US3583387A - Pressure absorbing appliance for treating hydrocephalus - Google Patents

Pressure absorbing appliance for treating hydrocephalus Download PDF

Info

Publication number
US3583387A
US3583387A US785641A US3583387DA US3583387A US 3583387 A US3583387 A US 3583387A US 785641 A US785641 A US 785641A US 3583387D A US3583387D A US 3583387DA US 3583387 A US3583387 A US 3583387A
Authority
US
United States
Prior art keywords
housing
bellows
appliance
chamber
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US785641A
Inventor
John T Garner
Leo A Bullara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3583387A publication Critical patent/US3583387A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • A61M27/006Cerebrospinal drainage; Accessories therefor, e.g. valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0213Holding devices, e.g. on the body where the catheter is attached by means specifically adapted to a part of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/028Holding devices, e.g. on the body having a mainly rigid support structure

Definitions

  • a tube extends from the bellows for insertion into a ventricle of the brain.
  • the bellows When so installed, the bellows is filled with ventricular fluid at an average or static pressure. Pulsation of choroidplexus blood vessels in the brain tends to cause a periodic increase in fluid pressure, but bellows expansion in response to increasedpressure minimizes the actual increase in fluid pressure. The resulting suppression of pulsatile pressure peaks and dissipation of energy by the bellows appears to be an effective techniqlie for treating hydrocephalus.
  • Hydrocephalus is a brain condition in which cerebrospinal fluid accumulates at abnormally high pressure in ventricles or chambers within the brain. The ventricles expand in response to the pressure exerted by the fluid, and surrounding brain tissue is compressed between the ventricles and the skull. Hydrocephalus usually occurs in babies or young children, and, if unchecked, results in brain damage, enlargement and deformation of the head, and eventual death.
  • One technique for treating hydrocephalus involves surgical insertion ofa drainage tube which couples the brain ventricles to the jugular vein so excess cerebrospinal fluid in the ventricles is drained into the venous system of the body.
  • Several forms of appliances useful in this technique are shown in U.S. Pat. Nos. 2,969,066, 3,020,913, and 3,1 l 1,125.
  • U.S. Pat. Nos. 2,969,066, 3,020,913, and 3,1 l 1,125 There remains, however, a need for improved treatment techniques and appliances which avoid long lengths of tubing susceptible to clogging, which are simpler to install and maintain, and which are directed to the root cause of excessive fluid pressure in the brain ventricles.
  • hydrocephalus indicates that static pressure of ventricular fluid is influenced by periodic variation in fluid pressure arising from a pulsatile expansion of a bed of capillaries in the ventricles and known as the choroid plexus. It is thought that hydrocephalus stems from a malfunction of natural cerebral-circulation mechanisms which normally absorb energy arising from physical pulsation of the choroid plexus. Research results indicate that static pressure in the brain ventricles can be reduced and controlled if the pulsatile pressure peaks are absorbed or otherwise suppressed.
  • the appliance of this invention limits and absorbs the increase in ventricular-fluid pressure arising from choroid-plexus pulsation, and thereby provides indirect control and reduction of static pressure in the ventricle.
  • the appliance is intracranial and does not require internal or external tubes leading to the jugular vein as in presently known devices described in the aforementioned patents. Installation is accomplished by relatively straightforward surgical techniques, and the appliance is left in place permanently or until the patient no longer exhibits symptoms of hydrocephalus.
  • the invention relates to a pressure-absorbing and energy-dissipating appliance for relieving excess fluid pressure in a body cavity such as a brain ventricle.
  • the appliance includes a housing adapted to be secured in the body as by implantation in the skull.
  • a resilient chamber-defining means such as an expansible bellows is supported within the housing, and has an internal chamber of variable volume.
  • the chamber is resiliently expansible and has a normal volume when filled with fluid at a static pressure, and an expanded volume when the fluid pressure tends to increase in pulsatile fashion.
  • a tube is connected to the resilient means in fluid communication with the chamber, and the tube extends from the resilient means and housing for insertion in the body cavity.
  • both the housing and the resilient means include aligned portions defining self-sealing diaphragms through which a hypodermic needle can be inserted to extend into the expansible chamber.
  • the appliance is formed of materials which are compatible with the body so the appliance may be implanted on at least a semipermanent basis.
  • An annular flange extends outwardly from an outer end of the housing to rest against the skull or other bone structure, and holes are provided in the flange to receive ligatures for securing the appliance in place.
  • FIG. 1 is a side view, partly in section, of a child's head and showing a skull implantation of an appliance according to the invention
  • FIG. 2 is an enlarged view of the skull showing the appliance ready to be ligated in place
  • FIG. 3 is an elevation, partly broken away and in section, of the appliance. DESCRIPTION OF THE PREFERRED EM- BODIMENT A pressure-absorbing appliance 10 according to the invention is shown in detail in FIG. 3.
  • the appliance includes a housing 11 having a cylindrical sidewall 12.
  • An annular groove 13 is formed in the inner surface of the inner or distal end of sidewall 12, and an outer end of the sidewall is partially closed by a radially inwardly extending annular flange 14 having a central circular opening 15 therethrough.
  • Flange 14 is stepped to define an annular shoulder 16.
  • An annular attachment flange 17 extends radially outwardly from the outer end of housing 11, and has a plurality of ligature holes 18 therethrough.
  • An expansible chamber-defining means such as a bellows 21 is mounted within housing 11.
  • the bellows is of conventional accordian-pleat construction, and is closed at one end by an integral end wall 22 which tapers longitudinally away from the bellows to define a hollow inlet tube 23.
  • An annular retaining rib 24 extends from the surface of the tube adjacent its end.
  • the folds or annuluses of bellows 21 have an outside diameter smaller than the inside diameter of sidewall 12 of the housing, and the bellows can therefore expand or contract freely in response to internal pressure variations without binding or dragging on the inner surface of the sidewall.
  • End wall 22, on the other hand, has an outside diameter slightly larger than the inside diameter of sidewall 12, and is adapted to snap into groove 13 of the sidewall in detent fashion to retain the bellows within the housing.
  • a ventricular probe or tube 27 has a first end 28 which makes a snug slip fit over inlet tube 23 and retaining rib 24. First end 28 is secured to the inlet tube by a pair of ligatures 29 which are tied tightly around the assembled tubes during surgical installation of the appliance. A distal second end 30 of tube 27 is closed, but a plurality of lateral openings 31 (typically about 1 millimeter diameter) extend through the wall of the tube adjacent the second end. Openings 31 are in communication through the hollow interior of tube 27 with the expansible chamber defined by the hollow interior of bellows 21.
  • bellows 21 The outer end of bellows 21 is closed by a circular sheet or diaphragm 34 of a self-sealing material such as silicon rubber sold under the trademark Silastic.
  • a housing diaphragm 35 formed of the same material as diaphragm 34, is seated on flange 14 within annular shoulder 16, and extends across central opening 15 of the housing.
  • the purpose of diaphragms 34 and 35 is to permit a physician to insert a hypodermic needle therethrough into the interior chamber of bellows 21 when the appliance is installed. Medication may thereby be introduced into the cerebral spinal fluid within the bellows, or fluid can be withdrawn for analysis. The patency of the system can also be evaluated by this technique, and any obstructions in tube 27 can be flushed clear.
  • a clearance of 0.05 inch or more exists between diaphragm 34 and inwardly extending flange 14 such that the bellows can expand longitudinally when subjected to pulsatile pressure.
  • the entire appliance which is intended for a long term implantation, is of course constructed from materials which are compatible with the human body.
  • Plastic material as sold under the trademark Teflon" is satisfactory for forming housing 11 and bellows 21.
  • the bellows and housing may also be made of stainless steel or gold-plated nickel if metal construction is preferred.
  • Ventricular tube 27 is preferably formed from tubing of plastic material sold under the trademark Silastic.”
  • sidewall 12 of housing 11 has a diameter of about three-eighths to one-half inch, and attachment flange 17 has a diameter about threesixteenths inch larger than the diameter of the sidewall.
  • the sidewall is approximately one-fourth inch long, and ventricular tube 27 is typically 1 to 2 inches long.
  • a tube with an outside diameter of 3 millimeters and a bore of 2 millimeters has been found satisfactory for the appliance.
  • Diaphragms 34 and 35 should be relatively thick for proper self-sealing action after being punctured by a hypodermic needle, and a thickness of about 3 millimeters provides satisfactory results.
  • Bellows 21 in a typical appliance, has an internal volume of about 0.25 cubic centimeters when filled with cerebrospinal fluid at a normal static pressure of about to 25 millimeters of water.
  • the ventricular volume change during pulsation of the choroid plexus is relatively small, and it is adequate in most cases if the bellows has approximately a 50 percent internal volume expansion when subjected to fluid pressure of say 15 to times the normal static pressure.
  • the pressure-absorbing appliance is installed using conventional surgical techniques.
  • a posterior parietal-occipital inverted-horseshoeshaped scalp flap 39 is turned, and a standard trephine opening 40 is made in skull 41 of the patient, the opening having a diameter slightly larger than the outside diameter of sidewall 12 of the appliance.
  • Small holes 42 are drilled at the edge of the trephine opening to receive retention ligatures, and 3-0 silk sutures (not shown) are passed through the holes.
  • the dura mater of the brain is then incised, and the cortex is lightly coagulated.
  • a ventricular cannula (not shown) is next passed into the lateral ventricle of the brain, and is then withdrawn.
  • Ventricular tube 27 is next passed along the cannula-formed tract into a lateral ventricle 45 of the brain.
  • the outer end of the tube is then cut to length and secured over inlet tube 23 by ligatures 29 which are typically 3-1 silk ligatures.
  • the previously placed silk retention ligatures are then passed through ligature holes X8 in the attachment flange of the housing, and the housing is tied into place on the skull.
  • the appliance is then checked for proper function by ascertaining patency of the tube by passing a 026 hypodermic needle through the diaphragms.
  • the bellows of the appliance When so installed, the bellows of the appliance is immediately filled with cerebrospinal fluid 46 which flows from the ventricle through openings 31 and the bore of tube 27 into the internal chamber defined by the bellows.
  • the bellows then expands slightly to define a normal internal volume in response to the static pressure exerted by the cerebrospinal fluid.
  • the pressure of the fluid Upon pulsation of the choroid plexus the pressure of the fluid tends to rise due to the slight reduction in ventricular volume, but an excessive pressure increase is prevented by the resulting expansion of the bellows which compensates for the reduced volume of the ventricle.
  • the bellows is more resilient than brain tissue 47 surrounding the ventricle, and the bellows chamber therefore expands to compensate for reduced ventricular volume.
  • the high fluidpressure pulsatile peaks which characterize hydrocephalus are thus suppressed, and it has been found that this produces a beneficial effect which tends to lower an excessively high static pressure within the ventricle.
  • Energy is also dissipated from the overall system by the work done in flexing of the bellows, resulting in damping of the excessive energy created by the choroid plexus.
  • Bellows motion and displacement can be sensed electrically if the bellows includes a metal component or element usable as one plate of a capacitor.
  • a metal-foil disc 49 can be secured to bellows diaphragm 34 as shown in FIG. 3.
  • the disc is centrally apertured to provide clearance for a hypodermic needle introduced through diaphragms 34 and 35.
  • An external electrode (not shown) is secured over diaphragm 3S, and the capacitance of the resulting parallelplate capacitor is measured using conventional techniques. Bellows movement is manifested by a variation in capacitance arising from a change in spacing of the disc and electrode.
  • an expansible balloonlike reservoir can be substituted for bellows 21, or other types of expansible chamber-defining means can be used.
  • a spring-loaded piston in a cylinder is useful to define an expansible chamber, and further damping of the system can be obtained by bypassing part of the fluid past the piston and returning the bypassed fluid to the ventricle in a return line.
  • different types of skull-attachment plates can be used to implant the appliance in the skull. It is intended that all such variations and modifications be encompassed within the scope of the following claims which define the invention in detail.
  • a pressure absorbing appliance for relieving excessive fluid pressure in a human-body cavity comprising:
  • a housing adapted to be secured in the body
  • a tube connected to the bellows in fluid communication with the chamber inlet opening, and extending from the bellows and housing for insertion in the cavity;
  • the bellows being movable within the housing to vary the chamber volume in response to fluid pressure variations, and the chamber being closed other than at the inlet opening so fluid therein is isolated from the housing, the appliance being made of body-compatible materials suitable for implantation.
  • the bellows has an end wall remote from the outer end of the housing, the end wall having a portion which tapers to define an inlet adapted for connection to said tube.
  • a pressure-absorbing appliance for treatment of hydrocephalus by relieving excessive pulsatile pressure of cerebrospinal fluid in a brain ventricle comprising:
  • resilient means supported in the housing and having an internal expansible chamber with a normal volume when filled with cerebrospinal fluid at static pressure, and an expanded volume when the fluid pressure tends to increase due to ventricular pulsation, the chamber having a single inlet opening;
  • a tube connected to the resilient means in fluid communication with the chamber inlet opening, and extending from the resilient means and housing for insertion in the ventricle;
  • the chamber being closed except for the inlet opening so fluid in the appliance is isolated from the housing, and the housing, resilient means and tube being made of bodycompatible materials suitable for implantation.
  • the resilient means includes a metal element usable as a portion of a capacitor whereby motion of the resilient means arising from ventricular pulsation can be monitored electrically.

Abstract

An expansible bellows having a variable internal volume is mounted in a housing adapted for implantation in the skull of a patient suffering from hydrocephalus. A tube extends from the bellows for insertion into a ventricle of the brain. When so installed, the bellows is filled with ventricular fluid at an average or static pressure. Pulsation of choroid-plexus blood vessels in the brain tends to cause a periodic increase in fluid pressure, but bellows expansion in response to increased pressure minimizes the actual increase in fluid pressure. The resulting suppression of pulsatile pressure peaks and dissipation of energy by the bellows appears to be an effective technique for treating hydrocephalus.

Description

United States Patent John '1. Garner 3075 Monterey Road, San Marino, Calif. 91 108;
Leo A. Bullara, Glendora, Calif. 91740 785,641
Dec. 20, 1968 June 8, 1971 said Garner, by said Bullara lnventors Appl. No. Filed Patented Assignee PRESSURE ABSORBING APPLIANCE FOR TREATING HYDROCEPHALUS [56] References Cited UNITED STATES PATENTS 3,111,125 11/1963 Schulte 128/350V 3,162,213 12/1964 Peters 138/30 3,503,402 3/1970 Schulte 128/350V Primary Examiner-Channing L. Pace AttorneyChristie, Parker & Hale ABSTRACT: An expansible bellows having a variable internal volume is mounted in a housing adapted for implantation in the skull of a patient suffering from hydrocephalus. A tube extends from the bellows for insertion into a ventricle of the brain. When so installed, the bellows is filled with ventricular fluid at an average or static pressure. Pulsation of choroidplexus blood vessels in the brain tends to cause a periodic increase in fluid pressure, but bellows expansion in response to increasedpressure minimizes the actual increase in fluid pressure. The resulting suppression of pulsatile pressure peaks and dissipation of energy by the bellows appears to be an effective techniqlie for treating hydrocephalus.
, "74 llllII PATENTEUJUH 8|97| 3,583,387
' sum 1 or 2 PRESSURE ABSORBING APPLIANCE FOR TREATING HYDROCEPIIALUS BACKGROUND OF THE INVENTION Hydrocephalus is a brain condition in which cerebrospinal fluid accumulates at abnormally high pressure in ventricles or chambers within the brain. The ventricles expand in response to the pressure exerted by the fluid, and surrounding brain tissue is compressed between the ventricles and the skull. Hydrocephalus usually occurs in babies or young children, and, if unchecked, results in brain damage, enlargement and deformation of the head, and eventual death.
One technique for treating hydrocephalus involves surgical insertion ofa drainage tube which couples the brain ventricles to the jugular vein so excess cerebrospinal fluid in the ventricles is drained into the venous system of the body. Several forms of appliances useful in this technique are shown in U.S. Pat. Nos. 2,969,066, 3,020,913, and 3,1 l 1,125. There remains, however, a need for improved treatment techniques and appliances which avoid long lengths of tubing susceptible to clogging, which are simpler to install and maintain, and which are directed to the root cause of excessive fluid pressure in the brain ventricles.
Recent research on hydrocephalus indicates that static pressure of ventricular fluid is influenced by periodic variation in fluid pressure arising from a pulsatile expansion of a bed of capillaries in the ventricles and known as the choroid plexus. It is thought that hydrocephalus stems from a malfunction of natural cerebral-circulation mechanisms which normally absorb energy arising from physical pulsation of the choroid plexus. Research results indicate that static pressure in the brain ventricles can be reduced and controlled if the pulsatile pressure peaks are absorbed or otherwise suppressed.
The appliance of this invention limits and absorbs the increase in ventricular-fluid pressure arising from choroid-plexus pulsation, and thereby provides indirect control and reduction of static pressure in the ventricle. The appliance is intracranial and does not require internal or external tubes leading to the jugular vein as in presently known devices described in the aforementioned patents. Installation is accomplished by relatively straightforward surgical techniques, and the appliance is left in place permanently or until the patient no longer exhibits symptoms of hydrocephalus.
SUMMARY OF THE INVENTION Briefly stated, the invention relates to a pressure-absorbing and energy-dissipating appliance for relieving excess fluid pressure in a body cavity such as a brain ventricle. The appliance includes a housing adapted to be secured in the body as by implantation in the skull. A resilient chamber-defining means such as an expansible bellows is supported within the housing, and has an internal chamber of variable volume. The chamber is resiliently expansible and has a normal volume when filled with fluid at a static pressure, and an expanded volume when the fluid pressure tends to increase in pulsatile fashion. A tube is connected to the resilient means in fluid communication with the chamber, and the tube extends from the resilient means and housing for insertion in the body cavity.
Preferably, both the housing and the resilient means include aligned portions defining self-sealing diaphragms through which a hypodermic needle can be inserted to extend into the expansible chamber. The appliance is formed of materials which are compatible with the body so the appliance may be implanted on at least a semipermanent basis. An annular flange extends outwardly from an outer end of the housing to rest against the skull or other bone structure, and holes are provided in the flange to receive ligatures for securing the appliance in place.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in detail with reference to the attached drawings, in which:
LII
FIG. 1 is a side view, partly in section, of a child's head and showing a skull implantation of an appliance according to the invention;
FIG. 2 is an enlarged view of the skull showing the appliance ready to be ligated in place; and
FIG. 3 is an elevation, partly broken away and in section, of the appliance. DESCRIPTION OF THE PREFERRED EM- BODIMENT A pressure-absorbing appliance 10 according to the invention is shown in detail in FIG. 3. The appliance includes a housing 11 having a cylindrical sidewall 12. An annular groove 13 is formed in the inner surface of the inner or distal end of sidewall 12, and an outer end of the sidewall is partially closed by a radially inwardly extending annular flange 14 having a central circular opening 15 therethrough. Flange 14 is stepped to define an annular shoulder 16. An annular attachment flange 17 extends radially outwardly from the outer end of housing 11, and has a plurality of ligature holes 18 therethrough.
An expansible chamber-defining means such as a bellows 21 is mounted within housing 11. The bellows is of conventional accordian-pleat construction, and is closed at one end by an integral end wall 22 which tapers longitudinally away from the bellows to define a hollow inlet tube 23. An annular retaining rib 24 extends from the surface of the tube adjacent its end. As seen in FIG. 3, the folds or annuluses of bellows 21 have an outside diameter smaller than the inside diameter of sidewall 12 of the housing, and the bellows can therefore expand or contract freely in response to internal pressure variations without binding or dragging on the inner surface of the sidewall. End wall 22, on the other hand, has an outside diameter slightly larger than the inside diameter of sidewall 12, and is adapted to snap into groove 13 of the sidewall in detent fashion to retain the bellows within the housing.
A ventricular probe or tube 27 has a first end 28 which makes a snug slip fit over inlet tube 23 and retaining rib 24. First end 28 is secured to the inlet tube by a pair of ligatures 29 which are tied tightly around the assembled tubes during surgical installation of the appliance. A distal second end 30 of tube 27 is closed, but a plurality of lateral openings 31 (typically about 1 millimeter diameter) extend through the wall of the tube adjacent the second end. Openings 31 are in communication through the hollow interior of tube 27 with the expansible chamber defined by the hollow interior of bellows 21.
The outer end of bellows 21 is closed by a circular sheet or diaphragm 34 of a self-sealing material such as silicon rubber sold under the trademark Silastic. A housing diaphragm 35, formed of the same material as diaphragm 34, is seated on flange 14 within annular shoulder 16, and extends across central opening 15 of the housing. The purpose of diaphragms 34 and 35 is to permit a physician to insert a hypodermic needle therethrough into the interior chamber of bellows 21 when the appliance is installed. Medication may thereby be introduced into the cerebral spinal fluid within the bellows, or fluid can be withdrawn for analysis. The patency of the system can also be evaluated by this technique, and any obstructions in tube 27 can be flushed clear. A clearance of 0.05 inch or more exists between diaphragm 34 and inwardly extending flange 14 such that the bellows can expand longitudinally when subjected to pulsatile pressure.
The entire appliance, which is intended for a long term implantation, is of course constructed from materials which are compatible with the human body. Plastic material as sold under the trademark Teflon" is satisfactory for forming housing 11 and bellows 21. The bellows and housing may also be made of stainless steel or gold-plated nickel if metal construction is preferred. Ventricular tube 27 is preferably formed from tubing of plastic material sold under the trademark Silastic."
In a typical appliance, sidewall 12 of housing 11 has a diameter of about three-eighths to one-half inch, and attachment flange 17 has a diameter about threesixteenths inch larger than the diameter of the sidewall. The sidewall is approximately one-fourth inch long, and ventricular tube 27 is typically 1 to 2 inches long. A tube with an outside diameter of 3 millimeters and a bore of 2 millimeters has been found satisfactory for the appliance. Diaphragms 34 and 35 should be relatively thick for proper self-sealing action after being punctured by a hypodermic needle, and a thickness of about 3 millimeters provides satisfactory results.
Bellows 21, in a typical appliance, has an internal volume of about 0.25 cubic centimeters when filled with cerebrospinal fluid at a normal static pressure of about to 25 millimeters of water. The ventricular volume change during pulsation of the choroid plexus is relatively small, and it is adequate in most cases if the bellows has approximately a 50 percent internal volume expansion when subjected to fluid pressure of say 15 to times the normal static pressure.
Referring to FIGS. l and 2, the pressure-absorbing appliance is installed using conventional surgical techniques. A posterior parietal-occipital inverted-horseshoeshaped scalp flap 39 is turned, and a standard trephine opening 40 is made in skull 41 of the patient, the opening having a diameter slightly larger than the outside diameter of sidewall 12 of the appliance. Small holes 42 are drilled at the edge of the trephine opening to receive retention ligatures, and 3-0 silk sutures (not shown) are passed through the holes. The dura mater of the brain is then incised, and the cortex is lightly coagulated.
A ventricular cannula (not shown) is next passed into the lateral ventricle of the brain, and is then withdrawn. Ventricular tube 27 is next passed along the cannula-formed tract into a lateral ventricle 45 of the brain. The outer end of the tube is then cut to length and secured over inlet tube 23 by ligatures 29 which are typically 3-1 silk ligatures. The previously placed silk retention ligatures are then passed through ligature holes X8 in the attachment flange of the housing, and the housing is tied into place on the skull. The appliance is then checked for proper function by ascertaining patency of the tube by passing a 026 hypodermic needle through the diaphragms.
When so installed, the bellows of the appliance is immediately filled with cerebrospinal fluid 46 which flows from the ventricle through openings 31 and the bore of tube 27 into the internal chamber defined by the bellows. The bellows then expands slightly to define a normal internal volume in response to the static pressure exerted by the cerebrospinal fluid. Upon pulsation of the choroid plexus the pressure of the fluid tends to rise due to the slight reduction in ventricular volume, but an excessive pressure increase is prevented by the resulting expansion of the bellows which compensates for the reduced volume of the ventricle.
The bellows is more resilient than brain tissue 47 surrounding the ventricle, and the bellows chamber therefore expands to compensate for reduced ventricular volume. The high fluidpressure pulsatile peaks which characterize hydrocephalus are thus suppressed, and it has been found that this produces a beneficial effect which tends to lower an excessively high static pressure within the ventricle. Energy is also dissipated from the overall system by the work done in flexing of the bellows, resulting in damping of the excessive energy created by the choroid plexus.
Bellows motion and displacement can be sensed electrically if the bellows includes a metal component or element usable as one plate of a capacitor. For example, a metal-foil disc 49 can be secured to bellows diaphragm 34 as shown in FIG. 3. The disc is centrally apertured to provide clearance for a hypodermic needle introduced through diaphragms 34 and 35. An external electrode (not shown) is secured over diaphragm 3S, and the capacitance of the resulting parallelplate capacitor is measured using conventional techniques. Bellows movement is manifested by a variation in capacitance arising from a change in spacing of the disc and electrode.
Although the invention has been described in a presently preferred form, it will be clear that the inventive concept can be incorporated in other specific types of apparatus. For example, an expansible balloonlike reservoir can be substituted for bellows 21, or other types of expansible chamber-defining means can be used. As another example, a spring-loaded piston in a cylinder is useful to define an expansible chamber, and further damping of the system can be obtained by bypassing part of the fluid past the piston and returning the bypassed fluid to the ventricle in a return line. Similarly, different types of skull-attachment plates can be used to implant the appliance in the skull. It is intended that all such variations and modifications be encompassed within the scope of the following claims which define the invention in detail.
We claim:
1. A pressure absorbing appliance for relieving excessive fluid pressure in a human-body cavity, comprising:
a housing adapted to be secured in the body;
an expansible bellows supported in the housing and having an internal chamber of variable volume, the chamber having an inlet opening; and
a tube connected to the bellows in fluid communication with the chamber inlet opening, and extending from the bellows and housing for insertion in the cavity;
the bellows being movable within the housing to vary the chamber volume in response to fluid pressure variations, and the chamber being closed other than at the inlet opening so fluid therein is isolated from the housing, the appliance being made of body-compatible materials suitable for implantation.
2. The appliance defined in claim l in which a portion of the bellows is formed of a self-sealing member through which a hypodermic needle can be inserted.
3. The appliance defined in claim 2 in which the housing has an outer end defining an opening in alignment with the selfsealing bellows portion, and further comprising a second selfsealing member secured to the outer end of the housing across the opening.
4. The appliance defined in claim 3 in which the housing is generally cylindrical and in which the outer end of the housing includes an attachment flange extending radially outwardly therefrom, the attachment flange having ligature holes formed therethrough.
5. The appliance defined in claim 4 in which the bellows has an end wall remote from the outer end of the housing, the end wall having a portion which tapers to define an inlet adapted for connection to said tube.
6. The appliance defined in claim 5 in which said end wall inlet portion defines an outwardly extending, annular retaining rib.
7. The appliance defined in claim 6 in which said tube defines a plurality of inlet openings extending laterally therethrough.
8. A pressure-absorbing appliance for treatment of hydrocephalus by relieving excessive pulsatile pressure of cerebrospinal fluid in a brain ventricle, comprising:
a housing adapted for skull implantation;
resilient means supported in the housing and having an internal expansible chamber with a normal volume when filled with cerebrospinal fluid at static pressure, and an expanded volume when the fluid pressure tends to increase due to ventricular pulsation, the chamber having a single inlet opening; and
a tube connected to the resilient means in fluid communication with the chamber inlet opening, and extending from the resilient means and housing for insertion in the ventricle;
the chamber being closed except for the inlet opening so fluid in the appliance is isolated from the housing, and the housing, resilient means and tube being made of bodycompatible materials suitable for implantation.
9. The appliance defined in claim 8 in which the resilient means includes a metal element usable as a portion of a capacitor whereby motion of the resilient means arising from ventricular pulsation can be monitored electrically.

Claims (9)

1. A pressure absorbing appliance for relieving excessive fluid pressure in a human-body cavity, comprising: a housing adapted to be secured in the body; an expansible bellows supported in the housing and having an internal chamber of variable volume, the chamber having an inlet opening; and a tube connected to the bellows in fluid communication with the chamber inlet opening, and extending from the bellows and housing for insertion in the cavity; the bellows being movable within the housing to vary the chamber volume in response to fluid pressure variations, and the chamber being closed other than at the inlet opening so fluid therein is isolated from the housing, the appliance being made of body-compatible materials suitable for implantation.
2. The appliance defined in claim 1 in which a portion of the bellows is formed of a self-sealing member through which a hypodermic needle can be inserted.
3. The appliance defined in claim 2 in which the housing has an outer end defining an opening in alignment with the self-sealing bellows portion, and further comprising a second self-sealing member secured to the outer end of the housing across the opening.
4. The appliance defined in claim 3 in which the housing is generally cylindrical and in which the outer end of the housing includes an attachment flange extending radially outwardly therefrom, the attachment flange having ligature holes formed therethrough.
5. The appliance defined in claim 4 in which the bellows has an end wall remote from the outer end of the housing, the end wall having a portion whIch tapers to define an inlet adapted for connection to said tube.
6. The appliance defined in claim 5 in which said end wall inlet portion defines an outwardly extending, annular retaining rib.
7. The appliance defined in claim 6 in which said tube defines a plurality of inlet openings extending laterally therethrough.
8. A pressure-absorbing appliance for treatment of hydrocephalus by relieving excessive pulsatile pressure of cerebrospinal fluid in a brain ventricle, comprising: a housing adapted for skull implantation; resilient means supported in the housing and having an internal expansible chamber with a normal volume when filled with cerebrospinal fluid at static pressure, and an expanded volume when the fluid pressure tends to increase due to ventricular pulsation, the chamber having a single inlet opening; and a tube connected to the resilient means in fluid communication with the chamber inlet opening, and extending from the resilient means and housing for insertion in the ventricle; the chamber being closed except for the inlet opening so fluid in the appliance is isolated from the housing, and the housing, resilient means and tube being made of body-compatible materials suitable for implantation.
9. The appliance defined in claim 8 in which the resilient means includes a metal element usable as a portion of a capacitor whereby motion of the resilient means arising from ventricular pulsation can be monitored electrically.
US785641A 1968-12-20 1968-12-20 Pressure absorbing appliance for treating hydrocephalus Expired - Lifetime US3583387A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78564168A 1968-12-20 1968-12-20

Publications (1)

Publication Number Publication Date
US3583387A true US3583387A (en) 1971-06-08

Family

ID=25136148

Family Applications (1)

Application Number Title Priority Date Filing Date
US785641A Expired - Lifetime US3583387A (en) 1968-12-20 1968-12-20 Pressure absorbing appliance for treating hydrocephalus

Country Status (1)

Country Link
US (1) US3583387A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
US3958558A (en) * 1974-09-16 1976-05-25 Huntington Institute Of Applied Medical Research Implantable pressure transducer
US3971376A (en) * 1973-02-26 1976-07-27 Ceskoslovenska Akademie Ved Method and apparatus for introducing fluids into the body
US4141348A (en) * 1976-09-27 1979-02-27 Hittman Corporation Pressure sensor apparatus for non-invasively communicating pressure inside a body to the exterior thereof
US4378797A (en) * 1980-04-14 1983-04-05 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445500A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445887A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445888A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445886A (en) * 1980-04-14 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4446154A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445514A (en) * 1980-04-14 1984-05-01 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4446155A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4451251A (en) * 1982-03-03 1984-05-29 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4450841A (en) * 1982-03-03 1984-05-29 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4657532A (en) * 1985-07-19 1987-04-14 Thomas Jefferson University Intra-peritoneal perfusion of oxygenated fluorocarbon
US4686085A (en) * 1980-04-14 1987-08-11 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4758431A (en) * 1980-04-14 1988-07-19 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4795423A (en) * 1980-04-14 1989-01-03 Thomas Jefferson University Oxygenated perfluorinated perfusion of the ocular globe to treat ischemic retinopathy
US4830849A (en) * 1980-04-14 1989-05-16 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4840617A (en) * 1980-04-14 1989-06-20 Thomas Jefferson University Cerebral and lumbar perfusion catheterization apparatus for use in treating hypoxic/ischemic neurologic tissue
US5000731A (en) * 1989-03-30 1991-03-19 Tai-Ting Wong Shunting device adopted in the intracranial shunting surgical operation for the treatment of hydrocephalus
DE4026202A1 (en) * 1990-08-18 1992-02-20 Andreas Dr Spiegelberg Hydrocephalus relief valve - has excessive cerebrospinal fluid passed via valve into pressure cylinder containing spring-loaded piston
US5405316A (en) * 1993-11-17 1995-04-11 Magram; Gary Cerebrospinal fluid shunt
US5487739A (en) * 1987-11-17 1996-01-30 Brown University Research Foundation Implantable therapy systems and methods
US5810761A (en) * 1997-02-26 1998-09-22 Biomedica Mexicana, S.A. De C.V. Intraventricular pressure control device
WO2003003908A2 (en) * 2001-07-06 2003-01-16 Ispg, Inc. Epidural space locating device
US6588432B1 (en) * 2001-02-15 2003-07-08 Pmt Corporation Tissue expander magnetic injection port
US6905474B2 (en) * 2000-09-11 2005-06-14 Csf Dynamic A/S Fluid shunt system and a method for the treatment of hydrocephalus
US7118548B2 (en) 1996-09-18 2006-10-10 Sinu Shunt A/S Device for the treatment of hydrocephalus
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US20110166495A1 (en) * 2008-07-02 2011-07-07 Christoph Miethke Cerebrospinal fluid drainage
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
WO2016200949A1 (en) * 2015-06-10 2016-12-15 Haughton Victor M Cerebrospinal fluid flow diverter
EP3302677A4 (en) * 2015-06-01 2019-02-20 University of Massachusetts Catheter assemblies
EP3307148A4 (en) * 2015-06-10 2019-04-03 Victor M. Haughton Cerebrospinal fluid flow diverter
US10625060B2 (en) 2016-06-20 2020-04-21 Csf-Dynamics A/S Shunt device and a method for shunting cerebrospinal fluid
US20210077739A1 (en) * 2019-09-18 2021-03-18 Heraeus Medical Gmbh Device for temporarily, locally applying fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111125A (en) * 1961-11-06 1963-11-19 Rudolf R Schulte Drainage device
US3162213A (en) * 1962-06-13 1964-12-22 Melville F Peters Surge attenuating devices
US3503402A (en) * 1966-03-23 1970-03-31 Rudolf R Schulte Shunt device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111125A (en) * 1961-11-06 1963-11-19 Rudolf R Schulte Drainage device
US3162213A (en) * 1962-06-13 1964-12-22 Melville F Peters Surge attenuating devices
US3503402A (en) * 1966-03-23 1970-03-31 Rudolf R Schulte Shunt device

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
US3971376A (en) * 1973-02-26 1976-07-27 Ceskoslovenska Akademie Ved Method and apparatus for introducing fluids into the body
US3958558A (en) * 1974-09-16 1976-05-25 Huntington Institute Of Applied Medical Research Implantable pressure transducer
US4141348A (en) * 1976-09-27 1979-02-27 Hittman Corporation Pressure sensor apparatus for non-invasively communicating pressure inside a body to the exterior thereof
US4758431A (en) * 1980-04-14 1988-07-19 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4686085A (en) * 1980-04-14 1987-08-11 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4840617A (en) * 1980-04-14 1989-06-20 Thomas Jefferson University Cerebral and lumbar perfusion catheterization apparatus for use in treating hypoxic/ischemic neurologic tissue
US4830849A (en) * 1980-04-14 1989-05-16 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445886A (en) * 1980-04-14 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4795423A (en) * 1980-04-14 1989-01-03 Thomas Jefferson University Oxygenated perfluorinated perfusion of the ocular globe to treat ischemic retinopathy
US4445514A (en) * 1980-04-14 1984-05-01 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4378797A (en) * 1980-04-14 1983-04-05 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4446155A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4450841A (en) * 1982-03-03 1984-05-29 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4451251A (en) * 1982-03-03 1984-05-29 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445500A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4446154A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445888A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4445887A (en) * 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4657532A (en) * 1985-07-19 1987-04-14 Thomas Jefferson University Intra-peritoneal perfusion of oxygenated fluorocarbon
US6179826B1 (en) 1987-11-17 2001-01-30 Brown University Research Foundation Implantable therapy systems and methods
US5487739A (en) * 1987-11-17 1996-01-30 Brown University Research Foundation Implantable therapy systems and methods
US5000731A (en) * 1989-03-30 1991-03-19 Tai-Ting Wong Shunting device adopted in the intracranial shunting surgical operation for the treatment of hydrocephalus
DE4026202A1 (en) * 1990-08-18 1992-02-20 Andreas Dr Spiegelberg Hydrocephalus relief valve - has excessive cerebrospinal fluid passed via valve into pressure cylinder containing spring-loaded piston
US5405316A (en) * 1993-11-17 1995-04-11 Magram; Gary Cerebrospinal fluid shunt
US7118548B2 (en) 1996-09-18 2006-10-10 Sinu Shunt A/S Device for the treatment of hydrocephalus
US5810761A (en) * 1997-02-26 1998-09-22 Biomedica Mexicana, S.A. De C.V. Intraventricular pressure control device
US6905474B2 (en) * 2000-09-11 2005-06-14 Csf Dynamic A/S Fluid shunt system and a method for the treatment of hydrocephalus
US6588432B1 (en) * 2001-02-15 2003-07-08 Pmt Corporation Tissue expander magnetic injection port
WO2003003908A2 (en) * 2001-07-06 2003-01-16 Ispg, Inc. Epidural space locating device
WO2003003908A3 (en) * 2001-07-06 2003-06-19 Ispg Inc Epidural space locating device
US6773417B2 (en) 2001-07-06 2004-08-10 Ispg, Inc. Epidural space locating device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20110166495A1 (en) * 2008-07-02 2011-07-07 Christoph Miethke Cerebrospinal fluid drainage
US9295821B2 (en) 2008-07-02 2016-03-29 Christoph Miethke Cerebrospinal fluid drainage
EP3302677A4 (en) * 2015-06-01 2019-02-20 University of Massachusetts Catheter assemblies
WO2016200949A1 (en) * 2015-06-10 2016-12-15 Haughton Victor M Cerebrospinal fluid flow diverter
US10207089B2 (en) 2015-06-10 2019-02-19 Victor M. Haughton Cerebrospinal fluid flow diverter
EP3307148A4 (en) * 2015-06-10 2019-04-03 Victor M. Haughton Cerebrospinal fluid flow diverter
US11311703B2 (en) * 2015-06-10 2022-04-26 Victor M. Haughton Cerebrospinal fluid flow diverter
US10625060B2 (en) 2016-06-20 2020-04-21 Csf-Dynamics A/S Shunt device and a method for shunting cerebrospinal fluid
US10625061B2 (en) 2016-06-20 2020-04-21 Csf-Dynamics A/S Shunt device and a method for shunting cerebrospinal fluid
US20210077739A1 (en) * 2019-09-18 2021-03-18 Heraeus Medical Gmbh Device for temporarily, locally applying fluids

Similar Documents

Publication Publication Date Title
US3583387A (en) Pressure absorbing appliance for treating hydrocephalus
US3298372A (en) Surgical hydrocephalus shunt sleeve for placement in a vertebra
US4655745A (en) Ventricular catheter
US3601128A (en) Ventriculoatrial shunt accumulator
CA2173755C (en) Multi-functional inner ear treatment and diagnostic system
US5713844A (en) Device and method for regulating intraocular pressure
US3924635A (en) Ventricular shunt having a variable pressure valve
US3889687A (en) Shunt system for the transport of cerebrospinal fluid
US4382445A (en) Physiological fluid shunt system and improvements therefor
US3886948A (en) Ventricular shunt having a variable pressure valve
US3516410A (en) Cerebro-ventricular catheter
Ryder et al. Observations on the interrelationships of intracranial pressure and cerebral blood flow
US4175563A (en) Biological drainage shunt
US3020913A (en) Surgical drain
US5531673A (en) Ventricular catheter
EP0068815B1 (en) Low profile shunt system
US7025739B2 (en) System and method for treating elevated intracranial pressure
US6648873B2 (en) Aural catheter system including anchor balloon and balloon inflation device
US3111125A (en) Drainage device
US6440102B1 (en) Fluid transfer and diagnostic system for treating the inner ear
US3492996A (en) Ventriculo-atrial shunt
US3669116A (en) Drainage catheter with anticlogging means
US4883456A (en) Attitude and pressure responsive valve
JPH0334943B2 (en)
CN109328049A (en) Equipment for treating excessive ocular fluids