US3573394A - Piezoelectric microphone with biasing means - Google Patents

Piezoelectric microphone with biasing means Download PDF

Info

Publication number
US3573394A
US3573394A US667736A US3573394DA US3573394A US 3573394 A US3573394 A US 3573394A US 667736 A US667736 A US 667736A US 3573394D A US3573394D A US 3573394DA US 3573394 A US3573394 A US 3573394A
Authority
US
United States
Prior art keywords
disc
microphone
ring
crystal
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US667736A
Inventor
William S Birnbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IND SCIENT RESEARCH CORP
INDUSTRIAL SCIENTIFIC RESEARCH CORP
Original Assignee
IND SCIENT RESEARCH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IND SCIENT RESEARCH CORP filed Critical IND SCIENT RESEARCH CORP
Application granted granted Critical
Publication of US3573394A publication Critical patent/US3573394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope

Definitions

  • a cardio-microphone comprising a piezoelectric crystal disc, mounted on a knife edge on a supporting ring, and embedded in a generally disc-shaped silicone rubber housing that has a dome on one side surrounded by an annular seating surface to be seated against the body of a patient.
  • the dome projects beyond the seating surface, and, when it and the annular seating surface engage the body of the patient, the crystal disc on the inside receives center pressure which forces it into a dished shape and thereby provides it with a preliminary bias.
  • This invention relates generally to crystal microphones, particularly of a type adapted to use as an improved cardiomicrophone.
  • Objects of the invention include the provision of a small, light, rugged, crystal microphone, of low profile, easily attached to the body, with a frequency response of for example 1 c.p.s. to 1,000 c.p.s., and with no measurable noise characteristics in typical phono-cardiography, vibro-cardiography, pulse pickup and carotoid pulse pickup applications.
  • a feature of the microphone is that the body or application" side of this disc has a peripheral annulus, inside of which is a depression; and rising from the plane of this depression is a dome whose center normally projects outside the peripheral annulus by a dimension of the order of 0.150 inch.
  • this dome engages the body surface first, and is depressed slightly as the microphone is pressed down tight. The dome is thus deflected, as is the crystal.
  • the crystal When the microphone is pressed down into operative position, the crystal is prestressed, or biased, and operates from this position as a mean. In other words, the crystal vibrates on one side and then the other of the bias position described.
  • the device thus has the obvious advantage of avoidance of passing through a neutral or relaxed center position.
  • FIG. 1 is a perspective view of a microphone in accordance with the invention
  • FIG. 2 is a transverse section taken on line 2-2 of FIG. 1;
  • FIG. 3 is a view taken on line 3-3 of FIG. 2, showing the microphone applied to the body of a patient;
  • FIG. 4 is an enlarged detail of the area shown within the circular arrow 4 in FIG. 3.
  • the drawings show the microphone enlarged about three times.
  • the crystal designated at 10, is disc-shaped, and made up of two thin disc-shaped piezoelectric crystals 11 and 12, in a common bimorphic structure.
  • the crystal is mounted on the peripheral sharp or knife edge 13 of a rigid mounting ring 14, which engages one side of the crystal at a small spacing distance from the periphery of the crystal. The crystal will then deflect when a force is applied to its center, i.e., inside the ring.
  • the knife edge mounting assures minimum resistance to vibration of the crystal in the normal mode.
  • a low noise characteristic is aided through use of a coaxial cable incorporating a conductive dust in the shield. It is important that the shield be connected to the body side of the crystal to further reduce noise, since the body acts as an antenna. It is significant that no measurable noise can be attributed to the presently designed sensor in typical phono-cardiography, vibro'cardiography, pulse pickup and carotid pulse pickup applications.
  • the crystal assembly as thus described is finally encapsulated in a disclike cover or housing 24 composed preferably of silicone rubber.
  • a disclike cover or housing 24 composed preferably of silicone rubber.
  • the crystal assembly is coated with a primer" according to known practice.
  • the silicone cover or housing 24 is then molded on, and adheres quite strongly so that moisture cannot effect operation.
  • the silicone rubber is preferably somewhat soft, e.g., something of the order of, or a little harder than, the rubber erasing tip on a lead pencil.
  • This housing may be flat on one side, as at 25, while the other side is characterized by a flat peripheral annulus 26, parallel to the plane of the disc 10, and by a relatively flat dome or promontory 28 inside thereof which projects, in the center, slightly above or beyond the plane of the annulus 26.
  • the projection distance may be, e.g., 0.015 inch in the actual sized device.
  • the annulus 26 is at the top of an annular shoulder 30, which rises from a depressed annular surface 31 also parallel to the plane of the disc 10, and the aforementioned dome 28 rises from the inner margin of this depressed surface 31.
  • a metallic ring 34 is set into the annulus 26 in a flush position, and a double-coated adhesive ring 36 is applied to this ring and to the body, as in FIG. 3.
  • the dome 28 is thereby flattened and compressed, and exerts pressure on the center of the crystal disc causing it to be stressed and to assume a slightly disced form and position.
  • the crystal is thus biased to this stress and shape when the microphone is attached to the body, and vibrates on its knife edge support in one direction and then the other about this bias position. A more stable vibration, and corresponding output, is obtained in this way than if the crystal were to vibrate from a relaxed or unstressed neutral position.
  • the metallic ring 34 also has the beneficial effect of adding rigidity to the assembly, so that nonelectrical noise arising from such sources as body movement are minimized.
  • a microphone comprising:
  • a substantially rigid annular ring having an annular knifeedge at one end thereof facing in a direction parallel to the axis of said ring, said knife-edge engaging one face of said crystal disc adjacent its periphery;
  • a flexible rubber body having said disc and ring completely embedded therein, said rubber body having an outer surface, outwardly of said one face of said disc adapted to engage a patients body and transmit vibrations therefrom to said disc.
  • a microphone as defined in claim 3 including a metal ring having a surface flush with said annular surface portion.

Abstract

A cardio-microphone comprising a piezoelectric crystal disc, mounted on a knife edge on a supporting ring, and embedded in a generally disc-shaped silicone rubber housing that has a dome on one side surrounded by an annular seating surface to be seated against the body of a patient. The dome projects beyond the seating surface, and, when it and the annular seating surface engage the body of the patient, the crystal disc on the inside receives center pressure which forces it into a dished shape and thereby provides it with a preliminary bias.

Description

United States Patent 1111 3,573,394
[72] Inventor William S. Bimbaum 3,453,458 7/1969 Curran et a1 310/86 Fullerton, Calif. 3,130,275 4/1964 Hagey 179/1 (X) [21] AppLNo. 667,736 3,222,462 12/1965 Karmann et a1. 3l0/9.1(X)
[22] Filed Sept. 14,1967 3,295,515 l/1967 Kahn 128/206 Patented Apr-6,1971 FOREIGN PATENTS [731 Assign 'f Resea'ch 1,343,675 10/1962 France 179/1 Anaheim, Calif.
PIEZOELECTRIC MICROPHONE WITH BIASING MEANS 6 Claims, 4 Drawing Figs.
11.8. CI l28/2.05, 3 10/91 Int. Cl H04r 17/02 Field ofSearch 179/110.1; 310/87, 8.6, 8.3, 9.1; 340/10; 128/206, 418; 128/205 References Cited UNITED STATES PATENTS 2/1961 Howry et a1. 3l0/8.7
Primary Examiner -Kathleen H. Claffy Assistant Examiner-Thomas L. Kundert Att0rney- Forrest J. Lilly ABSTRACT: A cardio-microphone comprising a piezoelectric crystal disc, mounted on a knife edge on a supporting ring, and embedded in a generally disc-shaped silicone rubber housing that has a dome on one side surrounded by an annular seating surface to be seated against the body of a patient. The dome projects beyond the seating surface, and, when it and the annular seating surface engage the body of the patient, the crystal disc on the inside receives center pressure which forces it into a dished shape and thereby provides it with a preliminary bias.
PIEZOELECTRIC MICROPHONE WITH BIASING MEANS This invention relates generally to crystal microphones, particularly of a type adapted to use as an improved cardiomicrophone.
Objects of the invention include the provision of a small, light, rugged, crystal microphone, of low profile, easily attached to the body, with a frequency response of for example 1 c.p.s. to 1,000 c.p.s., and with no measurable noise characteristics in typical phono-cardiography, vibro-cardiography, pulse pickup and carotoid pulse pickup applications.
The invention provides a bimorphic crystal disc, made up of two thin piezoelectric crystal discs in contact. This disc is engaged on one side, neat its periphery, by a sharp-edged mounting ring, the latter being connected to the crystal by a nonconductive epoxy, which also coats the edges of the crystal to reduce the possibility of lowered output impedance by a moisture induced leakage path over the edge. A coaxial cable has its conductive shield electrically connected to the body" side of the crystal, i.e., the side applied to the body of a patient, and its central conductor to the opposite side of the disc. This assembly is encapsulated in a silicone rubber disc. A feature of the microphone is that the body or application" side of this disc has a peripheral annulus, inside of which is a depression; and rising from the plane of this depression is a dome whose center normally projects outside the peripheral annulus by a dimension of the order of 0.150 inch. When the microphone is pressed down against the body of the patient, this dome engages the body surface first, and is depressed slightly as the microphone is pressed down tight. The dome is thus deflected, as is the crystal. When the microphone is pressed down into operative position, the crystal is prestressed, or biased, and operates from this position as a mean. In other words, the crystal vibrates on one side and then the other of the bias position described. The device thus has the obvious advantage of avoidance of passing through a neutral or relaxed center position.
The invention will be further understood from the following detailed description of a present illustrative embodiment thereof, reference being had to the accompanying drawings, in which:
FIG. 1 is a perspective view of a microphone in accordance with the invention;
FIG. 2 is a transverse section taken on line 2-2 of FIG. 1;
FIG. 3 is a view taken on line 3-3 of FIG. 2, showing the microphone applied to the body of a patient; and
FIG. 4 is an enlarged detail of the area shown within the circular arrow 4 in FIG. 3.
The drawings show the microphone enlarged about three times. The crystal, designated at 10, is disc-shaped, and made up of two thin disc-shaped piezoelectric crystals 11 and 12, in a common bimorphic structure. The crystal is mounted on the peripheral sharp or knife edge 13 of a rigid mounting ring 14, which engages one side of the crystal at a small spacing distance from the periphery of the crystal. The crystal will then deflect when a force is applied to its center, i.e., inside the ring. The knife edge mounting assures minimum resistance to vibration of the crystal in the normal mode.
The crystal disc is secured to the knife edge by a nonconductive epoxy adhesive, as at 17, and the periphery of the discs II and 12 are coated therewith to reduce possibility of lowered output impedance by a moisture induced leakage path over the edge.
Electrical connections are made to the two outer crystal faces by means of a coaxial cable 20, the metallic shield 2l being connected to that side of the crystal that is to face the body of the patient, while the center conductor 22 is connected to the opposite crystal face, as shown.
A low noise characteristic is aided through use of a coaxial cable incorporating a conductive dust in the shield. It is important that the shield be connected to the body side of the crystal to further reduce noise, since the body acts as an antenna. It is significant that no measurable noise can be attributed to the presently designed sensor in typical phono-cardiography, vibro'cardiography, pulse pickup and carotid pulse pickup applications.
The crystal assembly as thus described is finally encapsulated in a disclike cover or housing 24 composed preferably of silicone rubber. Preferably, prior to potting with the silicone rubber, the crystal assembly is coated with a primer" according to known practice.
The silicone cover or housing 24 is then molded on, and adheres quite strongly so that moisture cannot effect operation. The silicone rubber is preferably somewhat soft, e.g., something of the order of, or a little harder than, the rubber erasing tip on a lead pencil. This housing may be flat on one side, as at 25, while the other side is characterized by a flat peripheral annulus 26, parallel to the plane of the disc 10, and by a relatively flat dome or promontory 28 inside thereof which projects, in the center, slightly above or beyond the plane of the annulus 26. The projection distance may be, e.g., 0.015 inch in the actual sized device. In the embodiment here shown, the annulus 26 is at the top of an annular shoulder 30, which rises from a depressed annular surface 31 also parallel to the plane of the disc 10, and the aforementioned dome 28 rises from the inner margin of this depressed surface 31.
The silicone rubber housing 24 has molded on one of its edges a tapered and bored projection 32 which passes the coaxial cable.
To aid in securing the microphone to the body of the patient, a metallic ring 34 is set into the annulus 26 in a flush position, and a double-coated adhesive ring 36 is applied to this ring and to the body, as in FIG. 3. The dome 28 is thereby flattened and compressed, and exerts pressure on the center of the crystal disc causing it to be stressed and to assume a slightly disced form and position. The crystal is thus biased to this stress and shape when the microphone is attached to the body, and vibrates on its knife edge support in one direction and then the other about this bias position. A more stable vibration, and corresponding output, is obtained in this way than if the crystal were to vibrate from a relaxed or unstressed neutral position.
The metallic ring 34 also has the beneficial effect of adding rigidity to the assembly, so that nonelectrical noise arising from such sources as body movement are minimized.
A present illustrative embodiment of the invention has now been described, but it will be understood that the details of this embodiment are for illustrative purposes only, and that various changes in design, structure and arrangement may be made without departing-from the spirit and scope of the appended claims.
Iclaim:
l. A microphone comprising:
a generally circular, normally flat crystal disc;
a substantially rigid annular ring having an annular knifeedge at one end thereof facing in a direction parallel to the axis of said ring, said knife-edge engaging one face of said crystal disc adjacent its periphery;
cementitious material rigidly securing said ring to said disc to fixedly hold said knife-edge thereagainst; and
a flexible rubber body having said disc and ring completely embedded therein, said rubber body having an outer surface, outwardly of said one face of said disc adapted to engage a patients body and transmit vibrations therefrom to said disc.
2. A microphone as defined in claim 1 wherein said cementitious material extends outwardly from said ring to cover the outer face portion of said disc and the peripheral edge thereof.
3. A microphone as defined in claim 1 wherein said outer surface of said rubber body is shaped to define a projection substantially centrally of said disc whereby external pressure applied to said projection causes said disc to bow slightly, away therefrom.
4. A microphone as defined in claim 1 wherein said outer surface of said rubber body is provided with a flat annular surface portion, defining a plane substantially parallel to the plane of said disc, and surrounding said projection; said projection extending outwardly beyond the plane of said annular surface portion whereby said annular surface portion serves to engage a patients body and thereby limit the bowing of said CIISC.
portion.
6. A microphone as defined in claim 3 including a metal ring having a surface flush with said annular surface portion.

Claims (6)

1. A microphone comprising: a generally circular, normally flat crystal disc; a substantially rigid annular ring having an annular knife-edge at one end thereof facing in a direction parallel to the axis of said ring, said knife-edge engaging one face of said crystal disc adjacent its periphery; cementitious material rigidly securing said ring to said disc to fixedly hold said knife-edge thereagainst; and a flexible rubber body having said disc and ring completely embedded therein, said rubber body having an outer surface, outwardly of said one face of said disc adapted to engage a patient''s body and transmit vibrations therefrom to said disc.
2. A microphone as defined in claim 1 wherein said cementitious material extends outwardly from said ring to cover the outer face portion of said disc and the peripheral edge thereof.
3. A microphone as defined in claim 1 wherein said outer surface of said rubber body is shaped to define a projection substantially centrally of said disc whereby external pressure applied to said projection causes said disc to bow slightly, away therefrom.
4. A microphone as defined in claim 1 wherein said outer surface of said rubber body is provided with a flat annular surface portion, defining a plane substantially parallel to the plane of said disc, and surrounding said projection; said projection extending outwardly beyond the plane of said annular surface portion whereby said annular surface portion serves to engage a patient''s body and thereby limit the bowing of said disc.
5. A microphone as defined in claim 3 wherein the portion of said outer surface between said projection and said annular surface portion is nearer said disc than said annular surface portion.
6. A microphone as defined in claim 3 including a metal ring having a surface flush with said annular surface portion.
US667736A 1967-09-14 1967-09-14 Piezoelectric microphone with biasing means Expired - Lifetime US3573394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66773667A 1967-09-14 1967-09-14

Publications (1)

Publication Number Publication Date
US3573394A true US3573394A (en) 1971-04-06

Family

ID=24679418

Family Applications (1)

Application Number Title Priority Date Filing Date
US667736A Expired - Lifetime US3573394A (en) 1967-09-14 1967-09-14 Piezoelectric microphone with biasing means

Country Status (1)

Country Link
US (1) US3573394A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859984A (en) * 1972-08-14 1975-01-14 Corometrics Medical Systems In Ultrasonic transducer for fetal monitoring
US4010441A (en) * 1974-03-05 1977-03-01 Etat Francais Flexion-plate hydrophones
US4031502A (en) * 1975-04-11 1977-06-21 Etat Francais Hydrophone with acoustic reflector
US4061934A (en) * 1974-09-06 1977-12-06 Rowe-Dearmond, Inc. Vibration pickup unit for sensing vibrations of musical instruments and the like
US4181122A (en) * 1975-08-01 1980-01-01 Ueda Works Co., Ltd. Device for measuring blood pressure
WO1980002638A1 (en) * 1979-05-25 1980-12-11 W Kaspari Vascular waveform transducer and method of accumulating data
US4258229A (en) * 1978-10-24 1981-03-24 Robert Bosch Gmbh Body vibration pickup
US4559953A (en) * 1979-05-11 1985-12-24 Pye (Electronic Products) Limited Apparatus for detecting changes in shape of a body
US4672976A (en) * 1986-06-10 1987-06-16 Cherne Industries, Inc. Heart sound sensor
US4783813A (en) * 1986-12-24 1988-11-08 Lola R. Thompson Electronic sound amplifier stethoscope with visual heart beat and blood flow indicator
US4807294A (en) * 1986-06-20 1989-02-21 Mitubishi Petrochemical Co., Ltd. Piezoelectric and foam resin sheet speaker
US5365937A (en) * 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
WO2000035348A1 (en) * 1998-12-03 2000-06-22 Meditron As Sound pickup sensor
US6193668B1 (en) 1997-11-10 2001-02-27 Medacoustics, Inc. Acoustic sensor array for non-invasive detection of coronary artery disease
US6243599B1 (en) 1997-11-10 2001-06-05 Medacoustics, Inc. Methods, systems and computer program products for photogrammetric sensor position estimation
US6261237B1 (en) * 1998-08-20 2001-07-17 Medacoustics, Inc. Thin film piezoelectric polymer sensor
US6478744B2 (en) 1996-12-18 2002-11-12 Sonomedica, Llc Method of using an acoustic coupling for determining a physiologic signal
US20040068194A1 (en) * 2002-10-04 2004-04-08 Johnson Shawn C.D. Stethoscopic systems and methods
US20060110001A1 (en) * 2004-11-24 2006-05-25 Stephen Saint Vincent Inertial voice type coil actuator systems
US20100054501A1 (en) * 2006-11-28 2010-03-04 Seong Sik Choi Face plate, vibration speaker having face plate, and portable terminal including the same
US10226191B2 (en) * 2011-10-24 2019-03-12 The Regents Of The University Of California Newborn heart rate monitor
US10925573B2 (en) 2017-10-04 2021-02-23 Ausculsciences, Inc. Auscultatory sound-or-vibration sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972068A (en) * 1956-07-06 1961-02-14 Automation Instr Inc Uni-directional ultrasonic transducer
US3130275A (en) * 1962-10-15 1964-04-21 Electro Voice Microphone
US3222462A (en) * 1961-09-29 1965-12-07 Siemens Ag Electroacoustic transducer
US3295515A (en) * 1963-11-05 1967-01-03 Beckman Instruments Inc Electrode assembly
US3453458A (en) * 1965-04-19 1969-07-01 Clevite Corp Resonator supporting structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972068A (en) * 1956-07-06 1961-02-14 Automation Instr Inc Uni-directional ultrasonic transducer
US3222462A (en) * 1961-09-29 1965-12-07 Siemens Ag Electroacoustic transducer
US3130275A (en) * 1962-10-15 1964-04-21 Electro Voice Microphone
US3295515A (en) * 1963-11-05 1967-01-03 Beckman Instruments Inc Electrode assembly
US3453458A (en) * 1965-04-19 1969-07-01 Clevite Corp Resonator supporting structure

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859984A (en) * 1972-08-14 1975-01-14 Corometrics Medical Systems In Ultrasonic transducer for fetal monitoring
US4010441A (en) * 1974-03-05 1977-03-01 Etat Francais Flexion-plate hydrophones
US4061934A (en) * 1974-09-06 1977-12-06 Rowe-Dearmond, Inc. Vibration pickup unit for sensing vibrations of musical instruments and the like
US4031502A (en) * 1975-04-11 1977-06-21 Etat Francais Hydrophone with acoustic reflector
US4181122A (en) * 1975-08-01 1980-01-01 Ueda Works Co., Ltd. Device for measuring blood pressure
US4258229A (en) * 1978-10-24 1981-03-24 Robert Bosch Gmbh Body vibration pickup
US4559953A (en) * 1979-05-11 1985-12-24 Pye (Electronic Products) Limited Apparatus for detecting changes in shape of a body
US4295471A (en) * 1979-05-25 1981-10-20 Kaspari William J Non-invasive vascular waveform transducer and apparatus
WO1980002638A1 (en) * 1979-05-25 1980-12-11 W Kaspari Vascular waveform transducer and method of accumulating data
US4672976A (en) * 1986-06-10 1987-06-16 Cherne Industries, Inc. Heart sound sensor
US4807294A (en) * 1986-06-20 1989-02-21 Mitubishi Petrochemical Co., Ltd. Piezoelectric and foam resin sheet speaker
US4783813A (en) * 1986-12-24 1988-11-08 Lola R. Thompson Electronic sound amplifier stethoscope with visual heart beat and blood flow indicator
US5365937A (en) * 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
US5807268A (en) * 1992-09-09 1998-09-15 Medacoustics, Inc. Disposable sensing device with contaneous conformance
US7416531B2 (en) 1996-12-18 2008-08-26 Mohler Sailor H System and method of detecting and processing physiological sounds
US6478744B2 (en) 1996-12-18 2002-11-12 Sonomedica, Llc Method of using an acoustic coupling for determining a physiologic signal
US6243599B1 (en) 1997-11-10 2001-06-05 Medacoustics, Inc. Methods, systems and computer program products for photogrammetric sensor position estimation
US6193668B1 (en) 1997-11-10 2001-02-27 Medacoustics, Inc. Acoustic sensor array for non-invasive detection of coronary artery disease
US6574494B2 (en) 1997-11-10 2003-06-03 Medacoustics, Inc. Methods, systems and computer program products for photogrammetric sensor position estimation
US6261237B1 (en) * 1998-08-20 2001-07-17 Medacoustics, Inc. Thin film piezoelectric polymer sensor
US6939308B2 (en) 1998-11-09 2005-09-06 Medacoustics, Inc. Acoustic sensor array for non-invasive detection of coronary artery disease
US20030069506A1 (en) * 1998-11-09 2003-04-10 Chassaing Charles E. Acoustic sensor array for non-invasive detection of coronary artery disease
US6478746B2 (en) 1998-11-09 2002-11-12 Medacoustics, Inc. Acoustic sensor array for non-invasive detection of coronary artery disease
US6278890B1 (en) 1998-11-09 2001-08-21 Medacoustics, Inc. Non-invasive turbulent blood flow imaging system
AU765702B2 (en) * 1998-12-03 2003-09-25 Deepbreeze Ltd. Sound pickup sensor
WO2000035348A1 (en) * 1998-12-03 2000-06-22 Meditron As Sound pickup sensor
US7082202B1 (en) 1998-12-03 2006-07-25 Vibrotron As Sound pickup sensor
US7052467B2 (en) 2002-10-04 2006-05-30 Shawn D. Johnson Stethoscopic systems and methods
US20040068194A1 (en) * 2002-10-04 2004-04-08 Johnson Shawn C.D. Stethoscopic systems and methods
US20060110001A1 (en) * 2004-11-24 2006-05-25 Stephen Saint Vincent Inertial voice type coil actuator systems
US20100054501A1 (en) * 2006-11-28 2010-03-04 Seong Sik Choi Face plate, vibration speaker having face plate, and portable terminal including the same
US8213644B2 (en) * 2006-11-28 2012-07-03 Seong Sik Choi Vibration speaker having comfortable contacting face plate and portable terminal
US10226191B2 (en) * 2011-10-24 2019-03-12 The Regents Of The University Of California Newborn heart rate monitor
US10925573B2 (en) 2017-10-04 2021-02-23 Ausculsciences, Inc. Auscultatory sound-or-vibration sensor
US11896420B2 (en) 2017-10-04 2024-02-13 Ausculsciences, Inc. Auscultatory sound-or-vibration sensor

Similar Documents

Publication Publication Date Title
US3573394A (en) Piezoelectric microphone with biasing means
US4063049A (en) Piezoelectric electroacoustic transducer
US4230383A (en) Integral contact
US4258229A (en) Body vibration pickup
WO2020098113A1 (en) Sounding device and electronic devices
JP7412029B2 (en) Electroacoustic transducer and electroacoustic transducer
TW201537996A (en) Bone conduction speaker unit
US4379211A (en) Arcuately tensioned piezoelectric diaphragm microphone
US3573397A (en) Acoustic diaphragm and translating device utilizing same
US2293078A (en) Microphone
US3654402A (en) Transducer for converting acoustic vibrations into electrical oscillations, and vice versa, in the form of a diaphragm coated with at least one layer of a piezo-electric material
JP2011097297A (en) Speaker device
US2340777A (en) Throat microphone
US2496483A (en) Loud-speaker with diaphragm an integral part of outer casing
KR102081407B1 (en) Neck Microphone Device Using Electret Condenser Microphone or MEMS Microphone
US3856995A (en) Pressure gradient piezoelectric microphone
GB1277912A (en) Electro-acoustic transducers
US3472972A (en) Crystal microphone with automatic silencer
EP0188017B1 (en) Electroacoustic calling device
US3486047A (en) Transducer
JP2014165568A (en) Headset
JP3423749B2 (en) Piezoelectric acoustic transducer
JPS6311807Y2 (en)
US2521744A (en) Moistureproof microphone
US1096676A (en) Telephone-receiver.