating a turbulent fountain 17.
  • Nebulization occurs around the outer surface of the fountain producing a mist which is held in the aerosol chamber 13. This mist can be withdrawn from the chamber through an outlet 18 as needed.
  • the sealing coating for the upper surface of the crystal must accommodate deflection of the crystal and the high accelerations which occur.
  • the material For the crystal described above, driven with a voltage of the order of 150 volts (RMS), there will be a deflection of the order of 0.25 micron and accelerations as high as 500,000 G.
  • the material must have good adhesive qualities, permit the dissipation of heat from the crystal and transfer the sonic energy with little attenuation.
  • a suitable material is an epoxy resin sold under the trademark E. POX. E. by The Woodhill Chemical Corp., Cleveland, Ohio.
  • a layer with a thickness on the order of 0.015 inch on the crystal discussed provides adequate protection without excessive heating or attenuation of the sonic energy.
  • FIG. 22 is a view similar to F IG. 13 showing another form of valve used with the ultrasonic nebulizer of HG. 6.
  • Valve assembly 212 is similar to valve assembly 174 and is in the forced gas stream between pipe 118 and column 148. It is provided with rotating control 214 and fixed element 216. Element 216 is provided with openings 220 and rotating control 214 is provided with openings 218.
  • the construction of flap valve 210 is the same as that of valve 178 and the amount of gas (air) received by column 148 is controlled by the position of rotating control 214 and the relationship of the positions of openings 218 with the positions of openings 220.
  • Check valve 210 is constructed so that it opens under the pressure of the gas delivered by blower 172 and closes when there is insufficient pressure. This prevents the gas from escaping from column 148 back into pipe 118.
  • a receptacle having a base with a sealed opening therein and walls to form a liquid containing chamber

Abstract

An ultrasonic drug nebulizer for forming droplets from a medicated solution and emitting the same into the surrounding atmosphere having a receptacle with a base and walls to form a liquid containing chamber, a truncated conical cup for containing the medicated solution removably mounted in the upper portion of the receptacle so that its smaller base is below its larger base, the smaller base being closed and the larger base being open, a dome containing an inner, vertically disposed, column and an outer, vertically disposed, column surrounding the inner, vertically disposed, column removably mounted to the receptacle above the truncated conical cup, the inner, vertically disposed, column and the outer, vertically disposed, column both being open at the bottoms thereof, the outer, vertically disposed, column having an opening therein adjacent the top thereof, a transducer mounted in the base of the receptacle, gas flow regulating means in the top of the inner, vertically disposed, column, means for exciting the transducer at an ultrasonic rate such that a geyser is formed from the medicated solution in the truncated conical cup, and means for introducing gas into the inner, vertically disposed, column through the gas flow regulating means in the top thereof so that there is a pressure difference between the gas in the column and the ambient atmosphere to thereby sweep the mist of the geyser into the outer, vertically disposed, column to be discharged through the opening therein, the flow rate of the gas introduced into the inner column controlling the size of the liquid droplets which are so discharged from the column.

Description

g nebulizer for forming and emitting the same into g a receptacle with a base ning chamber. a truncated f the receptacle so that its rger base, the smaller base being being open, a dome containing an mn and an outer, vertically g the inner, vertically disposed,
the receptacle above the trunertically disposed, column and column both being open at the y disposed, column having jacent the top thereof, a transducer mounted in the base of the receptacle, gas flow regulating means in the top of the inner, vertically disposed, column, means for excitin ucer at an ultrasonic rate such th the medicated solution in the Raymond Marcel Gut Boucher 807.544 l/l959 Great Britain................ Metuchen, N J. Primary Examiner-Richard A. Gaudet APPl- 968 Assistant Examiner-J. B Mitchell Patented 21:5 is. Attorney-Lynn G. Foster Bio-Logics, Inc. Salt Lake City, Utah acorporation of Delaware ABSTRACT: An ultrasonic dru Continuation-in-part of application Ser. No. droplets from a medicated solution 510,537, Nov. 30, 1965, now abandoned. the surrounding atmosphere havin and walls to form a liquid contai conical cup for containing the medicated solution removabl mounted in the upper portion Q 15 Claims, 23 Drawing 8 smaller base is below its la u.s. 128/194, closed and the larger base 128/24 inner, vertically disposed, colu 1m. A6lh 1/00, disposed clumnrsurrundin A61 m 15/00 column removably mounted to 128/194, cated conical cup, the inner, v 24.05,I72,l73,l86,l93,419,421,424; theouteriveflicallydisposedy 3 10/ lnquired); 324/51; 128/24 (A), (Ultrasonic bottoms Fhemfi h vemca" Nob Digest), 194 an opening therein ad References Cited UNITEDSTATESPATENTS zthelransd at a geyser IS formed from United States Patent [72] Inventor l l [22] Filed [73] Assignee e- .ehos uwn t tq mm mk t i m mmdw wmmm mm aflem d am m emm g yru nooa ea .mhn lrmi e wmmm foe f mwmn mmm m f mmflof uu om l m f tOmne m m w em me wmammm m m m wmm d 6 1% v uo n mS 0 wp ow me mt nmfi ww hwhn m i t i mflm u mmm 2 mflmu mhunm fi tl om woc o mm mm a Wmwmwmmm a. 7 t
, 4 1 m m f e a, /////////,/////,m hhhkmormmw \tttt \%-/o- Z ivli .J m m a w m i144a!!!"all:5115;551:1415!u 7m\ m 4 LR k a a 3mm 3 K m x l. a H 08 M 41 mm r uu nn J as h 6 E 3 3 3 1. t /=\\\t mm k n. e I 6 3 u u u n m MT m m m. M m m u" "E n H mm mm mmm m 1P ou 6 W MC W 883 m v mmm m O fr. .lW l UE 8C6 ZFGWSD ZUGG l8467 79 45666 556 99999 999 1111] ll] 226 2 94 ll 11 75624 652 47346 962 5 .2 73750 263 66386 650 1 22333 11 'PATENIED FEB 9 |97| 5 4 sum 2 or 7 \NVENTOR I RAYMOND M.G.BOUCHER PATENTEU FEB 9197! 3 551 44 SHEET 3 0F 7 l 4 INVENTO? 7 RAYMOND MG BOUCHEF? HTTOR uzvs PATENTEB FEB 9 :97:
SHEET 0F 7 lNVENTOR I 11.5. B$AYMOND HG. BoucHaR HTTORN S PATENTEI] FEB 9 I97! SHEET 5 BF 7v IA 1% f n 1 ll! Ill- I rll 4: .m
' 736 TO SIGNAL.
GENERRTOR 132 INVENTOR RAYMOND N. G. BOUCHER av GTTOR EYS PATENTEU rm 9:97: 3 551 4 SHEET 6 0F 7 INVENTOR RAYMOND M. G BOUCHER T5 an.
I M W RTTOP EYS PATENTEUFEB 9l97| 3.561.-
- sum 7 or 7 INVENTOI? Ql-WMQND M. G. BoucHER RTTORN ULTRASONIC DRUG NEBULIZER This is a continuation-in-part of my application, Ser. No. 510,537, filed Nov. 30, 1965, now abandoned.
This invention relates to ultrasonic nebulizers and more particularly to devices for producing fine liquid aerosols, as for medicinal use, through the disintegration of the liquid geyser produced by radiation pressure effect of ultrasonic vibrations of a flat ceramic crystal transducer at a relatively high frequency. In particular, the invention is directed to such devices heel holding may be used to deliver either a steady supply of medicated solution or a pulsed supply thereof.
The creation of ultrafine droplets by means of ultrasonic energy is not new. Devices to accomplish this have been constructed but in most instances the objective lay outside the area of medicinal nebulization and have depended on surface wave disintegration at a relatively low frequency. The problems associated with the development of an ultrasonic nebulizer specifically for medicinal nebulization include the production of uniformly small particles, preferably with a high percentage less than microns in diameter and of the order of 80 to 90 percent, by weight, less than microns. The nebulizer should have a reliable particle formation rate (for example, 0.l to L5 cc. per minute), and electrical requirements at reasonable voltage and power levels.
Most of the prior art drug nebulizers, which have been used to dispense nebulized medicated solutions into the atmosphere surrounding the patient or directly into the respiratory tract of the patient through a face mask or device, have been of the mechanical type wherein it was not possible to control the size of the nebulized droplets without using screens or obstacles in the aerosol path.
There is no universal agreement on the exact meaning the terms: aerosol, fog and However, there has been a recommendation that e.g., word aerosol" be limited to airborne made up of particles less than 1 micron in diameter (Conference on Aerosols, Nov. 1959, Denver, Col.). For one could say that the word fog" is used for droplets the 5 to 050 microns range and the word mist" is used for droplets in the 50 to 500 microns range. The word micromist" is often used to describe liquid dispersoids in the 5 to 25 microns range. The definitions set forth above may be used, in the specification, to describe the various dispersoids of the medicated solution.
The drug nebulizer of the the invention, utilizes high frequency ultrasonic energy to disperse fine liquid particles of the medicated solution into a It comprises a small plastic cup which contains the medicated solution and a polarized, piezoelectric ceramic (crystal) transducer which beams the ultrasonic energy to the medicated solution through the bottom of the cup. A liquid such as distilled or tap water, which is used to couple the ultrasonic energy between the ceramic transducer and the cup which contains the medicated solution, also serves as a cooling liquid to prevent the transducer from overheating and becoming ineffective.
When the is energized at the proper frequency, say, between 500 kHz. and 2 ml-lz., mechanical vibrations are set up in the coupling liquid. These mechanical vibrations occur at the frequency of the excitation signal. The mechanical vibrations are coupled through the coupling liquid to the bottom of the cup and thence to the medicated solution contained in the cup. The internal turbulence in the medicated solution is so great that the surface tension of the liquid and the cohesive forces at the gas-liquid interface are overcome and a geyser is produced due to the disintegration of the liquid into a fine mist or aerosol.
The aerosol produced at the surface of the heel-holding solution is carried out of the drug nebulizer to the atmosphere surrounding the patient or directly into the patient's respiratory tract by the gas flow produced by a small blower or by the pressure difference caused by the patient's respiration.
Drug nebulizers are intended and used for the purpose of carrying finely atomized therapeutic solutions through the lungs in order to depositthe therapeutic agent at selective sites in the pulmonary tree. This makes it possible to reach the blood circulatory system without physical infraction. For a number of years, aerosol therapy has been recognized as having many curative advantages. However, its use has been limited by the disadvantages inherent in mechanical nebulizers. There are drastic physical limitations on the size of the droplets which may be produced by mechanical means such as high-speed jets, centrifugation, impingement, etc. In order to generate aerosol and fog particles of the size required for maximum deposition of the drug in the lungs (0.4 to 10 microns), it was necessary to develop sophisticated, complex, mechanical nebulizing devices. Simple mechanical generators could not be used satisfactorily because they always produced a certain amount of drops which were too large or the drug reconcentrated through filtration or the refluxing of the large particles.
Another object is to provide a richer, more abundant nebula without the waste of the compressed-air-driven nebulizer which is noisy and often entrains noxious oil vapors. The aerosol produced by the generator is very uniform, providing optimum particle size for deposition in the lung. The nebula can be generated continuously, stored and made available to the patient only during inspiration.
Still another object is to provide a system by which the crystal transmits its sonic energy through a liquid medium to the medicament which is held in a removable cup. Liquids placed in direct contact with the crystal would penetrate into the crystal and react chemically with it causing depolarization and resultant crystal failure. Accordingly, the crystal is sealed with a suitable covering, as an epoxy resin or a thin gold layer. The liquid medium, medicament or transfer liquid aids in dissipating heat generated in the crystal.
Yet another object is to provide compression mounting for the piezoelectric crystal transducer. The mounting of the crystal provides proper support to the electrodes, seals the crystal from the coolant fluid, and eliminates damping of the sonic output.
A further object is to provide the apparatus with a replaceable cup for the material to be nebulized so that various materials can be used without great difficulty.
It is a further object of the invention to provide such a device wherein the droplet size is controlled so that the large bulk of the droplets of the drug delivered to the patient's respiratory tract are of the proper size.
It is a still further object of the invention to provide such a device wherein the output of the device is maintained at a steady rate.
It is a still further object of the invention to provide such a device wherein the output of the device is pulsed at a respiratory or similar rate.
It is a still further object of the invention to provide a source of aerosols which may be used for therapeutic or other purposes.
One feature of this invention is the provision of a nebulizing apparatus including a base, a ceramic crystal having conductive electrodes, compression clamping means holding the crystal against the base, and a seal, sealing the joint between the crystal and base.
Another feature is the provision of a removable medication cup mounted upon the base so that the ultrasonic energy is transmitted to the medicament thereby producing fine liquid aerosols through the disintegration of a liquid geyser due to the radiation pressure force field.
More particularly, the mounting for the crystal which has upper and lower conductive electrodes comprises compression clamping means holding the crystal against a base and holding a circular seal so as to close off the joint between the base and crystal, the clamping means also holding a lead between a circular washer and the lower metallized electrode. The epoxy or thin gold layer may be used to protect the upper crystal surface.
These and other objects, advantages, features and uses will be apparent during the course of the following description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a plot showing the percentage of particles deposited in the respiratory tracts;
FIG. 2 is a vertical sectional view of an embodiment of ultrasonic drug nebulizer embodying the invention;
FIG. 3 is an enlarged is section of the transducer mounting used in the ultrasonic drug nebulizer of FIG. 2;
FIG. 4 is an enlarged detail of the transducer mounting of FIG. 3;
FIG. 5 is an illustration of the ultrasonic nebulizer system of the invention utilizing the embodiment of FIGS. 2-4;
FIG. 6 is a view, in perspective, of another form of ultrasonic drug nebulizer of the invention;
FIG. 7 is a front elevational view of the ultrasonic drug nebulizer of FIG. 6;
FIG. 8 is a horizontal, plan view of the ultrasonic drug nebulizer of FIG. 6;
FIG. 9 is an enlarged, sectional view, taken along the lines 9-9 of FIG. 8, viewed in the direction of the arrows;
FIG. 10 is an enlarged view similar to and of a portion of FIG. 9 showing the transducer and its mounting;
diameter through the pulmonary tree is by inertial impingement in the tracheobronchial portion. Droplets in the submicron range reach the pulmonary tree in the alveolar region mainly by diffusion under the influence of Brownian motion.
In addition to the droplet size, one must also consider the mass of the droplets when attempting to deposit a drug is inside the pulmonary tree. This is quite obvious when one considers that, since the volume varies as the cube of the diameter, one drop l0 microns in diameter will contain as much of the therapeutic agent as I000 droplets, each of which is 1 micron in diameter. Since one wishes to arrive at a size range which will deliver the maximum therapeutic benefit with the mt most readily usable droplet size, it is desirable to be able to tailor the droplet size delivered to the patient in the ideal range. This range appears to be from about 0.4 to about 10 microns in diameter.
The following table, based on I milliliter of liquid, taken in conjunction with FIG. 1, will serve to illustrate the advantage of ultrasonic nebulizers over mechanical nebulizers for the production of therapeutic aerosols.
Overall retention in respiratory tract (percent) Brownian movement in 1 second (microns) Sedimentation rate in still air in 1 second (microns) (square centimeters) N ore-Particles are of density 1 and are assumed to be spherical.
FIG. 11 is a top, horizontal, plan view, viewed in the direction of the arrows l l-l 1 of FIG. 9;
FIG. 12 is a bottom, horizontal, plan view, viewed in the direction of the arrows 12-12 of FIG. 9;
FIG. 13 is a sectional view, taken along the lines 13-13 of FIG. 11, viewed in the direction of the arrows;
FIG. 14 is'an enlarged, top, plan view of the check valve used in the ultrasonic drug nebulizer of FIG. 6;
FIG. 15 is a sectional view, taken along the lines 15-15 of FIG. 14, viewed in the direction of the arrows;
FIG. 16 is a top, plan view of the liquid containing chamber, viewed in the direction of the arrows 16-16 of FIG. 9;
FIG. 17 is a bottom, plan view of the liquid containing chamber, viewed in the direction of the arrows 17-17 of FIG.
FIG. 18 is an elevational view of the liquid containing chamber, viewed in the direction of the arrow 18 of FIG. 16;
FIG. 19 is a bottom, plan view of the truncated, conical cup, viewed in the direction of the arrows 19-19 of FIG. 9;
FIG. 20 is an enlarged, sectional view, taken on the lines 20-20 of FIG. 19, viewed in the direction of the arrows;
FIG. 21 is an enlarged, vertical sectional view, similar to that of FIG. 13, of a further embodiment of the invention;
FIG. 22 is a view, similar to that of FIG. 21 of a modification thereof; and
FIG. 23 is a schematic diagram of the circuit of the generator used with the ultrasonic drug nebulizers of FIGS. 2 and 6.
FIG. 1 is a plot showing the percent of retention of droplets in the respiratory tract against droplet size. Curve 100 illustrates the overall droplet retention in the respiratory tract against droplet size. The outline of area 102 designates the plot of percent of retention of droplets in the alveolar portion of the pulmonary tree against droplet size. The outline of area 104 designates the plot of percent of retention of droplets in the tracheobronchial portion of the pulmonary tree against droplet size and the outline of area 106 is the plot of percent of retention of droplets in the nasopharyngeal portion of the pulmonary tree against droplet size.
From FIG. 1, it can be seen that the predominant mechanism for collecting droplets larger than 1 micron in The average droplet size of a therapeutic aerosol and fog is given as the mass median diameter (MMD) which is defined as the droplet size such that one-half the mass of the aerosol is in droplets smaller in size than said droplet size. The mass median diameter is related to the mean particle diameter as shown by the following formula: log D log MMD 6.9 log a; where D mean particle diameter; MMD mass median diameter; o'= standard deviation FIG. 1 shows that a droplet size of 10 microns is collected in the tracheobronchial and nasopharyngeal regions and the overall retention in the respiratory tract (from the table) is 89 percent. A droplet, which is 0.4 micron in diameter, would be collected in the alveolar and tracheoabronchial regions and the overall retention in the respiratory tract is about 30 percent.
Thus, it can be seen that the ideal droplet size for therapeutic use is in the aerosol and fog range from 0.4 micron to 10 microns in diameter. Since these size droplets cannot be produced readily by mechanical means, other means must be found.
While illustrative embodiments of the invention are shown in the drawings and will be described in detail herein, the invention is susceptible of embodiment in many different forms and it should be understood that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiment illustrated. The scope of the invention will be pointed out in the appended claims.
Referring not to FIG. 2, the nebulizing unit 10 consists of a flat-surfaced piezoelectric crystal 11 housed in an aluminum transducer base 12 and an aerosol chamber 13 mounted upon the base. The crystal 11 transmits its acoustic energy through a cooling (coupling) liquid 14 to the medicament 15 which is held in a removable cup 16 thereby creating a turbulent fountain 17. Nebulization occurs around the outer surface of the fountain producing a mist which is held in the aerosol chamber 13. This mist can be withdrawn from the chamber through an outlet 18 as needed. The radiation pressure fountain or geyser occurs only at relatively high sonic frequencies as of the order of at least 500 kilocycles and may be generated with presently available transducers operating at freouencies up to the order of 2 megacycles. The details of the crystal and mounting will be described below.
The transducer base 12 is cylindrical with cooling fins 20 on its lower portion and a shoulder 21 along its top. A fluid cavity 22 is formed within the base 12 and has a transverse lower wall 22a with an opening 22b therethrough. A plastic medication cup 16 fits into the open top of the fluid cavity 22 with its outer portion resting on the shoulder 21. The cup is tapered, having a truncated conical form with the bottom portion 23 approximately the same diameter as the face of crystal 11. The cup may be of a suitable material as a plastic, a metal foil'or the like.
A cooling (coupling) liquid 14 such as water or oil is contained within a fluid cavity 22 between the cup and the base 12. This liquid transmits the acoustic energy from the crystal 11 to the medicament which is held in the cup thereby causing a radiation pressure fountain l7 and nebulization as will be described in detail later.
Referring now to FIGS. 3 and 4, the transducer mounting is shown in detail. The piezoelectric ceramic crystal body 30 may be made of materials such as lead zirconate, lead titanate zirconate, or calcium titanate with or without traces of salts of yttrium, lanthanum, strontium, or cobalt. The'flat ceramic crystal can have various configurations, as circular, rectangular, square, etc. In one specific embodiment of the invention, the crystal is a circular flat disc with a diameter of 0.75 inch, a thickness of 0.l inch, and a nominal resonant frequency of approximately 750 kilocycles, To establish good electrical contact with the crystal body, the upper 31 and lower 32 faces are coated with electrically conductive layers, 33 and 34, respectively, of metal such as gold, platinum, irridium or silver.
The crystal ll closes opening 22b at the bottom of cavity 22 and is mounted under compression in the transducer base 12 by means of a series of clamp screws 35 which squeeze a circular shaped metal clamp ring 36 against a neoprene or synthetic rubber O-ring seal 37. Clamp ring 36 has an L-spaed cross section defining a generally rectangular space with the undersurface of wall 22a and the periphery of the crystal. Sealing ring 37 engages four surfaces.
The electrical connection to the upper face 31 of the crystal is achieved by direct contact of the base 12 with the upper metallized surface 33. A tin or copper ground lug 38 is provided on one of the clamp screws 35 to permit the base to be grounded.
The electrical connection to the lower face 32 of the crystal is achieved by direct contact of a copper foil lead 39 compressed between a circular neoprene washer 40 and the metalcoated bottom face 34 by an extending leg 36a of the metal clamp 36.
The upper face 31 of the crystal is in contact either with a liquid 14 (water, oil, etc.) or with the solution to be dispersed. Where liquid 14 is used, it serves the dual function of cooling the crystal and coupling sonic energy to the material to be dispersed. To protect the metallized surface 33 from corrosion, chemical reaction with the liquid or mechanical projections in the liquid phase during irradiation, it is covered with a sealing coating as a layer of epoxy resin 41. This design permits a satisfactory electrical contact along the circular edge 33a of the upper crystal surface and at the same time gives maximum protection to the upper vibrating face.
The sealing coating for the upper surface of the crystal must accommodate deflection of the crystal and the high accelerations which occur. For the crystal described above, driven with a voltage of the order of 150 volts (RMS), there will be a deflection of the order of 0.25 micron and accelerations as high as 500,000 G. Furthermore, the material must have good adhesive qualities, permit the dissipation of heat from the crystal and transfer the sonic energy with little attenuation. A suitable material is an epoxy resin sold under the trademark E. POX. E. by The Woodhill Chemical Corp., Cleveland, Ohio. A layer with a thickness on the order of 0.015 inch on the crystal discussed provides adequate protection without excessive heating or attenuation of the sonic energy.
In the present mounting the lower face of the ceramic crystal vibrates freely into air space 42 thus allowing near'perfect reflection of the acoustic energy in the upward direction. More than percent of the acoustic energy is contained inside the solid cone angle 45 on the axis 46 of the transducer. The solid cone angle 45 is equal to 2 sin- .61 x/R where x is the wave length of the emission and R the radius of the vibrating disc. From experimental results the maximum value of angle 45 is 12.
As shown in FIG. 2, the acoustic energy is transmitted through the cooling liquid 14 to the medicament 15 held in the cup 16 thereby creating a turbulent fountain 17. The high degree of internal turbulence achieved inside the fountain produced by the upward radiation pressure of the crystal causes nebulization to occur around the outer surface of the fountain 17.
A wide variation in the liquid level does not affect the fog production since the ceramic crystal has an excellent electroacoustic output sufiicient to disintegrate the liquid geyser regardless of liquid level. A focusing (curved) transducer is not used since it would not produce a geyser as stable as the one erected by the flat transducer.
Aerosol chamber 13 is fitted on transducer base 12, above the medication cup. Chamber 13 is a clear plastic canopy to contain the nebula generated by the device. The chamber 13 has an outlet 18 that permits the aerosol to be directly inhaled or to which accessory devices such as mouth pieces and face masks can be attached.
The air inlet 50 to the chamber is through the top 51 by means of a plastic tube 52 that extends downward to the fountain 17 produced in the medicament 15. This tube not only provides a means of allowing air to be drawn into the chamber but also contains the fountain 17 so that it does not splash up into the upper surfaces of the aerosol chamber. The larger particles impinge on the tube wall and drain back into the body of medicament 15, leaving only the smaller particles suspended. The tube also brings the inlet air into the bottom of the chamber at a velocity sufficient to push the nebula upward allowing complete utilization of the generated aerosol. The velocity of the air in the outer chamber is much lower and the larger, more dense particles fall back into the cup. A one-way valve 53 in the top of the tube allows air to enter during inhalation but then closes so that it is impossible to exhale through the chamber. In the absence of air flow, the nebula remains in the chamber and provides for an on demand delivery to the user. All of the nebula formed is drawn out by the user or falls back into the cup, resulting in complete utilization of the medicament.
FIG. 5 shows the nebulizer system which consists of a generator 60, nebulizer l0, and mask 61. The generator 60 contains an oscillator circuit which provides power which is transmitted to the transducer by a coaxial cable 62. The cable 62 is connected between an output terminal 63 at one end and copper foil lead 39 and ground lug 38 at the other end. The generator may have an on-off switch 64 and indicator light 65. Furthermore, a vemier tuning control 66 is provided for balancing the system to various medicaments. A timer 67 is provided to control the amount of time the system operates for different dosages.
To operate the nebulizer, the transducer base is filled with cold tap water to the proper level. The medication cup is then placed into the transducer base and medication is added to the cup. The plastic aerosol chamber is placed on the shoulders of the base. After throwing the On-off switch to the on" position and allowing a short period for the generator to wann up, the timer" is set to the prescribed interval. Using the vernier tuning control, the system is tuned for the desired amount of nebulization activity.
A mask 51 or other means may be placed on the nebulizer outlet 18 of the mist chamber, and the patient may breathe the aerosol medicament.
In FIGS. 6 through 21, there are shown a further embodiment of ultrasonic drug nebulizer of the invention and some modifications thereof.
Nebulizer 110 is seen to cm comprise (FIGS. 68), cabinet 112, receptacle housing 114, transparent dome 116 and air pipe 118. The electronic signal generator is contained in cabinet 112, is actuated by timer switch 120 and is tuned by means of tuning control 122. Pilot light 124 is used to indicate that power has been applied to the signal generator and to indicate safe connection to the power mains as will appear further on in this description.
FIG. 9 is an enlarged sectional view of the receptacle and transparent done used in the ultrasonic drug nebulizer 110. Receptacle 114 is preferably formed of a metal such as aluminum and is finned as shown in FIGS. 16 and 17 to facilitate the transfer to heat from the receptacle to the surrounding atmosphere. Receptacle 126 is provided on cabinet 112 to receive receptacle 114.
When receptacle 114 is placed on receptacle 126, connector 128 on the receptacle 114 mates with connector 130 which is mounted in cabinet 112 and thereby makes electrical connection between the output of the signal generator and transducer 134 which is mounted in the base of receptacle 1 14. In a preferred form of the invention, the insertion of receptacle 114 on receptacle 126 also closes limit switch 136, as shown in FIG. 9. This serves as a safety feature and prevents the user from turning the generator on with its output unloaded.
Alternatively, switch 136 can be omitted or locked closed so that receptacle 114 may be removed from the cabinet and connection made between connectors 128 and 130 by means of a suitable jumper cable (not shown). shown). In such circumstances, the receptacle and dome assembly may be held by the patient at a distance (depending upon the jumper length) from the cabinet. However, since it is necessary that the dome 116 be held in a vertical attitude, it is not advisable to have weak patients use the nebulizer in this manner.
Receptacle 114 is filled with water 138 or a similar liquid to a suitable level such that the vibrations of transducer 134 are coupled to medicated solution 140. Medicated solution 140 is contained in truncated conical cup 142 which is preferably formed of a transparent polycarbonate resin such as is marketed under the trademark LEXAN by the General Electric Co. Truncated conical cup 142 is provided with a circumferential lip 144 surrounding its open, larger base to facilitate its installation in receptacle 114. Lip 144 rests on the top of receptacle 114 and the truncated conical cup 142 is held in place by dome 116 which is threaded to receptacle 114 as shown at 146.
Dome 116 is formed of a transparent material, preferably a polycarbonate resin such as LEXAN,'and comprises inner, vertically disposed, column 148 and outer, vertically disposed, column 150 surrounding column 148. The aerosol is emitted to the surrounding atmosphere through exit 152 which is connected to column 150.
Transducer 134 is formed of flat circular disc 154 to which suitable electrodes 156 have been applied in a manner well known in the transducer art FIG. Disc 154 is preferably formed of a polarized, piezoelectric ceramic such as barium titanate, lead titanate, barium-lead titanate or any other suitable material with or additives. Transducer 134, upon excitation at a frequency in the range from about 450 kHz. to about 2 mHz., vibrates in its thickness mode and transmits mechanical vibrations to coupling liquid 138. The vibrations are transmitted, in turn, to medicated solution 140 and are of sufficient intensity to form geyser 158 therefrom.
Receptacle 114 is provided with opening 160 in the bottom thereof which is threaded as shown at 161 and with lip 162 overlying the threaded opening. O-ring 164 surrounds transducer 134 to keep it in position against lip 162 and to prevent any liquid leak around the transducer and its mounting. The upper electrode 154 is in intimate contact with lip 162 and thereby makes electrical contact with receptacle 114 (equipment ground).
Cup 166 is formed of a metal such as brass with its open base facing the lower electrode 156 and is held in position against the electrode by means of insulating ring 168 which threads into threads 161. Ring 168 serves to insulate cup 166 from receptacle 114. The circumference of the open base of cup 166 is in intimate, electrical contact with the lower electrode 156 of transducer 134. Spring 170 makes the electrical connection between cup 166 and the hot lead of connector 128.
A gas, such as air, is introduced at a pressure above ambient pressure into column 148 through pipe 118 which is connected to an air blower in cabinet 112. The air blower is of a type well known in the art and the structural details are not shown. The gas enters column 148 and impinges against geyser 158 and causes the mist droplets to enter column 150 and to be emitted through exit 152 as the gas sweeps past geyser 158 and up into column 150.
Since different ailments require different droplet sizes for ideal therapeutic benefit, the gas flow past geyser 158 can be modulated to select the desired droplet size to be emitted through exit 152. The blower is run at constant velocity and the airflow is controlled by means of valve assembly 174. Valve assembly 174 comprises rotating control 176 and flaptype, check valve 178.
Check valve 178 (FIGS. 14 and 15) is normally a part of dome 116 and is in the gas stream input to column 148. It comprises an outer support 180 to which spider 182 is attached. Membrane 184 of material such as neoprene is fixed to the center of spider 182 with its periphery free. It is biased upward so that it is normally closed. When the membrane is pushed down by gas pressure or otherwise. the valve opens and the gas enters the column. This membrane is principally useful when the nebulizer is used without the blower. However, for the sake of simplicity of manufacture, the same valve assembly is used when the nebulizer is operated both with and without the blower.
Rotating control 176 is a part of pipe 118 and is provided with openings 186 which cooperate with openings 188 in fixed element 177 to control the gas flow. When the openings are aligned as shown in FIG. 13, the maximum flow of gas is delivered to the column 148. To ensure that check valve 178 is open when used with the blower, control 176 is provided with a pair of stiff wires 190. These wires 190 open the valve mechanically when pipe 118 is connected to dome 116.
The embodiment illustrated is provided with three control positions, as shown by indicia 192 of FIG. 9. By way of example, in the maximum position, the gas flow from a blower running at 3,250 r.p.m. is 12 1i./min. which will produce an aerosol with the droplets having a mass median diameter between l'kto 3 microns. At the same blower velocity in the middle position a gas flow of 6 1i./min. is obtained and produces a light fog with the droplets having a mass median diameter between 3 and 6 microns. At the same blower velocity, the minimum position delivers a gas flow of 3 1i./min. and a fog in which the mass median diameter of the droplets is between 7 and 10 microns. The foregoing is by way of example and is not intended to limit the scope of the invention.
FIGS. 16 through 18 are enlarged views of receptacle 114. It is preferably formed of aluminum or some other electrically and thermally conductive material. The outer periphery is provided with fins 194 to accelerate the transmission of heat away from the receptacle. Threads 196 at the top are used to connect dome 116 to receptacle 114. Screws 197 are utilized to hold the transducer assembly in place at the bottom of receptacle 114.
FIGS. 19 and 20 are views of the truncated conical cup 142 which is preferably formed of polycarbonate resin such as LEXAN. This material is transparent so that the action in the interior may be observed and is stable at sterilization temperatures so that it may be treated in an autoclave without harm or damage. Its large base 198 is open and its small base 200 is closed so that, in use, its small base is down. To facilitate the maximum transfer of acoustical energy from the transducer through the coupling liquid to the medicated solution in the cup, it is desirable to make base 200 as thin as possible. Generally, the thickness of base 200 should be about onequarter of that of the wall 202. By way of example but not by way of limitation of the scope of the invention, a wall thickness of 0.02 inch and a base thickness of 0.005 inch have produced excellent results.
In FIG. 23, there is shown the schematic diagram of signal generator 132. It delivers a power output of approximately 30 watts at a nominal frequency of 800 kHz. It comprises tuned grid electron coupled oscillator 204 which feeds power amplifier 206. The output of power amplifier 206 is delivered to connector 130. Tuning control 122 is adjustable by the operator and is used to adjust the geyser to maximum height.
Since ultrasonic drug nebulizers of the invention are intended to be used by persons who are not technically trained in the electronic and electroacoustical arts, it has been found advisable to utilize pilot light 124 as a warning light to indicate correct or incorrect connection to the AC mains.
The generator is provided with a standard, three-prong, 1 15 volt AC connector. When it is properly connected to the AC mains, pilot light 124 remains out when either interlock switch 136, or timer switch 120, or both are open. It goes on when both switches are closed.
However, if the ground connection is not made to the AC mains or if the hot terminal 208 is connected to the grounded terminal of the AC mains, pilot light 124 will light when either or both switches 120 and 136 are open. The light will go out when both switches are closed. This gives an immediate indication to the patient or technician that the connection should be corrected and will prevent possible electric shocks.
Operation of the ultrasonic drug nebulizer 110 proceeds as follows: the receptacle 114 is filled with water to the marked level and the cup 142 is placed on top of the receptacle 114. Medicated solution is now added to the cup to the desired level. Dome 116 is screwed in place on receptacle 114 thereby locking cup 142 in position. The assembly is now placed in position in receptacle 126 so that connection is made between connectors 128 and 130 and-limit switch 136 is closed. Next, pipe 118 is connected to dome 116 and the nebulizer is ready for operation. The timer is turned to the desired time, which turns on the generator and blower, and the geyser after 15 seconds forms in the medicated solution. The tuning control is adjusted to produce maximum geyser height and is left there. The valve control is set for the desired droplet size and therapeutic treatment commences and continues until the set time expires and the generator and blower turn off.
FIG. 21 is an enlarged sectional view of an alternative form of valve which may be used with the ultrasonic nebulizer of FIG. 6. Pipe 118 is disconnected from dome 116 and flaptype, check valve 210, which is similar to check valve 178, is inserted at the top of column 148. A respiratory mask such as mask 61 of FIG. 5 is suitably connected to exit 152. Then, air is drawn into column 148 when the patient inhales and valve 210 is closed when the patient stops inhaling or exhales.
FIG. 22 is a view similar to F IG. 13 showing another form of valve used with the ultrasonic nebulizer of HG. 6. Valve assembly 212 is similar to valve assembly 174 and is in the forced gas stream between pipe 118 and column 148. It is provided with rotating control 214 and fixed element 216. Element 216 is provided with openings 220 and rotating control 214 is provided with openings 218. The construction of flap valve 210 is the same as that of valve 178 and the amount of gas (air) received by column 148 is controlled by the position of rotating control 214 and the relationship of the positions of openings 218 with the positions of openings 220. Check valve 210 is constructed so that it opens under the pressure of the gas delivered by blower 172 and closes when there is insufficient pressure. This prevents the gas from escaping from column 148 back into pipe 118.
Ultrasonic drug nebulizers of the invention may be used for all types of treatment as well as for aerosol studies in flame spectroscopy and similar scientific investigations. ln addition, a pulsed valve may be substituted for the valve illustrated and described to produce apulsed output emission instead of the constant output delivered by the device described heretofore. 75
The output of the device may be emitted in a room. in a tent or through the typical respirator mask directly to the respiratory tract of the patient.
The invention is not limited to the particular arrangements of the apparatus described, but may be variously modified without departing from the spirit and scope of the invention.
lclaim:
1. An ultrasonic drug nebulizer for forming a mist from a medicated solution and emitting the same into the surrounding atmosphere comprising:
a receptacle having a base with a sealed opening therein and walls to form a liquid containing chamber;
a truncated conical cup for containing the medicated solution in isolated relation to any source of solution, the cup being removably mounted to the walls intermediate the length thereof substantially in sealed relation so that the base of the receptacle is below the base of the cup, the base of the cup being closed;
a dome containing an inner, vertically disposed, unobstructed influent column and an outer, vertically disposed, effluent column surrounding the inner column, the dome being removably mounted to the receptacle above the truncated conical cup, the sealed opening, the base of the cup and the inner column being in vertical alignment;
the inner column and the outer column both being fully open at the bpttom thereof, the outer column having an effluent opening therein adjacent the top thereof;
gas flow regulating means in the top of the inner column;
a transducer mounted at the base of the receptacle so as to cover the opening in sealed relation;
means for exciting the transducer at an ultrasonic rate such at that a geyser is formed from the medicated solution in the truncated conical cup, said means for exciting being arranged such that, the geyser extends upward in alignment with the inner influent column; and means for introducing gas at a pressure above ambient pressure into the inner column through the gas flow regulating means in the top thereof to impinge directly on the geyser and thereby force the mist of the geyser into the outer column to be discharged through the effluent opening therein. 2. The invention of claim 1 wherein the dome is formed of transparent material such as a polycarbonate resin which is stable at sterilization temperatures and through which the geyser formed from the medicated solution may be observed.
3. The invention of claim 2 wherein the truncated conical cup is formed of a material such as a polycarbonate resin which is stable at sterilization temperatures.
4. The invention of claim 3 wherein the base of the truncated conical cup is thinner than the walls thereof so that maximum ultrasonic energy is transmitted from the transducer through the liquid to the medicated solution.
5. The invention of claim 4 wherein: the gas flow regulating means is a valve; and the means for introducing gas into the inner column comprises: a blower; and a pipe connecting the blower to the top of the inner column such that the valve is open when the pipe is connected thereto and is closed when the pipe is disconnected therefrom. 6. The invention of claim 5 wherein the valve comprises an opening, the size of which may be varied to thereby control the flow rate of the gas entering the inner column to thereby control the size of the liquid droplets which are emitted from the outer column.
7. The invention of claim 6 wherein the means for exciting the transducer at an ultrasonic rate comprises:
an electronic signal generator having a transformer with a primary and a secondary;
the primary being connected to a source of three wire, AC voltage and the secondary being connected to a rectifier power supply;
a switch connected in series with the primary; and
a pilot light connected from one side of the primary to ground such that if the connection to the source of AC voltage is improper, the pilot light is lit with the switch open and is extinguished with the switch closed.
8. The invention of claim 7 wherein the transducer comprises:
a polarized ceramic disc having an upper electrode and a lower electrode on the opposite faces thereof;
a cylindrical brass cup having a closed bottom and a wall;
a threaded opening in the base of the liquid chamber larger than the diameter of the brass cup and of the polarized ceramic disc;
a lip in the base of the liquid chamber overlying the threaded opening;
an insulating ring surrounding the brass cup and having external threads engaging the threaded opening to electrically insulate the brass cup from the liquid chamber;
the polarized ceramic disc being mounted above the brass cup so that its lower electrode makes contact with the brass cup and its upper electrode makes contact with the lip in the base of the liquid chamber;
an insulated O-ring surrounding the polarized ceramic disc to inhibit the flow of liquid out of the liquid chamber; and
means for making electrical connection to the brass cup and to the liquid chamber.
9. The invention of claim I wherein the truncated conical cup is formed of a material such as a polycarbonate resin which is stable at sterilization temperatures.
10. The invention of claim 9 wherein the base of the truncated conical cup is thinner than the walls thereof so that maximum ultrasonic energy is transmitted from the transducer through the liquid to the medicated solution.
11. The invention of claim 1 wherein:
the gas flow regulating means is a valve; and
the means and introducing gas into the inner, vertically disposed, column comprises:
a blower;
a pipe connecting the blower to the top of the inner, vertically disposed, column such that the valve is open when the pipe is connected thereto and is closed when the pipe is disconnected therefrom. 12. The invention of claim 11 wherein the opening in the valve may be varied to thereby control the flow rate of the gas entering the inner, vertically disposed, column.
13. The invention of claim 1 wherein the means for exciting the transducer at an ultrasonic rate comprises:
an electronic signal generator having a transformer with a primary and a secondary;
the primary being connected to a source of three wire, AC voltage and the secondary being connected to a rectifier power supply;
a switch connected in series with the primary; and
a pilot light connected from one side of the primary to ground such that if the connection to the source of AC voltage is improper, the pilot light is lit with the switch open and is extinguished with the switch closed.
14. The invention of claim 1 wherein the outer surfaces of the walls of the receptacle are timed to facilitate the transfer of heat therefrom.
15. In an ultrasonic drug nebulizer having a liquid chamber in which a driving transducer is mounted adjacent an opening in the base of the liquid chamber, the improvement comprismg:
a polarized ceramic disc having an upper electrode and a lower electrode on the opposite faces thereof;
a cylindrical brass cup having a closed bottom and a wall;
a threaded opening in the base of the liquid chamber larger in size than the diameter of the brass cup and of the polarized ceramic disc;
a lip in the base of the liquid chamber overlying the threaded opening;
an insulating ring surrounding the brass cup and having external threads engaging the threaded opening to electrically insulate the brass cu from the liquid chamber; the polarized ceramic disc eing mounted above the brass cup, the upper electrode making contact with the lip in the base of the liquid chamber; an insulated O-ring surrounding the polarized ceramic disc to inhibit the flow of liquid out of the liquid chamber; and means for making electrical connection to the brass cup and to the liquid chamber.

Claims (15)

1. An ultrasonic drug nebulizer for forming a mist from a medicated solution and emitting the same into the surrounding atmosphere comprising: a receptacle having a base with a sealed opening therein and walls to form a liquid containing Chamber; a truncated conical cup for containing the medicated solution in isolated relation to any source of solution, the cup being removably mounted to the walls intermediate the length thereof substantially in sealed relation so that the base of the receptacle is below the base of the cup, the base of the cup being closed; a dome containing an inner, vertically disposed, unobstructed influent column and an outer, vertically disposed, effluent column surrounding the inner column, the dome being removably mounted to the receptacle above the truncated conical cup, the sealed opening, the base of the cup and the inner column being in vertical alignment; the inner column and the outer column both being fully open at the bottom thereof, the outer column having an effluent opening therein adjacent the top thereof; gas flow regulating means in the top of the inner column; a transducer mounted at the base of the receptacle so as to cover the opening in sealed relation; means for exciting the transducer at an ultrasonic rate such at that a geyser is formed from the medicated solution in the truncated conical cup, said means for exciting being arranged such that, the geyser extends upward in alignment with the inner influent column; and means for introducing gas at a pressure above ambient pressure into the inner column through the gas flow regulating means in the top thereof to impinge directly on the geyser and thereby force the mist of the geyser into the outer column to be discharged through the effluent opening therein.
2. The invention of claim 1 wherein the dome is formed of transparent material such as a polycarbonate resin which is stable at sterilization temperatures and through which the geyser formed from the medicated solution may be observed.
3. The invention of claim 2 wherein the truncated conical cup is formed of a material such as a polycarbonate resin which is stable at sterilization temperatures.
4. The invention of claim 3 wherein the base of the truncated conical cup is thinner than the walls thereof so that maximum ultrasonic energy is transmitted from the transducer through the liquid to the medicated solution.
5. The invention of claim 4 wherein: the gas flow regulating means is a valve; and the means for introducing gas into the inner column comprises: a blower; and a pipe connecting the blower to the top of the inner column such that the valve is open when the pipe is connected thereto and is closed when the pipe is disconnected therefrom.
6. The invention of claim 5 wherein the valve comprises an opening, the size of which may be varied to thereby control the flow rate of the gas entering the inner column to thereby control the size of the liquid droplets which are emitted from the outer column.
7. The invention of claim 6 wherein the means for exciting the transducer at an ultrasonic rate comprises: an electronic signal generator having a transformer with a primary and a secondary; the primary being connected to a source of three wire, AC voltage and the secondary being connected to a rectifier power supply; a switch connected in series with the primary; and a pilot light connected from one side of the primary to ground such that if the connection to the source of AC voltage is improper, the pilot light is lit with the switch open and is extinguished with the switch closed.
8. The invention of claim 7 wherein the transducer comprises: a polarized ceramic disc having an upper electrode and a lower electrode on the opposite faces thereof; a cylindrical brass cup having a closed bottom and a wall; a threaded opening in the base of the liquid chamber larger than the diameter of the brass cup and of the polarized ceramic disc; a lip in the base of the liquid chamber overlying the threaded opening; an insulating ring surrounding the brass cup and having external threads engaging the threaded opening to electrically insulate the brass cup from the liquid chamber; the polarized ceramic disc being mounted above the brass cup so that its lower electrode makes contact with the brass cup and its upper electrode makes contact with the lip in the base of the liquid chamber; an insulated O-ring surrounding the polarized ceramic disc to inhibit the flow of liquid out of the liquid chamber; and means for making electrical connection to the brass cup and to the liquid chamber.
9. The invention of claim 1 wherein the truncated conical cup is formed of a material such as a polycarbonate resin which is stable at sterilization temperatures.
10. The invention of claim 9 wherein the base of the truncated conical cup is thinner than the walls thereof so that maximum ultrasonic energy is transmitted from the transducer through the liquid to the medicated solution.
11. The invention of claim 1 wherein: the gas flow regulating means is a valve; and the means and introducing gas into the inner, vertically disposed, column comprises: a blower; a pipe connecting the blower to the top of the inner, vertically disposed, column such that the valve is open when the pipe is connected thereto and is closed when the pipe is disconnected therefrom.
12. The invention of claim 11 wherein the opening in the valve may be varied to thereby control the flow rate of the gas entering the inner, vertically disposed, column.
13. The invention of claim 1 wherein the means for exciting the transducer at an ultrasonic rate comprises: an electronic signal generator having a transformer with a primary and a secondary; the primary being connected to a source of three wire, AC voltage and the secondary being connected to a rectifier power supply; a switch connected in series with the primary; and a pilot light connected from one side of the primary to ground such that if the connection to the source of AC voltage is improper, the pilot light is lit with the switch open and is extinguished with the switch closed.
14. The invention of claim 1 wherein the outer surfaces of the walls of the receptacle are finned to facilitate the transfer of heat therefrom.
15. In an ultrasonic drug nebulizer having a liquid chamber in which a driving transducer is mounted adjacent an opening in the base of the liquid chamber, the improvement comprising: a polarized ceramic disc having an upper electrode and a lower electrode on the opposite faces thereof; a cylindrical brass cup having a closed bottom and a wall; a threaded opening in the base of the liquid chamber larger in size than the diameter of the brass cup and of the polarized ceramic disc; a lip in the base of the liquid chamber overlying the threaded opening; an insulating ring surrounding the brass cup and having external threads engaging the threaded opening to electrically insulate the brass cup from the liquid chamber; the polarized ceramic disc being mounted above the brass cup, the upper electrode making contact with the lip in the base of the liquid chamber; an insulated O-ring surrounding the polarized ceramic disc to inhibit the flow of liquid out of the liquid chamber; and means for making electrical connection to the brass cup and to the liquid chamber.
US730981A 1968-05-22 1968-05-22 Ultrasonic drug nebulizer Expired - Lifetime US3561444A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73098168A 1968-05-22 1968-05-22

Publications (1)

Publication Number Publication Date
US3561444A true US3561444A (en) 1971-02-09

Family

ID=24937579

Family Applications (1)

Application Number Title Priority Date Filing Date
US730981A Expired - Lifetime US3561444A (en) 1968-05-22 1968-05-22 Ultrasonic drug nebulizer

Country Status (1)

Country Link
US (1) US3561444A (en)

Cited By (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690317A (en) * 1970-10-29 1972-09-12 Bendix Corp Sonic nebulizer
US3774602A (en) * 1972-01-03 1973-11-27 American Hospital Supply Corp Ultrasonic nebulizer for inhalation therapy
US3812854A (en) * 1972-10-20 1974-05-28 A Michaels Ultrasonic nebulizer
JPS4969948U (en) * 1972-10-03 1974-06-18
FR2216030A1 (en) * 1973-02-06 1974-08-30 Tdk Electronics Co Ltd
US3864440A (en) * 1972-01-21 1975-02-04 Respiratory Care Humidifier and heater for delivered gas
JPS5082851U (en) * 1973-11-30 1975-07-16
US4031171A (en) * 1974-12-25 1977-06-21 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4087495A (en) * 1976-03-25 1978-05-02 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4094317A (en) * 1976-06-11 1978-06-13 Wasnich Richard D Nebulization system
US4113809A (en) * 1977-04-04 1978-09-12 Champion Spark Plug Company Hand held ultrasonic nebulizer
EP0014989A1 (en) * 1979-02-24 1980-09-03 C.H. Boehringer Sohn Inhalation device
EP0098924A2 (en) * 1982-07-10 1984-01-25 Bröcker Ladenbau GmbH & Co. KG Device for the atomization of liquids
US4738806A (en) * 1985-08-08 1988-04-19 Sanyo Electric Co., Ltd. Humidifier for refrigeration showcase
US4776990A (en) * 1986-11-14 1988-10-11 Rhinotherm Netzer Sereni Method and apparatus for nebulizing a liquid
WO1989006147A1 (en) * 1987-12-31 1989-07-13 Etelä-Hämeen Keuhkovammayhdistys R.Y. Ultrasonic atomizer
US4877989A (en) * 1986-08-11 1989-10-31 Siemens Aktiengesellschaft Ultrasonic pocket atomizer
US4911866A (en) * 1988-11-25 1990-03-27 The Walt Disney Company Fog producing apparatus
FR2638362A1 (en) * 1988-11-02 1990-05-04 Mountain Medical Equipment Inc ULTRASONIC NEBULIZER COMPRISING A PIEZOELECTRIC TRANSDUCER
DE4036244A1 (en) * 1990-11-14 1992-05-21 Heyer Gmbh Carl Temp.-controlled aerosol generating device - with holder for removable container carrier
US5139016A (en) * 1987-08-07 1992-08-18 Sorin Biomedica S.P.A. Process and device for aerosol generation for pulmonary ventilation scintigraphy
US5158716A (en) * 1988-04-02 1992-10-27 Sanko Electric Machine Manufacturer Co. Ltd. Atomizer for hairdressing
US5170782A (en) * 1991-09-12 1992-12-15 Devilbiss Health Care, Inc. Medicament nebulizer with improved aerosol chamber
US5171215A (en) * 1991-08-22 1992-12-15 Flanagan Dennis F Endermic method and apparatus
US5209225A (en) * 1991-11-19 1993-05-11 Glenn Joseph G Flow through nebulizer
FR2690360A1 (en) * 1992-04-24 1993-10-29 Dp Medical Mist producer, e.g. for people with breathing difficulties - comprises housing contg. gas circulating turbine and liq. reservoir with mist generator
FR2699510A1 (en) * 1992-12-23 1994-06-24 Dp Medical Tank internal wall and cover mounting
FR2699411A1 (en) * 1992-12-23 1994-06-24 Dp Medical Nebuliser for creating a mist from a liquid in a container
US5429302A (en) * 1993-05-19 1995-07-04 Fisons Corporation Nebulizing element and device
EP0689879A1 (en) * 1994-06-29 1996-01-03 Siemens Aktiengesellschaft Ultrasonic atomizer
US5485828A (en) * 1992-04-29 1996-01-23 Hauser; Jean-Luc Portable device for micropulverization generated by ultrasound waves
US5643868A (en) * 1990-10-10 1997-07-01 Autoimmune, Inc. Method of treating or preventing type 1 diabetes by oral administration of insulin
US5720955A (en) * 1987-06-24 1998-02-24 Autoimmune, Inc. Method of treating rheumatoid arthritis with soluble collagen
US5856446A (en) * 1995-07-07 1999-01-05 Autoimmune Inc. Method of treating rheumatoid arthritis with low dose type II collagen
US20010013554A1 (en) * 1999-09-09 2001-08-16 Scott Borland Aperture plate and methods for its construction and use
US6283118B1 (en) * 1999-10-13 2001-09-04 Hsueh-Yu Lu Ultrasonic nebulizer
WO2002014594A1 (en) * 2000-08-16 2002-02-21 The Procter & Gamble Company Apparatus for cleaning and refreshing fabrics with an improved ultrasonic nebulizer, and improved ultrasonic nebulizer
EP1190729A1 (en) * 2000-09-22 2002-03-27 Industrial Technology Research Institute Ultrasonic nebulizer
WO2002055131A2 (en) * 2000-11-01 2002-07-18 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US20020103448A1 (en) * 2001-01-30 2002-08-01 Eilaz Babaev Ultrasound wound treatment method and device using standing waves
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US6533803B2 (en) 2000-12-22 2003-03-18 Advanced Medical Applications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US20030062038A1 (en) * 2001-09-28 2003-04-03 Omron Corporation Inhalator attachment and nebulizer equipped with same
US6559188B1 (en) 1999-09-17 2003-05-06 Novartis Ag Method of treating metabolic disorders especially diabetes, or a disease or condition associated with diabetes
US6569099B1 (en) 2001-01-12 2003-05-27 Eilaz Babaev Ultrasonic method and device for wound treatment
US20030114367A1 (en) * 1998-10-04 2003-06-19 Yehuda Shoenfeld Composition for the prevention and/or treatment of artherosclerosis
US20030140921A1 (en) * 2000-05-05 2003-07-31 Aerogen, Inc. Methods and systems for operating an aerosol generator
US6601777B2 (en) * 2001-01-30 2003-08-05 Msp Corporation Suspended particle container for an atomizer
US20030150445A1 (en) * 2001-11-01 2003-08-14 Aerogen, Inc. Apparatus and methods for delivery of medicament to a respiratory system
US20030162816A1 (en) * 1999-09-17 2003-08-28 Gatlin Marjorie Regan Method of treating metabolic disorders, especially diabetes, or a disease or condition associated with diabetes
US6615824B2 (en) * 2000-05-05 2003-09-09 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US6623444B2 (en) 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US20030226633A1 (en) * 2002-06-11 2003-12-11 Fujitsu Limited Method and apparatus for fabricating bonded substrate
US20030236560A1 (en) * 2001-01-12 2003-12-25 Eilaz Babaev Ultrasonic method and device for wound treatment
US20040001827A1 (en) * 2002-06-28 2004-01-01 Dennis Mark S. Serum albumin binding peptides for tumor targeting
US20040004133A1 (en) * 1991-04-24 2004-01-08 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US20040084049A1 (en) * 1994-06-17 2004-05-06 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
US20040124258A1 (en) * 2002-12-18 2004-07-01 Monitto Perry H. Misting fogger
US6761729B2 (en) 2000-12-22 2004-07-13 Advanced Medicalapplications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US20040182383A1 (en) * 1993-01-29 2004-09-23 Igor Gonda Method for treating diabetes mellitus in a patient
US20040186384A1 (en) * 2001-01-12 2004-09-23 Eilaz Babaev Ultrasonic method and device for wound treatment
US20040188534A1 (en) * 2001-05-02 2004-09-30 Aerogen, Inc. Base isolated nebulizing device and methods
US6812205B2 (en) 2000-03-15 2004-11-02 The Brigham & Women's Hospital, Inc. Suppression of vascular disorders by mucosal administration of heat shock protein peptides
US20040253247A1 (en) * 1999-12-23 2004-12-16 Dennis Mark S Methods and compositions for prolonging elimination half-times of bioactive compounds
US20040256488A1 (en) * 2001-03-20 2004-12-23 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US20050011514A1 (en) * 2003-07-18 2005-01-20 Aerogen, Inc. Nebuliser for the production of aerosolized medication
US6854718B1 (en) * 2003-01-30 2005-02-15 Hwang Sun Enterprise Co., Ltd. Vaporizer
EP1509259A2 (en) * 2002-05-20 2005-03-02 AeroGen, Inc. Apparatus for providing aerosol for medical treatment and methods
US20050053612A1 (en) * 2003-08-20 2005-03-10 Granstein Richard D. Nucleotide regulation of immune responses
US20050067511A1 (en) * 2003-09-25 2005-03-31 Deka Products Limited Partnership System and method for aerosol delivery
US20050085556A1 (en) * 2003-09-05 2005-04-21 Paul Wentworth Detection of cholesterol ozonation products
US20050085557A1 (en) * 2003-09-05 2005-04-21 Paul Wentworth Therapeutic procedures
US20050106179A1 (en) * 2003-11-17 2005-05-19 Weiss Jerrold P. Isolated complexes of endotoxin and MD-2
US6927223B1 (en) 2000-05-26 2005-08-09 Washington State University Research Foundation Use of serotonin agents for adjunct therapy in the treatment of cancer
US20050197283A1 (en) * 1998-10-04 2005-09-08 Vascular Biogenics Ltd. Compositions containing beta 2-glycoprotein I for the prevention and/or treatment of vascular disease
US20050199236A1 (en) * 2002-01-07 2005-09-15 Aerogen, Inc. Methods and devices for aerosolizing medicament
US20050209141A1 (en) * 2003-10-17 2005-09-22 Silver Randi B Mast cell-derived renin
US20050205089A1 (en) * 2002-01-07 2005-09-22 Aerogen, Inc. Methods and devices for aerosolizing medicament
US20050217666A1 (en) * 2000-05-05 2005-10-06 Aerogen, Inc. Methods and systems for operating an aerosol generator
GB2412876A (en) * 2004-04-08 2005-10-12 Gasflow Services Ltd Nicotine inhaler with airflow regulator
US20050229926A1 (en) * 2004-04-20 2005-10-20 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US20050229928A1 (en) * 2004-04-20 2005-10-20 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US6964647B1 (en) 2000-10-06 2005-11-15 Ellaz Babaev Nozzle for ultrasound wound treatment
US20050274377A1 (en) * 1993-01-29 2005-12-15 Igor Gonda Method of treating diabetes mellitus in a patient
US20050287153A1 (en) * 2002-06-28 2005-12-29 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US20060019891A1 (en) * 2002-11-14 2006-01-26 Jay Edelberg Protection of cardiac myocardium
US20060073152A1 (en) * 2004-10-05 2006-04-06 Genentech, Inc. Therapeutic agents with decreased toxicity
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US20060194740A1 (en) * 2005-02-25 2006-08-31 Ulevitch Richard J NOD1 as an anti-tumor agent
US20060213508A1 (en) * 2005-03-23 2006-09-28 Barnstead/Thermolyne Corporation Environmental chamber and ultrasonic nebulizer assembly therefor
US20060228364A1 (en) * 1999-12-24 2006-10-12 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US20060227612A1 (en) * 2003-10-08 2006-10-12 Ebrahim Abedifard Common wordline flash array architecture
US20060237860A1 (en) * 2005-04-26 2006-10-26 Chuan-Pan Huang Safety protection device and control circuit for instantaneous atomization device
US20060252141A1 (en) * 2003-09-08 2006-11-09 Coakley William T Apparatus for ultrasonic microbial disruption
US20060257961A1 (en) * 2005-01-13 2006-11-16 Apicella Michael A Sialic acid permease system
US20070016110A1 (en) * 2005-06-23 2007-01-18 Eilaz Babaev Removable applicator nozzle for ultrasound wound therapy device
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
EP1757311A2 (en) 1999-12-24 2007-02-28 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US20070044792A1 (en) * 2005-08-30 2007-03-01 Aerogen, Inc. Aerosol generators with enhanced corrosion resistance
US20070051307A1 (en) * 2005-08-16 2007-03-08 Babaev Eilaz P Ultrasound apparatus and methods for mixing liquids and coating stents
WO2007028203A1 (en) * 2005-09-06 2007-03-15 Intelligent Medical Technologies Pty Limited Nebuliser
US20070059769A1 (en) * 2004-03-05 2007-03-15 Ola Blixt High throughput glycan microarrays
US20070088245A1 (en) * 2005-06-23 2007-04-19 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US20070111590A1 (en) * 2003-12-29 2007-05-17 Areva T&D Sa Electrical contact element for medium or high voltage electrical equipment, and corresponding, and corresponding method and equipment
WO2007090247A1 (en) * 2006-02-10 2007-08-16 Intelligent Medical Technologies Pty Limited Nebuliser
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US20070224080A1 (en) * 2006-03-22 2007-09-27 Zimek Technologies Ip, Llc Ultrasonic Sanitation Device and Associated Methods
US20070265170A1 (en) * 2006-05-15 2007-11-15 Ola Blixt Detection, prevention and treatment of ovarian cancer
US20070267010A1 (en) * 2000-05-05 2007-11-22 Fink James B Methods and systems for operating an aerosol generator
US20080017198A1 (en) * 2004-04-20 2008-01-24 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US20080019968A1 (en) * 2004-11-19 2008-01-24 The Scripps Reasearch Institute Detection, prevention and treatment of breast cancer
US20080051693A1 (en) * 2006-08-25 2008-02-28 Bacoustics Llc Portable Ultrasound Device for the Treatment of Wounds
US20080054091A1 (en) * 2005-08-04 2008-03-06 Bacoustics Llc Ultrasonic atomization and/or seperation system
US20080066754A1 (en) * 2006-09-15 2008-03-20 Faram Joseph D Continuous high-frequency oscillation breathing treatment apparatus
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US20080125365A1 (en) * 2006-09-20 2008-05-29 University Of Iowa Research Foundation Isolated complexes of covalently cross-linked endotoxin and modified md-2
EP1927597A1 (en) 2004-08-18 2008-06-04 Novabiotics Limited Antibacterial peptides
US20080142616A1 (en) * 2006-12-15 2008-06-19 Bacoustics Llc Method of Producing a Directed Spray
US20080177221A1 (en) * 2006-12-22 2008-07-24 Celleration, Inc. Apparatus to prevent applicator re-use
US20080183200A1 (en) * 2006-06-07 2008-07-31 Bacoustics Llc Method of selective and contained ultrasound debridement
US20080183109A1 (en) * 2006-06-07 2008-07-31 Bacoustics Llc Method for debriding wounds
US20080214965A1 (en) * 2007-01-04 2008-09-04 Celleration, Inc. Removable multi-channel applicator nozzle
US20080227138A1 (en) * 2002-03-01 2008-09-18 Celltech R & D, Inc. Methods to Increase or Decrease Bone Density
US20080223953A1 (en) * 2005-03-11 2008-09-18 Akira Tomono Mist Generator and Mist Emission Rendering Apparatus
US7431704B2 (en) 2006-06-07 2008-10-07 Bacoustics, Llc Apparatus and method for the treatment of tissue with ultrasound energy by direct contact
US20080283051A1 (en) * 2007-05-18 2008-11-20 Joseph Dee Faram Lung therapy device
WO2008149334A2 (en) * 2007-06-04 2008-12-11 Shira Inc-P.D. Ltd. Nebulizer and driver circuity therefor particularly useful for converting liquids to fine sprays at extremely low rates
EP2011507A2 (en) 1999-09-17 2009-01-07 Novartis AG Pharmaceutical composition of nateglinide and another antidiabetic agent
EP2011489A2 (en) 2002-07-09 2009-01-07 Roberta Gottlieb Method to inhibit ischemia and reperfusion injury
US20090014551A1 (en) * 2007-07-13 2009-01-15 Bacoustics Llc Ultrasound pumping apparatus
US20090014550A1 (en) * 2007-07-13 2009-01-15 Bacoustics Llc Echoing ultrasound atomization and/or mixing system
US20090043248A1 (en) * 2007-01-04 2009-02-12 Celleration, Inc. Removable multi-channel applicator nozzle
US20090068207A1 (en) * 2005-04-15 2009-03-12 Vascular Biogenics Ltd. Compositions Containing Beta 2-Glycoprotein I-Derived Peptides for the Prevention and/or Treatment of Vascular Disease
US20090110692A1 (en) * 2006-03-01 2009-04-30 Weiss Jerrold P Isolated complexes of endotoxin and modified md-2
US20090107503A1 (en) * 1994-06-17 2009-04-30 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
US20090134235A1 (en) * 2005-05-25 2009-05-28 Aerogen, Inc. Vibration Systems and Methods
US20090177122A1 (en) * 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory skin disorders
US20090177123A1 (en) * 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory disorders
US20090213373A1 (en) * 2003-09-25 2009-08-27 Deka Products Limited Partnership Detection System and Method for Aerosol Delivery
US20090223513A1 (en) * 2004-04-02 2009-09-10 Mark J Papania Aerosol delivery systems and methods
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US20090308945A1 (en) * 2008-06-17 2009-12-17 Jacob Loverich Liquid dispensing apparatus using a passive liquid metering method
US20090318545A1 (en) * 2008-06-09 2009-12-24 Cornell Reasearch Foundation, Inc. Mast cell inhibition in diseases of the retina and vitreous
US20100022919A1 (en) * 2008-07-22 2010-01-28 Celleration, Inc. Methods of Skin Grafting Using Ultrasound
US20100104555A1 (en) * 2008-10-24 2010-04-29 The Scripps Research Institute HCV neutralizing epitopes
WO2010047829A1 (en) 2008-10-24 2010-04-29 The Scripps Research Institute Mutant hepatitis c virus e2 polypeptides for hcv treatment
US20100187328A1 (en) * 2007-07-24 2010-07-29 Yoshimitsu Konishi Portable ultrasonic mist generating device
US7767150B1 (en) * 2003-08-06 2010-08-03 Solomon Zaromb Aerosol collection apparatus and methods
US7779831B1 (en) * 2006-04-20 2010-08-24 Ric Investments, Llc Ultrasonic nebulizer with metal coated ultrasonic generator
US20100294269A1 (en) * 2005-03-09 2010-11-25 Koninklijke Philips Electronics N.V. Nebulizing drug delivery device with an increased flow rate
EP2258724A1 (en) 2002-11-21 2010-12-08 Celltech R & D, Inc. Modulating immune responses using multimerized anti-CD83 antibodies
US20100313883A1 (en) * 2006-04-20 2010-12-16 Koninklijke Philips Electronics N.V. Ultrasonic bebulilzer with metal coated ultrasonic genrator
US20110030743A1 (en) * 2006-03-22 2011-02-10 Zimek Technologies Ip, Llc Ultrasonic sanitation and disinfecting device and associated methods
EP2295067A1 (en) 2000-05-24 2011-03-16 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services E-selectin for inducing immunotolerance
US7909033B2 (en) 2006-05-03 2011-03-22 Comedica Incorporated Breathing treatment apparatus
US7914517B2 (en) 2003-10-31 2011-03-29 Trudell Medical International System and method for manipulating a catheter for delivering a substance to a body cavity
US20110079616A1 (en) * 2009-10-05 2011-04-07 Holmes Charles R Apparatus And Method Of Dispensing An Attractant Or Scent Blocker
US20110100364A1 (en) * 2009-11-02 2011-05-05 Joseph Dee Faram Multiple conduit connector apparatus and method
US20110100360A1 (en) * 2009-11-02 2011-05-05 Joseph Dee Faram Composite lung therapy device and method
US20110112079A1 (en) * 2008-01-09 2011-05-12 Thomas Craig J Phosphodiesterase inhibitors
EP2322215A2 (en) 2004-07-16 2011-05-18 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US20110177996A1 (en) * 2005-05-23 2011-07-21 Children's Hospital Medical Center Regulatory proteins in lung repair and treatment of lung disease
WO2011121289A2 (en) 2010-03-31 2011-10-06 Novabiotics Limited Compounds and their use
US8062588B2 (en) 2006-03-22 2011-11-22 Zimek Technologies Ip, Llc Ultrasonic sanitation device and associated methods
WO2012076842A1 (en) 2010-12-09 2012-06-14 University Of Durham Synthetic retinoids for control of cell differentiation
WO2012156724A2 (en) 2011-05-16 2012-11-22 The Technology Partnership Plc Separable membrane improvements
US20130112197A1 (en) * 2010-04-26 2013-05-09 Pari Pharma Gmbh Operating method for an aerosol delivery device and aerosol delivery device
US8544462B2 (en) 2001-03-15 2013-10-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Systems and methods for aerosol delivery of agents
US20140084495A1 (en) * 2012-09-21 2014-03-27 Great Innovations, LLC Convertible humidifier
US8691772B2 (en) 2005-01-04 2014-04-08 Yeda Research And Development Co. Ltd. HSP60, HSP60 peptides and T cell vaccines for immunomodulation
US8980951B2 (en) 2011-07-21 2015-03-17 Kansas State University Research Foundation Sesquiterpenes for antifungal applications
US20150209545A1 (en) * 2014-01-30 2015-07-30 Dualams, LLC Delivery Apparatus and Accompanying System for the Application of a Medical Agent to a Treatment Site and Method for Use of Same
US20150224271A1 (en) * 2014-02-11 2015-08-13 Lloyd Courtney Material recovery and capture device for atomized material delivery apparatuses
US20150265786A1 (en) * 2013-01-09 2015-09-24 Omron Healthcare Co., Ltd. Drug solution tank and drug solution pack for ultrasonic inhaler
US20160153672A1 (en) * 2012-09-21 2016-06-02 Great Innovations, LLC Convertible dual tank humidifier
US9370555B2 (en) 1998-10-20 2016-06-21 Children's Hospital Medical Center Surfactant protein D for the treatment of disorders associated with lung injury
WO2017006091A1 (en) 2015-07-03 2017-01-12 The Technology Partnership Plc Aerosol apparatus with improved separable membrane
US9551996B2 (en) 2005-08-26 2017-01-24 Paul Baumgartner Aerosol extraction apparatus
US9717867B2 (en) 2009-02-27 2017-08-01 Pari GmbH Spezialisten für effektive Inhalation Method for operating an aerosol inhalation device and aerosol inhalation device
US9795752B2 (en) 2012-12-03 2017-10-24 Mhs Care-Innovation, Llc Combination respiratory therapy device, system, and method
WO2018009825A1 (en) 2016-07-08 2018-01-11 The Scripps Research Institute Desensitizing mast cells by co-presentation of antigens with high affinity mast cell siglec ligands
US20180064172A1 (en) * 2015-06-19 2018-03-08 Changzhou Jwei Intelligent Technology Co., Ltd. Atomizer and aerosol generating device using the same
WO2018128629A1 (en) * 2017-01-09 2018-07-12 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
US20180193869A1 (en) * 2017-01-09 2018-07-12 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
US10029274B1 (en) 2016-10-06 2018-07-24 Paul Baumgartner Stratification detection and aerosol distribution system
US20180326445A1 (en) * 2017-05-11 2018-11-15 Zhijing Wang Ultrasonic humidifier with a central atomizing tube
US10195634B2 (en) 2013-07-09 2019-02-05 The Technology Partnership Plc Separable membrane improvements
US20190054260A1 (en) * 2017-08-17 2019-02-21 Monzano Group LLC Nebulizer devices and methods
US10292433B2 (en) * 2015-06-19 2019-05-21 Changzhou Jwei Intelligent Technology Co., Ltd. Atomizer and aerosol generating device using same
US10322431B1 (en) 2016-10-06 2019-06-18 Ricciardi Jonathan J Stratification detection and aerosol distribution system
TWI674909B (en) * 2018-11-29 2019-10-21 財團法人金屬工業研究發展中心 Drug delivery device
US20200078541A1 (en) * 2018-09-10 2020-03-12 Airganics, LLC. Aerosolizer docking station and individual aerosolization pod for interchangeable use therein
US10905837B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Respiratory therapy cycle control and feedback
WO2021086958A1 (en) 2019-10-28 2021-05-06 The Scripps Research Institute Immune cell receptor antibodies conjugated to high affinity siglec-ligands
US20210268209A1 (en) * 2018-07-24 2021-09-02 Monash University Nebulizer
US20210379611A1 (en) * 2018-11-08 2021-12-09 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
US11224767B2 (en) 2013-11-26 2022-01-18 Sanuwave Health, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267547A (en) * 1940-03-18 1941-12-23 Charles E Zimmerman Facial machine
DE962296C (en) * 1941-08-16 1957-04-18 Siemens Ag Piezoelectric vibration generator, especially for sounding goods
US2863075A (en) * 1953-12-15 1958-12-02 Francis J Fry Ultrasonic transducer
GB807544A (en) * 1954-10-15 1959-01-14 British Central Electrical Com Improvements in or relating to instruments for testing for earthing faults in electric circuits
DE1056065B (en) * 1955-03-05 1959-04-23 Siemens Ag Device for atomizing liquids
DE1103522B (en) * 1957-10-24 1961-03-30 Transform Roentgen Matern Veb Exhalation device for aerosols generated by means of ultrasound
US3137836A (en) * 1955-08-25 1964-06-16 Clyde P Glover Support for electro-acoustic transducer
US3285242A (en) * 1963-07-01 1966-11-15 American Cystoscope Makers Inc Surgical headlight and light source
US3360664A (en) * 1964-10-30 1967-12-26 Gen Dynamics Corp Electromechanical apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267547A (en) * 1940-03-18 1941-12-23 Charles E Zimmerman Facial machine
DE962296C (en) * 1941-08-16 1957-04-18 Siemens Ag Piezoelectric vibration generator, especially for sounding goods
US2863075A (en) * 1953-12-15 1958-12-02 Francis J Fry Ultrasonic transducer
GB807544A (en) * 1954-10-15 1959-01-14 British Central Electrical Com Improvements in or relating to instruments for testing for earthing faults in electric circuits
DE1056065B (en) * 1955-03-05 1959-04-23 Siemens Ag Device for atomizing liquids
US3137836A (en) * 1955-08-25 1964-06-16 Clyde P Glover Support for electro-acoustic transducer
DE1103522B (en) * 1957-10-24 1961-03-30 Transform Roentgen Matern Veb Exhalation device for aerosols generated by means of ultrasound
US3285242A (en) * 1963-07-01 1966-11-15 American Cystoscope Makers Inc Surgical headlight and light source
US3360664A (en) * 1964-10-30 1967-12-26 Gen Dynamics Corp Electromechanical apparatus

Cited By (350)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690317A (en) * 1970-10-29 1972-09-12 Bendix Corp Sonic nebulizer
US3774602A (en) * 1972-01-03 1973-11-27 American Hospital Supply Corp Ultrasonic nebulizer for inhalation therapy
US3864440A (en) * 1972-01-21 1975-02-04 Respiratory Care Humidifier and heater for delivered gas
JPS4969948U (en) * 1972-10-03 1974-06-18
JPS521666Y2 (en) * 1972-10-03 1977-01-14
US3812854A (en) * 1972-10-20 1974-05-28 A Michaels Ultrasonic nebulizer
FR2216030A1 (en) * 1973-02-06 1974-08-30 Tdk Electronics Co Ltd
JPS5082851U (en) * 1973-11-30 1975-07-16
JPS5245100Y2 (en) * 1973-11-30 1977-10-13
US4031171A (en) * 1974-12-25 1977-06-21 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4087495A (en) * 1976-03-25 1978-05-02 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4094317A (en) * 1976-06-11 1978-06-13 Wasnich Richard D Nebulization system
US4113809A (en) * 1977-04-04 1978-09-12 Champion Spark Plug Company Hand held ultrasonic nebulizer
EP0014989A1 (en) * 1979-02-24 1980-09-03 C.H. Boehringer Sohn Inhalation device
EP0098924A2 (en) * 1982-07-10 1984-01-25 Bröcker Ladenbau GmbH & Co. KG Device for the atomization of liquids
EP0098924A3 (en) * 1982-07-10 1985-07-03 Bröcker Ladenbau GmbH & Co. KG Device for the atomization of liquids
US4738806A (en) * 1985-08-08 1988-04-19 Sanyo Electric Co., Ltd. Humidifier for refrigeration showcase
US4877989A (en) * 1986-08-11 1989-10-31 Siemens Aktiengesellschaft Ultrasonic pocket atomizer
US4776990A (en) * 1986-11-14 1988-10-11 Rhinotherm Netzer Sereni Method and apparatus for nebulizing a liquid
US5720955A (en) * 1987-06-24 1998-02-24 Autoimmune, Inc. Method of treating rheumatoid arthritis with soluble collagen
US5139016A (en) * 1987-08-07 1992-08-18 Sorin Biomedica S.P.A. Process and device for aerosol generation for pulmonary ventilation scintigraphy
WO1989006147A1 (en) * 1987-12-31 1989-07-13 Etelä-Hämeen Keuhkovammayhdistys R.Y. Ultrasonic atomizer
GB2219512A (en) * 1987-12-31 1989-12-13 Etelae Haemeen Keuhkovammayhdi Ultrasonic atomizer
GB2219512B (en) * 1987-12-31 1991-09-04 Etelae Haemeen Keuhkovammayhdi Ultrasonic atomizer
US5063922A (en) * 1987-12-31 1991-11-12 Etala-Hameen Keuhkovammayhdistys R.Y. Ultrasonic atomizer
US5158716A (en) * 1988-04-02 1992-10-27 Sanko Electric Machine Manufacturer Co. Ltd. Atomizer for hairdressing
FR2638362A1 (en) * 1988-11-02 1990-05-04 Mountain Medical Equipment Inc ULTRASONIC NEBULIZER COMPRISING A PIEZOELECTRIC TRANSDUCER
WO1990006171A1 (en) * 1988-11-25 1990-06-14 The Walt Disney Company Fog producing apparatus
US4911866A (en) * 1988-11-25 1990-03-27 The Walt Disney Company Fog producing apparatus
US5858968A (en) * 1990-10-10 1999-01-12 Autoimmune Inc. Method of treating or preventing type 1 diabetes by oral administration of insulin
US5843886A (en) * 1990-10-10 1998-12-01 Autoimmune, Inc. Method of treating or preventing Type 1 diabetes by oral administration of insulin
US6703361B2 (en) 1990-10-10 2004-03-09 Autoimmune Inc. Method of treating or preventing Type 1 diabetes by oral administration of insulin
US5643868A (en) * 1990-10-10 1997-07-01 Autoimmune, Inc. Method of treating or preventing type 1 diabetes by oral administration of insulin
DE4036244A1 (en) * 1990-11-14 1992-05-21 Heyer Gmbh Carl Temp.-controlled aerosol generating device - with holder for removable container carrier
US7040549B2 (en) 1991-04-24 2006-05-09 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US20040004133A1 (en) * 1991-04-24 2004-01-08 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US5171215A (en) * 1991-08-22 1992-12-15 Flanagan Dennis F Endermic method and apparatus
US5170782A (en) * 1991-09-12 1992-12-15 Devilbiss Health Care, Inc. Medicament nebulizer with improved aerosol chamber
US5209225A (en) * 1991-11-19 1993-05-11 Glenn Joseph G Flow through nebulizer
FR2690360A1 (en) * 1992-04-24 1993-10-29 Dp Medical Mist producer, e.g. for people with breathing difficulties - comprises housing contg. gas circulating turbine and liq. reservoir with mist generator
US5485828A (en) * 1992-04-29 1996-01-23 Hauser; Jean-Luc Portable device for micropulverization generated by ultrasound waves
FR2699411A1 (en) * 1992-12-23 1994-06-24 Dp Medical Nebuliser for creating a mist from a liquid in a container
FR2699510A1 (en) * 1992-12-23 1994-06-24 Dp Medical Tank internal wall and cover mounting
US20090241950A1 (en) * 1993-01-29 2009-10-01 Aradigm Corporation Method of treating diabetes mellitus in a patient
US20050274377A1 (en) * 1993-01-29 2005-12-15 Igor Gonda Method of treating diabetes mellitus in a patient
US7278419B2 (en) * 1993-01-29 2007-10-09 Novo Nordisk A/S Method for treating diabetes mellitus in a patient
US20080060644A1 (en) * 1993-01-29 2008-03-13 Novo Nordisk A/S - Novo Alle Method Of Treating Diabetes Mellitus In A Patient
US20040182383A1 (en) * 1993-01-29 2004-09-23 Igor Gonda Method for treating diabetes mellitus in a patient
US7448375B2 (en) 1993-01-29 2008-11-11 Aradigm Corporation Method of treating diabetes mellitus in a patient
US5429302A (en) * 1993-05-19 1995-07-04 Fisons Corporation Nebulizing element and device
US20040084050A1 (en) * 1994-06-17 2004-05-06 Trudell Medical Limited. Nebulizing catheter system and methods of use and manufacture
US7472705B2 (en) * 1994-06-17 2009-01-06 Trudell Medical Limited Methods of forming a nebulizing catheter
US20090107503A1 (en) * 1994-06-17 2009-04-30 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
US20040084049A1 (en) * 1994-06-17 2004-05-06 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
US7469700B2 (en) 1994-06-17 2008-12-30 Trudell Medical Limited Nebulizing catheter system for delivering an aerosol to a patient
EP0689879A1 (en) * 1994-06-29 1996-01-03 Siemens Aktiengesellschaft Ultrasonic atomizer
US5716002A (en) * 1994-06-29 1998-02-10 Siemens Aktiengesellschaft Ultrasonic atomizer
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US8561604B2 (en) 1995-04-05 2013-10-22 Novartis Ag Liquid dispensing apparatus and methods
US5856446A (en) * 1995-07-07 1999-01-05 Autoimmune Inc. Method of treating rheumatoid arthritis with low dose type II collagen
US20030114367A1 (en) * 1998-10-04 2003-06-19 Yehuda Shoenfeld Composition for the prevention and/or treatment of artherosclerosis
US20050197283A1 (en) * 1998-10-04 2005-09-08 Vascular Biogenics Ltd. Compositions containing beta 2-glycoprotein I for the prevention and/or treatment of vascular disease
US9370555B2 (en) 1998-10-20 2016-06-21 Children's Hospital Medical Center Surfactant protein D for the treatment of disorders associated with lung injury
US8398001B2 (en) 1999-09-09 2013-03-19 Novartis Ag Aperture plate and methods for its construction and use
US20070023547A1 (en) * 1999-09-09 2007-02-01 Aerogen, Inc. Aperture plate and methods for its construction and use
US20010013554A1 (en) * 1999-09-09 2001-08-16 Scott Borland Aperture plate and methods for its construction and use
US7066398B2 (en) 1999-09-09 2006-06-27 Aerogen, Inc. Aperture plate and methods for its construction and use
US6878749B2 (en) 1999-09-17 2005-04-12 Novartis Ag Method of treating metabolic disorders, especially diabetes, or a disease or condition associated with diabetes
US20050124663A1 (en) * 1999-09-17 2005-06-09 Gatlin Marjorie R. Method of treating metabolic disorders, especially diabetes, or a disease or condition associated with diabetes
US20070275928A1 (en) * 1999-09-17 2007-11-29 Gatlin Marjorie R Method of treating metabolic disorders, especially diabetes, or a disease or condition associated with diabetes
US20030162816A1 (en) * 1999-09-17 2003-08-28 Gatlin Marjorie Regan Method of treating metabolic disorders, especially diabetes, or a disease or condition associated with diabetes
US6559188B1 (en) 1999-09-17 2003-05-06 Novartis Ag Method of treating metabolic disorders especially diabetes, or a disease or condition associated with diabetes
US20100076084A1 (en) * 1999-09-17 2010-03-25 Marjorie Regan Gatlin Method of Treating Metabolic Disorders, Especially Diabetes, or a Disease or Condition Associated with Diabetes
EP2011507A2 (en) 1999-09-17 2009-01-07 Novartis AG Pharmaceutical composition of nateglinide and another antidiabetic agent
US6283118B1 (en) * 1999-10-13 2001-09-04 Hsueh-Yu Lu Ultrasonic nebulizer
US20040253247A1 (en) * 1999-12-23 2004-12-16 Dennis Mark S Methods and compositions for prolonging elimination half-times of bioactive compounds
US7635749B2 (en) 1999-12-24 2009-12-22 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US20060228364A1 (en) * 1999-12-24 2006-10-12 Genentech, Inc. Serum albumin binding peptides for tumor targeting
EP1757701A1 (en) 1999-12-24 2007-02-28 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
EP1757311A2 (en) 1999-12-24 2007-02-28 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US20070160534A1 (en) * 1999-12-24 2007-07-12 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US7608681B2 (en) 1999-12-24 2009-10-27 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
EP2180054A1 (en) 1999-12-24 2010-04-28 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US6812205B2 (en) 2000-03-15 2004-11-02 The Brigham & Women's Hospital, Inc. Suppression of vascular disorders by mucosal administration of heat shock protein peptides
US20050217666A1 (en) * 2000-05-05 2005-10-06 Aerogen, Inc. Methods and systems for operating an aerosol generator
US6615824B2 (en) * 2000-05-05 2003-09-09 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US20080149096A1 (en) * 2000-05-05 2008-06-26 Aerogen, Inc. Apparatus and Methods for the Delivery of Medicaments to the Respiratory System
US7331339B2 (en) 2000-05-05 2008-02-19 Aerogen, Inc. Methods and systems for operating an aerosol generator
US7322349B2 (en) 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US20040035490A1 (en) * 2000-05-05 2004-02-26 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US20070267010A1 (en) * 2000-05-05 2007-11-22 Fink James B Methods and systems for operating an aerosol generator
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7748377B2 (en) 2000-05-05 2010-07-06 Novartis Ag Methods and systems for operating an aerosol generator
US6968840B2 (en) 2000-05-05 2005-11-29 Aerogen, Inc. Methods and systems for operating an aerosol generator
US20050172954A1 (en) * 2000-05-05 2005-08-11 Aerogen Inc. Methods and systems for operating an aerosol generator
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US20030140921A1 (en) * 2000-05-05 2003-07-31 Aerogen, Inc. Methods and systems for operating an aerosol generator
EP2295067A1 (en) 2000-05-24 2011-03-16 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services E-selectin for inducing immunotolerance
US6927223B1 (en) 2000-05-26 2005-08-09 Washington State University Research Foundation Use of serotonin agents for adjunct therapy in the treatment of cancer
EP1182292A1 (en) * 2000-08-16 2002-02-27 The Procter & Gamble Company Apparatus for cleaning and refreshing fabrics with an improved ultrasonic nebulizer, and improved ultrasonic nebulizer
US6726186B2 (en) 2000-08-16 2004-04-27 Sonia Gaaloul Apparatus for cleaning and refreshing fabrics with an improved ultrasonic nebulizer
WO2002014594A1 (en) * 2000-08-16 2002-02-21 The Procter & Gamble Company Apparatus for cleaning and refreshing fabrics with an improved ultrasonic nebulizer, and improved ultrasonic nebulizer
EP1190729A1 (en) * 2000-09-22 2002-03-27 Industrial Technology Research Institute Ultrasonic nebulizer
US6964647B1 (en) 2000-10-06 2005-11-15 Ellaz Babaev Nozzle for ultrasound wound treatment
US20090024076A1 (en) * 2000-10-06 2009-01-22 Celleration, Inc. Nozzle for ultrasound wound treatment
US20060025716A1 (en) * 2000-10-06 2006-02-02 Eilaz Babaev Nozzle for ultrasound wound treatment
WO2002055131A3 (en) * 2000-11-01 2003-01-23 Advanced Medical Applic Inc Method and device for ultrasound drug delivery
WO2002055131A2 (en) * 2000-11-01 2002-07-18 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6601581B1 (en) * 2000-11-01 2003-08-05 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6533803B2 (en) 2000-12-22 2003-03-18 Advanced Medical Applications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US6761729B2 (en) 2000-12-22 2004-07-13 Advanced Medicalapplications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US20040186384A1 (en) * 2001-01-12 2004-09-23 Eilaz Babaev Ultrasonic method and device for wound treatment
US7914470B2 (en) 2001-01-12 2011-03-29 Celleration, Inc. Ultrasonic method and device for wound treatment
US20110230795A1 (en) * 2001-01-12 2011-09-22 Eilaz Babaev Ultrasonic method and device for wound treatment
US20030236560A1 (en) * 2001-01-12 2003-12-25 Eilaz Babaev Ultrasonic method and device for wound treatment
US6569099B1 (en) 2001-01-12 2003-05-27 Eilaz Babaev Ultrasonic method and device for wound treatment
US8235919B2 (en) 2001-01-12 2012-08-07 Celleration, Inc. Ultrasonic method and device for wound treatment
US20060058710A1 (en) * 2001-01-30 2006-03-16 Eilaz Babaev Ultrasound wound treatment method and device using standing waves
US6960173B2 (en) 2001-01-30 2005-11-01 Eilaz Babaev Ultrasound wound treatment method and device using standing waves
US6601777B2 (en) * 2001-01-30 2003-08-05 Msp Corporation Suspended particle container for an atomizer
US20020103448A1 (en) * 2001-01-30 2002-08-01 Eilaz Babaev Ultrasound wound treatment method and device using standing waves
US8544462B2 (en) 2001-03-15 2013-10-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Systems and methods for aerosol delivery of agents
US8196573B2 (en) 2001-03-20 2012-06-12 Novartis Ag Methods and systems for operating an aerosol generator
US7195011B2 (en) 2001-03-20 2007-03-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US20080142002A1 (en) * 2001-03-20 2008-06-19 Aerogen, Inc. Methods and Systems for Operating an Aerosol Generator
US20040256488A1 (en) * 2001-03-20 2004-12-23 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US6623444B2 (en) 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US6663554B2 (en) 2001-04-23 2003-12-16 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US7104463B2 (en) 2001-05-02 2006-09-12 Aerogen, Inc. Base isolated nebulizing device and methods
US6978941B2 (en) 2001-05-02 2005-12-27 Aerogen, Inc. Base isolated nebulizing device and methods
US20040188534A1 (en) * 2001-05-02 2004-09-30 Aerogen, Inc. Base isolated nebulizing device and methods
US6705312B2 (en) * 2001-09-28 2004-03-16 Omron Corporation Inhalator attachment and nebulizer equipped with same
US20030062038A1 (en) * 2001-09-28 2003-04-03 Omron Corporation Inhalator attachment and nebulizer equipped with same
US20030150445A1 (en) * 2001-11-01 2003-08-14 Aerogen, Inc. Apparatus and methods for delivery of medicament to a respiratory system
US7600511B2 (en) * 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US20050199236A1 (en) * 2002-01-07 2005-09-15 Aerogen, Inc. Methods and devices for aerosolizing medicament
US20050205089A1 (en) * 2002-01-07 2005-09-22 Aerogen, Inc. Methods and devices for aerosolizing medicament
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US8539944B2 (en) 2002-01-07 2013-09-24 Novartis Ag Devices and methods for nebulizing fluids for inhalation
US7655420B2 (en) 2002-03-01 2010-02-02 Celltech R & D, Inc. Methods to increase or decrease bone density
US8227441B2 (en) 2002-03-01 2012-07-24 Celltech R & D, Inc. Methods to increase or decrease bone density
EP2277522A2 (en) 2002-03-01 2011-01-26 UCB Manufacturing, Inc. Methods for increasing or decreasing bone density and identifying molecules
US20080227138A1 (en) * 2002-03-01 2008-09-18 Celltech R & D, Inc. Methods to Increase or Decrease Bone Density
EP1509259A4 (en) * 2002-05-20 2007-03-28 Aerogen Inc Apparatus for providing aerosol for medical treatment and methods
US20050178847A1 (en) * 2002-05-20 2005-08-18 Aerogen, Inc. Methods of making an apparatus for providing aerosol for medical treatment
US7771642B2 (en) 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
EP1509259A2 (en) * 2002-05-20 2005-03-02 AeroGen, Inc. Apparatus for providing aerosol for medical treatment and methods
US20030226633A1 (en) * 2002-06-11 2003-12-11 Fujitsu Limited Method and apparatus for fabricating bonded substrate
US20070202045A1 (en) * 2002-06-28 2007-08-30 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US20040001827A1 (en) * 2002-06-28 2004-01-01 Dennis Mark S. Serum albumin binding peptides for tumor targeting
US20050287153A1 (en) * 2002-06-28 2005-12-29 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US20100104588A1 (en) * 2002-06-28 2010-04-29 Dennis Mark S Serum albumin binding peptides for tumor targeting
EP2011489A2 (en) 2002-07-09 2009-01-07 Roberta Gottlieb Method to inhibit ischemia and reperfusion injury
US20060019891A1 (en) * 2002-11-14 2006-01-26 Jay Edelberg Protection of cardiac myocardium
US7504379B2 (en) 2002-11-14 2009-03-17 Cornell Research Foundation, Inc. Protection of cardiac myocardium
EP2258724A1 (en) 2002-11-21 2010-12-08 Celltech R & D, Inc. Modulating immune responses using multimerized anti-CD83 antibodies
US6854661B2 (en) * 2002-12-18 2005-02-15 Multi Media Electronics, Inc. Misting fogger
US20040124258A1 (en) * 2002-12-18 2004-07-01 Monitto Perry H. Misting fogger
US6854718B1 (en) * 2003-01-30 2005-02-15 Hwang Sun Enterprise Co., Ltd. Vaporizer
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US20050011514A1 (en) * 2003-07-18 2005-01-20 Aerogen, Inc. Nebuliser for the production of aerosolized medication
EP1646276B1 (en) * 2003-07-18 2020-06-03 Novartis AG A nebuliser for the production of aerosolized medication
US7767150B1 (en) * 2003-08-06 2010-08-03 Solomon Zaromb Aerosol collection apparatus and methods
US20050053612A1 (en) * 2003-08-20 2005-03-10 Granstein Richard D. Nucleotide regulation of immune responses
US20060217359A1 (en) * 2003-09-05 2006-09-28 Paul Wentworth Therapeutic procedures
US20050085557A1 (en) * 2003-09-05 2005-04-21 Paul Wentworth Therapeutic procedures
US20050085556A1 (en) * 2003-09-05 2005-04-21 Paul Wentworth Detection of cholesterol ozonation products
US20060210554A1 (en) * 2003-09-05 2006-09-21 Paul Wentworth Detection of cholesterol ozonation products
US7608440B2 (en) * 2003-09-08 2009-10-27 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Apparatus for ultrasonic microbial disruption
US20060252141A1 (en) * 2003-09-08 2006-11-09 Coakley William T Apparatus for ultrasonic microbial disruption
US20050067511A1 (en) * 2003-09-25 2005-03-31 Deka Products Limited Partnership System and method for aerosol delivery
US20090213373A1 (en) * 2003-09-25 2009-08-27 Deka Products Limited Partnership Detection System and Method for Aerosol Delivery
US8687191B2 (en) 2003-09-25 2014-04-01 Deka Products Limited Partnership Detection system and method for aerosol delivery
US7021560B2 (en) * 2003-09-25 2006-04-04 Deka Products Limited Partnership System and method for aerosol delivery
US20110079220A1 (en) * 2003-09-25 2011-04-07 Deka Products Limited Partnership Detection System and Method for Aerosol Delivery
US20060227612A1 (en) * 2003-10-08 2006-10-12 Ebrahim Abedifard Common wordline flash array architecture
US20080032918A1 (en) * 2003-10-17 2008-02-07 Cornell Research Foundation, Inc. Mast cell-derived renin
US20090081274A1 (en) * 2003-10-17 2009-03-26 Cornell Research Foundation, Inc. Mast cell-derived renin
US20050209141A1 (en) * 2003-10-17 2005-09-22 Silver Randi B Mast cell-derived renin
US7914517B2 (en) 2003-10-31 2011-03-29 Trudell Medical International System and method for manipulating a catheter for delivering a substance to a body cavity
US7164008B2 (en) 2003-11-17 2007-01-16 University Of Iowa Research Foundation Isolated complexes of endotoxin and MD-2
US20050106179A1 (en) * 2003-11-17 2005-05-19 Weiss Jerrold P. Isolated complexes of endotoxin and MD-2
US7677915B2 (en) * 2003-12-29 2010-03-16 Areva T&D Sa Electrical contact element for medium or high voltage electrical equipment, and corresponding, method and equipment
US20070111590A1 (en) * 2003-12-29 2007-05-17 Areva T&D Sa Electrical contact element for medium or high voltage electrical equipment, and corresponding, and corresponding method and equipment
US20070059769A1 (en) * 2004-03-05 2007-03-15 Ola Blixt High throughput glycan microarrays
US20110203580A1 (en) * 2004-04-02 2011-08-25 The Government of the U.S.A as represented by the Secretary of the Department Aerosol delivery systems and methods
US8656908B2 (en) 2004-04-02 2014-02-25 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Aerosol delivery systems and methods
US20090223513A1 (en) * 2004-04-02 2009-09-10 Mark J Papania Aerosol delivery systems and methods
US7954486B2 (en) 2004-04-02 2011-06-07 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Aerosol delivery systems and methods
AU2010226896B2 (en) * 2004-04-02 2011-10-06 Creare Incorporated Aerosol delivery systems and methods
EP2258428A1 (en) * 2004-04-02 2010-12-08 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Aerosol delivery systems
GB2412876A (en) * 2004-04-08 2005-10-12 Gasflow Services Ltd Nicotine inhaler with airflow regulator
US7201167B2 (en) 2004-04-20 2007-04-10 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US20050229928A1 (en) * 2004-04-20 2005-10-20 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7267121B2 (en) 2004-04-20 2007-09-11 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7290541B2 (en) 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US20050229926A1 (en) * 2004-04-20 2005-10-20 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US20080017198A1 (en) * 2004-04-20 2008-01-24 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
EP2335727A2 (en) 2004-07-16 2011-06-22 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
EP2322217A2 (en) 2004-07-16 2011-05-18 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
EP2322215A2 (en) 2004-07-16 2011-05-18 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
EP2096118A1 (en) 2004-08-18 2009-09-02 Novabiotics Limited Antifungal peptides
EP3141559A1 (en) 2004-08-18 2017-03-15 Novabiotics Limited Antimicrobial peptides
EP1927597A1 (en) 2004-08-18 2008-06-04 Novabiotics Limited Antibacterial peptides
EP3147293A1 (en) 2004-08-18 2017-03-29 Novabiotics Limited Antimicrobial peptides
US20060073152A1 (en) * 2004-10-05 2006-04-06 Genentech, Inc. Therapeutic agents with decreased toxicity
US20090123376A1 (en) * 2004-10-05 2009-05-14 Dennis Mark S Therapeutic agents with decreased toxicity
US20080019968A1 (en) * 2004-11-19 2008-01-24 The Scripps Reasearch Institute Detection, prevention and treatment of breast cancer
US8691772B2 (en) 2005-01-04 2014-04-08 Yeda Research And Development Co. Ltd. HSP60, HSP60 peptides and T cell vaccines for immunomodulation
US7413729B2 (en) 2005-01-13 2008-08-19 University Of Iowa Research Foundation Sialic acid permease system
US20060257961A1 (en) * 2005-01-13 2006-11-16 Apicella Michael A Sialic acid permease system
US20060194740A1 (en) * 2005-02-25 2006-08-31 Ulevitch Richard J NOD1 as an anti-tumor agent
US20090028795A1 (en) * 2005-02-25 2009-01-29 Ulevitch Richard J NOD1 as an Anti-Tumor Agent
US20100294269A1 (en) * 2005-03-09 2010-11-25 Koninklijke Philips Electronics N.V. Nebulizing drug delivery device with an increased flow rate
US7934703B2 (en) * 2005-03-11 2011-05-03 Akira Tomono Mist generator and mist emission rendering apparatus
US20080223953A1 (en) * 2005-03-11 2008-09-18 Akira Tomono Mist Generator and Mist Emission Rendering Apparatus
US7686285B2 (en) 2005-03-23 2010-03-30 Barnstead Thermolyne Corporation Environmental chamber and ultrasonic nebulizer assembly therefor
US20060213508A1 (en) * 2005-03-23 2006-09-28 Barnstead/Thermolyne Corporation Environmental chamber and ultrasonic nebulizer assembly therefor
US20090068207A1 (en) * 2005-04-15 2009-03-12 Vascular Biogenics Ltd. Compositions Containing Beta 2-Glycoprotein I-Derived Peptides for the Prevention and/or Treatment of Vascular Disease
US7219880B2 (en) * 2005-04-26 2007-05-22 Chuan-Pan Huang Safety protection device and control circuit for instantaneous atomization device
US20060237860A1 (en) * 2005-04-26 2006-10-26 Chuan-Pan Huang Safety protection device and control circuit for instantaneous atomization device
US20110177996A1 (en) * 2005-05-23 2011-07-21 Children's Hospital Medical Center Regulatory proteins in lung repair and treatment of lung disease
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods
US20090134235A1 (en) * 2005-05-25 2009-05-28 Aerogen, Inc. Vibration Systems and Methods
US20070088245A1 (en) * 2005-06-23 2007-04-19 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US7713218B2 (en) 2005-06-23 2010-05-11 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US20070016110A1 (en) * 2005-06-23 2007-01-18 Eilaz Babaev Removable applicator nozzle for ultrasound wound therapy device
US7785277B2 (en) 2005-06-23 2010-08-31 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US20080054091A1 (en) * 2005-08-04 2008-03-06 Bacoustics Llc Ultrasonic atomization and/or seperation system
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US9101949B2 (en) 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
US7896539B2 (en) 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
US20070051307A1 (en) * 2005-08-16 2007-03-08 Babaev Eilaz P Ultrasound apparatus and methods for mixing liquids and coating stents
US9551996B2 (en) 2005-08-26 2017-01-24 Paul Baumgartner Aerosol extraction apparatus
US9789508B2 (en) 2005-08-26 2017-10-17 Paul Baumgartner Aerosol Extraction Apparatus
US20070044792A1 (en) * 2005-08-30 2007-03-01 Aerogen, Inc. Aerosol generators with enhanced corrosion resistance
US20080245362A1 (en) * 2005-09-06 2008-10-09 George Moessis Nebuliser
WO2007028203A1 (en) * 2005-09-06 2007-03-15 Intelligent Medical Technologies Pty Limited Nebuliser
WO2007090247A1 (en) * 2006-02-10 2007-08-16 Intelligent Medical Technologies Pty Limited Nebuliser
US8088396B2 (en) 2006-03-01 2012-01-03 University Of Iowa Research Foundation Isolated complexes of endotoxin and modified MD-2
US20090110692A1 (en) * 2006-03-01 2009-04-30 Weiss Jerrold P Isolated complexes of endotoxin and modified md-2
US8609029B2 (en) 2006-03-22 2013-12-17 Zimek Technologies Ip, Llc Ultrasonic sanitation and disinfecting device and associated methods
US20110030743A1 (en) * 2006-03-22 2011-02-10 Zimek Technologies Ip, Llc Ultrasonic sanitation and disinfecting device and associated methods
US7959859B2 (en) * 2006-03-22 2011-06-14 Sparks David W Ultrasonic sanitation device and associated methods
US20070224080A1 (en) * 2006-03-22 2007-09-27 Zimek Technologies Ip, Llc Ultrasonic Sanitation Device and Associated Methods
US8062588B2 (en) 2006-03-22 2011-11-22 Zimek Technologies Ip, Llc Ultrasonic sanitation device and associated methods
US7779831B1 (en) * 2006-04-20 2010-08-24 Ric Investments, Llc Ultrasonic nebulizer with metal coated ultrasonic generator
US20100313883A1 (en) * 2006-04-20 2010-12-16 Koninklijke Philips Electronics N.V. Ultrasonic bebulilzer with metal coated ultrasonic genrator
US8353287B1 (en) * 2006-04-20 2013-01-15 Ric Investments, Llc Disposable drug solution cup for an ultrasonic nebulizer
US7909033B2 (en) 2006-05-03 2011-03-22 Comedica Incorporated Breathing treatment apparatus
US20070265170A1 (en) * 2006-05-15 2007-11-15 Ola Blixt Detection, prevention and treatment of ovarian cancer
US20080183109A1 (en) * 2006-06-07 2008-07-31 Bacoustics Llc Method for debriding wounds
US8562547B2 (en) 2006-06-07 2013-10-22 Eliaz Babaev Method for debriding wounds
US7785278B2 (en) 2006-06-07 2010-08-31 Bacoustics, Llc Apparatus and methods for debridement with ultrasound energy
US7431704B2 (en) 2006-06-07 2008-10-07 Bacoustics, Llc Apparatus and method for the treatment of tissue with ultrasound energy by direct contact
US20080183200A1 (en) * 2006-06-07 2008-07-31 Bacoustics Llc Method of selective and contained ultrasound debridement
US20080051693A1 (en) * 2006-08-25 2008-02-28 Bacoustics Llc Portable Ultrasound Device for the Treatment of Wounds
US7878991B2 (en) 2006-08-25 2011-02-01 Bacoustics, Llc Portable ultrasound device for the treatment of wounds
US20080066754A1 (en) * 2006-09-15 2008-03-20 Faram Joseph D Continuous high-frequency oscillation breathing treatment apparatus
US8051854B2 (en) 2006-09-15 2011-11-08 Comedica Incorporated Continuous high-frequency oscillation breathing treatment apparatus
US8137682B2 (en) 2006-09-20 2012-03-20 University Of Iowa Research Foundation Isolated complexes of covalently cross-linked endotoxin and modified MD-2
US20080125365A1 (en) * 2006-09-20 2008-05-29 University Of Iowa Research Foundation Isolated complexes of covalently cross-linked endotoxin and modified md-2
US20080142616A1 (en) * 2006-12-15 2008-06-19 Bacoustics Llc Method of Producing a Directed Spray
US20080177221A1 (en) * 2006-12-22 2008-07-24 Celleration, Inc. Apparatus to prevent applicator re-use
US8491521B2 (en) 2007-01-04 2013-07-23 Celleration, Inc. Removable multi-channel applicator nozzle
US20080214965A1 (en) * 2007-01-04 2008-09-04 Celleration, Inc. Removable multi-channel applicator nozzle
US20090043248A1 (en) * 2007-01-04 2009-02-12 Celleration, Inc. Removable multi-channel applicator nozzle
US20080283051A1 (en) * 2007-05-18 2008-11-20 Joseph Dee Faram Lung therapy device
US9050434B2 (en) 2007-05-18 2015-06-09 Comedica Incorporated Lung therapy device
WO2008149334A2 (en) * 2007-06-04 2008-12-11 Shira Inc-P.D. Ltd. Nebulizer and driver circuity therefor particularly useful for converting liquids to fine sprays at extremely low rates
WO2008149334A3 (en) * 2007-06-04 2010-02-25 Shira Inc-P.D. Ltd. Nebulizer and driver circuity therefor particularly useful for converting liquids to fine sprays at extremely low rates
US7780095B2 (en) 2007-07-13 2010-08-24 Bacoustics, Llc Ultrasound pumping apparatus
US20090014550A1 (en) * 2007-07-13 2009-01-15 Bacoustics Llc Echoing ultrasound atomization and/or mixing system
US7753285B2 (en) 2007-07-13 2010-07-13 Bacoustics, Llc Echoing ultrasound atomization and/or mixing system
US20090014551A1 (en) * 2007-07-13 2009-01-15 Bacoustics Llc Ultrasound pumping apparatus
US20100187328A1 (en) * 2007-07-24 2010-07-29 Yoshimitsu Konishi Portable ultrasonic mist generating device
US20090177123A1 (en) * 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory disorders
US20090177122A1 (en) * 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory skin disorders
US20110112079A1 (en) * 2008-01-09 2011-05-12 Thomas Craig J Phosphodiesterase inhibitors
US20090318545A1 (en) * 2008-06-09 2009-12-24 Cornell Reasearch Foundation, Inc. Mast cell inhibition in diseases of the retina and vitreous
US10517839B2 (en) 2008-06-09 2019-12-31 Cornell University Mast cell inhibition in diseases of the retina and vitreous
US8348177B2 (en) 2008-06-17 2013-01-08 Davicon Corporation Liquid dispensing apparatus using a passive liquid metering method
US20090308945A1 (en) * 2008-06-17 2009-12-17 Jacob Loverich Liquid dispensing apparatus using a passive liquid metering method
US20100022919A1 (en) * 2008-07-22 2010-01-28 Celleration, Inc. Methods of Skin Grafting Using Ultrasound
US20100104555A1 (en) * 2008-10-24 2010-04-29 The Scripps Research Institute HCV neutralizing epitopes
WO2010047829A1 (en) 2008-10-24 2010-04-29 The Scripps Research Institute Mutant hepatitis c virus e2 polypeptides for hcv treatment
US9717867B2 (en) 2009-02-27 2017-08-01 Pari GmbH Spezialisten für effektive Inhalation Method for operating an aerosol inhalation device and aerosol inhalation device
US20110079616A1 (en) * 2009-10-05 2011-04-07 Holmes Charles R Apparatus And Method Of Dispensing An Attractant Or Scent Blocker
US20110100364A1 (en) * 2009-11-02 2011-05-05 Joseph Dee Faram Multiple conduit connector apparatus and method
US9151425B2 (en) 2009-11-02 2015-10-06 Comedica Incorporated Multiple conduit connector apparatus and method
US20110100360A1 (en) * 2009-11-02 2011-05-05 Joseph Dee Faram Composite lung therapy device and method
EP3479824A2 (en) 2010-03-31 2019-05-08 Novabiotics Limited Peptides and their use
WO2011121289A2 (en) 2010-03-31 2011-10-06 Novabiotics Limited Compounds and their use
EP3578193A2 (en) 2010-03-31 2019-12-11 Novabiotics Limited Peptides and their use
US20130112197A1 (en) * 2010-04-26 2013-05-09 Pari Pharma Gmbh Operating method for an aerosol delivery device and aerosol delivery device
WO2012076842A1 (en) 2010-12-09 2012-06-14 University Of Durham Synthetic retinoids for control of cell differentiation
US10195633B2 (en) 2011-05-16 2019-02-05 The Technology Partnership Plc Separable membrane improvements
WO2012156724A2 (en) 2011-05-16 2012-11-22 The Technology Partnership Plc Separable membrane improvements
US8980951B2 (en) 2011-07-21 2015-03-17 Kansas State University Research Foundation Sesquiterpenes for antifungal applications
US9752790B2 (en) * 2012-09-21 2017-09-05 Great Innovations, LLC Convertible humidifier
US9863654B2 (en) * 2012-09-21 2018-01-09 Great Innovations, LLC Convertible dual tank humidifier
US20140084495A1 (en) * 2012-09-21 2014-03-27 Great Innovations, LLC Convertible humidifier
US20160153672A1 (en) * 2012-09-21 2016-06-02 Great Innovations, LLC Convertible dual tank humidifier
US9795752B2 (en) 2012-12-03 2017-10-24 Mhs Care-Innovation, Llc Combination respiratory therapy device, system, and method
US10814082B2 (en) 2012-12-03 2020-10-27 Mhs Care-Innovation, Llc Combination respiratory therapy device, system and method
US9814847B2 (en) * 2013-01-09 2017-11-14 Omron Healthcare Co., Ltd. Drug solution tank and drug solution pack for ultrasonic inhaler
US20150265786A1 (en) * 2013-01-09 2015-09-24 Omron Healthcare Co., Ltd. Drug solution tank and drug solution pack for ultrasonic inhaler
US10195634B2 (en) 2013-07-09 2019-02-05 The Technology Partnership Plc Separable membrane improvements
US11090676B2 (en) 2013-07-09 2021-08-17 The Technology Partnership Plc Separable membrane improvements
US11331520B2 (en) 2013-11-26 2022-05-17 Sanuwave Health, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
US11224767B2 (en) 2013-11-26 2022-01-18 Sanuwave Health, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
US10478571B2 (en) * 2014-01-30 2019-11-19 Dualams, Inc. Delivery apparatus and accompanying system for the application of a medical agent to a treatment site and method for use of same
US11400239B2 (en) 2014-01-30 2022-08-02 Dualams, Inc. Delivery apparatus and accompanying system for the application of a medical agent to a treatment site and method for use of same
US10478570B2 (en) * 2014-01-30 2019-11-19 Dualams, Inc. Medication delivery apparatus and accompanying system for the application of local anesthetics to a treatment site and method for use of same
US20150209545A1 (en) * 2014-01-30 2015-07-30 Dualams, LLC Delivery Apparatus and Accompanying System for the Application of a Medical Agent to a Treatment Site and Method for Use of Same
US20150224271A1 (en) * 2014-02-11 2015-08-13 Lloyd Courtney Material recovery and capture device for atomized material delivery apparatuses
US9480805B2 (en) * 2014-02-11 2016-11-01 Lloyd Courtney Material recovery and capture device for atomized material delivery apparatuses
US10328223B2 (en) 2014-02-11 2019-06-25 Lloyd Courtney Material recovery and capture device for atomized material delivery apparatuses
US10905836B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Manifold for respiratory device
US10905837B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Respiratory therapy cycle control and feedback
US10631573B2 (en) * 2015-06-19 2020-04-28 Changzhou Jwei Intelligent Technology Co., Ltd. Atomizer and aerosol generating device using the same
US10292433B2 (en) * 2015-06-19 2019-05-21 Changzhou Jwei Intelligent Technology Co., Ltd. Atomizer and aerosol generating device using same
US20180064172A1 (en) * 2015-06-19 2018-03-08 Changzhou Jwei Intelligent Technology Co., Ltd. Atomizer and aerosol generating device using the same
WO2017006091A1 (en) 2015-07-03 2017-01-12 The Technology Partnership Plc Aerosol apparatus with improved separable membrane
WO2018009825A1 (en) 2016-07-08 2018-01-11 The Scripps Research Institute Desensitizing mast cells by co-presentation of antigens with high affinity mast cell siglec ligands
US10322431B1 (en) 2016-10-06 2019-06-18 Ricciardi Jonathan J Stratification detection and aerosol distribution system
US10029274B1 (en) 2016-10-06 2018-07-24 Paul Baumgartner Stratification detection and aerosol distribution system
US10213803B1 (en) 2016-10-06 2019-02-26 Paul Baumgartner Destratification aerosol generator
US10195632B1 (en) 2016-10-06 2019-02-05 Paul Baumgartner Stratification detection and aerosol distribution system
JP2020503951A (en) * 2017-01-09 2020-02-06 ユナイテッド セラピューティクス コーポレイション Aerosol delivery device and method for its manufacture and operation
US11376380B2 (en) 2017-01-09 2022-07-05 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
CN110446514A (en) * 2017-01-09 2019-11-12 联合治疗学有限公司 Aerosol delivery device and its manufacture and operating method
US20180193869A1 (en) * 2017-01-09 2018-07-12 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
US10799653B2 (en) * 2017-01-09 2020-10-13 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
WO2018128629A1 (en) * 2017-01-09 2018-07-12 United Therapeutics Corporation Aerosol delivery device and method for manufacturing and operating the same
CN110446514B (en) * 2017-01-09 2022-04-05 联合治疗学有限公司 Aerosol delivery device and methods of making and operating same
US20180326445A1 (en) * 2017-05-11 2018-11-15 Zhijing Wang Ultrasonic humidifier with a central atomizing tube
US20190054260A1 (en) * 2017-08-17 2019-02-21 Monzano Group LLC Nebulizer devices and methods
US20210268209A1 (en) * 2018-07-24 2021-09-02 Monash University Nebulizer
US20200078541A1 (en) * 2018-09-10 2020-03-12 Airganics, LLC. Aerosolizer docking station and individual aerosolization pod for interchangeable use therein
US20210379611A1 (en) * 2018-11-08 2021-12-09 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
US11504727B2 (en) * 2018-11-08 2022-11-22 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
TWI674909B (en) * 2018-11-29 2019-10-21 財團法人金屬工業研究發展中心 Drug delivery device
WO2021086958A1 (en) 2019-10-28 2021-05-06 The Scripps Research Institute Immune cell receptor antibodies conjugated to high affinity siglec-ligands

Similar Documents

Publication Publication Date Title
US3561444A (en) Ultrasonic drug nebulizer
US3861386A (en) Ultrasonic nebulizer
US3387607A (en) Apparatus for inhalation therapy
US11806478B2 (en) Supplemental oxygen delivery system
US4119096A (en) Medical inhalation device for the treatment of diseases of the respiratory tract
US3291122A (en) Respirator with nebulizer
US6748944B1 (en) Ultrasonic dosage device and method
US3469785A (en) High frequency ultrasonic fog generator and method
US7261102B2 (en) Breath-enhanced ultrasonic nebulizer and dedicated unit dose ampoule
FI82808B (en) ULTRALJUDFINFOERDELNINGSANORDNING.
US3812854A (en) Ultrasonic nebulizer
US3690317A (en) Sonic nebulizer
US8616195B2 (en) Nebuliser for the production of aerosolized medication
US4993411A (en) Ultrasonic oxygen humidifier
US5490630A (en) Hand-held aerosol dispenser for therapeutic liquids
JPS6082164A (en) Ultrasonic wave atomizer
CN2137964Y (en) Inhaler with atomized ions
CN113145375A (en) Ultrasonic electrostatic spraying device
SU1597195A1 (en) Inhaler
WO2023108316A1 (en) Portable precise visual atomization delivery device based on surface acoustic wave technology
SU1666119A1 (en) Inhaler
RU2195325C2 (en) Device for generation of phytoaeroions
CN2070632U (en) Medical atomizer
SU1731232A1 (en) Inhaler
RU2173564C2 (en) Device for producing ionized medical preparation aerosol flow